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Preface

Background and Motivation

The establishment of the clinical electrocardiograph (ECG) by the Dutch physician
Willem Einthoven in 1903 marked the beginning of a new era in medical diagnostic
techniques, including the entry of electronics into health care. Since then, electronics,
and subsequently computers, have become integral components of biomedical signal
analysis systems, performing a variety of tasks from data acquisition and prepro-
cessing for removal of artifacts to feature extraction and interpretation. Electronic
instrumentation and computers have been applied to investigate a host of biologi-
cal and physiological systems and phenomena, such as the electrical activity of the
cardiovascular system, the brain, the neuromuscular system, and the gastric system;
pressure variations in the cardiovascular system; sound and vibration signals from
the cardiovascular, the musculo-skeletal, and the respiratory systems; and magnetic
fields of the brain, to name a few.

The primary step in investigations of physiclogical systems requires the devel-
opment of appropriate sensors and instrumentation to transduce the phenomenon of
interest into a measurable electrical signal. The next step of analysis of the signals,
however, is not always an easy task for a physician or life-sciences specialist. The
clinically relevant information in the signal is often masked by noise and interference,
and the signal features may not be readily comprehensible by the visual or auditory
systems of a human observer. Heart sounds, for example, have most of their energy
at or betow the threshold of auditory perception of most humans: the interference pat-
terns of a surface electromyographic (EMG) signal are too complex to permit visual
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analysis. Some repetitious or attention-demanding tasks, such as on-line monitoring
of the ECG of a critically ill patient with cardiac rhythm problems, could be uninter-
esting and tiring for a human observer. Furthermore, the variability present in a given
type of signal from one subject to another, and the inter-cbserver variability inherent
in subjective analysis performed by physicians or analysts make consistent under-
standing or evaluation of any phenomenon difficult, if not impossible. These factors
created the need not only for improved instrumentation, but also for the development
of methods for objective analysis via signal processing algorithms implemented in
electronic hardware or on computers.

Processing of biomedical signals, until a few years ago, was mainly directed
toward filtering for removal of noise and power-line interference; spectral analysis
to understand the frequency characteristics of signals; and modeling for feature
representation and parameterization. Recent trends have been toward quantitative or
objective analysis of physiclogical systems and phenomena via signal analysis. The
field of biomedical signal analysis has advanced to the stage of practical application
of signal processing and pattern analysis techniques for efficient and improved non-
invasive diagnosis, on-line monitoring of critically ill patients, and rehabilitation and
sensory aids for the handicapped. Techniques developed by engineers are gaining
wider acceptance by practicing clinicians, and the role of engineering in diagnosis
and treatment is gaining much-deserved respect.

The major strength in the application of computers in biomedical signal anatysis
lies in the potential use of signal processing and modeling techniques for quantitative
or objective analysis. Analysis of signals by human observers is almost always
accompanied by perceptual limitations, inter-personal variations, errors caused by
fatigue, errors caused by the very low rate of incidence of a certain sign of abnormality,
environmental distractions, and so on. The interpretation of a signat by an expert bears
the weight of the experience and expertise of the analyst; however, such analysis is
almost always subjective. Computer analysis of biomedical signals, if performed with
the appropriate logic, has the potential to add objective strength to the interpretation of
the expert. It thus becomes possible to improve the diagnostic confidence or accuracy
of even an expert with many years of experience. This approach to improved health
care could be labeled as computer-aided diagnosis.

Developing an algorithm for biomedical signal analysis, however, is not an easy
task; quite often, it might not even be a straightforward process. The engineer or
computer analyst is often bewildered by the variability of features in biomedical
signals and systems, which is far higher than that encountered in physical systems
or observations. Benign diseases often mimic the features of malignant discases;
malignancies may exhibit a characteristic pattern, which, however, is not always
guaranteed to appear. Handling all of the possibilities and degrees of freedom in a
biomedical system is a major challenge in most applications. Techniques proven to
work well with a certain system or set of signals may not work in another seemingly
similar situation.
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The Problem-solving Approach

The approach I have taken in presenting material in this book is primarily that
of development of algorithms for probiem sclving. Engineers are often said to
be (with admiration, 1 believe) problem solvers. However, the development of a
problem statement and gaining of a goeod understanding of the problem could require
a significant amount of preparatory work. 1have selected a logical series of problems,
from the many case-studies I have encountered in my research work, for presentation
in the book. Each chapter deals with a certain type of a problem with biomedical
signals. Each chapter begins with a statement of the problem, followed immediately
with a few illustrations of the problem with real-life case-studies and the associated
signals. Signal processing, modeling, or analysis techniques are then presented,
starting with relatively simple “textbook™ methods, followed by more sophisticated
research approaches directed at the specific problem. Each chapter concludes with
one or more applications to significant and practical problems. The book is illustrated
copiously with real-life biomedical signals and their derivatives.

The methods presented in the book are at a fairly high level of technical sophistica-
tion. A good background in signal and system analysis {1, 2, 3] as well as probability,
random variables, and stochastic processes [4, 5, 6, 7, 8, 9] is required, in order to
follow the procedures and analysis. Familiarity with systems theory and transforms
such as the Laplace and Fourier, the latter in both continuous and discrete versions,
will be assumed. We will not be getting into details of the transducers and instru-
mentation techniques essential for biomedical signal acquisition {10, 11, 12, 13];
instead, we will be studying the problems present in the signals after they have been
acquired, concentrating on how to solve the problems. Concurrent of prior study of
the physiological phenomena associated with the sighals of specific interest, with a
clinical textbook, is strongly recommended.

Intended Readership

The book is directed at engineering students in their final year of undergraduate
studies or in their graduate studies. Electrical Engineering students with a rich
background in signals and systems [1, 2, 3] will be well prepared for the material in
the book. Students in other engineering disciplines, or in computer science, physics,
mathematics, or geophysics should also be able to appreciate the material in the book.
A course on digital signal processing or digital filters [14] would form a useful link,
but a capable student without this topic may not face much difficulty.

Practicing engineers, computer scientists, information technologists, medical
physicists, and data-processing specialists working in diverse areas such as telecom-
munications, seismic and geophysical applications, biomedical applications, and hos-
pital information systems may find the book useful in their quest to learn advanced
techniques for signal analysis. They could draw inspiration from other applica-
tions of signal processing or analysis, and satisfy their curiosity regarding computer
applications in medicine and computer-aided medical diagnosis.
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Teaching and Learning Plan

The book starts with an illustrated introduction to biomedical signals in Chapter 1.
Chapter 2 continues the introduction, but with emphasis on the analysis of multiple
channels of related signals. This part of the book may be skipped in the teaching
plan for a course if the students have had a previous course on biomedical signals and
instrumentation. In such a case, the chapters should be stdied as review material in
order to get oriented toward the examples to follow in the book.

Chapter 3 deals exclusively with filtering for removal of artifacts as an important
precursive step before signal analysis. Basic properties of systems and transforms
as well as signal processing techniques are reviewed and described as and when
required. The chapter is written so as to facilitate easy comprehension by those who
have had a basic course on signals, systems, and transforms [1, 2, 3]. The emphasis
is on the application to particular problems in biomedical signal analysis, and not on
the techniques themselves. A large number of illustrations are included to provide a
visual impression of the problem and the effectiveness of the various fiitering methods
described.

Chapter 4 presents techniques particularly useful in the detection of events in
biomedical signals. Analysis of waveshape and waveform complexity of events and
components of signals is the focus of Chapter 5. Techniques for frequency-domain
characterization of biomedical signals and systems are presented in Chapter 6. A
number of diverse examples are provided in these chapters. Attention is directed to
the characteristics of the problems one faces in analyzing and interpreting biomedical
signals, rather than to any specific diagnostic application with particular signals,

The material in the book up to and including Chapter 6 will provide more than
adequate material for a one-semester (13-week) course at the senior (fourth-year)
engineering level. My own teaching experience indicates that this material wiil
require about 36 hours of lectures, angmented with about 12 hours of tutotials
(problem-solving sessions) and 10 laboratory sessions.

Modeling biomedical signal-generating processes and systems for parametric rep-
resentation and analysis is the subject of Chapter 7. Chapter 8 deals with the analysis
of nonstationary signals. The topics in these chapters are of higher mathematical
compiexity than suitable for undergraduate courses. Some sections may be selected
and included in a first course on biomedical signal analysis if there is particular
interest in these topics. Otherwise, the two chapters could be left for self-study by
those in need of the techniques, or included in an advanced course,

Chapier 9 presents the final aspect of biomedicat signal analysis, and provides an
introduction to pattern classification and diagnostic decision. Although this topic is
advanced in nature and could form a graduate-level course on its own, the material
is introduced so as to draw the entire exercise of biomedical signal analysis to its
concluding stage of diagnostic decision, It is recommended that a few sections from
this chapter be included even in a first course on biomedical signal analysis so as to
give the students a fiavor of the end result,

The topic of data compression has deliberately been left out of the book. Advanced
topics such as nonlinear dynamics, time-frequency distributions, wavelet-based anal-
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ysis, chaos, and fractals are notcovered in the book. Adaptive filters and nonstationary
signal analysis techniques are introduced in the book, but deserve more attention,
depth, and breadth. These topics will form the subjects of a follow-up book that [
intend to write.

Each chapter includes a number of study questions and problems to facilitate
preparation for tests and examinations. A number of laboratory exercises are also
provided at the end of each chapter, which could be used to formulate hands-on
exercises with real-life signals. Data files related to the problems and exercises at the
end of each chapter are available at the site

ftp://ftp.ieee.org/uploads/pressirangayyan/

MATLAB programs to read the data are also provided where required,

It is strongly recommended that the first one or two laboratory sessions in the
course be visits to a local hospital, health sciences center, or clinical laboratory to view
biomedical signal acquisition and analysis in a practical (clinical} setting. Signals
acquired from fellow students and professors could form interesting and motivating
material for laboratory exercises, and should be used to supplement the data files
provided. A few workshops by physiologists, neuroscientists, and cardiologists
should also be included in the course so as to provide the students with a non-
engineering perspective on the subject.

Practical experience with real-life signals is a key element in understanding and
appreciating biomedical signal analysis. This aspect could be difficuit and frustrating
at times, but provides professional satisfaction and educational fun!

RANGARAI MANDAYAM RANGAYYAN

Calgary, Alberta, Conada

Seprember, 2001 '
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Symbols and Abbreviations

Note: Bold-face letters represent the vector or matrix form of the variable in the
corresponding italicized letters. Variables or symbols used within limited contexts
are not listed: they are described within their contexts. The mathematical symbels
listed may stand for other entities or variables in different applications; only the
common associations are listed for ready reference.
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autoregressive mode! or filter coefficients
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area under the ROC curve

autocorrelation function

analog-to-digital converter

aoitic insufficiency

amplitude modulation

adaptive noise cancellation

artificial neural network

aorta, aortic (valve or pressure)

action potential

interval between atrial activity and the corresponding QRS
autoregressive {(model or filter)

autoregressive, moving-average (model or filter)
aortic stenosis

atrial septal defect

atrio-ventricular
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A2 aortic component of the second heart sound
b moving-average model or filter coefficients
bpm beats per minute

C covariance matrix

C; the i*" class in a pattern classification problem
Cay covariance between z and

CCF cross-correlation function

CD compact disk

CNS central nervous system

CP carotid pulse

CSD cross-spectral density, cross-spectrum
Ccv coefficient of variation

D dicrotic notch in the carotid pulse

DAC digital-to-analog converter

DC direct current; zero frequency

DFT discrete Fourier transform

DM diastolic murmur

Dw dicrotic wave in the carotid pulse

e(n), E(w) model or estimalion error

ECG electrocardiogram, electrocardiography
ECoG electrocorticogram

EEG electroencephalogram

EGG electrogastrogram

EM electromagnetic

EMG electromyogram

ENG electronevrogram

ERP event-related potential

E, totat energy of the signal =

E[] statistical expectation operator

! frequency variable, usvally in Heriz

JA cutoff frequency (usually at —3 dB) of a filter in Hertz
JA sampling frequency in Hertz

FF form factor

FFT fast Fourier transform

FIR finite impulse response {filter)

FM frequency modulation

FN false negative

FNF false negative fraction

FP false positive

FPF false positive fraction

FT Fourier transform

GLR generalized likelihood ratio

h{t), h(n)  impulse response of a filter
H Hermitian {complex-conjugate) matrix transposition
Hg mercury
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H(s)
H(z)
H{w)
H{w)
HR
HRV
HSS
Hz

i

IFT
IR
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MMSE
MPC
MR
MS
MS
MSE
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MVC
nd

NPV
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transfer function of a filter
Laplace transform of h(t)
z-transform of k(n)

frequency response of 2 filter
Fourier transform of h(t)

heart rate

heart-rate variability
hypertrophic subaortic stenosis
Hertz

index of a series or discrete-time signal
inverse Fourier transform
infinite impulse response (filter)
inter-puise interval

index of a series or discrete-time signal
v=1

natural logarithm (base ¢)

loss function in pattern classification
left atrium

least mean squares

linear prediction (model)

left ventricle

mean

mean vector of a pattern class
milliamperes

millimeter

mitlisecond

millivoit

number of samples

moving average (filter)
muscle-contraction interference
mitral insufficiency

minimum mean-squared ecror
minimum-phase correspondent
mitral regurgiration

mitral stenosis

mean-squared

mean-sqguared error

motor unit

maotor unit action potential
maximal voluntary contraction
nanoamperes

number of samples

filier order

negative predictive value

pole of a medel
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p(z)
p{z|Ci)
rom
PS8
OAE
P

P

P
P(z)
P(Cilz)
PCG
PDA
PDF
PFP
PI
PLP
PPC
PPV
PQ
PS
PSD
P2

Q
QRS
r.T
rj(x)
RA
REM
RF
RLS
RLSL
RMS
ROC
RR
RV

8

8

S(w), S(k)
SA

SD

SEM
SEP

SL

SM
SMUAP

probability density function of the random variable =
likelihood function of class C; or state-conditional PDF of =
pulses per minute

pulses per second

oto-acoustic emission

atrial contraction wave in the ECG

percussion wave in the carotid pulse

mode] order or number of poles

probability of the event =

posterior probability that the observation  is from class C;
phonocardiogram

patent ductus arteriosus

probability density function

patello-femoral pulse trains or signals

pulmonary insufficiency

posterior leaflet prolapse

physiological patello-ferotal crepitus

positive predictive valve

isoelectric segment in the ECG before ventricular contraction
pulmonary stenosis

power spectral density, power spectrum

pulmonary component of the second heart sound
model order or number of zeros

ventricular contraction wave in the ECG

reference input to an adaptive filter

average risk or loss in pattern classification

right atrium

rapid eye movement

radio-frequency

recursive least-squares

recursive least-squares lattice

root mean squared

receiver operating characteristics

interval between two successive QRS waves in an ECG
right ventricle

second

Laplace-domain variable

auto- or cross-spectral density; power spectral density
sino-atrial

standard deviation

spectral error measure

somatosensory evoked potential

signal length

systolic murmur

single motor-unit action potential
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§1
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53
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T
T
T
T

Tt
-
TF
TED
Th
i
TN
TNF
TP
TPF
TS
TSE
TV

v
V1-V6
VAG
VEG
VMG
VSD
w

w
(1), z(n)
x

X

X(f), X(w)
X(k)

X(z)
X(rw)
y(t}, y(n)

y
Y(£),Y(w)
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signal-to-noise ratio

isoelectric segment in the ECG during ventricular contraction
short-time Fourier transform

first heart sound

second heart sound

third heart sound

fourth heart sound

sensitivity of a test

specificity of a test

time variable

ventricular relaxation wave in the ECG

tidal wave in the carotid pulse

sampling interval

as a superscript: vector or maitrix transposition
positive test result

negative test result

time-frequency

time-frequency disiribution

threshold

tricuspid insufficiency

true negative

true negative fraction

true positive

true positive fraction

tricuspid stenosis

total squared error

television

Volt

chest leads for ECG

vibroarthrogram

vectorcardiography

vibtomyogram

ventricular septal defect

filter tap weight; weighting function

filter weight vector

a signal in the time domain; usually denotes input
vector representation of the signal (n)

a feature vector in pattern classification
Fourier transform of z(t)

Discrete Fourier transform of z(n)
z-transform of z(n)

short-time Fourier transform or time-frequency distribution of z(¢)
a signal in the time domain; usually denotes output
vector representation of the signal y{n)
Fourier transform of y(£)
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Discrete Fourier transform of y{(n)
z-transform of y(n)

the z-transform variable

unit delay operator in discrete-time systems
zeros of a system

a prototype feature vector in pattern classification
zero-crossing rate

the z-transform

one-dimensional

two-dimensional

three-dimensional

timb leads for ECG

an EEG wave

an EEG wave

an EEG wave

cotrelation coefficient between x and y
reflection coefficient

coherence between z and i

an EEG wave

Dirac delta (impulse) function

total squared error

a random variable or noise process

an angle

a threshold

an EEG wave

cross-correlation function

forgetting factor in the RLS filter

the mean (average) of a random variable

a rhythmic wave in the EEG

step size in the LMS filter

microvolt

micrometer

microsecond

cosrelation coefficient

the real part of the Laplace variable a (Neper frequency)
the standard deviation of a random variable
the variance of a random variable

a time interval, delay, or shift
autocorrelation

frequency variable in radians per second
frequency vartable in radians per second
when in-line: convolution

as a superscript: complex conjugation
average or normalized version of the variable
complex cepstrum of the signal, if a function of time
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first and second derivatives of the preceding function
for all

belongs to or is in (the set)
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Introduction to Biomedical
Signals

1.1 THE NATURE OF BIOMEDICAL SIGNALS

Living organisms are made up of many component systems — the human body, for
example, includes the nervous system, the cardiovascular system, and the musculo-
skeletal system, among others, Each system is made up of several subsystems that
carry on many physiological processes. For example, the cardiac system performs
the important task of rhythmic pumping of blood througheout the body to facilitate
the delivery of nuirients, as well as pumping blood through the pulmonary system
for oxygenation of the blood itself.

Physiological processes are complex phenomena, including nervous or hormonal
stimulation and control; inputs and outputs that could be in the form of physical
material, neurottansmitters, or information; and action that could be mechanical,
electrical, or biochemical. Most physiological processes are accompanied by or
manifest themselves as signals that reflect their nature and activities. Such signals
could be of many types, including biochemical in the form of hormones and neuro-
transmitters, electrical in the form of potential or cutrent, and physical in the form of
pressure or temperature.

Diseases or defects in a biological system cause alterations in its normal phys-
iological processes, leading to pathological processes that affect the performance,
health, and general well-being of the system. A pathological process is typically
associated with signals that are different in some respects from the corresponding
normal signals. If we possess a good understanding of a system of interest, it becomes
possible to observe the corresponding signals and assess the state of the system. The
task is not very difficult when the signal is simple and appears at the outer surface of

1



2 INTRODUCTION TO BIOMEDICAL SIGNALS

the body. For example, most infections cause a rise in the temperature of the body,
which may be sensed very easily, albeit in a relative and gualitative manner, via the
palm of one’s hand. Objective or guantitative measurement of temperature requires
an instrument, such as a simple thermometer.

A single measurement ¢ of temperature is a scalar, and represents the thermal state
of the body at a particular or single instant of time ¢ (and a particular position). If we
record the temperature continuously in some forin, say a strip-chart record, we obtain
a signal as a function af time; such a signal may be expressed in continuous-time or
analog form as x(t). When the temperature is measured at discrete points of time,
it may be expressed in discrete-time form as z(nT') or z(n), where n is the index
or meagurement sample number of the array of vaives, and T represents the uniform
interval between the time instants of measurement. A discrete-time signal that can
take amplitude values only from a limited list of quantized levels is catled a digital
signal; the distinction between discrete-time and digital signals is often ignored.

In intensive-care monitoring, the tympanic (ear drum) temperature may sometimes
be measured using an infra-red sensor. Occasionally, when catheters are being used
for other purposes, a temperature sensor may also be introduced into an artery or
the heart to measure the core temperature of the body. It then becomes possible
to obtain a continvous measurement of temperature, although only a few samples
taken at intervals of a few minutes may be stored for subsequent analysis. Figure 1.1
illustrates representations of temperature measurements as a scalar, an atray, and
a signal that is a function of time. It is obvious that the graphical representation
facilitates easier and faster comprehension of trends in the temperature than the
numerical format. Long-term recordings of temperature can facilitate the analysis of
temperature-regulation mechanisms [15, 16).

Let us now consider another basic measurement in health care and monitoring:
that of blood pressure (BP). Each measurement consists of two values — the systolic
pressure and the diastolic pressure. BP is measured in millimeters of mercury
{(mm of Hg)in clinical practice, although the intemational standard unit for pressure
is the Pascal. A single BP measurement could thus be viewed as a vector x =
[®1, QQ}T with two components: x; indicating the systolic pressure and x3 indicating
the diastolic pressure. When BP is measured at a few instants of time, we obtain an
array of vectorial values x(n). In intensive-care monitoring and susgical procedures,
a pressure transducer may sometimes be inserted into an artery (along with other
intra-arteriat or intra-venous devices). It then becomes possible to obtain the arterial
systolic and diastolic BP on a countinuous-time recording, although the values may
be transferred to a computer and stored only at sampled instants of time that are
several minutes apart. The signal may then be expressed as a function of time x(t).
Figure 1.2 shows BP measurements as a single two-component vector, as an array,
and as a function of time. I is clear that the plot as a function of time facilitates rapid
observation of trends in the pressure,
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Figure 1.1 Measurements of the temperature of a patient presented as (a) a scalar with
one temperaiure measurement @ at a time instant £; (b} an amay 2(n) made up of several
measurements at different instants of time; and (¢) a signal 2(t} or z(n). The horizontal axis
of the plot represents time in hours, the vertical axis gives temperature in degrees Celsius.
Data courtesy of Foothills Hospital, Calgary.
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Figure 1,2 Measurements of the blood pressure of a patient presented as (a) a single pair
or vector of systolic and diastolic measurements x in mm of Hg at a time instant ¢, (b) an
array x{n) made up of several measurements at different instants of time; and {c) a signal x(¢)
ot x(n). Note the use of boldface x to indicate that each measurement is a vector with two
components. The horizontal axis of the plot represents time in hours; the vertical axis gives
the systolic pressure (upper trace) and the diastolic pressure (Jlower trace) in mmm of Hg. Data
courtesy of Foothills Hospital, Calgary,
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1.2 EXAMPLES OF BIOMEDICAL SIGNALS

The preceding example of body temperature as a signal is a rather simple example of a
biomedical signal. Regardless of its simplicity, we can appreciate its importance and
value in the assessment of the well-being of a child with a fever or that of a critically
ill patient in a hospital. The origins and nature of a few other biomedical signals
of various types are described in the following subsections, with brief indications of
their usefulness in diagnosis. Further detailed discussions on some of the signals will
be provided in the context of their analysis for various purposes in the chapters that
follow.

1.2,1 The action potential

The action potential (AP) is the electrical signal that accompanies the mechanical
contraction of a single cell when stimulated by an electrical current (neural ot external)
{10, 17, 18, 19, 20, 21]. It is caused by the flow of sedium (Na™), potassium (K *),
chloride (C17), and other ions across the cell membrane. The action potential is the
basic component of 2ll bioelectrical signals. It provides information on the nature of
physiological activity at the single-cell level. Recording an action potential requires
the isolation of a single cell, and microelectrodes with tips of the order of a few
micrometers to stimoiate the cell and record the response [10].

Resting potential: Nerve and muscle cells are encased in a semi-permeable
membrane that permits selected substances to pass through while others are kept out.
Body fluids surrounding cells are conductive solutions containing charged atoms
known as ions. In their resting state, membranes of excitable cells readily permit
the entry of K+ and Cl™ ions, but effectively block the entry of Nat ions (the
permeability for K+ is 50~100 times that for Na*). Various ions seek to establish
a balance between the inside and the outside of a cell according to charge and
concentration. The inability of Na*t to penetrate a cell membrane results in the
following [17]:

e Na™ concentration inside the cell is far less than that outside.
s The outside of the cell is more positive than the inside of the cell.

» To balance the charge, additional K ions enter the cell, causing higher K+
concentration inside the cell than outside.

¢ Charge balance cannot be reached due to differences in membrane permeability
for the various ions.

¢ A state of equilibrium is established with a potential difference, with the inside
of the cell being negative with respect to the outside.

A cell in its resting state is said to be polarized. Most cells maintain a resting
potential of the order of —60 to —100 mV until some disturbance or stimulus upsets
the equilibrium.
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Depolarization: When a cell is excited by jonic currents or an external stimulus,
the membrane changes its characteristics and begins to allow Na* ions to enter the
cell. This movement of Na™ ions constitates an ionic current, which further reduces
the membrane barrier to Na* ions. This leads to an avalanche effect: Na* ions rush
into the cell. Xt ions try to leave the cell as they were in higher concentration inside
the cell in the preceding resting state, but cannot move as fast as the Ne* ions. The
net result is that the inside of the cell becomes positive with respect to the outside due
to an imbatance of K* ions. A new state of equilibrium is reached after the rush of
Na™ ions stops. This change represents the beginning of the action potential, with
a peak value of about 420 mV for most cells. An excited cell displaying an action
potential is said to be depolarized, the process is called depolarization.

Repolarization: After a certain period of being in the depolarized state the cell
becomes polarized again and reiurns to its resting potential via a process known
as repolarization. Repolarization occurs by processes that are analogous to those
of depolarization, except that instead of Na* ions, the principal ions iavolved in
repolarization are K ions {19). Membrane depolarization, while increasing the
permeability for Na™* ions, also increases the permesbility of the membrane for K+
jons via a specific class of ion channels known as voltage-dependent K+ channels.
Although this may appear to be paradoxical at first glance, the key to the mecha-
nism for repolarization lies in the time-dependence and voltage-dependence of the
membrane permeability changes for K+ ions compared with that for Na™ ions. The
permeability changes for K * during depolarization occur considerably more stowly
than those for Nat ions, hence the initial depolarization is caused by an inrush of
Nat ions. However, the membrane permeability changes for Na% spontaneousty
decrease near the peak of the depolarization, whereas those for K ions are beginning
to increase. Hence, during repolarization, the predominant membrane permeability is
for Kt ions. Because K'* concentration is much higher inside the cell than outside,
there is a net efflux of X'+ from the cell, which makes the inside more ncgative,
thereby effecting repolarization back to the resting potential.

It should be noted that the voltage-dependent K+ permeability change is due to
a distinctly different class of ion channels than those that are responsible for setting
the resting potential. A mechanism known as the Na* — K" pump extrudes Na*
ions in exchange for transporting K+ ions back into the cell. However, this transport
mechanism carries very little current in comparison with ion channels, and therefore
makes & minor contribution to the repolarization process, The Na* — K* pump is
essential for resetting the Nat — K* balance of the cell, but the process occurs on
a longer time scale than the duration of an action potentiai.

Nerve and muscle cells repolarize rapidly, with an action potential duration of
about 1 ma. Heart muscle cells repolarize slowly, with an action potential duration
of 150 — 300 ma.

The action potential is always the same for a given cell, regardless of the method
of excitation or the intensity of the stimulus beyond a threshold: this is known as
the all-or-none or all-or-nothing phenomenon, After an action potential, there is
a period during which a cell cannot respond to any new stimulus, known as the
absolute refractory period (about 1 ms in netve cells). This is followed by a relative
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refractory period (several ms in nerve cells), when another action potential may be
triggered by a much stronger stimulus than in the normal situation.

Figure 1.3 shows action potentials recorded from individual rabbit ventricular and
atrial myocytes (muscle cells) [19]. Figure 1.4 shows a ventricular myocyte in its
relaxed and fully contracted states. The tissues were first incubated in digestive
enzymes, principally collagenase, and then dispersed into single cells using gentle
mechanical agitation. The recording electrodes were glass patch pipettes; a whole-
cell, current-clamp recording configuration was used to obtain the action potentials.
The celis were stimulated at low rates (once per 8 s); this is far less than physiological
rates. Moreover, the cells were maintained at 20° C, rather than body temperature.
Nevertheless, the major features of the action potentials shown are similar to those
recorded under physiological conditions.

{a} Action Potantial of Rabbit Veniricular Myocyte
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Figure 1.3  Action potentials of rabbit ventricvlar and atrial myocytes. Data courtesy of R.
Clark, Department of Physiotogy and Biophysics, University of Caigary.

The resting membrane potential of the cells (from 0 to 20 ms in the plots in
Figure 1.3} is about —83 mV. A square pulse of current, 3 mas in duration and
1 nd in amplitude, was passed through the recording electrode and across the cell
membrane, causing the cell to depolarize rapidly. The ventricular myocyte exhibits
a depolarized potential of about +40 mV; it then slowly declines back to the resting
potential level over an interval of about 500 ms. The initial, rapid depolarization of
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(b)

Figure 1.4 A single ventricular myocyle {of arabbit) in its (a) relaxed and (b) fulty contracted
states. The length of the myocyte is approximately 26 gm. The tip of the glass pipette, faintly
visible at the upper-tight end of the myocyte, is approximately 2 um wide. lmages courtesy
of R. Clark, Department of Physiology and Biophysics, University of Calgary.
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the atrial cell is similar to that of the ventricular cell, but does not overshoot zero
membrane potential as much as the ventricular action potential; repolarization occurs
much more quickly than is the case for the ventricular cell.

Propagation of an action potential: An action potential propagates along a
muscle fiber or an unmyelinated nerve fiber as follows [22]: Once initiated by a
stimulus, the action potential propagates along the whole length of a fiber without
decrease in amplitude by progressive depolarization of the membrane. Current
flows from a depolarized region through the intra-cellular fiuid to adjacent inactive
regions, thereby depolarizing them. Cutrent also flows through the extra-cellular
fluids, through the depolarized membrane, and back into the intra-cellular space,
completing the local circuit. The energy to maintain conduction is supplied by the
fiber itself.

Myelinated nerve fibers are covered by an insulating sheath of myelin. The
sheath is interrupted every few millimeters by spaces known as the nodes of Ranvier,
where the fiber is exposed to the interstitial fluid. Sites of excitation and changes of
membrane permeability exist only at the nodes, and current flows by jumping from
one node to the next in a process known as saitatory conduction.

1.2.2 The slectroneurogram (ENG)

The ENG is an electrical signal observed as a stimulus and the associated nerve
action potential propagate over the length of a nerve. It may be used to measure the
velocity of propagation (or conduction velocity) of a stimulus or action potential in
anerve [10]. ENGs may be recorded using concentric needle electrodes or silver -
silver-chloride electrodes (Ag — AgC1) at the surface of the body.

Conduction velocity in a peripheral nerve may be measured by stimulating a motor
nerve and measuring the related activity at two points that are a known distance apart
along its course. In order to minimize muscle contraction and other undesired effects,
the limb is held in a relaxed posture and a strong but short stimulus is applied in the
form of a pulse of about 100 V' amplitude and 100 — 300 gs duration [10). The
difference in the latencies of the ENGs recorded over the associated muscle gives
the conduction time. Knowing the separation distance between the stimulus sites,
it is possible to determine the conduction velocity in the nerve [10]. ENGs have
amplitudes of the order of 10 4V and are susceptible to power-line interference and
instrumentation noise.

Figure 1.5 illustrates the ENGs recorded in a nerve conduction velocity study.
The stimulus was applied to the ulnar nerve. The ENGs were recorded at the wrist
(marked “Wrist” in the figure), just below the elbow {BElbow), and just above the
elbow (AElbow) using surface electrodes, amplified with a gain of 2, 000, and filtered
to the bandwidth 10 — 10,000 Hz. The three traces in the figure indicate increasing
latencies with respect to the stimulus time point, which is the left margin of the plots.
The responses shown in the figure are normal, indicate a BEIbow — Wrist latency of
3.23 ms, and lead to a nerve conduction velocity of 64.9 m/s.

Typical values of propagation rate or nerve conduction velocity are [22, 10, 23):
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Figure 1.5 Nerve conduction velocity measurement via electrical stimulation of the ulnar
nerve. The grid boxes represent 3 ma in width and 2 gV in height. AElbow: above the elbow.
BEtbow: below the elbow. O: onset. P: Peak. T: trough. R: recovery of base-line. Courtesy
of M. Wilson and C. Adams, Aiberta Children’s Hospital, Calgary.
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& 45 — 70 m/s in nerve fibers;
¢ 0.2 — 0.4 m/s in heart muscle;

¢ 0.03 — 0.05 m/s in time-delay fibers between the atria and ventricles.

Neural diseases may cause a decrease in conduction velocity.

1.2.3 The electromyogram (EMG)

Skeletal muscle fibers are considered to be twitch fibers because they produce a
mechanical twitch response for a single stimulus and generate a propagated action
potential. Skeletal muscles are made up of collections of motor units (MUs), each
of which consists of an anterior horn cell (or motoneuron or motor neuron), its axon,
and ali muscle fibers innervated by that axon. A motor unit is the smallest muscle
unit that can be activated by volitional effort. The constituent fibers of a motor unit
are activated synchronously. Component fibers of a motor unit extend lengthwise in
loose bundles along the muscle. In cross-section, the fibers of a given motor unit are
interspersed with the fibers of other motor units [22, 10, 24]. Figure 1.6 (top panel)
illusirates a motor unit in schematic form [24].

Large muscles for gross movement have hundreds of fibers per motor unit; muscles
for precise movement have fewer fibers per motor unit, The number of muscle
fibers per motor nerve fiber is known as the innervarion ratio. For example, it has
been estimated that the platysma muscle (of the neck) has 1, 826 large nerve fibers
controlling 27,100 muscle fibers with 1,096 motor units and an innervation ratio
of 25, whereas the first dorsal interosseus (finger) muscle has 199 large nerve fibers
and 40, 500 muscle fibers with 119 motor units and an innervation ratio of 340 [22].
The mechanical output (contraction) of a muscle is the net result of stimulation and
contraction of several of its motor units.

When stimulated by a neural signal, each motor unit contracts and causes an
electrical signal that is the summation of the action potentials of all of its constituent
cells, This is known as the single-motor-unit action potential (SMUAP, or simply
MUAP), and may be recorded using needle electrodes inserted into the muscle
region of interest. Nermal SMUAPs are usually biphasic or triphasic, 3 — 15 ms
in duration, 200 — 300 xV in amplitude, and appear with frequency in the range
of 6 - 30/s [10, 22]. The shape of a recorded SMUAP depends upon the type of
the needle electrode used, its positioning with respect to the active motor unit, and
the projection of the electrical field of the activity onto the electrodes. Figure 1.7
illustrates simultaneous recordings of the activities of a few motor units from three
channels of needle electrodes [25]. Although the SMUAPs are biphasic or triphasic,
the same SMUAP displays variable shape from one channel to another, (Note: The
action potentials in Figure 1.3 are monophasic; the first two SMUAPs in Channel |
in Figure 1.7 are biphasic, and the third SMUAP in the same signal is triphasic.)

The shape of SMUAPs is affected by disease. Figure 1.8 illustrates SMUAP trains
of a normal subject and those of patients with neuropathy and myopathy. Neuropathy
causes slow conduction and/or desynchronized activation of fibers, and a polyphasic
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Figure 1.6 Schematic representation of a motor vnit and model for the generation of EMG
signals. Top panel: A motor unit includes an anterior horn cell or motor neuron (illustrated
in a cross-section of the spinal cord), an axon, and several connected muscle fibers, The
hatchied fibers belong to one motor unit; the non-hatched fibers belong to other motor units.
A needle electrode is also illustrated. Middle panel: The firing patiern of each motor neuron
is represented by an impulse train. Each system hi(t) shown represents a motor unit that is
activated and generates a train of SMUAPs. The net EMG is the sum of several SMUAP trains,
Bottom panel: Effects of instrumentation on the EMG signal acquired. The observed EMG is
a function of time £ and muscular force produced F. Reproduced with permission from C.J. de
Luca, Physiology and mathematics of myoelectric signals, IEEE Transactions on Biomedical
Engineering, 26:313-325, 1979. ©IEEE.
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Channel 2

}

Ims

Figure 1,7 SMUAP trains recorded simultaneously from three channels of needle electrodes.
Observe the different shapes of the same SMUAPs projected onto the axes of the three channels.
Three different motor units are active over the duration of the signals illustrated. Reproduced
with permission from B. Mambrito and C.J. de Luca, Acquisition and decomposition of the
EMGQG signal, in Progress in Clinical Newrophysiology, Volume 10: Computer-aided Elec-
tromyography, Editor: J.E. Desmedt, pp 52-72, 1983. ©8. Karger AG, Basel, Switzerland.
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SMUAP with an amplitude larger than normal. The same motor unit may be observed
to fire at higher rates than normal before more motor units are recruited. Myepathy
involves loss of muscle fibers in motor units, with the neurons presumably intact.
Splintering of SMUAPs occurs due to asynchrony in activation as a result of patchy
destruction of fibers (e.g., in muscular dystrophy), leading to polyphasic SMUAPs,
More motor units may be observed to be recruited at low levels of effort.

Gradation of muscular contraction: Muscular contraction levels are controlled
in two ways:

e Spatial recruitment, by activating new motor units with increasing effort; and

o Temporal recruitment, by increasing the frequency of discharge (firing rate) of
each motor unit with increasing effort.

Motor units are activated at different times and at different frequencies causing
asynchronous contraction. The twitches of individual motor units sum and fuse to
form tetanic contraction and increased force. Weak volitional effort causes motor
units to fire at about 5 — 15 pps (pulses per second). As greater tension is developed,
an interference pattern EMG is obtained, with the constituent and active motor units
firing in the range of 25 — 50 pps. Grouping of MUAPs has been observed as fatigue
develops, leading to decreased high-frequency content and increased amplitude in
the EMG [24).

Spatio-temporal summation of the MUAPs of all of the active motor units gives
rise to the EMG of the muscle. EMG signals recorded using surface elecirodes
are complex signals including interference patterns of several MUAP trains and are
difficult to analyze. An EMG signal indicates the level of activity of a muscle, and
may be used to diagnose neuromuscular diseases such as neuropathy and myopathy.

Figure 1.9 illustrates an EMG signal recorded from the crurat diaphragm of a dog
using fine-wire electrodes sewn in-line with the muscle fibers and placed 10 mm
apart [26]. The signal represents one period of breathing (inhalation being the active
part as far as the muscle and EMG are concerned). It is seen that the overall level
of activity in the signal increases during the initial phase of inhalation. Figure 1.10
shows the early parts of the same signal on an expanded time scale. SMUAPs ave seen
at the beginning stages of contraction, followed by increasingly complex interference
patterns of several MUAPs.

Signal-processing techniques for the analysis of EMG signals will be discussed in
Sections 5.2.4,5.6,5.9,5.10,7.2.1, and 7.3,

1.24 The electrocardiogram (ECG)

The ECG is the electrical manifestation of the contractile activity of the heart, and
can be recorded fairly easily with surface electrodes on the limbs or chest. The
ECG is perhaps the most commonly known, recognized, and used biomedical signal.
The thythm of the heart in terms of beats per minute (bpm) may be easily estimated
by counting the readily identifiable waves. More important is the fact that the ECG



EXAMPLES OF BIOMEDICAL SIGNALS 15

{
)

3

N

(c)

Figure 1.8 Examples of SMUAP trains. (a) From the right deltoid of a normal subject, male,
11 years; the SMUAPs are mostly biphasic, with duration in the range 3 — 5 mas. (b) From the
deltoid of a six-month-old male patient with brachial plexus injury (neuropathy); the SMUAPs
are polyphasic and large in amplitude (800 V'), and the same motor unit is firing at a relatively
high rate at low-to-medium levels of effort. (¢) From the right biceps of a 17-year-old male
patient with myopathy; the SMUAPs are polyphasic and indicate early recruitment of more
motor units at a low level of effort, The signals were recorded with gauge 20 needle electrodes.
The width of each grid box represents a duration of 20 mas; its height represents an amplitude
of 200 V. Courtesy of M. Wilson and C. Adams, Alberta Children’s Hospital, Calgary.
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Figure 1.9 EMG signal recotded from the crural diaphragm muscle of a dog using implanted
fine-wire electrodes. Data courtesy of R.S. Platt and P.A, Easton, Department of Clinical

Neurosciences, University of Calgary.
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Figure 1.10 The initial part of the EMG signal in Figure 1.9 shown on an expanded time
scale. Observe the SMUAPs at the initial stages of contraction, followed by increasingly
complex interference patterns of several MUAPs. Data courtesy of R.S. Platt and P.A. Easton,
Department of Clinical Neurosciences, University of Calgary.
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waveshape is altered by cardiovascular diseases and abnormalities such as myocardial
ischemia and infarction, ventricular hypertrophy, and conduction problems,

The heart: The heart is a four-chambered pump with two atria for collection of
blood and two ventricles for pumping out of blood. Figure 1.11 shows a schematic
representation of the four chambers and the major vessels connecting to the heart.
The resting or filling phase of a cardiac chamber is called diastole; the contracting or
pumping phase is called systole.

The right atrium (or auricle, RA) collects impure blood from the superior and
inferior vena cavae. During atrial contraction, blood is passed from the right atrium
to the right ventricle (RV) through the tricuspid valve. During ventricular systole,
the impure blood in the right ventricle is pumped out through the pulmonary valve to
the lungs for purification (oxygenation).

Borto

Sino-aitial
node

Pulmonary valve
Atrio-vantricuor node

Right afrium His bundle
Left atrium
Tl?c%pld wltlve Pulmonary vein
Right veniricle Mitegl voive
Inferior Agrhig volve

vena cavo

e by

Left ventricle

Left bundie branch
Purkinje fibars

Figure 111 Schematic representation of the chambers, valves, vessels, and conduction
system of the hean.

The left atrium (LA) receives purified blood from the lungs, which is passed on
during atrial contraction to the left ventricle (LV) via the mitral valve. The left ven-
tricle is the largest and most important cardiac chamber. The left ventricle contracts
the strongest among the cardiac chambers, as it has to pump out the oxygenated
blood through the aortic valve and the sorta against the pressure of the rest of the
vascular system of the body. Due to the higher level of importance of contraction of
the ventricles, the terms systole and diastole are applied to the ventricles by defauit,

The heart rate (HR) or cardiac rhythm is controlied by specialized pacemaker cells
that form the sino-atrial (SA) node located at the junction of the superior vena cava
and the right atrium [23]). The firing rate of the SA node is controlied by impulses
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from the autonomous and central nervous systems leading to the delivery of the
neurotransmitters acetylcholine (for vagal stimulation, causing a reduction in heart
rate) or epinephrine (for sympathetic stimulation, causing an increase in the heart
rate). The normal (resting) heart rate is about 70 bpm. The heart rate is lower during
sleep, but abnormalty low heart rates below 60 dpm during activity could indicate a
disorder called bradycardia. The instantaneous heart rate could reach values as high
as 200 bpm during vigorous exercise or athletic activity; a high resting heart rate
could be due to illness, disease, or cardiac abnormalities, and is termed tachycardia.

The electrical system of the heart: Co-ordinated electrical events and a spe-
cialized conduction system intrinsic and unique to the heart play major roles in the
rhythmic contractile activity of the heart. The SA node is the basic, natural cardiac
pacemaker that triggers its own train of action potentials. The action potential of
the SA node propagates through the rest of the heart, causing a particular pattern of
excitation and contraction (see Figure 1.12). The sequence of events and waves in a
cardiac cycle is as follows [23]:

1. The SA node fires.

2. Electrical activity is propagated through the atrial musculature at comparatively
low rates, causing slow-moving depolarization (contraction) of the atria. This
results in the P wave in the ECG (see Figure 1.13). Due to the slow contraction
of the atria and their small size, the P wave is a slow, low-amplitude wave, with
an amplitude of about 0.1 -~ 0.2 mV and a duration of about 60 — 80 ms.

3. The excitation wave faces a propagation delay at the atrio-ventricular {AV)
node, which results in a normally iso-electric segment of about 60 — 80 ms
after the P wave in the ECG, known as the PQ segment. The pause assists in
the comptletion of the ransfer of blood from the atria to the ventricles.

4. The His bundie, the bundle branches, and the Purkinje system of specialized
conduction fibers propagate the stimulus to the ventricles at a high rate.

5. The wave of stimulus spreads rapidly from the apex of the heart upwards,
causing rapid depolarization (contraction) of the ventricles, This results in the
QRS wave of the ECG -— a sharp biphasic or triphasic wave of about 1 mV
amplitude and 80 ms duration (see Figure 1.13).

6. Ventricular muscle cells possess a refatively long action potential duration of
300 — 350 ms (see Figure 1.3). The plateau portion of the action potential
causes a normally iso-electric segment of about 100 — 120 ms after the QRS.
known as the ST segment.

7. Repolarization (relaxation) of the ventricles causes the slow T wave, with an
amplitude of 0.1 — 0.3 mV and duration of 120 — 160 ms (see Figure 1.13).

Any disturbance in the regular rhythmic activity of the heart is termed arrhythmia.
Cardiac arrhythiia may be caused by irregular firing patterns from the SA node, or
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ATRIAL EXCITATION A-V NODAL DELAY VENTRICULAR EXCITATION— COMPLETE
S-A NODE

Figure 1.12 Propagation of the excitation pulse through the heart. Reproduced with permis-
sion from R.F. Rushmer, Cardiovascilar Dynamics, 4th edition, @ W.B, Saunders, Philadel-
phia, PA, 1976.
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Figure 1.13 A typical ECG signal (male subject of age 24 years). (Nofe: Signal values are
not calibrated, that is, specified in physical units, in many applications. As is the case in this
plot, signal values in plots in this book are in arbitrary or normalized units unless specified.)
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by abnormal and additional pacing activity from other parts of the heart. Many parts
of the heart possess inherent rhythmicity and pacemaker properties; for example, the
SA node, the AV node, the Purkinje fibers, atrial tissue, and ventricular tissue. If the
SA node is depressed or inactive, any one of the above tissues may take over the role
of the pacemaker or introduce ectopic beats. Different types of abnormal rhythm
(arrhythmia) result from variations in the site and frequency of impulse formation.
Premature ventricular contractions (PVCs) caused by ectopic foci on the ventricles
upset the regular rhythm and may lead to ventricular dissociation and fibrillation
— a state of disorganized contraction of the ventricles independent of the atria —
resuiting in no effective pumping of blood and possibly death. The waveshapes of
PVCs are usually very different from that of the normal beats of the same subject due
to the different conduction paths of the ectopic impulses and the associated abnormal
contraction events. Figure 1.14 shows an ECG signal with a few normal beats and
two PVCs, (See Figure 9.5 for an illustration of ventricular bigeminy, where every
second pulse from the SA node is replaced by a PVC with a full compensatory pause.)
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0.7f T
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0.3+ E

0.2r L 1 1 1 L u L 1 3

] 0.5 1 1.5 2 2.5 a3 3.5 4 4.5
Time in seconds

Figure 1.14 ECG signal with PVCs. The third and sixth beats are PYCs. The first PVC
has blocked the normal beat that would have appeared at about the same time instant, but the
second PVC has not blocked any normal beat triggered by the SA node. Data courtesy of G,
Groves and J. Tyberg, Department of Physiology and Biophysics, University of Calgary.

The QRS waveshape is affected by conduction disorders; for example, bundle-
branch block causes a widened and possibly jagged QRS. Figure 1.15 shows the ECG
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signal of a patient with right bundle-branch block. Observe the wider-than-normal
QRS complex, which also displays a waveshape that is significantly different from
the normal QRS waves. Ventricular hyperirophy {enlargement) could also cause a
wider-than-normal QRS.

The ST segment, which is normally iso-electric (flat and in line with the PQ
segment) may be elevated or depressed due to myocardial ischemia (reduced blood
supply to a part of the heart muscles due to a block in the coronary arteries) or
due to myocardial infarction {(dead myocardial tissue incapable of contraction due to
total lack of blood supply). Many other discases cause specific changes in the ECG
waveshape: the ECG is a very important signal that is useful in heart-rate (rhythm)
monitoring and the diagnosis of cardiovascular diseases.
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Figure 1.15 ECG signal of a patient with right bundle-branch block and hypertrophy (male
patient of age 3 months). The QRS complex is wider than normal, and displays an abnormal,
jagged waveform due to desynchronized contraction of the ventricles. (The signal also has a
base-line drift, which has not been corrected for.)

ECG signal acquisition: In clinical practice, the standard 12-channel ECG is
obtained using four limb leads and chest leads in six positions [23, 27). The right leg
is used to place the reference electrode. The left arm, right arm, and left leg are used
to get leads I, II, and 1II. A combined reference known as Wilson's central terminal
is formed by combining the left arm, right arm, and left leg leads, and is used as the
reference for chest leads. The augmented limb leads known as aVR, aVL, and aVF
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(aV for the augmented lead, R for the right arm, L for the left arm, and F for the left
foot) are obtained by using the exploring electrode on the limb indicated by the lead
name, with the reference being Wilson’s central terminal without the exploring limb
lead.

Figure 1.16 shows the directions of the axes formed by the six limb leads. The
hypothetical equilateral triangle formed by leads 1, II, and I11 is known as Einthoven's
triangle. The center of the triangle represents Wilson’s central terminal. Schemat-
ically, the heart is assumned to be placed at the center of the triangle. The six leads
measure projections of the three-dimensional (3D) cardiac electrical vector onto the
axes illustrated in Figure 1.16. The six axes sample the 0° — 180° range in steps of
approximately 30°. The projections facilitate viewing and analysis of the electrical
activity of the heart and from different perspectives in the frontal plane.

Right Arm - Lead I + Left Axm

Wilgon's
central
terminal

Lead II Lead ITII

Right Leg:
Refexence Left Leg

Figure 1.16 Einthoven's triangle and the axes of the six ECG leads formed by using four
limb leads.

The six chest leads (written as V1 — V6) are obtained from six standardized
positions on the chest [23] with Wilson's central terminal as the reference. The
positions for placement of the precordial (chest) leads are indicated in Figure 1.17.
The V1 and V2 leads are placed at the fourth intercostal space just to the right and
left of the sternum, respectively. V4 is recorded at the fifth intercostal space at the
left midclavicular line, The V3 lead is placed half-way between the V2 and V4 leads.
The V5 and V6 leads are located at the same level as the V4 lead, but at the anterior
axillary line and the midaxillary line, respectively. The six chest leads permit viewing
the cardiac electrical vector from different orientations in a cross-sectional plane: V5§
and V6 are most sensitive to left ventricular activity; V3 and V4 depict septal activity
best; V1 and V2 reflect well activity in the right-half of the heart.
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Carotid pulse area Midclavicular line

Anterior axillary line

Jugular pulse area Midaxillory line

Pulmonary area
21CS
Tricuspid area

Aortic area

51cCs

Mitral area

VI V2 V3 V4 v5V6

Figure 1.17 Positions for placement of the precordigl (chest) leads V) — V6 for ECG,
auscultation areas for heart sounds, and pulse transducer positions for the carotid and jugular
pulse signals. ICS: intercostal space.
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In spite of being redundant, the 12-lead system serves as the basis of the standard
clinical ECG. Clinical ECG interpretation is mainly empirical, based on experimental
knowtedge. A compact and efficient system has been proposed for vectorcardiogra-
phy or VCG [28, 23], where loops inscribed by the 3D cardiac electrical vector in
three mutually orthogonal planes, namely, the frontal, horizontal, and sagittal planes,
are plotted and analyzed. Regardless, the 12-lead scalar ECG is the most commonly
used procedure in clinical practice.

As the external ECG is a projection of the internal 3D cardiac electrical vector, the
external recordings are not unique. Some of the lead inter-relationships are [23, 27]:

e H=1+1II
e aVL=(I-1I1)/2.
Some of the important features of the standard clinical ECG are:

e A rectangular calibration pulse of 1 mV amplitude and 200 me duration is
applied to produce a pulse of 1 em height on the paper plot.

o The paper speed used is 25 mm/ s, resulting in a graphical scale of 0.04 &/mm
or 40 ms/mm. The calibration pulse width will then be 5 mm.

¢ The ECG signal peak value is normally about 1 mV.
¢ The amplifier gain used is 1,000,

¢ Clinical ECG is usually filtered to a bandwidth of about 0.05 — 100 Hz, witha
recommended sampling rate of 500 Hz for diagnostic ECG. Distortions in the
shape of the calibration pulse may indicate improper filter settings or a poor
signal acquisition systern.

o ECG for heart-rate monitoring could use a reduced bandwidth Q.5 — 50 Hz,
¢ High-resolution ECG requires a greater bandwidth of 0.05 — 500 H z.

Figure 1.18 shows the 12-lead ECG of a normal male adult. The system used to
obtain the illustration records three channels at a time: leads I, I1, If; aVR, aVL, aVF;
V1, V2, V3; and V4, V5, V6 are recorded in the three available channels simulta-
neously. Other systems may record one channel at a time. Observe the changing
shape of the ECG waves from one lead to another. A well-trained cardiologist will
be able to deduce the 3D orientation of the cardiac electrical vector by analyzing
the waveshapes in the six limb leads. Cardiac defects, if any, may be localized by
analyzing the waveshapes in the six chest leads.

Figure 1.19 shows the 12-lead ECG of a patient with right bundle-branch block
with secondary repolarization changes. The increased QRS width and distortions in
the QRS shape indicate the effects of asynchronous activation of the ventricles due
to the bundle-branch block.

Signal-processing techniques to filter ECG signals will be presented in Sec-
tions 3.2, 3.3, 3.4, 3.5, and 3.8. Detection of ECG waveforms will be discussed
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Figure 1.18  Standard 12-{ead ECG of a normal male adult. Courtesy of E. Gedamu and L.B.

Mitcheli, Foothills Hospi
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Figure 1.19  Standard 12-lead ECG of a patient with right bundle-branch block. Courtesy of
L.B. Mitcheil, Foothills Hospital, Calgary.
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in Sections 4.2.1, 4.3.2, 4.7, and 4.9. Analysis of ECG waveform shape and classi-
fication of beats will be deatt with in Sections 5.2.1, 5.2.2, 5.2.3, 5.4, 5.7, 5.8, 9.2.1,
and 9,12, Analysis of heart-rate variability will be described in Sections 7.2.2, 7.8,
and 8.9. Reviews of computer applications in ECG analysis have been published by
Jenkins {29, 30} and Cox et al. [31].

1.2.5 The electroencephalogram (EEG)

The EEG (popularly known as brain waves) represents the electrical activity of the
brain [32, 33, 34]. A few important aspects of the organization of the brain are as
follows: The main parts of the brain are the cerebrum, the cerebellum, the brain
stem (including the midbrain, pons medulla, and the reticular formation), and the
thalamus {(between the midbrain and the hemispheres). The cerebrum is divided into
two hemispheres, separated by a longitudinal fissure across which there is a large
connective band of fibers known as the corpus caliosum. The outer surface of the
cercbral hemispheres, known as the cerebral cortex, is composed of neurons (grey
matter) in convoluted patterns, and separated into regions by fissures {sulci). Beneath
the cortex lie nerve fibers that lead to other parts of the brain and the body (white
matter),

Cortical potentials are generated due to excitatory and inhibitory post-synaptic
potentials developed by cell bodies and dendrites of pyramidal neurons. Physiological
control processes, thought processes, and external stimuli generate signals in the
corresponding parts of the brain that may be recorded at the scalp using surface
electrodes, The scalp EEG is an average of the multifarious activities of many small
zones of the cortical surface beneath the electrode.

in clinical practice, several channels of the EEG are recorded simultaneously from
various locations on the scalp for comparative analysis of activities in different regions
of the brain. The Intemnationat Federation of Societies for Electroencephalography
and Clinical Neurophysiology has recommended the 10 — 20 system of electrode
placement for clinical EEG recording [32], which is schematically illustrated in
Figure 1.20. The name 10 —~ 20 indicates the fact that the electrodes along the midline
are placed at 10, 20, 20, 20, 20, and 10% of the total nasion — inion distance; the other
series of electrodes are also placed at similar fractional distances of the corresponding
reference distances [32]. The inter-electrode distances are equal along any antero-
posterior or transverse line, and electrode positioning is symmetrical. EEG signals
may be used to study the nervous systemn, monitoring of sleep stages, biofeedback
and control, and diagnosis of diseases such as epilepsy.

Typical EEG instrumentation settings used are lowpass filtering at 76 Hz, and
paper recording at 100 xV/em and 30 mm/s for 10 — 20 minutes over 8 — 16 si-
multaneous channels. Monitoring of sleep EEG and detection of transients related to
epileptic seizures may require multichannel EEG acquisition over several hours. Spe-
cial EEG techniques include the use of needle electrodes, naso-pharyngeal electrodes,
recording the electrocorticogram (ECoG) from an exposed part of the cortex, and the
use of intracerebral electrodes. Evocative techniques for recording the EEG include
initial recording at rest (eyes open, eyes closed), hyperventilation (after breathing at
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Nasion

Inion

Figure 1.20 The 10 — 20 system of electrode placement for EEG recording [32]. Notes
regarding channel labels: pg— naso-pharyngeal, a— auricular {ear lobes), fp— pre-frontal, f-
frontal, p- pareital, ¢ central, o— occipital, (- temporal, cb— cerebellar, z— midline, odd
numbers on the left, even numbers on the right of the subject.
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20 respirations per minute for 2 — 4 minutes), photic stimulation (with 1 — 50 flashes
of light per second), auditory stimulation with loud clicks, sleep (different stages),
and pharmaceuticals or drugs.

EEG signals exhibit several patterns of rthythmic or periodic activity. (Note: The
tertn rhythm stands for different phenomena or events in the ECG and the EEG.) The
commonly used terms for EEG frequency {f) bands are:

o Delta(6): 0.5 < f <4 Hz;

e Theta(@): 4 < f <8 Hz,

e Alpha(e) 8 < f <13 Hz; and
s Beta(3): f > 13 Hz.

Figure 1.21 illustrates traces of EEG signals with the rthythms listed above,

EEG rhythms are associated with various physiological and mental processes {33,
34, The alpha thythm is the principal resting rhythm of the brain, and is common
in wakeful, resting adults, especially in the occipital area with bilateral synchrony.
Auditory and mental arithmetic tasks with the eyes closed lead to strong alpha waves,
which are suppressed when the eyes are opened (that is, by a visual stimulus); see
Figure 1.21(e) [32].

The alpha wave is replaced by slower rhythms at various stages of sleep. Theta
waves appear at the beginning stages of sleep; delta waves appear at deep-sleep
stages, High-frequency beta waves appear as background activity in tense and anxious
subjects. The depression or absence of the normal (expected) rhythm in a certain state
of the subject could indicate abnormality. The presence of delta or theta (slow) waves
in a wakeful aduit would be considered to be abnormal. Focal brain injury and tusnors
lead to abnormal slow waves in the corresponding regions. Unilateral depression
(left — right asymmetry) of a thythm could indicate disturbances in cortical pathways.
Spikes and sharp waves could indicate the presence of epileptogenic regions in the
corresponding parts of the brain.

Figure 1.22 shows an example of eight channels of the EEG recorded simultane-
ously from the scalp of a subject. All channels display high levels of alpha activity.
Figure 1.23 shows 10 channels of the EEG of a subject with spike-and-wave com-
plexes. Observe the distinctly different waveshape and sharpness of the spikes in
Figure 1.23 as compared to the smooth waves in Figure 1.22. EEG signals also
include spikes, transients, and other waves and patterns associated with various ner-
vous disorders (see Figure 4.1 and Section 4.2.4). Detection of events and rhythms
in EEG signals will be discussed in Sections 4.4, 4.5, and 4.6. Spectral analysis of
EEG signals will be dealt with in Sections 6.4.3 and 7.5.2. Adaptive segmentation of
EEG signals will be described in Section 8.2.2, 8.5, and 8.7,

1.2.6 Event-related potentials (ERPS)

The term event-related potential is more general than and preferred to the term
evoked potential, and includes the ENG or the EEG in response to light, sound,
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Figure 1.21 From top to bottom: (a) delta thythm; (b) theta thythm; (c) alpha rhythm;
{d) beta rhythm; (e) blocking of the alpha rhythm by eye opening; (f) 1 2 time markers and
50 xV marker. Reproduced with permission from R. Cooper, J.W. Osselton, and J.C. Shaw,
EEG Technology, 3rd Edition, 1980. ©Butterworth Heinemann Publishers, a division of Reed
Educational & Professional Publishing Ltd., Oxford, UK.

electrical, or other external stimuli. Short-latency ERPs are predominantly dependent
upon the physical characteristics of the stimulus, whereas longer-latency ERPs are
predominantly influenced by the conditions of presentation of the stimuli.

Somatosensory evoked potentials (SEPs) are useful for noninvasive evaluation of
the nervous system from a peripheral receptor to the cerebral cortex. Median nerve
short-latency SEPs are obtained by placing stimulating electrodes about 2 — 3 em
apart over the median nerve at the wrist with electrical stimulation at 5 — 10 pps,
each stimulus pulse being of duration less than 0.5 ms with an amplitude of about
100 V (producing a visible thumb twitch). The SEPs are recorded from the surface
of the scalp. The latency, duration, and amplitude of the response are measured.

ERPs and SEPs are weak signals typically buried in ongoing activity of associated
systems. Examples of ERPs are provided in Figures 3.2 and 3.12. Signal-to-noise
ratio (SNR) improvement is usually achieved by synchronized averaging and filtering,
which will be described in Section 3.3.1.

1.2.7 The electrogastrogram (EGG)

The electrical activity of the stomach consists of rhythmic waves of depolarization
and repolarization of its constituent smooth muscle cells {35, 36, 37]. The activ-
ity originates in the mid-corpus of the stomach, with intervals of about 20 s in
humans. The waves of activity are always present and are not directly associated
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Figure 1.22  Eight channels of the EEG of a subject displaying alpha thythm. See Figure 1.20
for details regarding channel labels. Data courtesy of Y. Mizuno-Matsumoto, Osaka University
Medical School, Osaka, Japan.
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Figure 1.23 Ten channels of the EEG of a subject displaying spike-and-wave complexes.
See Figure 1.20 for details regarding channel labels. Data courtesy of Y. Mizuno-Matsumoto,
Osaka University Medical School, Osaka, Japan. Note that the time scale is expanded compared
to that of Figure 1.22.
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with contractions; they are reiated to the spatial and temporal organization of gastric
contractions.

External (cutaneous) electrodes can record the signal known as the electrogas-
trogram {EGG). Chen et al. [38] used the following procedures to record cutanecus
EGQG signals. With the subject in the supine position and remaining motionless,
the stomach was localized by using a 5 M H z ultrasound transducer array, and the
orientation of the distal stomach was marked on the abdominal surface. Three active
electrodes were placed on the abdomen along the antral axis of the stomach with
an inter-electrode spacing of 3.5 ecm. A common reference electrode was placed
6 em away in the upper right quadrant. Three bipolar signals were obtained from the
three active electrodes in relation to the common reference electrode. The signals
were amplified and filtered to the bandwidth of 0.02 — 0.3 Hz with 6 dB/octave
transition bands, and sampled at 2 Hz.

The surface EGG is believed to reflect the overail electrical activity of the stomach,
including the electrical control activity and the electrical response activity. Chen et
al, [38) indicated that gastric dysrhythmia or arthythmia may be detected via analysis
of the EGG. Other researchers suggest that the diagnostic potential of the signal has
not yet been established [35, 36). Accurate and reliable measurement of the electrical
activity of the stomach requires implantation of electrodes within the stomach [39],
which limits its practical applicability.

1.2.8 The phonocardiogram (PCG)

The heart sound signal is perhaps the most traditional biomedical signal, as indi-
cated by the fact that the stethoscope is the primary instrument carried and used by
physicians. The PCG is a vibration or sound signal related to the contractile activity
of the cardichemic system (the heart and blood together} [23, 40, 41, 42, 43, 44],
and represents a recording of the heart sound signal. Recording of the PCG signal
requires a transducer to convert the vibration or sound signal into an electronic signal:
microphones, pressure transducers, or accelerometers may be placed on the chest sur-
face for this purpose. The normal heart sounds provide an indication of the general
state of the heart in terms of rhythm and contractility. Cardiovascular diseases and
defects cause changes or additional sounds and mucmurs that could be useful in their
diagnosis,

The genesis of heart sounds: It is now commonly accepted that the externally
recorded heart sounds are not caused by valve leaflet movements per se, as earlier
believed, but by vibrations of the whole cardiovascular system triggered by pressure
gradients [23). The cardiohemic system may be compared to a fluid-filled balloon,
which, when stimulated at any location, vibrates as a whote. Externally, however,
heart sound components are best heard at certain locations on the chest individually,
and this localization has led to the concept of secondary sources on the chest related
to the well-known auscultatory areas: the mitral, sortic, pulmonary, and tricuspid
areas {23]. The standard auscultatory areas are indicated in Figure 1.17. The mitral
area is near the apex of the heart. The aortic area is to the right of the sternum, in the
second right-intercostal space. The tricuspid area is in the fourth intercostal space
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near the right sternal border. The pulmonary area lies at the left parasteral line in
the second or third left-intercostal space [23L

A normal cardiac cycle contains two major sounds -— the first heart sound (S1)
and the second heart sound (82). Figure 1.24 shows a normal PCG signal, along with
the ECG and carotid pulse tracings. S1 occurs at the onset of ventricular contraction,
and corresponds in timing to the QRS complex in the ECG signal.
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Figure 1.24 Three-channel simultaneous record of the PCG, ECG, and carotid pulse signals
of a normal male aduit,

The initial vibrations in S1 occur when the first myocardial contractions in the
ventricles move blood toward the atria, sealing the atrio-ventricular (AV — mitral
and tricuspid) valves (see Figure 1.25). The second component of $1 begins with
abrupt tension of the closed AV valves, decelerating the blood. Next, the semilunar
(aortic and pulmonary) valves open and the blood is gjected out of the ventricles.
The third component of S1 may be caused by oscillation of blood between the root
of the aorta and the ventricular walls. This is followed by the fourth component of
S1, which may be due to vibrations caused by turbulence in the ejected blood flowing
rapidly through the ascending aorta and the pulmonary artery.

Following the systolic pause in the PCG of a normal cardiac cycle, the second
sound S2 is caused by the closure of the semilunar valves. While the primary
vibrations occur in the arteries due to deceleration of blood, the ventricles and atria
also vibrate, due to transmission of vibrations through the blood, valves, and the
valve rings. S2 has two components, one due to closure of the aortic valve (A2)



36 INTRODUCTION TO BIOMEDICAL SIGNALS

A. COMPONENTS OF FIRST HEART SOUND

v

2/
3
—J
B. SECOND HEAR
SOUND

C. THIRD HEART
SOUND

\

e

Figure 1.25 Schematic representation of the genesis of heart sounds. Only the left portion
of the heart is illustrated as it is the major source of the heart sounds. The comesponding
events in the right portion also contribute to the sounds. The atria do not contribute much to
the heart sounds, Reproduced with permission from R.F. Rushmer, Cardiovascular Dynamics,
4th edition, ©®W.B. Saunders, Philadelphia, PA, 1976.
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and another due to closure of the pulmonary valve (P2). The aortic valve normally
closes before the pulmonary valve, and hence A2 precedes P2 by a few milliseconds.
Pathologic conditions could cause this gap to widen, or may also reverse the order
of occurrence of A2 and P2. The A2 — P2 gap is also widened in normal subjects
during inspiration. (Note: The PCG signal in Figure 1.24 does not show the A2 and
P2 components separately.)

In some cases a third heart sound (33) may be heard, corresponding to sudden
termination of the ventricular rapid-filling phase. Because the ventricles are filled
with blood and their walls are relaxed during this part of diastole, the vibrations of
53 are of very low frequency. In late diastole, a fourth heart sound (S4) may be
heard sometimes, cansed by atrial contractions displacing blood into the distended
ventricles. In addition to these sounds, valvular clicks and snaps are occasionally
heard.

Heart murmurs: The intervals between St and 52, and S2 and S1 of the next
cycle (corresponding to ventricular systole and diastole, respectively) are normally
silent. Musrmurs, which are caused by certain cardiovascular defects and diseases,
may occur in these intervals. Murmurs are high-frequency, noise-like sounds that
arise when the velocity of blood becomes high as it flows through an irregularity
(such as a constriction or a baffie). Typical conditions in the cardiovascular system
that cause turbulence in blood flow are valvular stenosis and insufficiency. A valve is
said to be stenosed when, due to the deposition of calcium or other reasons, the valve
leaflets are stiffened and do not open completely, and thereby cause an obstruction or
baffle in the path of the blood being ejected. A valve is said to be insufficient when it
cannot close effectively and causes reverse leakage or regurgitation of blood through
a narrow opening.

Systolic murmurs (SM) are caused by conditions such as ventricular septal defect
(VSD — essentially a hole in the wall between the left ventricle and the right ven-
tricle), aortic stenosis (AS), pulmonary stenosis (PS), mitral insufficiency (M), and
tricuspid insufficiency (TI). Semilunar valvular stenosis (aortic stenosis, pulmonary
stenosis)} causes an obstruction in the path of blood being ejected during systole, AV
valvular insufficiency (mitral insufficiency, tricuspid insufficiency) causes regurgita-
tion of blood to the atria during ventricular contraction.

Diastolic murmurs (DM) are caused by conditions such as aortic or pulmonary
insufficiency (Al, PI), and mitral or tricuspid stenosis (MS, PS). Other conditions
causing murmurs are atrial septal defect (ASD), patent ductus arteriosus (PDA), as
well as certain physiological or functional conditions that cause increased cardiac
output or blood velocity.

Features of heart sounds and murmurs, such as intensity, frequency content, and
timing, are affected by many physical and physiological factors such as the recording
site on the thorax, intervening thoracic structures, left ventricular contractility, posi-
tion of the cardiac valves at the onset of systole, the degree of the defect present, the
heart rate, and blood velocity. For example, S1 is loud and delayed in mitral stenosis;
right bundle-branch block causes wide splitting of $2; left bundle-branch block re-
sults in reversed splitting of S2; acute myocardial infarction causes a pathologic $3;
and severe mitral regurgitation (MR) leads to an increased S4 [40, 41, 42, 43, 44).
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Although murmurs are noise-like events, their features aid in distinguishing between
different causes. For example, aortic stenosis causes a diamond-shaped midsystolic
murmur, whereas mitral stenosis causes a decrescendo - crescendo type diastolic —
presystolic murmur. Figure 1.26 illustrates the PCG, ECG, and carotid pulse sig-
nals of a patient with aortic stenosis; the PCG displays the typical diamond-shaped
murmur in systole,

Recording PCG signals: PCG signals are normaily recorded using piezoelectric
contact sensors that are sensitive to displacement or acceleration at the skin surface,
The PCG signals illustrated in this section were obtained using a Hewlett Packard
HP21050A transducer, which has a nominal bandwidth of 0.05 — 1,000 Hz. The
carotid pulse signals shown in this section were recorded using the HP21281A pulse
transducer, which has a nominal bandwidth of 0~ 100 H z. PCG recording is normally
performed in a quiet room, with the patient in the supine position with the head resting
on a pillow. The PCG transducer is placed firmly on the desired position on the chest
using a suction ring and/or a rubber strap.

Use of the ECG and carotid pulse signals in the analysis of PCG signals will be
described in Sections 2.2.1,2.2.2, and 2.3. Segmentation of the PCG based on events
detected in the ECG and carotid pulse signals will be discussed in Section 4,10, A
particular type of synchronized averaging to detect A2 in S2 will be the topic of
Section 4.11. Spectral analysis of the PCG and its applications will be presented in
Sections 6.2.1, 64.5, 6.6, and 7.10. Parametric modeling and detection of §1 and
$2 will be described in Sections 7.5.2 and 7.9. Modeling of sound generation in
stenosed coronary arteries will be discussed in Section 7.7.1. Adaptive segmentation
of PCQG sigrals with no other reference signal will be explored in Section 8.8,

1.2.9 The carotid puise (CP)

The carotid pulse is a pressure signal recorded over the carotid artery as it passes
near the surface of the body at the neck. It provides a pulse signal indicating the
variations in arterial blood pressure and volume with each heart beat. Because of the
proximity of the recording site to the heart, the carotid pulse signal closely resembles
the morphology of the pressure signal at the root of the aorta; however, it cannot be
used to measure absolute pressure {41). The carotid pulse is a useful adjunct to the
PCG and can assist in the identification of S2 and its components.

The carotid pulse rises abruptly with the ejection of blood from the left ventricie
to the aorta, reaching a peak called the percussion wave (P, see Figure 1.24). This
is followed by a plateau or a secondary wave known as the tidal wave (T), caused
by a reflected pulse returning from the upper body. Next, closure of the aortic valve
causes a notch known as the dicrotic notch (D). The dicrotic notch may be followed
by the dicrotic wave (DW, see Figure 1,24} due to a reflected pulse from the lower
body {41]. The carotid pulse trace is affected by valvular defects such as mitrat
insufficiency and aortic stenosis [41]; however, it is not commounly used in clinical
diagnosis. ,

The carotid pulse signals shown in this section were recorded using the HP21281A
pulse transducer, which has a nominal bandwidth of 0 — 100 Hz. The carotid pulse
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Figure 1,26 Three-channel simultaneous record of the PCG, ECG, and carotid pulse signals
of a patient {female, 11 years) with aortic sienosis. Note the presence of the typical diamond-
shaped systolic murmur and the split nature of 52 in the PCG.
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signal is usually recorded with the PCG and ECG signals. Placement of the carotid
pulse transducer requires careful selection of a location on the neck as close to the
carotid artery as possible, where the pulse is felt the strongest, usually by a trained
technician (see Figure 1.17).

Details on intervals that may be measured from the carotid pulse and their use in
segmenting the PCG will be presented in Sections 2.2.2 and 2.3. Signal-processing
techniques for the detection of the dicrotic notch will be described in Section 4.3.3.
Use of the dicrotic notch for segmentation of PCG signals will be explored in Sec-
tions 4.10 and 4.11. Application of the carotid pulse to averaging of PCG spectra in
systole and diastole will be proposed in Section 6.4.5.

1.2.10 Signals from catheter-tip sensors

For very specific and close monitoring of cardiac function, sensors placed on catheter
tips may be inserted into the cardiac chambers. It then becomes possibie to acquire
several signals such as left ventricular pressure, right atrial pressure, aortic (AO)
pressure, and intracardiac sounds [43, 44]. While these signals provide valuable
and accurate information, the procedures are invasive and are associated with certain
risks.

Figures 1.27 and 1.28 illustrate multi-channe] aortic, left ventricular, and right
ventricular pressure recordings from a dog using catheter-tip sensors. The ECG
signal is also shown. Observe in Figure 1.27 that the right ventricular and left
ventricular pressures increase exactiy at the instant of each QRS complex. The aortic
pressure peaks slightly after the increase in the left ventricular pressure, The notch
(incisura) in the aortic pressure signal is due to closure of the aortic valve. {The same
notch propagates through the vascular system and appears as the dicrotic notch in
the carotid pulse signal.) The left ventricular pressure range (10 — 110 mm of Hg)
is much larger than the right ventricular pressure range (5 — 25 mm of Hg). The
aortic pressure range is limited to the vascular BP range of 80 — 120 mm of Hg.

The signals in Figure 1.28 display the effects of PVCs, Observe the depressed
ST segment in the ECG signal in the figure, likely due to myocardial ischemia. (It
should be noted that the PQ and ST segments of the ECG signal in Figure 1.27 are
iso-electric, even though the displayed values indicate a non-zero level. On the other
hand, in the ECG in Figure i.28, the ST segment stays below the corresponding
iso-electric PQ segment.) The ECG complexes appearing just after the 2 s and 3 &
markers are PVCs arising from different ectopic foci, as evidenced by their markedly
different waveforms. Although the PVCs cause a less-than-normal increase in the
left ventricular pressure, they do not cause a rise in the aortic pressure, as no blood is
effectively pumped out of the left ventricle during the ectopic beats,

1.2.11 The speech signal

Human beings are social creatures by nature, and have an innate need to communicate.
‘We are endowed with the most sophisticated vocal system in nature. The speech signal
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Figure 1,27 Normal ECG and intracardiac pressure signals from a dog. AO represents aortic
pressure near the aortic vatve, Data courtesy of R. 5as and J. Tyberg, Department of Physiology
and Biophysics, University of Calgary.
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1.28 ECG and intracardiac pressure signals from a dog with PVYCs, Data courtesy of

R. Sas and J. Tyberg, Department of Physiology and Biophysics, University of Calgary.
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is an important signal, although it is more commonly considered as a communication
signal than a biomedical signal. However, the speech signal can serve as a diagnostic
signal when speech and vocal-tract disorders need to be investigated [45).

Speech sounds are produced by transmitting puffs of air from the lungs through the
vocal tract (as well as the nasal wract for certain sounds) [46]. The vocal tract starts at
the vocal cords or glottis in the throat and ends at the lips and the nostrils. The shape
of the vocal tract is varied to produce different types of sound units or phonemes
which, when concatenated, form speech. In essence, the vocal tract acts as a filter
that modulates the spectral characteristics of the input puffs of air. It is evident that
the system is dynamic, and that the filter, and therefore the speech signal produced,
have time-varying characteristics, that is, they are nonstationary (see Section 3.1.2).

Speech sounds may be classified mainly as voiced, unvoiced, and plosive sounds
[46]). Voiced sounds involve the participation of the glottis: air is forced through
the vocal cords held at a certain tension. The result is a series of quasi-periodic
pulses of air which is passed through the vocal tract. The input to the vocal tract
may be treated as an impulse train that is almost periodic. Upon convolution with the
impulse response of the vocal tract, which is held steady at a certain configuration for
the duration of the voiced sound desired, a quasi-periodic signal is produced with a
characteristic waveshape that is repeated. All vowels are voiced sounds. Figure 1.29
shows the speech signal of the word “safety” spoken by a male. Figure 1.30 shows, in
the upper trace, a portion of the signal corresponding to the /E/ sound (the letter “a” in
the word). The quasi-periodic nature of the signal is evident. Features of interest in
voiced signals are the pitch {(average interval between the repetitions of the vocal-tract
impulse response or basic wavelet) and the resonance or formant frequencies of the
vocal-tract system.

An unvoiced sound (or fricative) is produced by forcing a steady stream of air
through a narrow opening or constriction formed at a specific position along the
vocal tract. The resuli is a turbulent signal that appears almost like random noise. In
fact, the input to the vocal tract is a broadband random signal, which is filtered by
the vocal tract to yvield the desired sound. Fricatives are unvoiced sounds, as they do
not involve any activity (vibration) of the vocal cords. The phonemes /S/, /SH/, f2/,
and /F/ are examples of fricatives. The lower trace in Figure 1.30 shows a portion
of the signal corresponding to the /S/ sound in the word “safety”. The signal has no
identifiable structure, and appears to be random (see also Figures 3.1, 3.3, and 3.4, as
well as Section 3.1.2). The transfer function of the vocal tract, as evidenced by the
spectrum of the signal itself, would be of interest in analyzing a fricative.

Plosives, also known as stops, involve complete closure of the vocal tract, followed
by an abrupt release of built-up pressure. The phonemes /P/, /T/, /K/, and /D/ are
examples of plosives. The sudden burst of activity at about 1.1 s in Figure 1.29
illustrates the plosive nature of /T/. Plosives are hard to characterize as they are
transients; their properties are affected by the preceding phoneme as well. For more
details on the speech signal, see Rabiner and Schafer {46].

Signal-processing techniques for extraction of the vocal-tract response from voiced
speech signals will be described in Section 4.8.3. Frequency-domain characteristics
of speech signals will be illustrated in Section 7.6.3 and 8.4.1.
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Figure 1.29 Speech signal of the word “safety” uttered by a male speaker. Approximate
time intervals of the various phonemes in the word are /S/: 0.2 — 0.35 s; /E/ 0.4 - 0.7 &, /F/:
0.75 — 0.95 s; /T/: wansient at 1.1 #; /1/: 1.1 -~ 1.2 s. Background noise is also seen in the
signal before the beginning and after the termination of the speech, as well as during the stop
interval before the plosive /T/.
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quasi-periodic nature of the voiced sound /E/ in the vpper trace, and the almost-random nature
of the fricative /S/ in the lower trace.
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1.2.12 The vibromyogram (VMG)

The VMG is the direct mechanical manifestation of contraction of a skeletal muscle,
and is a vibration signal that accompanies the EMG. The signal has also been named
as the sound-, acoustic-, or phono-myogram. Muscle sounds or vibrations are reiated
to the change in dimensions {contraction) of the constituent muscle fibers (see Fig-
ure 1.4), and may be recorded using contact microphones or accelerometers (such
as the Dytran 3115A accelerometer, Dytran, Chatsworth, CA) placed on the muscle
surface [47, 48]. The frequency and intensity of the VMG have been shown to vary
in direct proportion to the contraction level. The VMG, along with the EMG, may
be useful in studies related to neuromuscular control, muscle contraction, athletic
training, and biofeedback. VMG signal analysis, however, is not as well established
ot popular as EMG analysis.

Simultaneous analysis of the VMG and EMG signals will be discussed in Sec-
tion 2.2.5. Adaptive cancetlation of the VMG from knee-joint vibration signals will
be the topic of Sections 3.6.2, 3.6.3, and 3.10. Analysis of muscle contraction using
the VMG will be described in Section 5.10.

1.2.13 The vibroarthrogram (VAG)

The knee joint: As illustrated in Figure 1.31, the knee joint is formed between the
femur, the patelia, and the tibia. The knee joint is the largest articulation in the human
body that can effectively move from 0° extension to 135° flexion, together with 20°
to 30° rotation of the flexed leg on the femoral condyles. The joint has four important
features: (1) a joint cavity, (2) articular cartilage, (3) a synovial membrane, and (4) a
fibrous capsule {49, 50]. The knee joint is known as a synovial joint, as it contains
a lubricating substance called the synovial fluid. The patella (knee cap), a sesamoid
bone, protects the joint, and is precisely aligned to slide in the groove (trochlea) of
the femur during leg movement. The knee joint is made up of three compartments:
(1) the patello-femoral, (2) the lateral tibio-femoral, and (3) the medial tibio-femoral
compartments, The patello-femoral compartment is classified as a synovial gliding
Joint and the tibio-femoral as a synovial hinge joint [51]. The anterior and posterior
cruciate ligaments as well as the lateral and medial ligaments bind the femur and
tibia together, give support to the knee joint, and limit movement of the joint. The
various muscles around the joint help in the movement of the joint and contribute to
its stability.

The knee derives its physiclogical movement and its typical rolling - gliding
mechanism of flexion and extension from its six degrees of freedom: three in trans-
lation and three in rotation. The translations of the knee take place on the anterior -
posterior, medial — lateral, and proximal — distal axes. The rotational motion consists
of flexion ~ extension, internal - external rotation, and abduction - adduction.

Although the tibial plateaus are the main load-bearing structures in the knee, the
cartilage, menisci, and ligaments also bear toads. The patella aids knee extension by
lengthening the lever arm of the quadriceps muscle throughout the entire range of
motion, and allows a better distribution of compressive stresses on the femur [52),
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Figure 1.31 Front and side views of the knee joint (the two views are not mutually orthogo-
nal). The inset shows the top view of the tibia with the menisci.

Articular cartilage: Two types of cartilage are present in the knee joint: the
articular cartilage, which covers the ends of bones, and the wedge-shaped fibro-
cartilaginous structure called the menisci, located between the femur and the tibia
[53]. The shock-absorbing menisci are composed of the medial meniscus and the
lateral meniscus, which are two crescent-shaped plates of fibrocartilage that lie on
the articular surface of the tibia,

The articular surfaces of the knee joint are the large curved condyles of the femur,
the flattened condyles (medial and lateral plateaus) of the tibia, and the facets of the
pateila. There are three types of articulation: an intermediate articulation between
the patella and the fernur, and lateral and medial articulation between the femur and
the tibia. The articular surfaces are covered by cartilage, like all the major joints of
the body. Cartilage is vital to joint function because it protects the underlying bone
during movemeni. Loss of cartilage function leads to pain, decreased mobility, and
in some instances, deformity and instability.

Knee-joint disorders: The knee is the most commonly injured joint in the body.
Arthritic degeneration of injured knees is a well-known phenomenon, and is known
to result from a variety of traumatic causes. Damage to the stabilizing ligaments
of the knee, or to the shock-absorbing fibrocartilage pads (the menisci) are two of
the most common causes of deterioration of knee-joint surfaces. Impact trauma to
the articular cartilage surfaces themselves could lead 1o surface deterioration and
secondary osteoarthritis,

Non-traumatic conditions of the knee joint include the extremely common id-
iopathic condition known as chondromalacia patella (soft cartilage of the patella),
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in which articular cartilage softens, fibrillates, and sheds off the undersurface of
the patella. Simitarly, the meniscat fibrocartilage of the knee can apparently soften,
which could possibly lead to degenerative tears and secondary changes in the regional
hyatine surfaces.

Knee-joint sounds: Considerable noise is often associated with degeneration of
knee-joint surfaces. The VAG is the vibration signal recorded from a joint during
movement {articulation) of the joint. Nermal joint surfaces are smooth and produce
little or no sound, whereas joints affected by ostecarthritis and other degenerative
diseases may have suffered cartilage loss and produce grinding sounds. Detection of
knee-joint problems via the analysis of VAG signais could help avoid unnecessary
exploratory surgery, and also aid better selection of patients who would benefit from
surgery [54, 55, 56, 57, 58, 59, 60). The VAG signal, however, is not yet well
understood, and is a difficult signal to analyze due to its complex nonstatiopary
characteristics.

Further details on the VAG signal will be provided in Sections 2.2.6, 3.2.6,
and 8.2.3. Modeling of a specific type of VAG signal known as patello-femoral crepi-
tus wiil be presented in Sections 7.2.4, 7.3, and 7.7.2. Adaptive filtering of the VAG
signal to remove muscle-contraction interference will be described in Sections 3.6.2,
3.6.3, and 3.10. Adaptive segmentation of VAG signals into quasi-stationary seg-
ments will be illustrated in Sections 8.6.1 and 8.6.2. The roie of VAG signal analysis
in the detection of articular cartilage diseases will be discussed in Section 9.13,

1.2.14 Oto-acoustic emission signals

The oto-acoustic emission (OAE) signal represents the acoustic energy emitted by the
cochlea either spontaneously or in response to an acoustic stimulus. The discovery
of the existence of this signal indicates that the cochlea not only receives sound
but also produces acoustic energy [61). The OAE signal could provide objective
information on the micromechanical activity of the preneural or sensory components
of the cochlea that are distal to the nerve-fiber endings. Analysis of the QOAE signal
could lead to improved noninvasive investigative techniques to study the auditory
system, The signal may also assist in screening of hearing function and in the
diagnosis of hearing impairment.

1.3 OBJECTIVES OF BIOMEDICAL SIGNAL ANALYSIS

The representation of biomedical signals in electronic form facilitates computer
processing and analysis of the data. Figure 1.32 illustrates the typical steps and
processes involved in computer-zided diagnrosis and therapy based upon biomedical
signal analysis.
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The major objectives of biomedical instrumentation and signal analysis |17, 13,
10, 11, 12] are:

s Information gathering — measurement of phenomena to interpret a system,
o Diagnosis — detection of malfunction, pathology, or abnormality.
* Monitoring — obtaining continuous or periodic information about a system.

o Therapy and control — modification of the behavior of a system based upon
the outcome of the activities listed above to ensure a specific result.

e Evaluation — objective analysis to determine the ability to meet functional
requirements, obtain proof of performance, perform quality control, or quantify
the effect of treatment.

Signal acquisition procedures may be categorized as being invasive or noninvasive,
and active or passive, .

Invasive versus noninvasive procedures: Invasive procedures involve the place-
ment of transducers or other devices inside the body. such as needle electrodes to
record MUAPs, or insertion of catheter-tip sensors into the heart via a major artery or
vein to record intracardiac signals, Noninvasive procedures are desirabie in order to
minimize risk to the subject. Recording of the ECG using limb or chest electrodes,
the EMG with surface electrodes, or the PCG with microphones or accelerometers
placed on the chest are noninvasive procedures.

Note that making measurements or imaging with x-rays, ultrasound, and so on,
may be classified as invasive procedures, as they involve penetration of the body with
externally administered radiation, even though the radiation is invisible and there is
no visible puncturing or invasion of the body.

Active versus passive procedures: Active data acquisition procedures require
external stimult to be applied to the subject, or require the subject to perform a certain
activity to stimulate the system of interest in order to elicit the desired response or
signal. For example, recording an EMG signal requires contraction of the muscle of
interest, say the clenching of a fist; recording the VAG signal from the knee requires
flexing of the leg over a certain joint angle range; recording visual ERP signals
requires the delivery of flashes of light to the subject. While these stimuli may appear
to be innocuous, they do carry risks in certain situations for some subjects: flexing
the knee beyond a certain angle may cause pain for some subjects; strobe lights may
trigger epileptic seizures in some subjects. The investigator should be aware of such
risks, factor them in a risk — benefit analysis, and be prepared to manage adverse
reactions.

Passive procedures do not require the subject to perform any activity. Recording
of the ECG using limb or chest electrodes, the EEG during sleep using scalp-surface
electrodes, or the PCG with microphones or accelerometers placed on the chest are
passive procedures, but require contact between the subject and the instruments. Note
that although the procedure is passive, the system of interest is active under its own
natural control in these procedures. Acquiring an image of a subject with reflected
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natural light (with no flash from the camera) or with the natural infra-red (thermal)
emission could be categorized as a passive and non-contact procedure,

Most organizations require ethical approval by specialized committees for exper-
imental procedures involving human or animal subjects, with the aim of minimizing
the risk and discomfort to the subject and maximizing the benefits to both the subjects
and the investigator.

The human - instrument system: The components of a human — instrument
system [17, 13, 10, 11, 12] are:

The subject or patient; Tt is important always to bear in mind that the main
purpose of biomedical instrumentation and signal analysis is to provide a
certain benefit to the subject or patient. All systems and procedures should
be designed so as not to unduly inconvenience the subject, and not to cause
any harm or danger. In applying invasive or risky procedures, it is extremely
important to perform a risk — benefit analysis and determine if the anticipated
benefits of the procedure are worth placing the subject at the risks involved.

Stimulus or procedure of activity: Application of stimuli to the subjectin active
procedures requires instruments such as strobe light generators, sound genera-
tors, and electrical pulse generators. Passive procedures require a standardized
protocol of the desired activity to ensure repeatability and consistency of the
experiment.

Transducers: electrodes, sensots.
Signal-conditioning equipment; amplifiers, filters.

Display equipment. oscilloscopes, strip-chart or paper recorders, computer
monitors, printers.

Recording, data processing, and transmission equipment: analog instrumen-
tation tape recorders, analog-to-digital converters (ADCs), digital-to-analog
converters (DACs), digital tapes, compact disks (CDs), diskettes, computers,
telemetry systems.

Control devices: power supply stabilizers and isolation equipment, patient
intervention systems.

The science of measurement of physiological variables and parameters is known
as biometrics. Some of the aspects to be considered in the design, specification, or
use of biomedical instruments [17, 13, 10, 11, 12] are:

Isolation of the subject or patient — of paramount importance so that the
subject is not placed at the risk of electrocution.

¢ Range of operation — the minimum to maximum values of the signal or

parameter being measured.
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o Sensitivity — the smallest signal variation measurable. This detenmines the
resolution of the system.

® Linearity — desired over at least a portion of the range of operation. Any
nonlinearity present may need to be corrected for at later stages of signal
processing.

o Hysteresis — a lag in sneasarement due to the direction of variation of the
entity being measured. Hysteresis may add a bias to the measurement, and
should be corrected for.

o Frequency response — represents the variation of sensitivity with frequency.
Most systems encountered in practice exhibit a lowpass behavior, that is, the
sensitivity of the system decreases as the frequency of the input signal increases.
Signal restoration technigques may be required to compensate reduced high-
frequency sensitivity.

o Stability —— an unstable system could preclude repeatability and consistency of
measurements.

® Signal-to-noise ratio (SNR) — power-line interference, grounding problems,
thermal noise, and so on, could compromise the quality of the signal being
acquired. A good understanding of the signal-degrading phenomena present in
the system is necessary in order to design appropriate filtering and correction
procedures.

® Accuracy — inclodes the effects of errors due to component tolerance, move-
ment, or mechanical errors; drift due to changes in temperature, humidity, or
pressure; reading errors due to, for example, parallax; and zeroing or calibration
eITOIS.

1.4 DIFFICULTIES ENCOUNTERED IN BIOMEDICAL SIGNAL
ACQUISITION AND ANALYSIS

In spite of the long history of biomedical instrumentation and its extensive use in
health care and research, many practical difficulties are encountered in biomedical
signal acquisition, processing, and analysis [17, 13, 10, 11, 12]. The characteristics
of the problems, and hence their potential solutions, are unique to each type of signal.
Particular attention should be paid to the following issues.

Accessibility of the variables to measurement: Most of the systems and orpans
of interest, such as the cardiovascular system and the brain, are located well within
the body (for good reasons!). While the ECG may be recorded using limb electrodes,
the signal so acquired is but a projection of the true 3D cardiac electrical vector of
the heart onto the axis of the electrodes. Such a signal may be sufficient for thythm
monitoring, but could be inadequate for more specific analysis of the cardiac system
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such as atrial electrical activity. Accessing the atrial electrical activity at the source
requires insertion of an electrode close to the atrial surface or within the atria.

Similarly, measurement of blood pressure using a pressure cuff over an arm gives
an estimate of the brachial arterial pressure. Detailed study of pressure variations
within the cardiac chambers or arteries over a cardiac cycle would require insertion
of catheters with pressure sensors into the heart. Such invasive procedures provide
access to the desired signals at their sources and often provide ciear and vseful signals,
but carry high risks.

The surface EMG includes the interference pattern of the activities of several
motor units even at very low levels of muscular contraction. Acquisition of SMUAPs
requires access to the specific muscle layer or unit of interest by insertion of fine-wire
or needie electrodes. The procedure carries risks of infection and damage to muscle
fibers, and causes pain to the subject during muscular activity.

An investigator should assess the system and variables of interest carefully and
determine the minimal level of intervention absolutely essential to the data acquisition
procedure. The trade-off to be performed is that of integrity and quality of the
information acquired versus the pain and risks to the subject.

Variability of the signal source; H is evident from the preceding sections that
the various systems that comprise the human body are dynamic systems with several
variables. Biomedical signals represent the dynamic activity of physiological systems
and the staies of their constituent variables. The nature of the processes or the
variables could be deterministic or random (stochastic), a special case is that of
periodicity or quasi-periodicity.

A normal ECG exhibits a regular rhythm with a readily identifiable waveshape (the
QRS complex) in each period, and under such conditions the signal may be referred
to as a deterministic and periodic signal. However, the cardiovascular system of a
heart patient may not stay in a given state over significant periods and the waveshape
and rhythm may vary over time.

The surface EMG is the summation of the MUAPs of the motor units that are
active at the given instant of time. Depending upon the level of contraction desired
{at the volition of the subject), the number of active motor units varies, increasing
with increasing effort. Furthermore, the firing intervals or the firing rate of each
motor unit also vary in response to the level of contraction desired, and exhibit
stochastic properties. While the individual MUAPs possess readily identifiable and
simple monophasic, biphasic, or triphasic waveshapes, the interference pattern of
several motor units firing at different rates will appear as an almost random signal
with no visually recognizable waves or waveshapes,

The dynamic nature of biological systems causes most signals to exhibit stochastic
and nonstationary behavior. This means that signal statistics such as mean, variance,
and spectral density change with time. For this reason, signals from a dynamic system
should be analyzed over extended pericds of time including various possible states
of the system, and the results should be placed in the context of the corresponding
states. '

Inter-relationships and interactions among physiological systems: The various
systems that compose the human body are not mutually independent; rather, they are
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inter-related and interact in various ways. Some of the interactive phenomena are
compensation, feedback, cause-and-effect, collateral effects, loading, and take-over
of function of a disabled system or part by another system or part. For example,
the second heart sound exhibits a split during active inspiration in normal subjects
due to reduced intra-thoracic pressure and decreased venous return to the left side
of the heart [41] (but not during expiration); this is due to normal physiological
processes, However, the second heart sound is split in both inspiration and expiration
due to delayed right ventricular contraction in right bundle-branch block, pulmonary
valvular stenosis or insufficiency, and other conditions [41]. Ignoring this inter-
relationship could lead to misinterpretation of the signal.

Effect of the instrumentation or procedure on the system: The placement of
transducers on and connecting a system to instruments could affect the perforrmance
or alter the behavior of the system, and cause spurious variations in the parameters
being investigated. The experimental procedure or activity required to elicit the signal
may lead to certain effects that could alter signal characteristics. This aspect may not
always be obvious unless careful attention is paid. For example, the placement of a
relatively heavy accelerometer may affect the vibration characteristics of a muscle and
compromise the integrity of the vibration or sound signal being measured. Fatigue
may set in after a few repetitions of an experimental procedure, and subsequent
measurements may not be indicative of the true behavior of the system; the system
may need some rest between procedures or their repetitions.

Physiological artifacts and interference: One of the pre-requisites for obtaining
a good ECQG signal is for the subject to remain relaxed and stii! with no movement.
Coughing, tensing of muscles, and movement of the limbs cause the corresponding
EMG to appear as an undesired artifact. In the absence of any movement by the
subject, the onty muscular activity in the body would be that of the heart. When chest
leads are used, even normal breathing could cause the associated EMG of the chest
muscles to interfere with the desired ECG. It should also be noted that breathing
causes beat-to-beat variations in the RR interval, which should not be mistaken to
be sinus arrhythmia. An effective solution would be to record the signal with the
subject holding breath for a few seconds. This simple solution does not apply in
long-term monitoring of critically ill patients or in recording the ECG of infants;
signal-processing procedures would then be required to remove the artifacts.

A unique situation is that of acquiring the ECG of a fetus through surface electrodes
placed over the mother’s abdomen: the maternal ECG appears as an interference in
this situation. No volitional or external control is possible or desirable to prevent
the artifact in this sitvation, which calls for more intelligent adaptive cancellation
techniques using multiple channels of various signals [62].

Another example of physiological interference or cross-talk is that of muscle-
contraction interference (MCI) in the recording of the knee-joint VAG signal [63].
The rectus femoris muscle is active (contracting) during the swinging movement of
the leg required to elicit the joint vibration signal. The VMG of the muscle is propa-
gated to the knee and appears as an interference. Swinging the leg mechanically using
a mechanical actvator is a possible solution; however, this represents an unnatural
situation, and may cause other sound or vibration artifacts from the machine. Adap-
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tive filtering using multi-channel vibration signals from various points is a feasible
solution [63).

Energy limitations: Most biomedical signals are generated at microvolt or mil-
livolt levels at their sources. Recording such signals requires very sensitive trans-
ducers and instramentation with low noise levels. The connectors and cables need
to be shielded as well, in order to obviaie pickup of ambient electromagnetic (EM)
signals. Some applications may require transducers with integrated amplifiers and
signal conditioners so that the signal leaving the subject at the transducer level is
much stronger than ambient sources of potential interference.

When external stimuli are required to elicit a certain response from a system, the
level of the stimulus is constrained due to safety factors and physiclogical limitations.
Electrical stimuli to record the ENG need to be limited in voltage level so as to not
cause local burns or interfere with the electrical control signals of the cardiac or
nervous systems. Auditory and visual stimuli are constrained by the lower thresholds
of detectability and upper thresholds related to frequency response, saturation, or
pain.

Patient safety: Protection of the subject or patient from electrical shock or
radiation hazards is an unquestionable requirement of paramount importance. The
relative levels of any other risks involved should be assessed when a choice is
available between various procedures, and analyzed against their relative benefits.
Patient safety concerns may preclude the use of a procedure that may yield better
signals or results than others, or require modifications to a procedure that may lead
to inferior signals. Further signal-processing steps would then become essential in
order to improve signal quality or otherwise compensate for the initial loss.

1.5 COMPUTER-AIDED DIAGNOSIS

Physicians, cardiologists, neuroscientists, and health-care technelogists are highly
trained and skilled practitioners. Why then would we want to use computers or
electronic instrumentation for the analysis of biomedical signals? The following
points provide some arguments in favor of the application of computers to process
and analyze biomedical signals.

s Humans are highly skilled and fast in the analysis of visual patterns and wave-
forms, but are slow in arithmetic operations with large numbers of values. The
ECG of a single cardiac cycle (heart beat) could have up to 200 numerical
values; the comresponding PCG up to 2,000, If signals need to be processed to
remove noise or extract a parameter, it would not be practical for a person to
perform such computation. Computers can perform millions of arithmetic op-
crations per second. Itshould be noted, however, that recognition of waveforms
and images using mathematical procedures typically requires huge numbers
of operations that could lead to slow responses in such tasks from low-level
computers. :
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« Humans could be affected by fatigue, boredom, and environmental factors,

and are susceptible to committing errors. Long-term monitoring of signals, for
example, the heart rate and ECG of a critically ill patient, by a human observer
watching an oscilloscope or computer tracing is neither economical nor feasi-
ble. A human observer could be distracted by other events in the surrounding
areas and may miss short episodes or transients in the signal. Computers,
being inanimate but mathematically accurate and consistent machines, can be
designed to perform computationally specific and repetitive tasks.

Analysis by humans is usually subjective and qualitative. When comparative
analysis is required between the signal of a subject and another or a standard
pattern, a human observer would typically provide a qualitative response. For
example, if the QRS width of the ECG is of interest, a human observer may
remark that the QRS of the subject is wider than the reference or normal.
More specific or objective comparison to the accuracy of the order of a few
milliseconds would require the use of electronic instrumentation or a com-
puter. Derivation of quantitative or numerical features from signals with large
numbers of samples would certainly demand the use of computers.

Analysis by humans is subject to inter-observer as well as intra-observer vari-
ations {with time). Given that most analyses performed by humans are based
upon qualitative judgment, they are liable to vary with time for a given ob-
server, or from one observer to another. The former could also be due to lack
of diligence or due to inconsistent application of knowledge, and the latier due
to variations in training and leve! of understanding. Computers can apply a
given procedure repeatedly and whenever recalled in a consistent manner. It
is further possible to encode the knowledge (to be more specific, the logic)
of many experts into a single computational procedure, and thereby enable a
computer with the collective intelligence of several human experts in the area
of interest.

Most biomedical signals are fairly slow (lowpass) signais, with their bandwidth
limited to a few tens to a few thousand Hestz. Typical sampling rates for digital
processing of biomedical signals therefore range from 100 Hzto 10~20 kH z.
Sampling rates as above facilitate on-line, real-time analysis of biomedical
signals with even low-end computers. Note that the term “real-time analysis”
may be used to indicate the processing of each sample of the signal before
the next sample arrives, or the processing of an epoch or episode such as an
ECG beat before the next one is received in its entirety in a buffer. Hean-
rate monitoring of critically ill patients would certainly demand real-time ECG
analysis, However, some applications do not require on-line, real-time analysis:
for example, processing a VAG signal to diagnose cartilage degeneration,
and analysis of a long-term ECG record obtained over several hours using
an ambulatory system do not demand immediate attention and results. In
such cases, computers could be used for off-fine analysis of pre-recorded
signals with sophisticated signal-processing and time-consuming modeling
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technigues, The speed required for real-time processing and the computational
complexities of modeling techniques in the case of off-line applications both
would rule out the possibility of performance of the tasks by humans.

One of the important points to note in the above discussion is that guantitative
analysis becomes possible by the application of computers to biomedical signals. The
logic of medical or clinical diagnosis via signal analysis could then be objectively
encoded and consistently applied in routine or repetitive tasks. However, it should
be emphasized at this stage that the end-goal of biomedical signal analysis should
be seen as computer-gided diagnosis and not automated diagnosis. A physician or
medical specialist typically uses a significant amount of information in addition to
signals and measurements, including the general physical appearance and mental
state of the patient, family history, and socio-economic factors affecting the patient,
many of which are not amenable to quantification and logistic rule-based processes.
Biomedical signals are, at best, indirect indicators of the state of the patient; most
cases lack a direct or unique signal - pathology relationship [31]. The results of signal
analysis need to be integrated with other clinical signs, symptoms, and information
by a physician. Above all, the intuition of the specialist plays an important role in
arriving at the final diagnosis. For these reasons, and keeping in mind the realms
of practice of various licensed and regulated professions, liability, and legal factors,
the final diagnostic decision is best left to the physician or medical specialist. It
is expected that quantitative and objective analysis facilitated by the application of
computers to biomedical signal analysis will lead to a more accurate diagnostic
decision by the physician.

On the importance of quantitative analysis:

“When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced io the stage of science.”

— Lord Kelvin (William Thomson, 1824 - 1907) [64]

On assumptions made in quantitative analysis:

“Things do not in general run around with their measure stamped on them like
the capacity of a freight car; it requires a certain amount of investigation to
discover what their measures are ... What most experimenters take for granted
befote they begin their experiments is infinitely more interesting than any results
to which their experiments lead.”

— Norbert Wiener (1894 — 1964)
1.6 REMARKS

We have taken a general look at the nature of biomedical signals in this chapter, and
seen a few signals illustrated for the purpose of gaining familiarity with their typical
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appearance and features, Specific details of the characteristics of the signals and their
processing or analysis will be dealt with in subsequent chapters.

We have also stated the objectives of biomedical instrumentation and signal anal-
ysis, Some practical difficulties that arise in biomedical signal investigation were
discussed in order to draw attention to the relevant practical issues. The suitabil-
ity and desirability of the application of computers for biomedical signal analysis
were discussed, with emphasis on objective and quantitative analysis toward the end-
goal of computer-aided diagnosis. The remaining chapters will deal with specific
technigues and applications.

1.7 STUDY QUESTIONS AND PROBLEMS

(Note: Some of the questions may require background preparsation with other sources on the
ECG (for example, Rushmer [23]). the EMG (for example, Goodgold and Eberstein [221), and
biomedical instrumeniation (for example, Webster [10].)

Give two reasons to justify the use of electronic instrtuments and computers in medicine,

. State any two objectives of using biomedical instrumentation and signal analysis.

L.

2

3. Distinguish between open-loop and closed-loop monitoring of a patient.
4, List three common types or scurces of artifact in a biomedical instrument.
5

. A nerve cell has an action potential of duration 10 me including the refractoty period.
What is the maximum rate (in pulses per second) at which this cell can transmit electrical
activity?

6. Consider a myocardial cell with an action potential of duration 300 ms# including its

refractory period. What is the maximum rate at which this cell can be activated (fired)
into contraction?

7. Distinguish between spatial and temporal recruitment of motor tnits to obtain increasing
Ievels of muscular activity.

8. Consider three motor wnits with action potentials (SMUAPs) that are of different bipha-
sic and triphasic shapes. Consider the initial stages of contraction of the related muscle.
Draw three plots of the net EMG of the three motor units for increasing levels of con-
traction with the spatial and temporal recruitment phenomena invoked individually and
in combination. Assure low levels of contraction and that the SMUAPs do niot overlap.

9. Draw a typical ECG waveform over one cardiac cycle indicating the important compo-
nent waves, their typical durations, and the typical intervals between them. Label each
wave or interval with the corresponding cardiac event or activity.

10. Draw the waveform corresponding to two cycles of a typical ECG signal and indicate
the following waves and periods: (a) the P, QRS, and T waves; (b) the RK interval;
(c) atrial contraction; (d) atrial relaxation; (e) ventricular contraction; and (f) ventricular
relaxation,

11. Explain why the P and T waves are low-frequency signals whereas the QRS complex is
2 high-frequency signal. Include diagrams of action potentials and an ECG waveform
in your reasoning.



12.

13.

5.

16.

18.

1.8
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Explain the reasons for widening of the QRS complex in the case of certain cardiac
diseases.

Give two examples that call for the use of electronic instruments and/or computers in
ECG analysis.

. A heart patient has a regular SA node pulse (firing) pattern and an irregular ectopic

focus, Over a period of 10 &, the SA node was observed to fire regularly at £ = 0,1, 2,
3,4,5,6, 7,8, and 9 5. The ectopic focus was observed 1o fire at £ = 1.3, 2.8,6.08,
and 7.25 ».

Draw two impulse sequences corresponding to the firing pattems of the SA node and
the ectopic focus. Draw a schematic waveform of the resulting ECG of the patient.
Explain the source of each beat (SA node or ectopic focus) and give reasons.

A patient has ventricular bigeminy, where every second pulse from the SA node is
replaced by a premature ventricular ectopic beat with a full compensatory pause. {See
Figure 9.5 for an jllustration of bigeminy.) The SA-node firing rate is regular at §0
beats 2 minute, and each ectopic beat precedes the blocked SA node pulse by 100 ma.
(a) Draw a schematic trace of the ECG for 10 beats, marking the time scale in detail,
(b) Draw a histogram of the RR intervals for the ECG trace.

(c) What is the average RR interval computed over the 10 beats?

Draw a typical PCG (heart sound signal) waveform over one cardiac cycle indicating the

important component waves, their typical durations, and the typical intervals between
them. Label each wave or interval with the corresponding cardiac event or activity.

. Give two examples that require the application of electronic instruments and/or com-

puters in EEG analysis.
Distinguish between ECG rhythms and EEG rhythms. Sketch one example of each.

LABORATORY EXERCISES AND PROJECTS

. Visit an ECG, EMG, or EEG laboratory in your local hospital or health sciences center,

View a demonstration of the acquisition of a few biomedical signals. Request a specialist
in a related field to explain how he or she would interpret the signals. Volunteer 10
be the experimental subject and experience first-hand a biomedical signal acquisition
procedure!

. Set up an ECG acquisition sysiem and study the effects of the following conditions or

actions on the quality and nature of the signal: loose electrodes; lack of electrode gel;
the subject holding hisfher breath or breathing freely during the recording precedure;
and the subject coughing, talking, or squirming during signal recording.

. Using a stethoscope, listen to your own heart sounds and those of your friends. Examine

the variability of the sounds with the site of auscultation. Study the effects of heavy
breathing and speaking by the subject as you are listening 1o the heart sound signal.

Record speech signals of vowels (/A/, I/, U/, /B!, /O, diphthongs (/EI/, /QUN),
fricatives (/8/, /F/), and plosives (/T/, /P/), as well as words with all three types of
sounds (for example, safety, explosive, hearty, heightened, house). You may be able to
perform this experiment with the microphone on your computer workstation. Study the
waveform and characteristics of each signal.



Analysis of Concurrent,
Coupled, and Correlated
Processes

The human bedy is a complex integration of a number of biological systems with
several ongoing physiological, functional, and possibly pathological processes. Most
biological processes within a body are not independent of one another; rather, they
are mutually correlated and bound together by physical or physiological control and
communication phenomena. Analyzing any single process without due attention to
others that are concurrent, coupled, or correlated with the process may provide only
partial information and pose difficulties in the comprehension of the process. The
problem, then, is how do we recognize the existence of concurrent, coupled, and
correlated phenomena? How do we obtain the corresponding signals and identify the
corrclated features? Unfortunately, there is no simple or universal rule to apply to
this problem.

Ideally, an investigator should explore the system or process of interest from all
possible angles and use multidisciplinary approaches to identify several potential
sources of information. The signals so obtained may be electrical, mechanical,
biochemical, or physical, among the many possibilities, and may exhibit inter-
relationships confounded by peculiarities of transduction, time defays, multipath
transmission or reflection, waveform distortions, and filtering effects that may need
to be accounted for in their simultaneous analysis. Events or waves in signals of
interest may be nonspecific and difficult to identify and analyze. How could we ex-
ploit the concurrency, coupling, and correlation present between processes or related
signals to better understand a system?

61
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2.1 PROBLEM STATEMENT

Determine the correspondences, correlation, and inter-relationships present be-
tween concurrent signals related to @ common underlying physiological system
or process, and identify their potential applications.

The statement above represents, of necessity at this stage of the discussion, a
rather vague and generic problem, The case-studies and applications presented in the
following sections provide a few iltustrative examples dealing with specific systems
and problems. Signal processing techniques for the various tasks identified in the
case-studies will be developed in chapters that follow. Note that the examples cover
a diverse range of systems, processes, and signals. The specific problem of your
interest will very likely not be directly related to any of the case-studies presented
here. It is expected that a study of the examples provided will expand the scope of
your analytical skills and lead to improved solution of your specific case.

2.2 ILLUSTRATICN OF THE PROBLEM WITH CASE-STUDIES

2,21 The electrocardiogram and the phonocardiogram

A clinical ECG record typically includes 12 channels of sequentially or simultane-
ously recorded signals, and can be used on its own to diagnose many cardiac diseases.
This is mainly due to the simple and readily identifiable waveforms in the ECG, and
the innumerable studies that have firmly established clinical ECG as a standard pro-
cedure, albeit as an empirical one. The PCG, on the other hand, is a more complex
signal. PCG waveforms cannot be visually analyzed except for the identification of
gross features such as the presence of murmurs, time delays as in a split 52, and
envelopes of murmurs. An advantage with the PCG is that it may be listened to;
anscultation of heart sounds is more commonly performed than visual analysis of the
PCG signal. However, objective analysis of the PCG requires the identification of
components, such as S| and $2, and subsequent analysis tailored to the nature of the
components.

Given a run of a PCG signal over several cardiac cycles, visual identification of
81 and 82 is possible if there are no murmurs between the sounds, and if the heart
rate is low such that the S2 — S1 (of the next beat) interval is longer than the S] — 82
interval (as expected in normal situations). At high heart rates and with the presence
of murmurs or premature beats, identification of 81 and S2 could be difficult.

Problem: identify the beginning of §1 in a PCG signal and extract the heart
sound signal over one cardiac cycle.

Solution: The ECG and PCG are concurrent phenomena, with the noticeable
difference that the former is electrical while the latter is mechanical (sound or vibra-
tion). it is customary to record the ECG with the PCG; see Figures 1.24 and 1.26 for
examples.

The QRS wave in the ECG is directly related to ventricular contraction, as the
summation of the action potentials of ventricular muscle cells (see Section 1.2.4),
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As the ventricles contract, the tension in the chordae tendineae and the pressure of
retrograde fiow of blood toward the atria seal the AV valves shut, thereby causing the
initial vibrations of §1 [23] (see Section 1.2.8). Thus 81 begins immediately after
the QRS complex. Given the nonspecific nature of vibration signals and the various
possibilities in the transmission of the heart sounds to the recording site on the chest,
detection of S1 on its own is a difficult problem,

As will be seen in Sections 3.3.1, 4.3.1, and 4.3.2, detection of the QRS is fairly
easy, given that the QRS is the sharpest wave in the ECG over a cardiac cycle; in
fact, the P and T waves may be almost negligible in many ECG records. Thus the
QRS complex in the ECG is a reliable indicator of the beginning of S1, and may be
used to segment a PCG record into individual cardiac cycles: from the beginning of
one QRS (and thereby S1) to the beginning of the next QRS and S1. This method
may be applied visually or via signal processing techniques: the former requires no
further explanation but will be expanded upon in Section 2.3; the latter will be dealt
with in Section 4.10.

2.2.2 The phonocardiogram and the carotid pulse

Identification of the diastolic segment of the PCG may be required in some applica-
tions in cardiovascular diagnosis [65). Ventricular systole ends with the closure of
the aortic and pulmonary valves, indicated by the aortic (A2) and pulmonary (P2)
components of the second heart sound S2 (see Section 1.2.8). The end of contraction
is also indicated by the T wave in the ECG, and S2 appears slightly after the end
of the T wave (see Figure 1.24). S2 may be taken to be the end of systole and the
beginning of ventricular relaxation or diastole. (Note: Shaver et al. [43] and Reddy
et al. [44] have included S2 in the part of their article on systolic sounds.) However,
as in the case of S1, 82 is also a nonspecific vibrational wave that cannot be readily
identified (even visually), especially when murimurs are present.

Given the temporal relationship between the T wave and S2, it may appear that the
former may be used to identify the latter. This, however, may not always be possible
in practice, as the T wave is often a low-amplitude and smooth wave and is sometimes
not recorded at all (see Figure 1.14). ST segment elevation (as in Figure 1.14) or
depression (as in Figure 1.28) may make even visual identification of the end of the
T wave difficult, Thus the T wave is not a reliable indicator to use for identification
of 82.

Problem: Identify the beginning of 52 in a PCG signal,

Solution: Given the inadequacy of the T wave as an indicator of diastole, we
need to explore other possible sources of information. Closure of the aortic valve is
accompanied by deceleration and reversal of blood flow in the aorta. This causes a
sudden drop in the blood pressure within the aorta, which is already on a downward
slope due 1o the end of systolic activity. The sudden change in pressure causes an
incisura or notch in the aortic pressure wave (see Figures 1.27 and 1.28). The aortic
pressure signal may be obtained using catheter-tip sensors [43, 44], but the procedure
would be invasive. Fortunately, the notch is transmitted through the arterial system,
and may be observed in the carotid pulse (see Section 1.2.9} recorded at the neck,
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The dicrotic notch D in the carotid pulse signal will bear a delay with respect to
the corresponding notch in the aortic pressure signal, but has the advantage of being
accessible in a noninvasive manner. (Similar events occur in the pulmonary artery,
but provide no externally observable effects.) See Figures 1.24 and 1.26 for examples
of three-channel PCG — ECG - carotid pulse recordings that illustrate the D - 82 -
T relationships. The dicrotic notch may thus be used as a reliable indicator of the
end of systole or beginning of diastole that may be obtained in a noninvasive manner.
The average S2 — D delay has been found to be 42.6 ms with a standard deviation of
5 mas [66] (see also Tavel [41]), which should be subtracted from the dicrotic notch
position to obtain the beginning of §2,

Signal processing techniques for the detection of the dicrotic notch and segmen-
tation of the PCG will be described in Sections 4.3.3, 4.10, and 4.11,

2.2.3 The ECG and the atrial electrogram

Most studies on the ECG and the PCG pay more attention to ventricular activity than
to atrial activity, and even then, more to left ventricular activity than to the right,
Rhythm analysis is commonly performed using QRS complexes to obtain inter-beat
intervals known as RR intervals. Such analysis neglects atrial activity,

Recoilect that the AV node introduces a delay between atrial contraction initiated
by the SA node impulse and the consequent ventricular contraction. This delay plays
a major role in the coordinated contraction of the atria and the ventricles. Certain
pathological conditions may disrupt this coordination, and even cause AV dissociation
[23). It then becomes necessary to study atrial activity independent of ventricular
activity and establish their association, or lack thereof. Thus the interval between the
P wave and the QRS (termed the PR interval) would be a valuable adjunct to the RR
interval in rhythm analysis. Unfortunately, the atria, being refatively small chambers
with weak contractile activity, cause a small and smooth P wave in the external ECG.
Quite often the P wave may not be recorded or seen in the external ECG; see, for
example, leads I and V3 - V6 in Figure 1.18,

Problem: Obitain an indicator of atrial contraction to measure the PR interval.

Solution: One of the reasons for the lack of specificity of the P wave is the effect
of transmission from the atria to the external recording sites. An obvious solution
would be to insert electrodes into one of the atria via a catheter and record the signal
at the source. This would, of course, constitute an invasive procedure. Jenkins ef
al. [67, 68, 29, 30] proposed a unigue and very interesting procedure to obtain a
strong and clear signal of atrial activity: they developed a pill electrade that could be
swallowed and towered through the esophagus to a position close to the left atrium
(the bipolar electrode pill being held suspended by wires about 35 em from the lips).
The procedure may or may not be termed invasive, although an object is inserted into
the body (and removed after the procedure), as the action required is that of normal
swallowing of a tablet-like object. The gain required to obtain a good atrial signal
was 2 — 5 times that used in ECG amplifiers. With a 5 — 100 H z bandpass filter,
Jenkins et al. obtained an SNR of 10.
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Figure 2.1 shows recordings from a normal subject of the atrial electrogram from
the pill electrode and an external ECG lead. Atrial contraction is clearly indicated by
a sharp spike in the atrial electrogram. Measurement of the PR interval (or the AR
interval, as called by Jenkins et al.) now becomes an easy task, with identification of
the spike in the atrial electrogram (the “A” wave, as labeled by Jenkins et al.) being
easier than identification of the QRS in the ECG.

f e T

Figure 2.1 Pill-electrode recording of the atrial electrogram (lower tracing) and the exteraal
ECG (upper tracing) of a normal subject. The pulse train between the two signals indicates
intervals of 1 s. Reproduced with permission from J.M. Jenkins, D. Wu, and R. Arzbaecher,
Computer diagnosis of abnormal cardiac rhythms employing a new P-wave detector for interval
measurement, Computers and Biomedical Research, 11:17-33, 1978. ©Academic Press,

Figure 2.2 shows the atrial electrogram and external ECG of a subject with ectopic
beats. The PVCs have no immediately preceding atrial activity. The first PVC has
blocked the conduction of the atrial activity occurring immediately after, resulting
in a compensatory pause before the following norma! beat. The second PVC has
not blocked the subsequent atrial wave, but has caused a longer-than-normal AV
delay and an aberrant conduction path, which explains the different waveshape of
the consequent beat. The third PVC has not affected the timing of the following SA-
node-initiated pulse, but has caused a change in waveshape in the resuiting QRS-T
by altering the conduction path [67, 68, 29, 30].

Jenkins et al. developed a four-digit code for each beat, as illustrated in Figure 2.2,
The first digit was coded as

0: abnormal waveshape, or

1: normal waveshape,
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as determined by a correlation coefficient computed between the beat being processed
and a normal template (see Sections 3.3.1, 4.4.2, and 5.4.1). The remaining three
digits encoded the nature of the RR, AR, and AA intervals, respectively, as

0: short,

1: normal, or

2: long.
The absence of a preceding A wave related to the beat being analyzed was indicated
by the code = in the fourth digit (in which case the AR interval is longer than the RR
interval). Figure 2.2 shows the code for each beat. Based upon the code for each
beat, Jenkins et al. were able to develop a computerized method to detect a wide
variety of arthythmia.
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Figure 2.2  Aurial ¢lectrogram (lower tracing) and the external ECG (upper tracing) of a
subject with ectopic beats. The pulse train between the twe signals indicates intervals of 1 s.
Reproduced with permission from J.M. Jenkins, D. Wu, and R. Arzbaecher, Computer diagno-
sis of abnormal cardiac rhythms employing a new P-wave detector for interval measurement,
Computers and Biomedical Research, 11:17-33, 1978. ®Academic Press.
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2.2.4 Cardio-respiratory interaction

The heart rate is affected by normal breathing due to the coupling and interaction ex-
isting between the cardiac and respiratory systems (69, 70, 71,72, 73, 74]. Breathing
also affects the transmission of the heart sounds from the cardiac chambers to the
chest surface. Durand et al, [75] recorded intracardiac and chest-surface PCG signals
and derived the dynamic transfer function of the heart — thorax acoustic system in
dogs. Analysis of the synchronization and coupling within the cardio-respiratory sys-
tem could require sophisticated analysis of several signals acquired simultaneously
from the cardiac and respiratory systems [76]. A few techniques for the analysis
of heart-rate variability (HRV) based upon RR interval data wili be described in
Sections 7.2.2,7.8, and 8.9.
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2.2.5 The electromyogram and the vibromyogram

The EMG signal has been studied extensively and the relationship between EMG
signal parameters and muscle contraction level has been established [22, 24}, It is
known that the EMG root mean-squared (RMS) and mean frequency values increase
with increasing muscle contraction until fatigue sets in, at which point both values
begin to decrease. In this situation, while the muscle output measured is mechanical
contraction (using force or strain transducers), the signal analyzed is electrical in
character. A direct mechanical signal related to basic muscle-fiber or motor unit
phenomena may be desired in some situations.

Problem: Obrain a mechanical signal that is a divect indicator of muscle-fiber or
motor unit activity to study muscle contraction and force development.

Solution: The VMG, as introduced in Section 1.2.12, is a vibration signal mea-
sured from a contracting muscle. The signal is a direct manifestation of the contraction
of muscle fibers, and as such represents mechanical activity at the muscle-fiber or
motor-unit level. The VMG signal is the mechanical counterpart and contemporary
of the EMG signal. Although no direct relationship has been established between
the force outputs of individual motor units and the net force output of the muscle, it
has been shown that the RMS and mean frequency parameters of the VMG signal
increase with muscle force output, in patterns that paraliel those of the EMG. Thus
the VMG may be used to quantify muscular contraction [47].

Given the simplicity and noninvasive nature of EMG and VMG measurement,
simultaneous analysis of the two signals is an atiractive and viable application, Such
technigues may find use in biofeedback and rehabilitation [48). Figure 2.3 shows
simultaneous EMG - VMG recodings at two levels of contraction of the rectus
femoris muscle [48]. Both signals are interference patterns of several active motor
units even at low levels of muscle effort, and cannot be analyzed visually, However, a
general increase in the power levels of the signals from the lower effort to the higher
effort case may be observed. Signal processing technigues for simultaneous EMG -
VMG studies will be described in Section 5.10.

2.2.6 The knee-joint and muscle vibration signals

We saw in Section 1.2.13 that the vibration (VAG) signals produced by the knee
joint during active swinging movement of the leg may bear diagnostic information.
However, the VMG associated with the rectus femoris muscle that must necessarily
be active during extension of the leg could appear as an interference and cortupt the
VAG signal {63].

Problem: Suggest an approach to remove muscle-contraction interference from
the knee-joint vibration signal.

Solution: The VMG interference signal gets transmiited from the source muscle
location to the VAG recording position at the skin surface over the patella (knee
cap} through the intervening muscles and bones (see Figure 3.11 and Section 3.2.6).
Although the interference signal has been found to be of very low frequency (around
1¢ Hz2), the frequency content of the signal varies with muscular effort and knee-joint
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Figure 2.3 Simultancous EMG - VMG records at two levels of contraciion of the rectus
femoris muscle. (a) VMG at 40% of the maximal voluntary contraction (MVC) level, {b)
EMG at 40% MVC. (c) VMG at 60% MVC. (d) EMG at 60% MVC. Reproduced with
permission from Y.T. Zhang, C.B. Frank, R.M. Rangayyan, and G.D. Bell, Relationships of
the vibromyogram to the surface clectromyogram of the human rectus femeris muscle during
voluntary isometric contraction, Journal of Rehabilitation Research and Development, 33(4):
395-403, 1996. @Department of Veterans Affairs.
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angle. The rectus femoris muscle and the knee-joint systems are coupled dynamic
systems with vibration characteristics that vary with activity level, and hence time;
thus simple highpass or bandpass filtering of the VAG signal is not an appropriate
solution.

An approach to solve the problem would be to record the VMG signal at the
rectus femoris at the same time as the VAG signal of interest is acquired from the
patella position. Adaptive filtering and noise cancellation techniques [77, 62, 63]
could then be applied, with the VAG signal as the primary input and the VMG signal
as the reference input, Assuming that the VMG signal that arrives at the patella
is strongly correlated with the VMG signal at the rectus femoris and not correlated
with the VAG signal of interest, the adaptive filter should remove the interference
and estimate the desired VAG signal. Details of adaptive filters will be provided in
Sections 3.6 and 3.10.

2.3 APPLICATION: SEGMENTATION OF THE PCG INTO SYSTOLIC
AND DIASTOLIC PARTS

Problem: Show how the ECG and carotid pulse signals may be used to break a PCG
signal into its systolic and diastolic parts.

Solution: A cardiac cycle may be divided into two important parts based upon
ventricular activity: systole and diastole. The systolic part starts with S1 and ends
at the beginning of 82; it includes any systolic murmur that may be present in the
signal. The diastolic part starts with S2, and ends just before the beginning of the S1
of the next cardiac cycle. (The aortic and pulmonary valves close slightly before the
A2 and P2 components of S2. Therefore systole may be considered to have ended
just before S2. Although Shaver et al, [43] and Reddy et al, [44] have included S2
in the part of their article on systolic sounds, we shall include S2 in the diastolic part
of the PCG.) The diastolic part includes any diastolic murmur that may be present in
the signal; it might also include S3 and 54, if present, as well as AV valve-opening
snaps, if any,

We saw in Section 2.2.1 that the QRS complex in the ECG may be used as a reliable
marker of the beginning of S1. We also saw, in Section 2.2.2, that the dicrotic notch
in the carotid pulse may be used to locate the beginning of S2. Thus, if we have both
the ECG and carotid pulse signals along with the PCG, it becomes possible to break
the PCG into its systolic and diastolic parts.

Figure 2.4 shows three-channel PCG ~ ECG - carotid pulse signals of a subject
with systolic murmur due to aortic stenosis (the same as in Figure 1.28), with the
systolic and diastolic parts of the PCG marked in relation to the QRS and D events,
The demarcation was performed by visual inspection of the signals in this example,
Signal processing techniques to detect the QRS and D waves will be presented in
Section 4.3. Adaptive filtering techniques to break the PCG into stationary segments
without the use of any other reference signal will be described in Section 8.8.
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Figure 2.4 Pemarcation of the sysiolic (SYS.) and diastolic (DIAS.) parts of the PCG signal
in Figure 1.26 by using the ECG and carotid pulse as reference signals. The QRS complex
and the dicrotic notch D are marked on the ECG and carotid pulse signals, respectively,
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2.4 REMARKS

This chapter has introduced the notion of using multiple channels of biomedical
signals to obtain information on concurrent, coupled, and correlated phenomena with
the aim of obtaining an improved understanding of a system or obtaining reference
signals for various purposes. The main point to note is that physiological systems
are complex systems with multiple variabies and outputs that should be studied from
various approaches in order to gain muitifaceted information.

Soine of the problems have been stated in fairly general terms due to the intro-
ductory nature of the chapter. Subseguent chapters will present more illustrations of
specific problems and applications of the notions gained from this chapter. A number
of examples will be provided to illustrate the use of multiple channels of signals to
obtain timing information.

2.5 STUDY QUESTIONS AND PROBLEMS

1. A patient has ventricular bigeminy: every second pulse from the SA nede is replaced
by a premature ventricular ectopic beat (PVC) with a full compensatory pause. (See
Figure 9.5 for an illustration of bigeminy.) The SA-node rate is regular at 80 beats a
minute, and each ectopic beat precedes the blocked SA-node pulse by 100 ms.

Draw a schematic three-channel representation of the ECG, the atrial electrogram (or
SA-node firing pattern), and the firing pattern of the ectopic focus for 10 beats, marking
the time scale in detail. Identify the comespondences and relationships between the
activities in the three channels.

2. Draw schematic representations of the ECG, PCG, and carotid pulse signals. Label ali
waves in the three signals, Identify their common relationships to events in the cardiac
cycle.

2.6 LABORATORY EXERCISES AND PROJECTS

(Note: The following projects require access to a physiological signal recording 1aboratory.)

1. Using a multichannel biomedical signal acquisition system, obtain simultaneous record-
ings of an ECG channel and a signal related to respiration (temperature, airflow, or
pressure in the nostril). Study the variations in the RR interval with inspiration and
expiration. Repeat the experiment with the subject holding histher breath during the
signal acquisition period.

2, Obtain simultaneous recordings of an ECG lead, the PCG, the carotid pulse, and the
pulse at the wrist, Study the temporal correspondences (and delays) between events in
the various channels,

3. Record an ECG lead and PCG signals from two or three auscultation areas (mitral,
aortic, pulmonary, tricuspid, and apex: see Figure 1.17} simultaneously. Study the
variations in the intensities and characteristics of S1 and $2 and their components in
the PCGs from the various recording sites.



Filtering for Removal of
Artifacts

Most biomedical signals appear as weak signals in an environment that is teeming
with many other signals of various origins. Any signal other than that of interest could
be termed as an interference, artifact, or simply noise. The sources of noise could be
physiological, the instrumentation used, or the environment of the experiment.

This chapter starts with an introduction to the nature of the artifacts that are com-
monly encountered in biomedical signals. Several illustrations of signals corrupted
by various types of artifacts are provided. Details of the design of filters, spanning
a broad range of approaches, from linear time-domain and frequency-domain fixed
filters to the optimal Wiener filter to adaptive filters, are then described. The chapter
concludes with demonstrations of application of the filters described to ECG and
VAG signals,

(Note: A good background in signal and system analysis {1, 2, 3] as well as
probability, random variables, and stochastic processes [4, 5, 6, 7, 8, 9] is required, in
order to follow the procedures and analysis described in this chapter. Familiarity with
systems theory and transforms such as the Laplace wransform, the Fourier transform
in both the continuous and discrete form, and the z-transform will be assumed.)

3.1 PROBLEM STATEMENT

Noise is omnipresent! The problems caused by artifacts in biomedical signals are
vast in scope and variety; their potential for degrading the performance of the most
sophisticated signal processing algorithms is high. The enormity of the problem of
noise removal and its importance are reflected by the size of this chapter and its
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placement as the first one on signal processing techniques. Let us start with a generic
statement of the problem and investigate its nature:

Analyze the various types of artifaces that corrupt biomedical signals and explore
filtering techniques to remove them without degrading the signal of interest,

if during an ECG acquisition procedure the subject coughs or squirms, the EMG
associated with such activity will pose an interference or artifact. In adult patients,
such physiological interference may be minimized by strict instructions and self-
control; this solution may, however, not be applicable to infants and children. An
intriguing example of physiological interference is that of the mother’s ECG appear-
ing along with that of the fetus, with the latter being of interest. No externat control is
feasible or desirable in this case, and the investigator is forced to develop innovative
solutions to extract the signal of interest.

Due to the weak levels of most biomedical signals at their source, high amplifi-
cation factors of several hundred to several thousand may be required. Electronic
noise in the instrumentation amplifiers also gets amplified along with the desired
signal. While it is possible to reduce the thermal component of the noise by cooling
the devices to very low temperatures, this step may not be practical in most appli-
cations; the cost could also be prohibitive. Low-noise power supplies and modern
electronic amplifiers with high input impedance, high common-mode rejection ratio,
and high power-supply rejection ratio are desirable for the acquisition of biomedical
signals {10}.

Qur environment is filled with EM waves, both natural and man-made. EM waves
broadcast by radio and television (TV) stations and those radiated by fiuorescent
lighting devices, computer monitors, and other systems used in the laboratory or
work environment are picked up by cables, devices, and connectors. The 50 Hz or
60 Hz power-supply waveform is notorious for the many ways in which it can get
mixed with and corrupt the signal of interest. Such interference may be termed as
being due to the environment of the experiment. Simple EM shielding of cables and
grounding of the chassis of equipment reduce EM and power-supply interference in
most cases. Experiments dealing with very weak signals such as ERPs and EEGs
may require a wire-mesh-shielded cage to contain the subject and the instruments.

The ECG is a relatively strong signal with a readily identifiable waveform. Most
types of interference that affect ECG signals may be removed by bandpass filters.
Other signals of less recognizable waveforms and broader bandwidths may not be
amenable to simple filtering procedures. In the case of signals such as ERPs or SEPs
the noise levels could be much higher than the signal levels, rendering the latter
unrecognizable in a single recording. It is important o gain a good understanding of
the noise processes involved before one attempts fo filter or preprocess a signal,

3.1.1 Random nolse, structured noise, and physiological interference

A deterministic signal is one whose value at a given instant of time may be computed
using a closed-form mathematical function of time, or predicted from a knowledge
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of a few past values of the signal. A signal that does not meet this condition may be
labeled as a nondeterministic signal or a random signal.

Test for randomness: Random signals are generally expected to display more
excursions about a3 certain reference level within a specified interval than signals
that are predictable. Kendall [78] and Challis and Kitney [79] recommend a test for
randomness based upon the number of peaks or troughs in the signal. A peak ora
trough is defined by a set of three consecutive samples of the signal, with the central
sample being either the maximum or minimum, respectively. As the direction of
excursion of the signal changes at peaks and troughs, such points are collectively
known as turning points. A simple test for a turning point is that the sign of the
first-order difference {derivative) at the current sample of the signal be not equal
to that at the preceding sample. Given a signal of N samples, the signal may be
labeled as being random if the number of turning points is greater than the threshold
%(N — 2) (78, 79]. In the case of a signal of varying characteristics, that is, a
nonstationary signal, the test would have to be conducted using a running window of
N samples. The width of the window should be chosen, keeping in mind the shortest
duration over which the signal may remain in a given state, The method as above
was used by Mintchev et al. [39] to study the dynamics of the level of randomness in
EGG signals.

Figure 3.1 illustrates the variation in the number of turning points in a moving
window of 50 ms (400 samples with the sampling frequency f, = 8 kH z) for the
speech signal of the word “safety”. The threshold for randomness for N = 400
according to the rule above is 265. Tt is seen from the figure that the test indicates
that the signal is random for the fricatives /S/ (over the interval of 0.2 — 0.4 s,
approximately} and /F/ (0.7 — 0.9 s), and not random for the remaining portions, as
expected. (See also Section 1.2.11 and Figures 1.29 and 1.30.)

Random noise: The term random noise refers to an interference that arises from
a random process such as thermal nois¢ in electronic devices. A random process is
characterized by the probability density function (PDF) representing the probabilities
of occurrence of all possible values of a random variable. (See Papoulis [4] or
Bendat and Piersol [5] for background inaterial on probability, random variables, and
stochastic processes.) Consider a random process # that is characterized by the PDF
pn(n). The mean g, of the random process # is given by the first-order moment of
the PDF, defined as

oo

#y = Eln} = f npn(n) dn, 3.

where E[ ] represents the statistical expectation operator. 1t is common to assume
the mean of a random noise process to be zero,

The mean-squared {MS) value of the random process 7 is given by the second-
order moment of the PDF, defined as

Ef] = [ 7 pu(m) dn. 3.2)
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Figure 3.1 Top: Speech signal of the word “safety” uitered by a male speaker. Bottom:
Count of turning points in a moving window of 50 mas (400 samples with f, = 8 kHz). The
threshold for randomness for NV = 400 is 265.
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The variance af, of the process is defined as the second central moment:

o3 = EBl(n— p)*) = f_ Z(n - 113)? po(n) dn. (3.3)

The square oot of the variance gives the standard deviation (SD) oy, of the process.
Note that ¢ = E[n?] — 2. If the mean is zero, it follows that o} = E[n?], that is,
the variance and the MS values are the same.

When the values of a random process 1 form a time series or a function of time, we
have a random signal (or a stochastic process) n(t). The statistical measures described
above then have physical meanings: the mean represents the DC component, the MS
value represents the average power, and the square root of the mean-squared value
(the root mean-squared or RMS value) gives the average noise magnitude or level.
The measures are useful in calculating the SNR, which is commonly defined as the
ratio of the peak-to-peak amplitude range of the signal to the RMS value of the noise,
oF as the ratio of the average power of the signal to that of the noise.

Observe the use of the same symbol 1 to represent the random variable, the random
process, and the random signal as a function of time. The subscript of the PDF or the
statistical parameter derived indicates the random process of concern. The context
of the discussion or expression should make the meaning of the symbol clear.

A biomedical signal of interest z(¢) may also, for the sake of generality, be
considered to be a realization of a random process &. For example, although a normal
heart sound signal is heard as the same comforting lub — dub sound over every cycle,
the comresponding PCG vibration waveforms are not precisely the same from one
cycle to another. The PCG signal may be represented as a random process exhibiting
certain characteristics on the average.

When a (random} signal x(t) is observed in an environment with random noise,
the measured signal y(t) may be treated as a realization of another random process
. In most cases the noise is additive, and the observed signal is expressed as

y(t) = z(t) + n(2). (3.4)

Each of the random processes z and y is characterized by its own PDF p,(«)} and
py(¥), respectively.

In most practical applications, the random processes representing a signal of inter-
est and the noise affecting the signal may be assumed to be statistically independent
processes. Two random processes ¢ and 1) are said to be statistically independent
if their joint PDF pa,y(x, 1) is equal to the product of their individuat PDFs given
as pe{z)py(n). 1t then follows that the first-order moment and second-order central
moment of the signals z(¢) and y(t) are related as

Bly] = py = Elz] = piq, (3.5)
Elly-m) ) =0l =02+ 42, (3.6)

where p represents the mean and ¢? represents the variance of the random process
indicated by the subscript, and it is assumed that u,, = 0.
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Ensemble averages: When the PDFs of the random processes of concern are not
known, it is common to approximate the statistical expectation operation by averages
computed using a collection or ensemble of sample observations of the random
process. Such averages are known as ensemble averages. Suppose we have M
observations of the random process z as functions of time: 2 (t), za(t}, ..., zm(t).
We may estimate the mean of the process at a particular instant of time ¢ as

o1y
palta) = lim - > zlta). 3.7
k=1

Figure 3.2 illustrates ten sample acquisitions of Rash visnal ERPs (see also Fig-
ure 1.12). The vertical lines at t = ¢, and £ = ¢t = ¢y + 7 represent the ensemble
averaging process at two different instants of time.

The autocorrelation function (ACF) ¢z (21, ¢y + 7} of & random process x that is
a time series is given by

bualtsits +7) = Blelti)ots +7)] = [ altr) ol + 1) pale) de, GB)
which may be estimated as
1 M
bealtiytr +7) = Im ;,Z_l zu(t) 2 (tr + 1), (3.9)

where t is the delay parameter. If the signals are complex, one of the functions in the
expression above should be conjugated; in this book we shall deal with physiological
signals that are always real. The two vertical linesaté =ty andt =& =41 + 7
in Figure 3.2 represent the ensemble averaging process to compute dg,(£1,¢2). The
ACF indicates how the values of a signal at a particular instant of time are statistically
related to (or have characteristics in common with) values of the same signal at another
instant of time.

When dealing with random processes that are observed as functions of time (or
stochastic processes), it becomes possible to compute ensemble averages at every
point of time. Then, we obtain an averaged function of time Z(¢) as

1 M
2() = pelt) = 37 2 au(t) (3.10)

k=1

for all time ¢. The signal Z(¢) may be used to represent the randomn process x as a
prototype; see the last trace (framed) in Figure 3.2.

Time averages: When we have a sample observation of a random process xy(£)
as a function of time, it is possible to compute tire averages or temporal statistics
by integrating along the time axis:

1 (T2

p(k) = lim
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Figure 3.2 Ten sample acquisitions (x1 to z10) of individeal flash visval ERPs from the
occipital midline (0z) position of a normal adult male (the author of this book!}. The ear lobes
were used to form the reference lead (a1a2), and the left forehead was used as the reference (see
Figure 1.20). The signals may be treated as ten realizations of a random process in the form of
time series or signals. The vertical lines att = ¢3 and t = 3 = #; + + represent the ensemble
averaging process at two different instants of time. The last plot (framed) gives the ensemble
average or prototype Z{t) of the ten individual signals. The horizontal box superimposed on
the third trace represents the process of computing ternporal statistics ovet the duration = 3
to ¢ = t4 of the sample ERP z3(t). See also Figure 3.12. Data courtesy of L. Alfare and H.
Darwish, Alberta Children's Hospital, Calgary.
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The integral would be replaced by a summaticn in the case of sampled or discrete-time
signals. The time-averaged ACF ¢,.(, k) is given by

1 [T/
ber{T k) = fl"l-linoo T -/:Tﬁ Zy(t) zu(t + 7) dt. (3.12)

(See Section 6.4 for details on estimation of the ACF of finite-length data sequences.}
The horizontal box superimposed on the third trace in Figure 3.2 represents the
process of computing temporal statistics over the duration £ = ¢35 to ¢ = £4 of the
sample ERP z3(¢) selected from the ensemble of ERPs illustrated in the figure.

Random noise may thus be characterized in terms of ensemble and/or temporal
statistics. The mean does not play an important role: it is usually assumed to be zero,
or tnay be subtracted out if it is not zero. The ACF plays an important role in the
characterization of random processes. The Fourier transform (FT) of the ACF is the
power spectral density (PSD) function, which is useful in spectra! analysis and filter
design, :

Covariance and cross-correlation: When two random processes ¢ and y need
to be compared, we could compute the covariance between them as

Cuy = Blle—)y-s)l = [ : [/ : (5—t10) (U—tty) oy (@) d dy, 3.13)

where p; , (2, i) is the joint PDF of the two processes. The covariance parameter
may be normalized to get the correlation coefficient, defined as

C.
= —ci.
Py = 5L, (3.14)

with =1 < p.y, £ +1. A high covariance indicates that the two processes have
similar statistical variability or behavior. The processes z and ¢ are said to be
uncorrelated if pz; = 0. Two processes that are statistically independent are also
uncorrelated; the converse of this property is, in general, not true.

When dealing with random processes ¢ and y that are functions of time, the
cross-correfation function (CCF) between them is defined as

Ouyltrsts ) = Blaltwlts+ 0 = [ [ 20 9ta+7) pale ) ded.

(3.15)
Correlation functions are useful in analyzing the nature of variability and spectral
bandwidth of signals, as well as for detection of events by template matching. The
discussion on random processes will be continued in the next subsection.
Structured noise: Power-line interference at 50 Hz or 60 Hz is an example of
structured noise: the typical waveform of the interference is known in advance. It
should, however, be noted that the phase of the interfering waveform will not usually
be known. Furthermore, the interfering waveform may not be an exact sinusoid;
this is indicated by the presence of harmonics of the fundamental 50 Hz or 60 Hz
component,
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Physiological interference: As we have already noted, the human bedy is a
complex conglomeration of several systems and processes. Several physiological
processes could be active at a given instant of time, each one producing many signals
of different types. A patient or experimental subject may not be able to exercise
control on all physiological processes and systems. The appearance of signals from
systems or processes other than those of interest may be termed as physiological
interference; several examples are listed below.

o EMG related to coughing, breathing, or squirming affecting the ECG
o EGG interfering with precordial ECG

¢ Maternal ECG getting added to the fetal ECG of interest

¢ EBCG interfering with the EEG

Ongoing EEG in ERPs and SEPs

¢ Breath, lung, or bowel sounds contaminating the heart sounds (PCG)
¢ Heart sounds getting mixed with breath or lung sounds
o Muscle sound (VMG) interference in joint sounds (VAG)

s Needle-insertion activity appearing at the beginning of a needle-EMG record-
ing

Physiological interference may not be characterized by any specific waveform or
spectral content, and is typically dynamic and nonstationary (varying with the level of
the activity of relevance and hence with time; see the next subsection for a discussion
on stationarity). Thus simple, linear bandpass filters will usually not be effective in
removing physiological interference.

3.1.2 Stationary versus nonstationary processes

We saw in the previous subsection that random processes may be characterized in
terms of their ensemble and/or temporal statistics. A random process is said to be
stationary in the strict sense or strongly stationary if its ensemble averages of all
orders are independent of time, that is, they do not vary with time. In practice,
only first-order and second-order averages are used. A random process is said to be
weakly stationary or stationary in the wide sense if its ensemble mean and ACF do
not vary with time. Then, from Equations 3.7 and 3.9, we have u,(t1) = g, and
so(t1, t1 + T) = P (7). The ACF is now a function of the delay parameter v only;
the PSD of the process does not vary with time.

A stationary process is said to be ergodic if the temporal statistics computed are
independent of the sample observed; that is, the same result is obtained for any sample
observation 2;(t). The time averages in Equations 3.11 and 3.12 are then independent
of k: po(k) = pe and ¢, (7, k) = ¢zo(7). All ensemble statistics may be replaced
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by temporal statistics when analyzing ergodic processes. Ergodic processes are an
important type of stationary random processes since their statistics may be computed
from a single observation as a function of time, The use of ensemble and temporal
averages for noise filtering will be illustrated in Sections 3.3.1 and 3.3.2, respectively,

Signals or processes that do not meet the conditions described above may be, in
general, called nonsrationary processes. A nonstationary process possesses statistics
that vary with time. Itis readily seen in Figure 1.15 (see also Figure 3.6) that the mean
level (base-line} of the signal is varying over the duration of the signal. Therefore,
the signal is nonstationary in the mean, a fisst-order statistical measure. Figure 3.3
illustrates the variance of the speech signal of the word “safety” computed in a
moving window of 50 ms (400 samples with f, = 8 kH z). As the variance changes
significantly from one portion of the signal to another, it should be concluded that the
signal is nonstationary in its second-order statistics {variance, SD, or RMS). While
the speech signal is stationary in the mean, this is not an important characteristic as the
meat is typically removed from speech signals. {A DC signal bears no information
related to vibration or sound.)

Note that the variance displays a behavior that is almost the opposite of that of the
turning points count in Figure 3.1. Variance is sensitive to changes in amplitude, with
large swings about the mean leading to large variance values. The procedure to detect
turning points examines the presence of peaks and troughs with no consideration of
their relative amplitudes; the low-amplitude ranges of the fricatives in the signal have
resulted in low variance vajues, even though their counts of turning points are high.

Most biomedical systems are dynamic and produce nonstationary signals (for ex-
ample, EMG, EEG, VMG, PCG, VAG, and speech signals). However, a physical or
physiological system has limitations in the rate at which it can change its character-
istics. This limitation facilitates breaking a signal into segments of short duration
(typically a few tens of milliseconds), over which the statistics of interest are not
varying, or may be assumed 1o remain the same. The signal is then referred to as a
quasi-stationary process; the approach is known as short-time analysés. Figure 3.4
illustrates the spectrogram of the speech signal of the word “safety”. The spectro-
gram was computed by computing an array of magnitude spectra of segments of the
signal of duration 64 ms; an overlap of 32 ms was permitted between successive
segments. It is evident that the spectral characteristics of the signal vary over its
duration: the fricatives demonstrate more high-frequency content than the vowels,
and also lack formant (resonance) structure. The signal is therefore nonstationary in
terms of its PSD; since the PSD) is related to the ACF, the signal is also nonstationary
in the second-order statistical measure of the ACE

Further discussion and examples of techniques of this nature will be presented in
Sections 8.4.1 and 8.5. Adaptive signal processing techniques may also be designed
to detect changes in certain statistical measures of an observed signal; the signal
may then be broken into quasi-stationary segments of variable duration that meet the
specified conditions of stationarity. Methods for analysis of nonstationary signals
will be discussed in Chapter 8, Adaptive segmentation of the EEG, VAG, and PCG
signals will be discussed in Sections 8.5, 8.6, 8.7, and 8.8.
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Figure 3.3 Top: Speech signal of the word “safety” utiered by a male speaker. Bottom:
Variance computed in a moving window of 50 mas (400 samples with f, = 8 kHz).
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Figure 3.4 Spectrogram of the speech signal of the word “safety” uttered by a male speaker.
(The signal is also illustrated in Figures 1.29, 3.1, and 3.3.) Each curve represents the
magnitude spectrum of the signal in a moving window of duration 64 ma (512 samples with
f« = 8 kHz), with the window advance interval being 32 ms. The spectrogram is plotted on
a linear scale to display better the major differences between the voiced and unvoiced sounds.
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Certain systems, such as the cardiac system, normally perform rhythmic opera-
tions. The resulting signal, such as the ECG, PCG, or carotid pulse, is then almost
periodic, and may be referred to as a cyclo-stationary signal. The statistics of the
PCG signal vary within the duration of a cardiac cycle, especially when murmurs are
present, but repeat themselves at regular intervals. The cyclic repetition of the process
facilitates ensemble averaging, using epochs or events extracted from an observation
of the signal over many ¢ycles (which is, strictly speaking, a single function of time).
Exploitation of the cyclic nature of the ECG signal for synchronized averaging to
reduce noise will be illustrated in Section 3.3.1. Application of the same concept to
estimate the envelopes of PCG signals will be described in Section 5.5.2. Further
extensions of the approach to extract A2 from 82 in PCG signals will be demonstrated
in Section 4.11; those to estimate the PSDs of PCG segments in systole and diastoie
will be presented in Section 6.4.5.

3.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

The following case-studies present several examples of various types of interference
in biomedical signals of different origins. The aim of this section is to gain famil-
iarity with the various possibilities of interference and their general characteristics.
Filtering techniques to remove various types of interference will be described in later
sections,

3.2.1 Noise in event-related potentials

An ERP is a signal obtained in response to a stimulus. The response is vsually of
very small amplitude (of the order of 10 V'), and is buried in ambient EEG activity
and noise. The waveform of a single response may be barely recognizable against the
background activity. Figure 3.2 shows ten individual flash visual ERP signals. The
signals were recorded at the occipital midline (oz) position, with the left and right
ear lobes combined to form the reference lead (ala2). The left forehead was used as
the reference. The ERP signals are buried in ongoing EEG and power-line (60 Hz)
interference, and cannot be analyzed using the individual acquisitions shown in the
figure.

3.2.2 High-frequency nolse in the ECG

Figure 3.5 shows a segment of an ECG signal with high-frequency noise. The
noise could be due to the instrumentation amplifiers, the recording system, pickup
of ambient EM signals by the cables, and so on. The signal iliustrated has alsc been
corrupted by power-line interference at 60 Hz and its harmonics, which may also be
considered as a part of high-frequency noise relative to the low-frequency nature of
the ECG signal.
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Figure 3.5 ECG signal with high-frequency noise.
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3.2.3 Motion artifact in the ECG

Low-frequency artifacts and base-line drift may be caused in chest-lead ECG signals
by coughing or breathing with large movement of the chest, or when an arm or
leg is moved in the case of limb-lead ECG acquisition. The EGG is a common
source of artifact in chest-lead ECG. Poor contaci and polarization of the electrodes
may also cause low-frequency artifacts. Base-line drift may sometimes be caused
by variations in temperature and bias in the instrumentation and amplifiers as well.
Figure 3.6 shows an ECG signal with low-frequency artifact. Base-line drift makes
analysis of isoelectricity of the ST segment difficult. A large base-line drift may
cause the positive or negative peaks in the ECG to be clipped by the amplifiers or the
ADC,

25 i
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1 2 3 4 5 6 7 8 9
Time in seconds

Figure 3.6 ECG signal with low-frequency artifact.

3.2.4 Power-line interference in ECG signals

The most commonly encountered periodic artifact in biomedical signals is the power-
line interference at 50 H z or 60 H z. If the power-line waveform is not a pure sinusoid
due to distortions or clipping, harmonics of the fundamental frequency could also
appear. Harmonics will also appear if the interference is a periodic waveform that is
not a sinusoid (such as rectangular pulses).
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Power-line interference may be difficuit to detect visually in signals having non-
specific waveforms such as the PCG or EMG; however, the interference is easily
visible if present on well-defined signal waveforms such as the ECG or carotid pulse
signals. In either case, the power spectrum of the signal should provide a clear
indication of the presence of power-line interference as an impulse or spike at 50 Hz
or 60 H z; harmonics, if present, will appear as additional spikes at integral multiples
of the fundamental frequency.

Figure 3.7 shows a segment of an ECG signal with 60 Hz interference. Observe
the regular or periodic structure of the interference, which rides on top of the ECG
waves. Figure 3.8 shows the power spectrum of the signal. The periodic interference
is clearty displayed as a spike at not only its fundamental frequency of 60 Hz, but
also as spikes at 180 Hz and 300 Hz, which represent the third and fifth harmonics,
respectively. (The recommended sampling rate for ECG signals is 500 H z; the higher
rate of 1, 000 H 2 was used in this case as the ECG was recorded as a reference signal
with the PCG. The larger bandwidth also permits better illustration of artifacts and
filiering.)
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Figure 3.7 ECG signal with power-line (60 H z) interference.

The bandwidth of interest of the ECG signal, which is usually in the range 0.05 —
100 Hz, includes the 80 Hz component; hence simple lowpass filtering will not be
appropriate for removal of power-line interference. Lowpass filtering of the ECG to
a bandwidth lower than 60 Hz could smooth and blur the QRS complex as well as
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Figure 3.8 Power spectrum of the ECG signal in Figure 3.7 with power-line interference.
The spectrum illustrates peaks at the fandamental frequency of 680 H z as well as the third and
fifth harmonics at 280 Hz and 300 H z, respectively.
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affect the PQ and ST segments. The ideal solution would be to remove the 60 Hz
component without sacrificing any other component.

3.2.5 Maternat interference in fetal ECG

Figure 3.9 shows an ECG signal recorded from the abdomen of a pregnant woman.
Shown also is a simultaneously recorded ECG from the woman’s chest. Comparing
the two, we see that the abdominal ECG demonstrates multiple peaks (QRS com-
plexes) corresponding to the maternal ECG (occurring at the same time instants as
the QRS complexes in the chest lead) as well as several others at weaker levels and
a higher repetition rate. The non-maternal QRS complexes represent the ECG of the
fetus. Observe that the QRS complex shapes of the maternal ECG from the chest and
abdominal leads have different shapes due to the projection of the cardiac electrical
vector onto different axes. Given that the two signals being combined have almost
the same bandwidth, how would we be able to separate them and obtain the fetal
ECG that we would be interested in?

(s}

MOTHER

FETUS
/

(®)

Figure 3.9 ECG signals of a pregnant woman from abdominal and chest leads: (a) chest-lead
ECG, and {b) abdominal-lead ECG; the former presents the maternal ECG whereas the latter
is a combination of the maternal and fetal ECG signals. (See also Figure 3.58.) Reproduced
with permission from B. Widrow, J.R. Glover, Jr., J. M. McCool, J. Kaunitz, C.3. Williams,
R.H. Hearn, J.R. Zeidler, E. Pong, Jr., R.C. Goodlin, Adaptive noise cancelling: Principles
and applications, Proceedings of the IEEE, 63(12):1692-1716, 1975. ©IEEE.
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3.2.6 Muscle-contraction interference in VAG signals

Bandpass Filier VMG (MCT)

Bandpass Filier VAG

Bandgpass Filler VAG

VYV

Burxdpass Fifter VAG

v

Angle

Goniometer

Figure 3,10 Experimental setup to measure VMG and VAG signals at different positions
along the leg [63].

Figure 3.10 shows the recording setup used by Zhang et al. {63] to study the
possibility of VMG signals appearing as muscle-contraction interference in VAG
signals. The left-hand column in Figure 3.11 shows VMG signals recorded using ac-
celerometers placed at the distal rectus femoris (thigh), mid-patella (knee cap), tibial
tuberosity, and mid-tibial shaft positions of a subject during isometric contraction of
the rectus femoris muscle (with no leg or knee movement). The right-hand column
of the figure shows vibration signals recorded at the same positions using the same
accelerometers, but during isotonic contraction (swinging movement of the leg). The
top sighal (a) in the right-hand column indicates the VMG signal generated at the
rectus femoris during acquisition of the VAG signals; parts (b) -- (d) of the right-hand
column show the VAG signals.

VAG signals are difficult to analyze as they have no predefined or recognizable
waveforms; it is even more difficult to identify any noise or interference that may be
present in VAG signals. The signals shown in Figure 3.11 indicate that a transformed
version of the VMG could get added to the VAG, especially during extension of the
leg when the rectus femoris muscle is active (the second halves of the VAG signals
in parts (b) ~ (d) of the right-hand column). The left-hand column of VMG signals
in Figure 3.11 illustrates that the VMG generated at the distal rectus femoris gets
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Figure 3,11 Left-hand column: VMG signals recorded simultaneously at {top-to-bottom)
(a) the distal rectus femoris, (b) mid-patella, (c) tibial tuberosity, and (d) mid-tibial shaft posi-
tions during isometric contraction (no leg or knee movement), Right-hand column: Vibration
signals recorded simultaneously at the same positions as above during isotonic contraction
(swinging movement of the leg). Observe the muscle-contraction interference appearing in the
extension paris (second halves) of each of the VAG signals (plots (b) — (d)) in the right-hand
column {63). The recording setup is shown in Figure 3.10. Reproduced with permission from
Y.T. Zhang, R.M. Rangayyan, C.B. Frank, and G.D. Bell, Adaptive cancellation of muscle-
contraction interference from knee joint vibration signals, JEEE Transactions on Biomedical
Engineering, 41(2):181-191, 1994, ©IEEE.
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transmitted well down the leg and appears at the other recording positions. It may
be observed from the VAG signals in the right-hand column that vibration signals
comparable to the VMG are present in the VAG channels (b) - (d) during extension
(second halves) but not as prominent in flexion (first halves). Interestingly enough,
the knee-joint “crepitus” and click signals that appear in the first half of the VAG
signal at the mid-patella position (right (b)) have been transmitted downwards along
the leg to the tibial tuberosity (right (c)) and mid-tibial shaft (right (d)) positions
farther down the leg, presumably along the tibia, but not upwards to the distal rectus
femoris position (right (a)).

It should also be noted that the VAG signal cannot be expected to be the same
during the extenston and flexion parts of a swing cycle: extension causes more stress
or force per unit area on the patello-femoral joint than flexion. Furthermore, the
VAG and VMG signals are nonstationary: characteristics of the VAG vary with the
guality of the cartilage surfaces that come into contact at different joint angles, while
the VMG varies in accordance with the level of contraction of the muscles involved.
To make the problem even more difficult, the bandwidths of the two signals overlap
in the range of about 0 — 100 Hz. These factors make removal of the VMG or
muscle-contraction interference from VAG signals a challenge,

3.2.7 Potential solutlons to the problem

Now that we have gained an understanding of a few sources of artifacts in biomedical
signals and their nature, we are prepared to look at specific problems and develop ef-
fective filtering techniques to solve them. The following sections investigate artifacts
of various types and demonstrate increasingly complex signal processing techniques
to remove them. The problem statement at the beginning of each section defines the
nature of the problem in as general terms as possible, sets the terms and conditions,
and defines the scope of the investigation to foliow. The solution proposed provides
the details of an appropriate filtering technique. Each solution is demonstrated with
an illustration of its application. Further examples of application of the techniques
studied are provided at the end of the chapter. Compatrative evaluation of filtering
techniques is also provided where applicable.

A practical problem encountered by an investigator in the field may not precisely
maich a specific problem considered in this chapter. However, it is expected that the
knowiedge of several techniques and an appreciation of the results of their application
gained from this chapter will help in designing innovative and appropriate solutions
0 new problems.

3.3 TIME-DOMAIN FILTERS

Certain types of noise may be filtered directly in the time domain using signal
processing techniques or digital filters. An advantage of time-domain filtering is
that spectral characterization of the signal and noise may not be required (at least



94 FILTERING FOR REMOVAL OF ARTIFACTS

in a direct manner). Time-domain processing may also be faster in most cases than
frequency-domain filtering.

3.3.1 Synchronized averaging

Problem: Propose a time-domain technigue fo remove random noise given the
possibility of acquiring multiple realizations of the signal or event of interest.

Solution: Linear filters fail to perform when the signal and noise spectra overlap.
Synchronized signal averaging can separate a repetitive signal from noise without
distorting the signal [27, 79]. ERP or SEP epochs may be obtained a number of
times by repeated application of the stimulus; they may then be averaged by using
the stimulus as a trigger for atigning the epochs. ECG signals may be filtered by
detecting the QRS complexes and using their positions to align the waveforms for
synchronized averaging. If the noise is random with zero mean and is uncorvelated
with the signal, averaging will improve the SNR.

Let 4 (1) represent one realization of a signal, with k = 1,2, ..., M representing
the ensemble index, and n = 1,2, ..., N representing the time-sample index. (Some
authors use the notation nT, T = 1/f, being the sampling interval, where f, is
the sampling frequency, to denote the index of a sampled signal; in this book we
shall use just n, the sampie number.) M is the number of copies (events, epachs,
ot realizations) of the signal available, and N is the number of time samples in each
copy of the signal (event). We may express the observed signal as

a{n) = ze(n) + m(n), (3.16)

where zx(n) represents the original uncorrupted signal and nx(n) represents the
noise in the k** copy of the observed signal. Now, if for each instant of time n we
add the M copies of the signal, we get

M M M
Zyk(n) = sz(n) + Zm(n); n=12,...,N. (3.1
k=1

k=1 k=1

If the repetitions of the signat are identical and aligned, Z:f: zy(n}) = Mx(n). If
the noise is random and has zero mean and variance o2, 3,7, e (n)} will tend to
zero as M increases, with a variance of Moﬁ. The RMS value of the noise in the
averaged signal is v M @y. Thus the SNR of the signal will increase by a factor of

":{J or v'M. The larger the number of epochs or realizations that are averaged, the

better will be the SNR of the result. Note that synchronized averaging is a type of
ensemble averaging.
An algorithmic description of synchronized averaging is as follows:

1. Obtain a number of realizations of the signal or event of interest.

2. Determine a reference point for each realization of the signal. This is directly
given by the trigger if the signal is obtained by external stimuiation (such as
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ERPs or SEPs), or may be obtained by detecting the repetitive events in the
signal if it is quasi-periodic (such as the QRS complex in the ECG or 51 and
§2 in the PCG).

3. Extract parts of the signal corresponding to the events and add them to a
buffer. Note that it is possible for the various parts to be of different durations.
Alignment of the copies at the trigger point is important; the tail ends of all
parts may not be aligned.

4, Divide the result in the buffer by the number of events added.

Figure 3.12 illustrates two single-flash ERPs in the upper two traces. The results of
averaging over 10 and 20 flashes are shown in the third and fourth plots, respectively,
in the same figure. The averaging process has facilitated identification of the first
positivity and the preceding and succeeding troughs (marked on the fourth trace) with
certainty; the corresponding features are not reliably seen in the single acquisitions
(see also the single-flash ERPs in Figure 3.2). Visual ERPs are analyzed in terms of
the latencies of the first major peak or positivity, labeled as P120 due to the fact that the
normal expected latency for adults is 120 ma; the trough or negativity before P120,
labeled as N8O; and the trough following P120, labeled as N145, The N80, P120,
and N145 latencies measured from the averaged signal in Trace 4 of Figure 3.12 are
85.7, 100.7, and 117 mas, respectively, which are considered to be within the normal
range for adults,

IMustration of application: The upper trace in Figure 3.13 illustrates a noisy ECG
signal over several beats. In order to obtain trigger points, a sample QRS complex of
86 ms duration (§6 samples at a sampling rate of 1, 600 H z) was extracted from the
the first beat in the signal and used as a template. Template matching was performed
using a normalized correlation coefficient defined as [79]

Yey(k) = Toncp [2(n) — Elly(n — k) — 7]

) - BN - R~ 5

where ¢ is the template, ¢ is the ECG signal, # and § are the averages of the
corresponding signals over the N samples considered, and k is the time index of
the signal y at which the template is placed. (Jenkins et al. [67] used a measure
similar to ., (k) but without subtraction of the mean and without the shift parameter
k to match segmented ECG cycles with a template.) The lower trace in Figure 3.13
shows v, (k), where it is seen that the cross-correlation result peaks to values near
unity at the locations of the QRS complexes in the signal. Averaging inherent in
the cross-correlation formula (over N samples) has reduced the effect of noise on
template matching.

By choosing an appropriate threshold, it becomes possible to obtain a trigger point
to extract the QRS complex locations in the ECG signal. (Note: The QRS template
matches with the P and T waves with cross-correlation values of about 0.5; wider
QRS complexes may yield higher cross-correlation values with taller P and T waves,
The threshold has to be chosen so as to detect only the QRS complexes.) A threshold

(3.18)
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Figure 3.12 Traces | and 2: Two sample acquisitions of individual flash visual ERPs from
the occipital midline (oz) position of a normal adult male. The ear lobes were used to form the
reference lead (ala2), and the left forehead was used as the reference (see Figure 1.20). Trace
3. Average of 10 ERPs. Trace 4: Average of 20 ERPs. The latencies of interest have been
labeled on Trace 4 by an EEG technologist. See also Figure 3.2. Data courtesy of L. Alfaro
and H. Darwish, Alberta Children’s Hospital, Calgary.
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of 0.9 was applied to 724 (k), and the QRS positions of all of the 12 beats in the signal
were detected.

Figure 3.14 illustrates two ECG cycles extracted using the trigger points obtained
by thresholding the cross-correlation function, as well as the result of averaging the
first 11 cycles in the signal. It is seen that the noise has been effectively suppressed
by synchronized averaging. The low-level base-line variation and power-line in-
terference present in the signal have caused minor artifacts in the result, which are
negligible in this illustration.

with template
=}
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—
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Figure 3.13  An ECG signal with noise (upper trace} and the result of cross-correlation {lower
trace) with the QRS template selected from the first cycle. The cross-correlation coefficient is
normalized to the range (-1, 1).

The most important requirement in synchronized averaging is indicated by the
first word in the name of the process: the realizations of the signal that are added for
averaging must be aligned such that the repetitive part of the signal appears at exactly
the same instant in each realization of the signal. If this condition is not met, the
waveform of the event in the signal will be blurred or smudged along the time axis.

A major advantage of synchronized averaging is that no frequency-domain filtering
is performed — either explicitly or implicitly. No spectral content of the signal is lost
as is the case with frequency-domain (lowpass) filters or other time-domain filters
such as moving-window averaging filters,
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Figure3.14 Upper two traces: two cycles of the ECG extracted from the signal in Figure 3,13,
Bottom trace: the result of synchronized averaging of 11 cycles from the same ECG signal.,
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Structured noise such as power-line interference may be suppressed by synchro-
nized averaging if the phase of the interference in each realization is different. To
facilitate this feature, the repetition rate of the stimulus should be set so that it is
not directly related to the power-line frequency (for example, the flashes used o
acquire the averaged ERPs in Figure 3.12 were delivered at 2.1 pps). Physiological
interference such as background EEG in ERPs and SEPs may also be suppressed
by synchronized averaging, as such activity may bear no inter-relationship from one
epoch of the desired signal to another.

3.3.2 Moving-average filters

Problem: Propose a time-domain technique to remove random noise given only one
reglization of the signal or event of interest,

Solution: When an ensemble of several realizations of an event is not available,
synchronized averaging will not be possible. We are then forced to consider temporal
averaging for noise removal, with the assumption that the processes involved are
ergodic, that is, temporal statistics may be used instead of ensemble statistics. As
temporal statistics are computed using a few samples of the signal along the time
axis and the temporal window of samples is moved to obtain the output at various
points of time, such a filtering procedure is called a moving-window averaging filter
in general; the term moving-average (MA) filter is commonly vsed.

The general form of an MA filter is

N
y(n) = Z by 2(n — k), (3.19)
k=0

where  and y are the input and output of the filter, respectively. The by, values are
the Filter coefficients or tap weights, k = 0,1, 2,..., N, where IV is the order of the
filter. The effect of division by the number of samples used (¥ + 1) is included in
the values of the filter coefficients. The signal-flow diagram of a generic MA fiter is
shown in Figure 3,15,

Applying the z-transform, we get the transfer function H(z) of the filier as

H(z) = 2)

N
— -k _ -1 -2, ... -N
X(z) -kz—t:'bkz =byp+biz7 +bez™" + + by, (3200
where X (2} and Y (2) are the z-transforms of ®(n) and y(n), respectively. (See
Lathi [1], Oppenheim et al. [2], or Oppenheim and Schafer {14] for background
details on system analysis using the z-transform and the Fourier transform.)

A simple MA filter for filtering noise is the von Hann or Hanning filter [27], given
by

yin) = 41[33(11) +2z(n — 1) + 2(n — 2)). 32D

The signal-flow diagram of the Hanning filter is shown in Figure 3.16. The impulse
response of the filter is obtained by leiting z(n) = d(n), resulting in A(n) =
$6(n) + 20(n — 1) + 6(n — 2)].
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Figure .15 Signal-flow diagram of a moving-average fiker of order N. Each block with the
symbol z ™! represents a delay of one sample, and serves as a memory unit for the corresponding
signal sample value.

x(n)

¥(n)

Flgure 3.16 Signal-flow diagram of the Hanning filter.
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The transfer function of the Hanning filter is
H(z)= %[1 +227 4 277, (3.22)

The transfer function has a double-zero at z = —1.
An MA filter is a finite impulse response (FIR) filter with the following attributes
and advantages:

» The impulse response h(k) has a finite number of terms: h{k) = by, k =
0,1,2,...,N.

¢ An FIR filter may be realized non-recursively with no feedback.

o The output depends only on the present input sample and a few past input
samples,

o The filter is merely a set of tap weights of the delay stages, as illustrated in
Figure 3.15.

¢ The filter transfer function bas no poles except at z = 0: the filter is inherentty
stable.

¢ The filter has linear phase if the series of tap weights is symmetric or antisym-
metric.

The frequency response of a filter is obtained by substituting z = 7“7 in the
expression for H(z), where T is the sampling interval in seconds and w is the radian
frequency (w = 2w f, where f is the frequency in Hz). Note that we may set T = 1
and deal with normalized frequency in the range 0 < w < 2ror 0 < f < 1; then
J = 1 or w = 27 represents the sampling frequency, with lower frequency valyes
being represented as a normalized fraction of the sampling frequency.

The frequency response of the Hanning filter is given as

H{w) = %[1 +2e77¢ 4 e79%), (3.23)
Letting e~7% = cos(w) — 7 sin(w), we obtain
H(w) = 3[{2 + 2 cos(w)}e ™3], (3.24)
The magnitude and phase responses are given as
H(@)] = |41+ cos(e a2)
and
(H(w) = -w. {3.26)

The magnitude and phase responses of the Hanning filter are plotted in Figure 3.17.
It is clear that the filter is a lowpass filter with linear phase.
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Figure 3.17 Magnitude and phase responses of the Hanning (smoothing) Filter.



TIME-DOMAIN FILTERS 103

Note that, although we started with a description of the Hanning filter in the time
domain, subsequent analysis of the filter was performed in the frequency domain
using the z-transform and the frequency response. System analysis is easier to
perform in the z domain in terms of the poles and zeros of the transfer function and in
the frequency domain in terms of the magnitude and phase responses. The magnitude
and phase responses assist in understanding the effect of the filter on the frequency
components of the signal (and noise).

It is seen from the magnitude response of the Hanning filter (Figure 3.17) that
components beyond about 20% of the sampling frequency of 1,000 Hz are reduced
in amplitude by more than 3 dB, that is, to less than half of their levels in the input.
High-frequency components beyond 40% of the sampling frequency are suppressed
to less than 20 4B below their input levels. The filter will perform adequate filtering
of ECG signals sampled at 200 H z, with the gain being lower than —20 dB beyond
80 H:z. However, if the signal is sampled at 1,000 Hz (as in the present example),
the gain remains above ~20 dB for frequencies up to 400 Hz; such a lowpass filter
may not be adequate for filtering ECG signals, but may be appropriate for other
signals such as the PCG and the EMG.

Increased smoothing may be achieved by averaging signal samples over longer
time windows, at the expense of increased filter delay. If the signal samples over a
window of eight samples are averaged, we get the output as

T
y(n) = % 3 o~ k). (3.27)
k=0

The impulse response of the filter is h{n) = 3[6(n) + §(n — 1} + 8(n — 2) + §(n -
3)+d(n - 4) +§{(n — 5) + &(n — 8) + §(n — 7)). The transfer function of the filter is

H(z) = §E 7k (3.28)

and the frequency 'response is given by
1
pd - —1 k
HW) = 53 enl-ioh

= %[1 + exp(—jdw)
x {1+ 2cos(w) + 2cos(2w) + 2 cos(3w)}]. (3.29)

The frequency response of the 8-point MA filter is shown in Figure 3.18; the pole-
zero plot of the filter is depicted in Figure 3.19. It is seen that the filter has zeros
at § =125 Hz, & = 250 Hz, 3 = 376 Hz, and & = 500 Hz. Comparing
the frequency response of the 8-point MA filter with that of the Hanning filter in
Figure 3.17, we see that the former provides increased attenuation in the range
90 — 400 Hz over the latter. Note that the attenuation provided by the filter after
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about 100 Hz is nonuniform, which may not be desirable in certain applications.
Furthermore, the phase response of the filter is not linear, although it is piece-wise
linear.

o

o 50 100 150 200 260 300 350 400 450 500
Froquency {Herlz)

‘_m 1 L. I I

Figure 3,18 Magnitude and phase responses of the 8-point moving-average (smoothing)
filter.

Relationship of moving-average filtering to integration: Disregarding the 3
scale factor for a moment, the operation in Equation 3,27 may be interpreted as the
summation or integration of the signal over the duration » -~ 7 to n. A comparable
integration of a continuous-time signal (¢} over the interval ¢, to ¢3 is expressed as

y@=fhﬂﬂﬁ (3.30)

t

The general definition of the integral of a signal is

ym=[;zm¢, 331)

or, if the signal s causal,

£
y(t) = fo 2(t) dt. (3.32)
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Figure 3.19 Pole-zero plot of the 8-peint moving-average (smoothing) filter,
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The Fourier transforms of the signals in the relationship above are related as [I, 2]

Y(w) = ;15 X(w) + 7 X(0)5(w). (3.33)
The frequency response of the integration operator is
Hw) = ~, (3.34)
jw
with the magnitude response
1
=] (.35
and phase response
LH(w) = -%. (3.36)

It is seen from the frequency response that the gain of the filter reduces (nonlin-
early) as the frequency is increased; therefore, the corresponding filter has lowpass
characteristics.

Integration or accumulation of a discrete-time signal for all samples up to the
present sample results in the transfer function H(z) = =i=r (1, 2]. Such an
operation is seldom used in practice. Instead, a moving-window sum is computed as
in Equation 3.27. The 8-point MA filter may be rewritten as

yin)=y(n-1)+ -;-z(n) - %z(n ~ 8). 3.37)

The recursive form as above clearly depicts the integration aspect of the filter. The
transfer function of this expression is easily derived to be

1f1-2"8
The frequency response of the filter is given by
1 [1—-e 7] 1 sin{4w)
= — —_—] = —j;w
He) =5 [ | = 5 [sin(%) | 339

which s equivalent to that in Equation 3.29. Summation over a limited discrete-time
window results in a frequency response having sinc-type characteristics, as illustrated
in Figure 3,18. See Tompkins [27] for a discussion on other types of integrators.

Illustration of application: Figure 3.20 shows a segment of an ECG signal with
high-frequency noise. Figure 3.21 shows the result of filtering the signal with the
8-point MA filter described above. Although the noise level has been reduced, some
noise is still present in the resuit. This is due to the fact that the attenuation of the
simple 8-point MA filter is not more than ~20 dB at most frequencies (except near
the zeros of the filter).
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Figure 3.20 ECG signal with high-frequency noise; f. = 1,000 Hz.
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Figure 3.21 The ECG signal with high-frequency noise in Figure 3.20 after filtering by the
8-point MA filter shown in Figure 3.18.
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3.3.3 Derivative-based operators to remove low-frequency artifacts

Problem: Develop a time-domain technique to remove base-line drift in the ECG
signal,

Solution: The derivative operator in the time domain removes the parts of the input
that are constant {the output is zero). Large changes in the input lead to high values
in the output of the derivative operator. Improved understanding of the derivative
operation may be obtained by studying its transform in the frequency domain,

The ideal £ operator in the time domain results in multiplication of the Fourier
transform of the original signal by jw = j 2« f in the frequency domain. If X (f}
represents the Fourier transform of the signal z(t), then the Fourier transform of ‘;—:
is 2 f X () or  wX{w). The frequency response of the operation is H(w) =
It is seen that the gain of the frequency response increases linearly with frequency,
starling with H(w) = D at w = 0. Thus the DC component is removed by the
derivative operator, and higher frequencies receive linearly increasing gain: the
operation represents a highpass filter. The derivative operator may be used to remove
DC and suppress fow-frequency components {(and boost high- frequency components).

It follows readily that the second-order derivative operator 2‘5 has the frequency
response H{w) = —w?, with a quadratic increase in gain for higher frequencies. The
second-order derivative operator may be used to obtain even higher gain for higher
frequencies than the first-order derivative operator; the former may be realized as a
cascade of two of the latter.

In digital signal processing, the basic derivative is given by the first-order differ-
ence operator {27)

y(n) = g [e(n) — a(n = 1)} (3.40)

The scale factor including the sampling interval T is required in order to obtain the
rate of change of the signal with respect to the true time. The transfer function of the
operator is

H(z) = % (1-z71). (3.41)

The filter has a zero at z = 1, the DC point.
The frequency response of the operator is

Hw) = 7 (1 - exp(~j)] = 5 exp (=) 278 (5)], G

which leads to

H(w)| = = | ( | @343)

and
™

(Hw) =2 — g. (3.44)

The magnitude and phase responses of the ﬁrst-order difference operator are plotted
in Figure 3.22. The gain of the filter increases for higher frequencies up to the
folding frequency £,/2 (half the sampling frequency f,). The gain may be taken to
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approximate that of the ideal derivative operator, that is, lw|, for Jow values of w.
Any high-frequency noise present in the signal will be amplified significantly: the
result could thus be noisy.

2 T L) L) L) L} L} T T
Et.s- .

1 = -
go.s- E

o L L L A, L 'l L 1 Il

1] 50 100 150 200 260 300 350 400 450 500

Frequency in Hz
2 T L} L} T T L} T L) T

Phase in radians

1 1 1 L
1] 50 100 150 200 250 3no 50 400 450 500
Frequency in Hz

Figure 3,22 Magnitude and phase responses of the first-order difference operator. The
magnitude response is shown on a linear scale in order to illustrate better its proportionality to
frequency.

The noise-amplification problem with the first-order difference operator in Equa-
tion 3.40 may be controlled by taking the average of two successive output values:

w(n) = 3 ly(n)+y(n - 1)
= o5 Ha(®) —aln ~ 1} + {2~ 1) ~ a(n — 2)}
= % le(n) — e(n - 2)]. (3.45)

The transfer function of the operator above, known as the three-point central differ-
ence {27), is

H(z) = % (1-272) = [% (1 -z-l)] [% (1+z-1)]. (3.46)

Observe that the transfer function of the three-point central-difference operator is the
product of the transfer functions of the simple first-order difference operator and a
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two-point MA filter. The three-point central-difference operation may therefore be
performed by the simple first-order difference operator and a two-point MA filter in
series (cascade),

The magnitude and phase responses of the three-point central-difference operator
are plotted in Figure 3.23. The transfer function has zeros at z = 1 and z = —1, with
the latter pulling the gain at the folding frequency to zero: the operator is a bandpass
filter. Although the operator does not have the noise-amplification problem of the
first-order difference operator, the approximation of the ;f; operation is poor after
about £,/10{27).

2 L) T -t F T ¥ T T 1
%1.5- s
1t -
go&- N
o 1 L L 1 1 1 ] L 1
[ 50 100 150 200 250 300 350 400 450 500
Frequancy in Hz
2 1 1 T ¥ T ¥ T L] T

0 50 100 150 200 50 300 350 400 450 500
Frequency in Hz

=) 1 i L A L

Figure 3.23 Magnitude and phase responses of the three-point central-difference operator.
The magnitude response is shown on a linear scale,

Illustration of application: Figures 3.24 and 3.25 show the results of filtering
the ECG signal with low-frequency noise shown in Figure 3.6, using the first-order
difference and three-point central-difference operators, respectively. It is seen that
the base-line drift has been removed, with the latter being less noisy than the former.
However, it is obvious that the highpass and high-frequency emphasis effects inherent
in both operators have removed the slow P and T waves, and altered the QRS
complexes to such an extent as to make the resulting waveforms look unlike ECG
signals. (We shall see in Section 4.3 that, although the derivative operators are not
useful in the present application, they are indeed useful in detecting the QRS complex
and the dicrotic notch.)
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Figure 3.24 Result of filtering the ECG signal with low-frequency noise shown in Figure 3.6,
using the first-order difference operator.
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Figure 3.25 Result of filtering the ECG signal with low-frequency noise shown in Figure 3.6,
using the three-point central-difference operator.
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Problem: How could we improve the performance of the basic first-order differ-
ence operator as a filter to remove low-frequency noise or base-line wander without
distorting the QRS complex?

Solution: The drawback of the first-order difference and the three-point central-
difference operators lies in the fact that their magnitude responses remain low for a
significant range of frequencies well beyond the band related to base-line wander.
The zero of the first-order difference operator at z = 1 is desired in order to reject
the DC component and very low frequencies. However, we would like to maintain
the levels of the components present in the signal beyond about 0.5 — 1 Hz, that is,
we would Tike the gain of the filter to be close to unity after about 0.5 Hz,

The gain of a filter at specific frequencies may be boosted by placing poles at
related locations around the unit circle in the z-plane. For the sake of stability of the
filter, the poles should be placed within the unit circle. Since we are interested in
maintaining a high gain at very low frequencies, we could place a pole on the real
axis (zero frequency), at say z = 0,995 [80]. The transfer function of the modified
first-order difference filter is then

1 1-z?
Hiz =7 [1 ~0.99 rl] ’ (347
or equivalently, . )
z —

The time-domain input — cutput relationship is given as

y(n) = % [e(n) = 2(n ~ 1)] + 0.995 y(n — 1). (3.49)

Two equivalent signal-flow diagrams of the filter are shown in Figure 3.26. (Note:
The filter is no longer an FIR filter; details on infinite impulse response or 1IR filters
will be presented later in Section 3.4.1.)

The form of H(z) in Equation 3.48 in terms of z helps in understanding a graphical
method for the evaluation of the frequency response of discrete-time filters {1, 2, 27].
The frequency response of a system is obtained by evajuating its transfer function
at various points on the unit circle in the z-plane, that is, by letting z = exp(jw)
and evaluating H(z) for various values of the frequency variable o of interest. The
numerator in Equation 3.48 expresses the vector distance between a specified point
in the z-plane and the zero at 2 = 1; the denominator gives the distance to the
pole at z = 0.995. In general, the magnitude transfer function of a system for a
particular value of z is given by the product of the distances from the corresponding
point in the z-plane to all the zeros of the system’s transfer function, divided by the
product of the distances to its poles. The phase response is given by the sum of the
angles of the vectors joining the point to all the zeros, minus the sum of the angles
to the poles {1, 2, 27). It is obvious that the magnitude response of the filter in
Equations 3.47 and 3.48 is zero at z = 1, due to the presence of a zero at that point.
Furthermore, for values of z away from z = 1, the distances to the zeroat z = 1
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Figure 3.26 Two equivalent signal-flow diagrams of the filter to remove low-frequency noise
or base-line wander. The form in (a) uses two delays, whereas that in (b} uses only one delay.

and the pole at z = 0.995 will be almost equal; therefore, the gain of the filter will
be close to unity for frequencies greater than about 1 Hz. The magnitude and phase
responses of the filter shown in Figure 3.26 confitm these observations: the filter is
a highpass filter with nonlinear phase.

The result of application of the filter to the ECG signal with low-frequency noise
shown in Figure 3.6 is displayed in Figure 3.28. It is evident that the low-frequency
base-line artifact has been removed without any significant distortion of the ECG
waveforms, as compared with the results of differentiation in Figures 3.24 and 3.25.
Close inspection, however, reveals that the S wave has been enhanced (made deeper)
and that a negative undershoot has been introduced after the T wave. Removal of the
low-frequency base-line artifact has been achieved at the cost of a slight distortion
of the ECG waves due to the use of a derivative-based filter and its nonlinear phase
response,

3.4 FREQUENCY-DOMAIN FILTERS

The filters described in the previous section performed relatively simple operations in
the time domain; although their frequency-domain characteristics were explored, the
operators were not specifically designed to possess any particular frequency response
at the outset. The frequency response of the MA filter, in particular, was seen to be
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Figure 3.27 Normalized magnitude and phase responses of the filter to remove base-line
wander as in Equation 3.47. The magnitude response is shown on a linear scale.
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Figure 3.28 Result of processing the ECG signal with low-frequency noise shown in Fig-
ure 3.6, using the filter to remove base-line wander as in Equation 3.47. (Compare with the
results in Figures 3.24 and 3.25.)
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not attractive: the attenuation in the stop-band was not high and was not uniform,
with the gain failing below —20 dB only around the zeros of the transfer function.

Filters may be designed in the frequency domain to provide specific lowpass,
highpass, bandpass, or band-reject (notch) characteristics. Frequency-domain filters
may be implemented in software after obtaining the Fourier transform of the input
signal, or converted into equivalent time-domain filters and applied directly upon the
signal samples.

Many design procedures are available in the literature to design various types of
filters: the most-commonly used designs are the Butterworth, Chebyshev, elliptic,
and Bessel filters [14, 81, 82, 83, 84, 85, 26]. Since these filtets have been well-
established in the analog-filter domain, it is common to commence with an analog
design and apply the bilinear transformation to obtain a digital filter in the z-domain.
It is also common to design a lowpass filter with the desired pass-band, transition,
and stop-band characteristics on a normalized-frequency axis, and then transform it
to the desired lowpass, highpass, bandpass, or band-reject characteristics {14, 81),
Frequency-domain filters may also be specified directly in terms of the values of the
desired frequency response at certain frequency samples only, and then transformed
into the equivalent time-domain filter coefficients via the inverse Fourier transform.

3.4.1 Removal of high-frequency noise: Butterworth lowpass filters

Problem: Design a frequency-domain filter to remove high-frequency noise with
minimal loss of signal components in the specified pass-band.

Solution: The Butterworth filter is perhaps the most commonly used frequency-
domain filter due to its simplicity and the property of a maximally flat magnitude
response in the pass-band. For a Butterworth lowpass filter of order N, the first
2N — 1 derivatives of the squared magnitude response are zero at £2 = 0, where 2
represents the analog radian frequency. The Butterworth filter response is monotonic
in the pass-band as well as in the stop-band.

The basic Butterworth lowpass filter function is given as [14, 86}

GO = —
1+ (f,,—)
where H, is the frequency response of the analog filter and §2. is the cutoff frequency
(in redians/s). A Butterworth filter is completely specified by its cutoff frequency
1. and order N. As the order N increases, the filter response becomes more flat
in the pass-band, and the transition to the stop-band becomes faster or sharper.
1Ho(2)1* = 1 forall N.
Changing to the Laplace variable s, we get

(3.50)

1

—‘1 N (;6_‘)‘“_21\1' '

The poles of the squared transfer function are located with equal spacing around a
circle of radius £2, in the a-plane, distributed symmetrically on either side of the

H,(8)Ho(—8) = 3.51)
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imaginary axis & = j1. No pole will lie on the imaginary axis itself; poles will
appear on the real axis for odd N. The angular spacing between the poles is .
If H,{s)H.(—5) has a pole at 8 = 3, it will have a pole at s = —s, as well.
Furthermore, for the filier coefficients to be real, complex poles must appear in
conjugate pairs. In order to obtain a stable and causal filter, we need to form H,(s)
with only the N poles on the left-hand side of the s-plane. The pole positions in the

s-plane are given by
2k-1
&, = {1, exp [J?l‘ (2 + (—-ﬁl)] , {3.52)

k=1,2,...,2N[81}
Once the pole positions are obtained in the s-plane, they may be combined to
obtain the transfer function in the analog Laplace domain as
G
(s —=p)(2 ~p2)(s —ps) -+ (s —pn)’
where pp. k = 1,2,..., N, are the N poles of the transfer function in the lefi-half of
the s-plane, and G is a gain factor specified as needed or calculated to normalize the

gain at DC (s = 0) to be unity.
If we use the bilinear transformation

2 [1-21
Pt T [1+z-l]’ G539

H,(s) = (3.53)

the Butterworth circle in the s-plane m s_!:as to a circle in the z-plane with its real-axis
intercepts at z = 7% and z = JIZ. The polesat s = sy and s = ~s, in
the s-plane map to the locations z = 2, and z = 1/z;,, respectively. The poles in
the z-plane are not uniformly spaced around the transformed Buiterworth circle. For
stability, all poles of H () must lie within the unit circle in the z-plane.

Consider the unit circle in the z-plane given by z = e*. For points on the unit
circle, we have

_ . _E 1-e 3¢ _gi
s—a+39—T(—-—1+e_J.w)—Tt (2) (3.55)

For the unit circle, o = 0; therefore, we get the relationships between the continuous-
time (s-domain) frequency variable € and the discrete-time (z-domain) frequency
variable w as

2 w
Q= tan (E] (3.56)

and q
w=2tan"! (—22) . 3.57)

This is a nonlinear relationship that warps the frequency values as they are mapped
from the imaginary (vertical) axis in the s-plane to the unii circle in the z-plane (or
vice-versa), and should be taken into account in specifying cutoff frequencies.
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The transfer function H,(s) may be mapped to the z-domain by applying the
bilinear transformation, that is, by substituting s = %};—:::— The transfer function
H{z) may then be simplified to the form

G (142"

N !
Zkzo ai z *

where ax, k£ =0,1,2,..., N, are the filter coefficients or tap weights (with ag = 1),
and G’ is the gain factor (usuaily calculated so as to obtain |H(2)] = 1 at DC, that
is, at z = 1. Observe that the filter has N zeros at z = —1 due 10 the use of the
bilinear transformation. The filter is now in the familiar form of an IIR filter. Two
forms of realization of a generic IIR filter are illustrated as signal-flow diagrams in
Figures 3.29 and 3.30: the former represents a direct realization using 2V delays and
2N — 1 multipliers (with ap = 1), whereas the latter uses only IV delays and 2NV — 1
multipliers.

H(z) = (3.58)

st ———(%) () T
+ —
2’ z’
z.’ zJ
! (5,) (a) }
f® ) @
z-f z-f
L% o
O, (a

Figure 3.29 Signal-flow diagram of a direct realization of a generic infinite impulse response
(IIR) filter. This form uses 2N delays and 2¥ — 1 muitipliers for a filter of order N.

A time-domain representation of the filter will be required if the filter is to be
applied to data samples directly in the time domain. From the filter transfer function
H(z) in Equation 3.58, it becomes easy to represent the filter in the time domain with
the difference equation

N N
y(n) = Z by 2(n - k) - Z aj y(n — k). (3.59)

h=0 =1
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Figure 3.30  Signal-flow diagram of a realization of an IIR filter that uses only N delays and
(2N — 1) multipliers for a filter of order N.

The coefficients by, are given by the coefficients of the expansion of G'(1 + z~)¥,
The MATLAB [87] command butter and its variants provide Butterworth filters
obtained using the procedure described above.

It is also possible to directly specify the Butterworth filter as

1
1+ (;,%)m’

with w normalized to the range (0, 2n) for sampled or discrete-time signals; in such
a case, the equation is valid only for the range (0, 7), with the function in the range
(m, 2r) being a reflection of that over (0,7). The cutoff frequency w, should be
specified in the range (0, 7).

If the discrete Fourier transform (DFT) is used to compute the Fourier transforms
of the signals being filtered, Equation 3.60 may be modified o

|H(w)® = (3.60)

1
1+(,§§)m‘

where k is the index of the DFT array standing for discretized frequency. With K
being the number of points in the DFT array, k. is the array index cotresponding
to the cutoff frequency w. (that is, k. = K'£2). The equation above is valid for
k=0,1,2,..., % with the second half over (% + 1, K — 1) being a reflection
of the first half (that is, H{k) = H(K — k), k = £ +1,...,K — 1). Note that

|H(k)]? = (3.61)
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the DFT includes two unique values: the DC component in H(0) and the folding-
frequency component in (4 ). The variable & in the filter equation couid also be
used to represent normatized frequency in the range (0, 1), with unity standing for the
sampling frequency, 0.5 standing for the maximum frequency present in the sampled
signat (that is, the folding frequency), and k, being specified in the range (0, 0.5).
{Note: MATLAB normalizes half the sampling frequency to unity; the maximum
rormalized frequency present in the sampled signal is then unity. MATLAB and a
few other programming languages do not allow an array index to be zero: in such a
case, the indices mentioned above must be incremented by one.)

One could compute the DFT of the given signal, multiply the result by [H(k)/,
and compute the inverse DFT to obtain the filtered signal. The advantage of this
procedure is that no phase change is involved: the filter is a strictly magnitude-only
transfer function. The time-domain implementation described earlier will include a
phase response which may not be desired. However, time-domain implementation
will be required in on-line signal processing applications.

Butterworth lowpass filter design example: In order to design a Butterworth
lowpass filter, we need to specify two parameters: w, and N. The two parameters may
be specified based on a knowledge of the characteristics of the filter as well as those
of the signal and noise. It is also possible to specify the required minimum gain ata
certain frequency in the pass-band and the required minimum attenuation at another
frequency in the stop-band. The two values may then be used with Equation 3,50 to
obtain two equations in the two unknowns w, and N, which may be solved to derive
the filter parameters [86).

Given the 3 dB cutoff frequency f. and order NV, the procedure to design a
Butterworth lowpass filter is as follows:

1. Convert the specified 3 dB cutoff frequency f, to radians in the normalized
range {0,27) as w, = k 2x. Then, T = 1. Prewaep the cutoff frequency w,
by using Equation 3.56 and obtain {2,.

2. Derive the positions of the poles of the filter in the s-plane as given by Equa-
tion 3.52.

3. Form the transfer function H,(s) of the Butterworth lowpass filter in the
Laplace domain by using the poles in the left-half plane only as given by
Equation 3.53.

4. Apply the bilinear ransformation as per Equation 3.54 and obtain the transfer
function of the filter H(z) in the 2-domain as in Equation 3.58.

5. Convert the filter to the series of coefficients 8y, and ax, as in Equation 3.59,

Let us now design a Butterworth lowpass filter with f, = 40 Hz, f, = 200 Hz,
and N = 4. We have v, = % 27 = 0.4 7 radians/s. The prewarped s-domain
cutoff frequency is ), = # tan (%) = 1.453085 radians/s.

The poles of H,(s)H,(—s) are placed around a circle of radius 1.463085 with an
angular sepasation of & = § radians. The poles of interest are located at angles §#
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and %ﬂ' and the corresponding conjugate positions. Figure 3.31 shows the positions
of the poles of H,(s)Ha(—3) in the Laplace plane. The coordinates of the poles of
interest are (—0.556072 = j 1.342475) and {—1.342475 + 5 0.556072). The transfer
function of the filter is

4.458247
= . (3.62
Hals) (3% + 1.1121435 + 2.111456)(8? + 2.684951s + 2.111456) ( )
Imaginary
Left-half s—plane Right-half s—plane
pi4

Real

{

Butterworth circle
radius = 1.453085 radians

H
Figure 3.31 Pole positions in the s-ptane of the squared magnitude response of the Butter-
worth lowpass filter with f; = 40 Hz, f, = 200 Hz, and N = 4.

Applying the bilinear transformation, we get

0.046583(1 + z~1)4
(1 - 0.447765z1 + 0.4608152-2)(1 — 0.3289762~1 + &06458&;?3;
(3.63)
The filter has four poles at (0.223882 =+ j 0.640852) and (0.164488 + ; 0.193730),
and four zeros at —1 + 0. The by coefficients of the filter as in Equation 3.59
are {0.0465829,0.186332, 0.279497, 0.186332, 0.046583}, and the a; coefficients
are {1,—0.776740,0.672706, —0.180517,0.029763}. The pole-zero plot and the
frequency response of the filter are given in Figures 3.32 and 3.33, respectively. The
frequency response displays the expected monotonic decrease in gain and —3 dB
power point or 0,707 gain at 40 Hz.

H(z) =
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Figure 3.32 Positions of the poles and zeros in the z-plane of the Butterworth lowpass filter
with fe =40 Hz, f, =200 Hz,and N = 4.

Figure 3.34 compares the magnitude responses of three Butterworth lowpass filters
with f, = 40 Hz and f, = 200 Hz, with the order increasing from N = 4 (dotted)
to N = 8 (dashed) to N = 12 (solid). All three filters have their half-power points
(gain = 0.707) at 40 H z, but the transition band becomes sharper as the order N is
increased.

The Butterworth design is popular because of its simplicity; a monotonically
decreasing magnitude response, and a maximally flat magnitude response in the
pass-band. Its main disadvantages are a slow (or wide) transition from the pass-
band to the stop-band, and a nonlinear phase response. The nonlinear phase may
be corrected for by passing the filter output again through the same filter but after a
reversal in time [82]. This process, however, leads to a magnitude response that is
the square of that provided by the initial filter design. The squaring effect may be
compensated for in the initial design; however, the approach cannot be applied in
real time. The elliptic filter design provides a sharp transition band at the expense
of ripples in the pass-band and the stop-band. The Bessel design provides a group
delay that is maximally flat at DC, and a phase response that approximates a linear
response. Details on the design of Bessel, Chebyshev, elliptic, and other filters may
be found in other sources on filter design [14, 81, 82, 83, 84, 85, 26).

Tllustration of application: The upper trace in Figure 3.35 illustrates a carotid
pulse signal with high-frequency noise and effects of clipping. The lower trace in the
same figure shows the result of processing in the time domain with the MATLAB filter
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Figure 3.33 Magnitude response of the Butterworth lowpass filter with fo = 40 Hz,
fe=200Hz, and N = 4.
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Figure 3.34 Magnitude responses of three Butterworth lowpass filters with f. = 40 Hz,
Fo = 200 Hz, and variable order: N = 4 (dotted), N = 8 (dashed), and N = 12 (solid).
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command; the Butterworth lowpass filter coefficients as designed in the preceding
paragraphs and indicated in Equation 3.63 were used (f. = 40 Hz, f, = 200 Hz,
and N = 4). The high-frequency noise has been effectively removed; furthermore,
the effects of clipping have been smoothed. However, the low-frequency artifacts in
the signal remain (for example, around the 14 s time mark).

Cartoid pulse
[=] Ll

]
-
T

2l

1
12 125 13 13.5 14 14.5

Lowpass Fllered signal

12 12,5 13 13.5 14 145
Time in seconds

Figure 3.35 Upper trace: a carotid pulse signal with high-frequency noise and effects of
clipping. Lower trace: result of filtering with a Butterworth lowpass filter with f. = 40 Hz,
Je =200 Hz, and N = 4. The fltering operation was performed in the time domain vsing
the MATLAB filter command.

Figure 3,36 shows the result of filtering the noisy ECG signal shown in Figure 3.20
with an eighth-order Butterworth lowpass filter as in Equations 3.60 and 3.61 and a
cutoff frequency of 70 Hz. The frequency response | H (w)] of the filter is shown in
Figure 3.37. It is evident that the high-frequency noise has been suppressed by the
filter.

3.4.2 Removal of low-frequency nolse: Butterworth highpass filters

Problem: Design a frequency-domain filter to remove low-frequency noise with
minimal loss of signal components in the pass-band.
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Figure 3.36 Result of frequency-domain filtering of the noisy ECG signal in Figure 3.20
with an eighth-order Butterworth lowpass filter with cutoff frequency =70 Hz,



FREQUENCY-DOMAIN FILTERS 129

L J— - i1 L L L Fl L
50 100 150 200 250 300 350 400 450 500
Fraquency in Mz

Figure 3.37 Frequency response of the eighth-order Butterworth lowpass filter with cutoff
frequency = f; = 70 Hz and f, = 1,000 H.
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Solution: Highpass filters may be designed on their own, or obtained by transform-
ing a normalized prototype lowpass filter [86, 81]. The latter approach is easier since
lowpass filter prototypes with various characteristics are readily available, as are the
transformations required to derive highpass, bandpass, and bandstop filters (36, 81].
MATLAB provides highpass filters with the simple command butten( N, f., 'high’).

As in the case of the Butterworth lowpass filter in Equation 3.61, the Butterworth
highpass filter may be specified directly in the discrete-frequency domain as

1
HE) = . 3.64
| H (k)| W (3.64)

Hlustration of application: Figure 3.6 shows a segment of an ECG signal with
low-frequency noise appearing in the form of a wandering base-line (base-line drift).
Figure 3.38 shows the result of filtering the signal with an eighth-order Butterworth
highpass filter as in Equation 3.64 and a cutoff frequency of 2 Hz. The frequency
response of the filter is shown in Figure 3.39. While the low-frequency artifact has
been removed by the filter, it should be noted that the high-frequency noise present
in the signal has not been affected,

Observe that the filtered result retains the characteristics of the QRS complex,
anlike the case with the derivative-based time-domain filters {compare Figure 3.38
with Figures 3.24 and 3.25.) This advantage is due to the fact that the Butterworth
highpass filter that was used has a gain of almost unity over the frequency range of
3 — 100 Hz; the derivative-based filters severely attenuate these components and
hence distort the QRS complex. However, it should be observed that the filter has
distorted the P and T waves to some extent. The result in Figure 3.38 compares well
with that in Figure 3.28, obtained using the much simpler IR filter in Equation 3.47,
(Compare the frequency responses in Figures 3.39, 3.22, 3.23, and 3.27.)

3.4.3 Removal of periodic artifacts: Notch and comb filters

Problem: Design a frequency-domain filter to remove periodic artifacis such as
power-line interference.

Solution: The simplest method to remove periodic artifacts is to compute the
Fourier transform of the signal, delete the undesired component(s) from the spectrum,
and then compute the inverse Fourier transform. The undesired components could be
set to zero, or better, to the average level of the signal components over a few frequency
samples around the component that is to be removed; the former method will remove
the noise components as well as the signal components at the frequencies of concern,
whereas the latter assumes that the signal spectrum is smooth in the affected regions.

Periodic interference may aiso be removed by notch filters with zeros on the
unit circle in the z-domain at the specific freguencies to be rejected, If f, is the
interference frequency, the angles of the (complex conjugate) zeros required will be
:I:ff (27); the radius of the zeros will be unity. If harmonics are also present, multiple

zeros will be required at + 3;;2 (27), n representing the orders of ali of the harmonics
present. The zero angles are limited to the range (—m,x). The filter is then catled
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Figure 3.38 Result of frequency-domain filtering of the ECG signal with low-frequency
noise in Figure 3.6 with an eighth-order Butterworth highpass filter with cutoff frequency =
2 Hz. (Compare with the results in Figures 3.24, 3.25, and 3.28.)
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Figure 3.39 Frequency response of an eighth-order Butterworth highpass filter with cutoff
frequency =2 Hz. f, = 1,000 Hz. The frequency response is shown on an expanded scale
for the range 0 — 10 Hz only,
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a “comb” filter. In some situations, higher-order harmonics beyond fzﬂ- may appear
at aliased locations (see Figures 3.8 and 3.57); zeros may then be placed at such
frequencies as well.
Notch filter design example: Consider a signal with powei-line interference at
» = 60 Hz and sampling rate of f, = 1,000 Hz (see Figures 3.7 and 3.8). The
notch filter is then required to have zeros at w, = :I:%(%-) = +0.377 radians =
+21.6°. The zero locations are then given by cos(w, ) £ j sin{w, ) or 2y = 0.92977 4
70.36812 and 2y = 0.92977 — 70.36812, The transfer function is

H(z)=(1-z2'2)1-2""12)=1-1850552"" + 272, (3.65)

If the gain at DC (z = 1) is required to be unity, H(z) should be divided by 0.14045,

Figure 3.40 shows a plot of the zeros of the notch filter in the 2-plane. Figure 3.41
shows the magnitude and phase responses of the notch filter obtained using MATLAB.
Observe that the filter attenuates not only the 60 Hz component but also a band of
frequencies around 60 Hz. The sharpness of the notch may be improved by placing
a few poles near or symmetrically around the zeros and inside the wnit circle {1, 80}
Note also that the gain of the filter is at its maximum at f,/2; additional lowpass
filtering in the case of application to ECG signals could be used to reduce the gain at
frequencies beyond about 80 Hz.

250 Hz

&0 Hz

500 Hz or ~500 Hz 0 Hz or 1000 Mz

=60 Hz

750 Hz or 250 Hz

Figure 3.40  Zeros of the notch filter to remove 60 H z interference, the sampling frequency
being 1,000 Hz.

Comb filter design example: Let us consider the presence of a periodic artifact
with the fundamental frequency of 60 Hz and odd harmonics at 180 Hz, 300 Hz,
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Figure 3.41 Magaitude and phase responses of the 60 Hz notch filter with zeros as shown
in Figare 3.40. f, = 1,000 Hz,
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and 420 Hz. Let f, = 1,000 Hz, and assume the absence of any aliasing error.
Zeros are then desired at 60 Hz, 180 Hz, 300 Hz, and 420 Hz, which translate to
+21.6°, £64.8°, £108°, and £151.2°, with 360° corresponding to 1,000 Hz. The
coordinates of the zeros are 0.92977 & j0.36812, 0.42578 + 70.90483, —0,30002 &
70.95106, and —0.87631 % j0.48175. The transfer function of the filter is

H(z) = G(1-1.85955:"14272)(1 -0.851562z"" + 2~%)

x (14061803271 + 273)(1 ~ 1.752612"1 + 27%),  (3.66)
where G is the desired gain or scating factor. With & computed so as to set the gain
at DC 1o be unity, the filter transfer function becomes

H(z) = 0.6310 —0.214927" 4+ 0.151227% — 0.128827% 4. 0.1227,~4
~ 0.128827° +0.151227°% — 0.21492~7 4 0.63102 2. (3.67)
A plot of the locations of the zeros in the z-plane is shown in Figure 3.42. The

frequency response of the comb filter is shown in Figure 3.43. Observe the low gain
at not only the notch frequencies but also in the adjacent regions,

250 Hz
300 Hz
180 Hz

420 Hz
80 Hz

500 Hz or -500 Hz 0 Hz or 1000 Hz

-60 Hz
=420 H2

-180 Hz
-300 Hz 9
750 Hz ot =250 Hz

Figure 342 Zeros of the comb filter to remove 60 H z interference with odd harmonics; the
sampling frequency is 1,000 Hz.

INustration of application: Figure 3.44 shows an ECG signal with power-line
interference at f, = 60 Hz. Figure 3.45 shows the result of applying the notch filter
in Equation 3.68 to the signal. The 60 H z interference has been effectively removed,
with no perceptible distortion of the ECG waveform.
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Figure 3.43 Magnitude and phase responses of the comb filter with zeros as shown in
Figure 3.42.
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An illustration of the application of the comb filter will be provided at the end of
the chapter, in Section 3.8.

T T T T T T T T T

25} b

0.5

(=]
1

1 1 L L 1 1 1 L L
0.1 0.2 0.3 0.4 05 (1] 07 08 0.9 1
Time in seconds

Figure 3.44 ECG signal with 80 H z interference.

}

3.5 OPTIMAL FILTERING: THE WIENER FILTER

The filters described in the preceding sections can take into account only limited
information about the temporal or spectral characteristics of the signal and noise
processes. They are ofien labeled as ad hoc filters: one may have to try several filter
parameters and settle upon the filter that appears to provide a usable result. The
output is not guaranieed to be the best achievable result: it is not optimized in any
sense.

Problem: Design an optimal filter to remove noise from a signal, given that the
signal and noise processes are independent, stationary, random processes. You may
assume the “desired” or ideal characteristics of the uncorrupted signal to be known,
The noise characteristics may also be assumed to be known,

Solution: Wiener filter theory provides for optimal filtering by taking into account
the statistical characteristics of the signal and noise processes. The filter parameters
are optimized with reference to a performance criterion. The output is guaranteed
to be the best achievable result under the conditions imposed and the information
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Figure 3.45 'The ECG signal in Figure 3.44 after filtering with the 60 Hz notch filter shown
in Figures 3.40 and 3.41,
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provided. The Wiener filter is a powerful conceptual tool that changed traditional
approaches to signal processing.

Considering the application of filtering a biomedical signal to remove noise, let
us limit ourselves to a single-input, single-output, FIR filter with real input signal
values and real coefficients. Figure 3.46 shows the general signal-flow diagram of
a transversal filter with coefficients or tap weights wy,i = 0,1,2,..., M — 1, input
z(n), and output d(n) [77). The output is usually considered to be an estimate
of some “desired” signal d{n} that represents the ideal, uncorrupted signal, and is,
therefore, indicated as d(n). If we assume for the moment that the desired signal is
available, we could compute the estimation error between the output and the desired

signal as _
e(n) = d(n) — d(n). (3.68)

Figure 3.46 Block diagram of the Wiener filter.

Since d(n) is the output of a linear FIR filter, it can be expressed as the convolution
of the input 2{n) with the tap-weight sequence w; (which is also the impulse response

of the filter) as
M-1

dn) = > we a(n - k). (3.69)
k=0
For easier handling of the optimization procedures, the tap-weight sequence may be
written as an M x I tap-weight vector

w = [wo, w1, w2, ..., war—1]7, (3.70)

where the bold-faced character w represents a vector and the superscript T indicates
vector transposition. As the tap weights are combined with M values of the input
in the convolution expression, we could also write the M input values as an M x 1
vector:

x(n) = [z{n),2(n - 1),...,&¢(n - M + 1)]7. (3.71)



140 FILTERING FOR REMOVAL OF ARTIFACTS

Note that the vector x(n) varies with tisne: at a given instant n the vector contains the
current input sample z(rn) and the preceding (M — 1) input samptes from z(n — 1)
to 2{n — M + 1). The convolution expression in Equation 3.69 may now be written
in a simpler form as the inner or dot product of the vectors w and x{rn):

d(n) = wTx(n) = xT (n)w = (x, w). (3.72)
The estimation error is then given by
e(n) = d(n) ~ wTx(n). (3.73)

Wiener filter theory estimates the tap-weight sequence that minimizes the MS
value of the estimation error; the output could then be called the minimum mean-
squared error (MMSE) estimate of the desired response, the filter being then an
optimal filter. The mean-squared error {MSE) is defined as

J(w) = Ele*(n)]
= B[{d(n) - wx(n)Hd(n) - xT(n)w}]
= Bld*(n)] - wElx(n)d(n)] - Eld(n)a” (n)lw
+ wTE[x(n)xT (n)]w. (3.74)

Note that the expectation operator is not applicable to w as it is not a random variable.

Under the assumption that the input vecter x(n) and the desired response d(n}
are jointly stationary, the expectation expressions in the equation above have the
following interpretations {77):

o E[d*(n)] is the variance of d{n), written as o3, with the further assumption
that the mean of d(n) is zero.

s Elx{n)d(n)] is the cross-correlation between the input vector x(n} and the
desired response d(n), which is an M x 1 vector:

© = E[x(n)d(n)). (375
Note that © = [6(0),8(—1),...,8(1L — M)}T, where
#(—k) = Elz(n - k)d(n)], k= 0,1,2,...,.M - L. (3.76)
o E[d(n)xT (n)) is simply the transpose of E[x(n)d(n)); therefore
O = Eld(n)x"(n)]. 3.77)

o E[x(n)xT(n)] represents the autocorrelation of the input vector x(n) com-
puted as the outer product of the vector with itself, written as

& = E[x(n)x" (n)) (3.78)
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orin its full M x M matrix form as

$(0) #(1) cor M -1
5= ¢‘(71) ¢(:0) ¢(M:— 2) (3.79)
H-M+1) ¢(-M+2) -  ¢(0)
with the element in row &k and column i given by
&t — k) = E[z(n — k)z(n — )], (3.80)

with the property that ¢{¢ — k) = @(k — i}. (Note: ¢ = ¢,,.) With the
assumption of wide-sense stationarity, the M x M matrix ® is completely
specified by M values of the autocorrelation ¢(0), #(1),...,¢(M — 1) for
lags 0,1,..., M -1,

With the interpretations as listed above, the MSE expression in Equation 3.74 is
simplified to
Jw)=0c2 - wl@ - 0Tw + wTéw. (3.81)
This expression indicates that the MSE is a second-order function of the tap-weight
vector w. To determine the optimal tap-weight vector, denoted by w,, we could
differentiate J{w) with respect to w, set it t0 zero, and solve the resulting equation.
To perform this differentiation, we should note the following derivatives:

d
W& =o
d

-q—(wriw) = 2&w.

dw
Now, we obtain the derivative of J(w) with respect to w as
f’%(h.:ﬂ = —2@ + 28w, (3.82)

Setting this expression to zero, we obtain the condition for the optimal filter as
Bw, = O. (3.83)

This equation is known as the Wiener-Hopf equation. It is also known as the normai
equation as it can be shown that [77], for the optimal filter, each element of the input
vector x(n) and the estimation error ¢(n) are mutvally orthogonal, and furthermore,
that the filter output d(n) and the error e(n} are mutually orthogonal (that is, the
cxpectation of their products is zero). The optimal filter is obtained as

w, =810, (3.84)
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In expanded form, we have the Wiener-Hopf equation as

#0) #(1) e $(M-1) Weo
¢(-1) $(0) e (M -2) Wo1 B
| H(-M+1) H-M+2) -+ $(0) Wo(M-1)
(3.35)
L)
6(-1)
o1 - M)
or as
M-1
S woipli — k) =8(-k), k=0,1,2,..., M -1 (3.86)
=0
The minimum MSE is given by
Jain =03 - OTE10, (3.87)

Given the condition that the signals involved are stationary, we have ¢(i — k) =
&(k — ¢} and 6(—k} = 8(k). Then, we may write Equation 3.86 as

M-1
3" we d(k — i) = 6(k), k=0,1,2,..., M - 1. (3.88)
i=0

Thus we have the convolution relationship
woi * P(k) = O(k). (3.89)
Applying the Fourier transform to the equation above, we get
W(w)Szs(w) = Saalw), (3.90)
which may be modified to obtain the Wiener filter frequency response W{w) as

Sza(w)
Spalw)’

where S, (w) is the PSD of the input signal and Seq4(w) is the cross-spectral density
(CSD) between the input signal and the desired signal.

Note that derivation of the optimal filter requires rather specific knowledge about
the input and the desired response in the form of the autocorrelation & of the input
2{n) and the cross-correlation © between the input 2(n} and the desired response
d(n). In practice, although the desired response d(n) may not be known, it should be
possible to obtain an estimate of its temporal or spectral statistics, which may be used

Ww) =

{391
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to estimate @, Proper estimation of the statistical entities mentioned above requires
a large number of samples of the corresponding signals.

{Note: Haykin [77} ailows all the entities involved to be complex. Vector trans-
position T is then Hermitian or complex-conjugate transposition #. Products of two
entities require one to be conjugated: for example, e2(n) is obtained as e(n)e”(n);
Equation 3.69 will have w}, in place of wy, and so on. Furthermore, £ (0% w) =0
and f;(w” @) = 2@. The final Wiener-Hopf equation, however, simplifies to the
same as above in Equation 3.86.)

Let us now consider the problem of removing noise from a corrupted input signal.
For this case, let the input 2(n) contain a mixture of the desired (original) signal d(n)
and noise n(n), thatis,

z{n) = d(n) + n(n). (3.92)
Using the vector notation as before, we have
x(n) = d(n} + n{n), (3.93)

where 53(n) is the vector representation of the noise function 5(n). The autocorrela-
tion matrix of the input is given by

& = Elx(n)x"(n)] = B{d(n) + n(n)Hd(n) + n(n)}"]. (3.94)

If we now assume that the noise process is statistically independent of the signal
process, we have
Eld(n)nT (n)] = E[nT (n)d(n)] = 0. (3.95)

Then,
& = E{d(n)dT(n)] + Eln(n)n" (n)] = 84+ &y, (3.96)

where ®4 and &, are the M x M autecorrelation matrices of the signal and noise,
respectively. Furthermore,

® = E[x(n)d(n)] = E[{d(r) + n(n)}d(n)] = E[d(n)d(n)] = ®14, (397

where ®,4 is an M x 1 autocorrelation vector of the desired signal. The optimal
Wiener filter is then given by

w, = (84 + 8,) ' &4. (3.98)

The frequency response of the Wiener filter may be obtained by modifying Equa-
tion 3.91 by taking into account the spectral relationships

See(w) = Salw) + Sy(w) (3.99)
and
Sea(w) = Sa(w), (3.100)
which leads to g .
W(w) = alw) (3.100)

Saw) + Sylw) ~ T+ 5
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where S3(w) and S, (w) are the PSDs of the desired signat and the noise process,
respectively. Note that designing the optimal filter requires knowledge of the PSDs
of the desired signal and the noise process (or models thereof).

Ilustration of application: The upper trace in Figure 3.47 shows one ECG cycle
extracted from the signal with noise in Figure 3.5. A piece-wise linear model of the
desired version of the signal was created by concatenating linear segments to provide
P, QRS, and T waves with amplitudes, durations, and intervals similar to those in the
given noisy signal. The base-line of the model signal was set to zero. The noise-free
model signal is shown in the middle trace of Figure 3.47. The log PSDs of the given
noisy signal and the noise-free modet, the latter being S4(w) in Equation 3.101, are
shown in the upper two plots of Figure 3.48.

Time in ms

Figure 3.47 From top to bottom: one cycle of the noisy ECG sigual in Figure 3.5 (labeled as
Original); a piece-wise linear model of the desired noise-free signal {Model); and the output
of the Wiener filter (Restored).

The T - P intervals between successive cardiac cycles in an ECG (the inter-beat
intervals) may be taken o represent the iso-electric base-fine. Then, any activity
present in these intervals constitutes noise. Four T - P intervals were selected from
the noisy signal in Figure 3.5 and their Fourier power spectra were averaged to derive
the noise PSD 8,,(w) required in the Wiener filter (Equation 3.101). The estimated
log PSD of the noise is shown in the third trace of Figure 3.48. Observe the relatively
high levels of energy in the noise PSD above 100 Hz compared to the PSDs of
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Figure 3.48 From top to bottom: log PSD (in dB) of the given noisy signal (labeled as
Original); log PSD of the noise-free model (Model); estimated log PSD of the noise process
{Noise); log frequency response of the Wiener filter (Wiener); and log PSD of the filter output
{Restored).
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the original noisy signai and the model. Observe also the peaks in the original and
noise PSDs near 180 Hz, 300 Hz, and 420 Hz, representing the third, fifth, and
seventh harmonics of 80 H z, respectively; the peak at 460 Hz is an aliased version
of the ninth harmonic at 540 Hz. The 60 Hz component itself appears to have been
suppressed by a notch filter in the signal acquisition system. (See Sections 3.2.4
and 3.4.3 for more details.)

The Wiener filter frequency response was detived as in Equation 3.101, and is
shown in the fourth plot in Figure 3.48. Observe the low gain of the filter near
180 Hz, 300 Hz, 420 Hz, and 460 Hz corresponding to the peaks in the noise
spectrum. As indicated by Equation 3.101, the Wiener filter gain is inversely related
to the noise PSD and directly related to the signal PSD. The result of application of
the Wiener filter to the given signal is shown in the third trace of Figure 3.47. It is
evident that almost all of the noise has been effectively removed by the filter,

The most important point to observe here is that the filter was derived with models
of the noise and signal processes (PSDs), which were obtained from the given signal
itself in the present application. No cutoff frequency was required to be specified in
designing the Wiener filter, whereas the Butterworth filter requires the specification
of a cutoff frequency and filter order.

Most signal acquisition systems should permit the measurement of at least the
variance or power level of the noise present. A uniform (white) PSD model may
then be easily derived, Models of the ideal signal and the noise processes may also
be created using parametric Gaussian or Laplacian models either in the time domain
(ACF) ot directly in the frequency domain (PSD).

3.6 ADAPTIVE FILTERS FOR REMOVAL OF INTERFERENCE

Filters with fixed characteristics (tap weights or coefficients), as seen in the preceding
sections, are suitable when the characteristics of the signal and noise (random or
structured) are stationary and known. Design of frequency-domain filters requires
detailed knowledge of the spectral contents of the signal and noise. Such filters are
not applicable when the characteristics of the signal and/or noise vary with time, that
is, when they are nonstationary. They are also not suitable when the spectral contents
of the signal and the interference overlap significantly.

Consider the situation when two ECG signals such as those of a fetus and the
mother, or two vibration signals such as the VAG and the VMG, arrive at the recording
site and get added in some proportion. The spectra of the signals in the mixture span
the same or similar frequency ranges, and hence fixed filtering cannot separate them.
In the case of the VAG/VMG mixture, it is also possible for the spectra of the signals
to vary from one peint in time to another, due to changes in the characteristics of the
cartilage surfaces causing the VAG signal, and due to the effect of variations in the
recruitment of muscle fibers on the VMG signal. Such a situation calls for the use
of a filter that can learn and adapt to the characteristics of the interference, estimate
the interfering signal, and remove it from the mixture to obtain the desired signal.
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This requires the filter to autornatically adjust its impulse response (and hence its
frequency response) as the characteristics of the signal and/or noise vary.

Problem: Design an optimal filter to remove a nonstationary interference from
a nonstationary signal, An additional channel of information related to the inter-
ference is available for use. The filter should continuously adapt to the changing
characteristics of the signal and interference.

Solution: We need to address two different concerns in this problem:

1. The filter should be adaptive; the tap-weight vector of the filter will then vary
with time. The principles of the adaptive filter, also known as the adaptive
noise canceler (ANC), will be explained in Section 3.6.1.

2. The filter should be optimal. Two well-established methods for optimization
of the adaptive filter will be presented in Sections 3.6.2 and 3.6.3.

Tlustrations of the application of the methods will be presented at the end of Sec-
tions 3.6.2 and 3.6.3, as well as the end of the chapter, in Sections 3.9 and 3.10.

3.6.1 The adaptive noise canceler

Figure 3.49 shows a generic block diagram of an adaptive filter or ANC [62, 88].
The “primary input” to the filter z(n} is a mixture of the signal of interest v(r) and
the “primary noise” m(n):

o(n) = v(n) + m(n). (3.102)

z(n) is the primary observed signal; it is desired that the interference or noise m{n)
be estimated and removed from z(n) in order to obtain the signal of interest v{n). It
is assumed that ¥(n) and m(n) are uncorrelated. Adaptive filtering requires a second
input, known as the “reference input” »{n), that is uncorrelated with the signal of
interest y(n) but closely related to or correlated with the interference or noise m(n)
in some manner that need not be known. The ANC filters or modifies the reference
input »(n) to obtain a signal y(n) that is as close to the noise m(n) as possible. y{n)
is then subtracted from the primary input to estimate the desired signal:

3(n) = e(n) = 2(n) — y(n). (3.103)

Let us now analyze the function of the filter. Let us assurne that the signal of
interest v(n), the primary noise m(n), the reference input r(n), and the primary
noise estimate y{n) are statistically stationary and have zero means. (Note: The
requirement of stationarity will be removed later when the expectations are computed
in moving windows.) We have already stated that v(n} is uncorrelated with m(n)
and r(n), and that r(n) is correlated with m(n). The output of the ANC is

en) = 2(n)-yln)
= o(n) +m(n) - y(n), (3.104)
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Figure 3.49 Block diagram of a generic adaptive noise canceler (ANC) or adaptive filter.

rn)

where y(n) = fm(n) is the estimate of the primary noise obtained at the output of
the adaptive filter. By taking the square and expectation (statistical average) of both
sides of Equation 3.104, we obtain

E[e*(n)] = Elv*(n)} + E{{m(n) — y(n}}’] + 2E{p(n{{m(n) — y(n}}]. (3.105)

Since v{n) is uncorrelated with m(n) and y(n) and all of them have zero means, we
have

Elv(n){m(n) - y(n)}] = E[v(n)]E|m(n) - y(n)} = 0. (3.106)
Equation 3,105 can be rewritten as
Ele?(n)] = E[v*(n)] + E[{m(n) — y(n)}?]. (3.107)

Note from Figure 3.49 that the output e(n) is used (fed back) to control the
adaptive filter. In ANC applications, the objective is to obtain an output e(n} that is
a least-squares fit to the desired signal v(n). This is achieved by feeding the output
back to the adaptive filter and adjusting the filter to minimize the total system output
power. The system output serves as the error signal for the adaptive process.

The signal power E{v?(n)] will be unaffected as the filter is adjusted to minimize
Efe3(n)]; accordingly, the minimum output power is

min Ele*(n)] = E[p*(n)] + min E{{m(n) - y(n)}?. (3.108)

As the filter is adjusted so that E[e?(n)] is minimized, E[{m(r) — y(n}}?] is also
minimized. Thus the filter output y(n) is the MMSE estimate of the primary noise
m(n). Moreover, when E[{m(n} - y(n)}?] is minimized, E[{e(n) — v(rn)}?] is also
minimized, since from Equation 3.104

e(n) — v(r) = m(n) — y(n). 3.109

Adjusting or adapting the filter to minimize the total output power is, therefore,
equivalent to causing the owutput e{n) 1o be the MMSE estimate of the signal of
interest v(n) for the given structure and adjustability of the adaptive filter and for the
given reference input,
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The output e(n) will contain the signal of interest v(n) and some noise. From
Equation 3.109, the output noise is given by e(n) — ¥(n) = &#(n) - v(n) = m(n) —
p(n). Since minimizing Eje?(n)] minimizes E{{m(n) — y(n)}*|, minimizing the
total output power nminimizes the oulput noise power. Since the signal component
v(n) in the output remains unaffected, minimizing the total output power maximizes
the output SNR.

Note from Equation 3.107 that the output power is minimum when E[e?(n)] =
EJv*(n)]. When this condition is achieved, E[{m(n) — y(n)}?] = 0. We then have
y(n} = m(n) and e(n) = v(n); that is, the output is a perfect and noise-free estimate
of the desired signal.

Optimization of the filter may be performed by expressing the emor in terms of
the tap-weight vector and applying the procedure of choice. The output y(n) of the
adaptive filter (see Figure 3.49) in response to its input r{n} is given by

M=-1

y(n) = E wy, r(n — k), (3.110)

k=0

where wy, & = 0,1,2,...,M — 1, are the tap weights, and M is the order of the
filter. The estimation error e{n} or the output of the ANC system is

e(n) = z(n) — y(n). G111

For the sake of notational simplicity, let us define the tap-weight vector at time n
as
wi(n) = [wo(n), wr(n),...,wp_1(n)}7. (3.112)

Similarly, the tap-input vector at each time instant n may be defined as the M-
dimensional vector

r(n) = [r(n),r(n ~1),...,7(n — M + 1)]7. 3.113)
Then, the estimation efror e(n) given in Equation 3.111 may be rewritten as
e(n) = z(n) = w” (n)r(n). (3.114)

It is worth noting that the derivations made above required no knowledge about
the processes behind v(n), m(n), and r(n) or their inter-relationships, other than the
assumptions of statistical independence between v(n) and m(n) and some form of
correlation between m(n) and »#(n). The arguments can be extended to situations
where the primary and reference inputs contain additive random noise processes that
are mutually uncorrelated and also uncorrelated with v(n), m(n), and r(r). The
procedures may also be extended to cases where m{n} and »(n) are deterministic
or structured rather than stochastic, such as power-line interference or an ECG or a
VMG signal [62]).

Several methods are available to maximize the output SNR; two such methods
based on the least-mean-squares (LMS) and the recursive least-squares (RLS) ap-
proaches are described in the following sections.
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3.6.2 The least-mean-squares adaptive filter

The purpose of adaptive filtering algorithms is to adjust the tap-weight vector to
minimize the MSE. By squaring the expression for the estimation error e(n} given in
Equation 3.1i4, we get

e?(n) = £*(n) - 2e(n)rT (n)w(n) + wT (n)e(n)rT (n)w(n). (3.115)

The squared error is a second-order {quadratic) function of the tap-weight vector (and
the inputs), and may be depicted as a concave hyper-paraboloidal (bowl-like) surface
that is never negative. The aim of the filter optimization procedure would be to reach
the bottom of the bowl-like function. Gradient-based methods may be used for this
purpose.

By taking the expected values of the entities in Eguation 3.115 and taking the
derivative with respect to the tap-weight vector, we may derive the Wiener-Hopf
equation for the present application. The LMS algorithm takes a simpler approach
by assuming the squate of the instantaneous error as in Equation 3.115 to stand for
an estimate of the MSE [62]. The LMS algorithm is based on the method of steepest
descent, where the new tap-weight vector w{n + 1} is given by the present tap-weight
vector w{n) plus a correction proportional to the negative of the gradient V(n) of
the squared error:

w(n+1) = win) ~ pV(n). 3.116)

The parameter 4 controls the stability and rate of convergence of the algorithm: the
targer the value of g, the larger is the gradient of the noise that is introduced and the
faster is the convergence of the algorithm, and vice-versa,

The LMS algorithm approximates ¥V {n) by the derivative of the squared error in
Equation 3.115 with respect to the tap-weight vector as

V(n) = ~2z(n)r(n) + 2{w” (n)r(n)}r(n) = —2e(n)r(n). (3.117)
Using this estimate of the gradient in Equation 3.116, we get
w(n + 1) = w(n) + 2ue(n) r(n). 3.118)

This expression is known as the Widrow-Hoff LMS aigorithm.

The advantages of the LMS algorithm lie in its simplicity and ease of implemen-
tation; although the method is based on the MSE and gradient-based optimization,
the filter expression itself is free of differentiation, squaring, or averaging. It has
been shown that the expected value of the tap-weight vector provided by the LMS
algorithm converges to the optimal Wiener solution when the input vectors are uncor-
related over time (89, 62). The procedure may be started with an arbitrary tap-weight
vector; it will converge in the mean and remain stable as long as g is greater than zero
but less than the reciprocal of the largest eigenvalue of the autocorrelation matrix of
the reference input [62].

Hiustration of application: Zhang et al. [63] used a two-stage adaptive LMS
filter to cancel muscle-contraction inierference from VAG signals. The first stage
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was used to remove the measurement noise in the accelerometers and associated
amplifiers, and the second stage was designed to cancel the muscle signal.

Zhang et al. [63] also proposed a procedure for optimization of the step size p by
using an RMS-error-based misadjustment factor and a time-varying estimate of the
input signal power, among other entities. The LMS algorithm was implemented as

w(n + 1) = w(n) + 2u(n) e(n) r(n). (3.119)
The step size u was treated ag a variable, its value being determined dynamically as

b
Hr) = D P o), P - D)’

(3.120)

with0 < p < 1. A forgetting factor o was introduced in the adaptation process, with
0 < a « 1; this feature was expected to overcome problems caused by high levels
of nonstationarity in the signal. £%(n) is a time-varying estimate of the input signal
power, computed as £%(n) = ar*(n) + (1 — )&% (n — 1).

The filtered versions of the VAG signals recorded from the mid-patella and the
tibial tuberosity positions, as shown in Figure 3.11 (traces (b) and (c), right-hand
column), are shown in Figure 3.50. The muscle-contraction signal recorded at the
distal rectus femoris position was used as the reference input (Figure 3.11, right-hand
column, trace (a)). It is seen that the low-frequency muscle-contraction artifact has
been successfully removed from the VAG signals (compare the second half of each
signal in Figure 3,50 with the corresponding part in Figure 3.11).

3.6.3 The recursive least-squares adaptive fliter

When the input process of an adaptive system is {(quasi-) stationary, the best steady-
state performance results from slow adaptation. However, when the input statistics
are time-variant (nonstationary), the best performance is obtained by a compromise
between fast adaptation (necessary to track variations in the input process) and slow
adaptation (necessary to limit the noise in the adaptive process). The EMS adaptation
algorithm is & simple and efficient approach for ANC; however, it is not appropriate
for fast-varying signals due to its slow convergence, and due to the difficulty in
selecting the correct value for the step size g An alternative approach based on the
exact minimization of the least-squares criterion is the RLS method [77, 90]. The
RLS algorithm has been widely used in real-time system identification and noise
cancellation because of its fast convergence, which is about an order of magnitude
higher than that of the LMS method. (The derivation of the RLS filter in this section
has been adapted from Sesay [90)] and Krishnan [88] with permission.)

An important feature of the RLS algorithm is that it utilizes information contained
in the input data, and extends it back to the instant of time when the algorithm was
initiated {77]. Given the least-squares estimate of the tap-weight vector of the filter at
time n — 1, the updated estimate of the vector at time » is computed upon the arrival
of new data.
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Figure 3.50 LMS-filtered versions of the VAG signals recorded from the mid-patelia and
the tibial tuberosity positions, as shown in Figure 3.11 (traces (b) and (c), right-hand column).
The muscle-contraction signal recorded at the distal rectus femoris position was used as the
reference input (Figure 3.11, right-hand colums, trace {a)). The recording setup is shown in
Figure 3.10. Reproduced with permission from Y.T Zhang, R.M. Rangayyan, C.B. Frank, and
G.D. Bell, Adapiive cancellation of muscle-contraction interference from kitee joint vibration
signals, JEEE Transactions on Biomedical Engineering, 41(2):181-191, 1994, ©IEEE.
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In the derivation of the RLS algorithm, the performance index or objective function
£(n) to be minimized in the sense of least squares is defined as

&(n) = ix‘-ﬂe(m?, (.121)

izl

where 1 < i < n is the observation interval, e(¢) is the estimation etror as defined in
Equation 3.114, and A is a weighting factor (also known as the forgetting factor) with
0 < XA < 1. The values of A** < 1 give more “weight” to the more recent error
values. Such weighting is desired in the case of nonstationary data, where changes
in the signal statistics make the inclusion of past data less appropriate. The inverse
of (1 — ) is a measure of the memory of the algorithm,

The Wiener-Hopf equation is the necessary and sufficient condition [77] for mini-
mizing the performance index in the least-squares sense and for obtaining the optimal
values of the tap weights, and may be derived in a manner similar to that presented
in Section 3.5 for the Wiener filter, The normal equation to be solved in the RLS
procedure is

&(n)¥%(n) = ©(n), (3.122)
where W(n) is the optimal tap-weight vector for which the performance index is at its

minimum, $(n) is an M x M time-averaged (and weighted) autocorrelation matrix
of the reference input r{i) defined as

" .
()= A ir() T (3), (3.123)
izl
and B(n) is an M x 1 time-averaged (and weighted) cross-correlation matrix between
the reference input r(i} and the primary input {t), defined as

i)
B(n) =Y I r(i) (). (3.124)
i=l
The general scheme of the RLS filter is illustrated in Figure 3.51.

Because of the difficulty in solving the normal equation for the optimal tap-weight
vector, recursive techniques need to be considered. In order to obtain a recursive
solution, we could isolate the term corresponding to i = n from the rest of the
summation on the right-hand side of Equation 3.123, and obtain

n—1
B(n)=A| > A 2T} | +v(n) T (n) (3.125)

i=]
According to the definition in Equation 3.123, the expression inside the square
brackets on the right-hand side of Equation 3.125 equals the time-averaged and

weighted autocorrelation matrix #(n — 1), Hence, Equation 3.125 can be rewritten
as a recursive expression, given by

®(n) = AB(n - 1) + r(n)rT{n). (3.126)
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Figure 3.51 General structure of the adaptive RLS filter.

Similarly, Equation 3.124 can be written as the recursive equation
©(n) = A0{(n ~ 1} + r(r)a(n). (3.127)

To compute the least-squares estimate W{n) for the tap-weight vector in accor-
dance with Equation 3.122, we have to determine the inverse of the correlation
matrix €(n). In practice, such an operation is time-consuming (particularly if M is
large). To reduce the computational requirements, a matrix inversion lemma known
as the “ABCD lemma” could be used (a similar formt of the lemma can be found in
Haykin [77]). According to the ABCD lemma, given matrices A, B, C, and D,

(A+BCD) '=A ' A 'B(DA"'B+C Y 'DAL, 3.128)

The matrices A, C, (A + BCD), and (DA~ 'B+C™!) are assumed to be invertible,
With the correlation matrix ®(n) assumed to be positive definite and therefore
nonsingular, we may apply the matrix ifiversion lemma to Equation 3.126 by assigning
Ad(n ~ 1),

r(n),

= 1,

rT(n).

vaw»
I

We then have

& ln) = 2 '@ (n-1)
A7 n — Dr(n) (AT (n) 8 (n - L)r(n) + 1] -t
AT ()8~ 1). (3.129)

x
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Since the expression inside the brackets of the above equation is a scalar, the equation
can be rewritten as

A3 - Dr(r)rT(n) @ Hn - 1)

3 n)=A"18"Y(n-1) T+ A5 (n)® 1 {n - )r(n)

. {3.130)

For convenience of notation, let
P(n) = 7 1(n), (3.131)

with P(0) = § 11, where § is a small constant and I is the identity matrix. Further-
more, let

A71P(n - 1)r(n)
14+ AT (n)P(n — )r(n)’
k(n) is analogous to the Kalman gain vector in Kalman filter theory [77). Equa-
tion 3.130 may then be rewritten in a simpler form as

kin) =

(3.132)

P(n) = A"1P(n - 1) ~ A k(n)rT(n)P(n — 1). (3.133)

By multiplying both sides of Equation 3.132 by the denominator on its right-hand
side, we get

k(n} [1+ 27T (n)P(n ~ r(n)] = A7'P(n — Ir(n), (3.134)
> k(n) = [AIP(n - 1) — A"k(r)rT (n)P(n — 1)] r(n). (3.135)

Comparing the expression inside the brackets on the right-hand side of the above
equation with Equation 3.133, we have

k(n) = P(n)r(n). (3.136)

P(n) and k(n) have the dimensions M x M and M x 1, respectively.
By using Equations 3.122, 3.127, and 3.131, a recursive equation for updating the
least-squares estimate w{n) of the tap-weight vector can be obtained as

&~ 1{n)B(n)
P{n)B(n)
= AP{(n)®(n — 1} + P(n)r(n)z(n). (3.137)

W(n)

Substituting Equation 3.133 for P(r) in the first term of Equation 3.137, we get

win) = P(n-1)0(n-1)~kin)rT(n)P(n ~1)O(n — 1)
+ P{n)r(n)z(n)
= & l(n-1)@(n-1)~kn)rT(n)® n-1)@n-1)
+ P(n)r(n)z(n)

w(n ~ 1) — k(n)rT(n)®(n - 1) 4+ P(n)r{n)z(n). (3.138)
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Finally, from Equation 3.136, using the fact that P(m)r(n) equals the gain vector
k(n), the above equation can be rewritten as

w(n) = Ww(n—1)—k(n) {z(n) - rT(n)W(n - 1)]
= W(n— 1)+ k(n)a(n), (3.139)

where w(0) = 0, and

u

z(n) — ¥ (n)W(n - 1)
= z(n) - W7 (n - r(n). (3.140)

a(n)

The quantity a(n) is often referred to as the a priori error, reflecting the fact that
it is the error obtained using the “old” filter (that is, the filter before being updated
with the new data at the n*P time instant), It is evident that in the case of ANC
applications, a{n) will be the estimated signal of interest #(n) after the filter has
converged, that is,

afn) = #(n) = z(n) — ¥7(n — L)r(n). (3.141)

Furthermnore, after convergence, the primary noise estimate, that is, the output of
the adaptive filter y(n), can be written as

y(n) = m(n) = %7 (n - Vr(n). (3.142)
By substituting Equations 3.104 and 3.142 in Equation 3.141, we get
(n)

i

v(n) + m(n) — Mm(n)
v(n) + m{n) — %7 (n — 1)r(n)
= z(n) - W7 (n — 1)r{n). (3.143)

Equation 3.139 gives a recursive relationship for obtaining the optimal values of
the tap weights, which, in turn, provide the least-squares estimate #(n) of the signal
of interest v(n) as in Equation 3.143,

Niustration of application: Figure 3.52 shows plots of the VAG signal of a normal
subject (trace (a)) and a simultaneously recorded channel of muscle-contraction
interference (labeled as MCI, trace (b)). The characteristics of the vibration signals
in this example age different from those of the signals in Figure 3.11, due to a different
recording protocol in terms of speed and range of swinging motion of the leg [88). The
results of adaptive filtering of the VAG signal with the muscle-contraction interference
channel as the reference are also shown in Figure 3.52: trace (c) shows the result of
LMS filtering, and trace (d} shows that of RLS filtering. A single-stage LMS filter
with variable step size p(n) as in Equation 3.120 was used; no attempt was made
to remove instrumentation noise. The LMS filter used M = 7, ¢ = 0.05, and a
forgetting factor & = 0.98; other values resulted in poor results. The RLS filter used
M =T7and A =0.98.
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Figure 3.52 (a) VAG signal of a normal subject. (b) Muscle-contraction interference (MCI).
(¢) Result of LMS filtering. (d) Result of RLS filtering. The recording setup is shown in

Figure 3.10,
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The relatively low-frequency muscle-contraction interference has been removed
better by the RLS filter than by the LMS filter; the latter failed to track the nonsta-
tionarities in the interference, and has caused additional artifacts in the result. The
spectrograms of the primary, reference, and RLS-filtered signals are shown in Fig-
ures 3.53, 3.54, and 3.55, respectively. (The logarithmic scale is used to display better
the minor differences between the spectrograms.) It is seen that the predominantly
low-frequency artifact, indicated by the high energy levels at fow frequencies for the
entire duration in the spectrograms in Figures 3.53 and 3.54, has been removed by
the RLS filter.

anergy in dB

frequency in Hz 500

time in seconds

Figure 3.53 Spectrogram of the VAG signal in Figure 3.52 (a). A Hanning window of length
256 samples (128 ms) was used; an overlap of 32 samples (16 ma) was allowed between
adjacent segments.

3.7 SELECTING AN APPROPRIATE FILTER

We have so far examined five approaches to remove noise and intecference: (1) syn-
chronized or ensemble averaging of multiple realizations or copies of a signal, (2) MA
filtering, (3) frequency-domain filtering. (4) optimal (Wiener) filtering, and (5) adap-
tive filteting. The first two approaches work directly with the signal in the time
domain. Frequency-domain (fixed) filtering is performed on the spectrum of the
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Figure 3.54 Spectrogram of the muscle-contraction interference signal in Figure 3,52 (b). A

Hanning window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 ms)
was altowed between adjacent segments.



180 FILTERING FOR REMOVAL OF ARTIFACTS

frequency in Hz 500

Figure 3.55 Spectrogram of the RLS-filtered VAG signal in Figure 3,52 (d). A Hanning
window of length 256 samples (128 ma#) was used; an overlap of 32 samples (16 ms) was
allowed between adjacent segments.
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signal. Note that the impulse response of a filter designed in the frequency domain
could be used to implement the filter in the time demain as an 1IR or FIR filter.
Furthermore, time-doinain filters may be analyzed in the frequency domain via their
transfer function ot frequency response to understand better their characteristics and
effects on the input signal, The Wiener filter may be implemented either in the time
domain as a transversal filter or in the frequency domain. Adaptive filters work
directly on the signal in the time domain, but dynamically alter their characteristics
in response to changes in the interference; their frequency response thus varies from
one point in time to another.

What are the goiding principles to determine which of these filters is the best for
a given application? The following points should assist in making this decision.

Synchronized or ensemble averaging is possible when:
o The signal is statistically stationary, (quasi-)periodic, or cyclo-stationary,
¢ Multiple realizations or copies of the signal of interest are avajlable.

e A trigger point or time marker is available, or can be derived to extract and
align the copies of the signal.

¢ The noise is a stationary random process that is uncorrelated with the signal
and has a zero mean (or a known mean).

Temporal MA filtering is suitable when:

¢ The signal is statistically stationary at least over the duration of the moving
window,

¢ The noise is a zero-mean random process that is stationary at least over the
duration of the moving window and is independent of the signal.

¢ The signal is a relatively slow {low-frequency) phenomenon.

¢ Fast; on-line, real-time filtering is desired.
Frequency-domain fixed filtering is applicable when:

« The signal is statistically stationary.

o The noise is a stationary random process that is statistically independent of the
signal,

o The signal spectrum is limited in bandwidth compared to that of the noise (or
vice-versa).

s Loss of information in the spectral band removed by the filter does not seriously
affect the signal, '

¢ On-line, real-time filtering is not required (if implemented in the spectral
domain via the Fourier transform),
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The optimal Wiener filter can be designed if;
« The signal is statistically stationary.

¢ The noise is a stationary random process that is statistically independent of the
signal. '

e Specific details (or models) are available regarding the ACFs or the PSDs of
the signal and noise.

Adaptive filtering is called for and possible when:
¢ The noise or interference is not stationary and not necessarily arandom process.
+ The noise is uncorrelated with the signal.

e No information is available about the spectral characteristics of the signal and
noise, which may also overlap significantly.

* A second source or recording site is available to obtain a reference signatl that
is strongly correlated with the noise but uncorrelated with the signal.

It is worth noting that an adaptive filter acts as a fixed filter when the signal and
noise are stationary. An adaptive filter can also act as a notch or a comb filter when
the interference is periodic. It should be noted that all of the filters mentioned above
are applicable only when the noise is additive. Techniques such as homomorphic
filtering {see Section 4.8) may be used as preprocessing steps if signals combined
with operations other than addition need to be separated.

3.8 APPLICATION: REMOVAL OF ARTIFACTS IN THE ECG

Problem: Figure 3.56 (top trace) shows an ECG signal with a combination of base-
line drift, high-frequency noise, and power-line interference. Design filters to remove
the artifacts.

Solution: The power spectrum of the given signal is shown in the top-most plot
in Figure 3.57. Observe the relatively high amount of spectral energy present near
DC, from 100 H:z to 500 Hz, and at the power-line frequency and its harmonics
located at 60 Hz, 180 Hz, 300 Hz, and 420 Hz. The fundamental component at
60 Hz is lower than the third, fifth, and seventh harmonics due perhaps to a notch
filter included in the signal acquisition system, which has not been effective.

A Butterworth lowpass filter with order N = 8 and f. = 70 Hz (see Section 3.4.1
and Equation 3.61), a Butterworth highpass filter of order N = 8 and f. = 2 Hz (see
Section 3.4.2 and Equation 3.64), and a comb filter with zeros at 60 Hz, 180 Hz,
300 Hz, and 420 Hz (see Section 3.4.3 and Equation 3.67) were applied in series
to the signal. The signal spectrum displays the presence of further harmonics (ninth
and eleventh) of the power-line interference at 540 Hz and 660 Hz that have been
aliased to the peaks apparent at 460 Hz and 340 Hz, respectively. However, the
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comb filter in the present example was not designed to remove these components.
The lowpass and highpass filters were applied in the frequency domain to the Fourier
transform of the signal using the form indicated by Equations 3.61 and 3.64. The
comb filter was applied in the time domain using the MATLAB filrer command and
the coefficients in Equation 3.67.

The combined frequency response of the filters is shown in the middle plot in
Figure 3.57. The spectrum of the ECG signal after the application of all three filters
is shown in the bottom plot is Figure 3.57. The filtered signal spectrum has no
appreciable energy beyond about 100 Hz, and displays significant attenuation at
60 Hz.

The outputs after the lowpass filter, the highpass filter, and the comb filter are shown
in Figure 3.56. Observe that the base-line drift is present in the output of the lowpass
filter, and that the power-line intetference is present in the outputs of the lowpass
and highpass filters. The final trace is free of all three types of interference. Note,
however, that the highpass filter has introduced a noticeable distortion (undershoot)
in the P and T waves.

MMM M PNV

After highpass fitter

A~ AN AN A A~NANANANAN AN -

After comb fittar

Figure 3.56 ECG signal with acombination of artifacts and its filtered versions. The duration
of the signal is 10.7 &.
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Figure 3,57 Top and bottom plots: Power spectra of the ECG signals in the top and bottom
traces of Figure 3.56. Middle plot: Frequency response of the combination of lowpass,
highpass, and comb filters. The cutoff frequency of the highpass filter is 2 Hz: the highpass
portion of the frequency response is not clearly seen in the plot.
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3.9 APPLICATION: ADAPTIVE CANCELLATION OF THE MATERNAL
ECG TO OBTAIN THE FETAL ECG

Problem: Propose an adaptive noise cancellation filter to remove the maternal ECG
signal from the abdominal-lead ECG shown in Figure 3.9 to obtain the fetal ECG.
Chest-lead ECG signals of the mother may be used for reference.

Solution: Widrow et al. [62] describe a multiple-reference ANC for removal of
the maternal ECG in order to obtain the fetal ECG. The combined ECG was obtained
from a single abdominal lead, whereas the maternal ECG was obtained via four chest
leads. The model was designed to permit the treatment of not only multiple sources
of interference, but also of components of the desired signal present in the reference
inputs, and further to consider the presence of uncorrelated noise components in the
reference inputs. It should be noted that the maternal cardiac vector is projected onto
the axes of different ECG leads in different ways, and hence the characteristics of the
maternal ECG in the abdominal lead would be different from those of the chest-lead
ECG signals used as reference inputs.

Each filter channel used by Widrow et al. [62] had 32 waps and a delay of 129 ms.
The signals were pre-filtered to the bandwidth 3 — 35 Hz and a sampling rate of
256 H:z was used. The optimal Wiener filter (see Section 3.5) included transfer
functions and cross-spectral vectors between the input source and each reference
input. Further extension of the method to more general multiple-source, multiple-
reference noise cancelling problems was also discussed by Widrow et al.

The resuit of cancellation of the maternal ECG from the abdominal lead ECG
signal in Figure 3.9 is shown in Figure 3.58. Comparing the two figures, it is seen
that the filter output has successfully extracted the fetal ECG and suppressed the
maternal ECG. See Widrow et al. {62] for details; see also Ferrara and Widrow [91].

MOTHER
/ FETUS

Figure 3.58 Result of adaptive cancellation of the maternal chest ECG from the abdominal
ECG in Figure 3.9. The QRS complexes extracted correspond to the fetal ECG. Reproduced
with permission from B. Widrow, J.R. Glover, Jr., J.M. McCool, J. Kaunitz, C.S. Williams,
R.H. Hearn, J.R. Zeidler, E. Dong, I, R.C. Goodlin, Adaptive noise cancelling: Principles
and applications, Proceedings of the IEEE, 63(12):1692-1716, 1975. ©IEEE.
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3.10 APPLICATION: ADAPTIVE CANCELLATION OF
MUSCLE-CONTRACTION INTERFERENCE IN XNEE-JOINT
VIBRATION SIGNALS

Problem: Smudy the applicability of adaptive noise cancellation filters to remove
the muscle-contraction interference caused by the rectus femoris in the VAG signal
recorded at the patella.

Solution: Rangayyan et al. [92] conducted a study on the impact of muscle-
contraction interference cancellation on modeling and classification of VAG signals
and further classification of the filtered signals as normal or abnormal. Both the LMS
(see Section 3.6.2) and the RLS (see Section 3.6.3) methods were investigated, and
the RLS method was chosen for its more efficient tracking of nonstattonantles in the
input and reference signals,

Figure 3.5% shows plots of the VAG signal of a subject with chondromalacia patella
of grade II (trace (a)) and a simultaneously recorded channel of muscle-contraction
interference (labeled as MCI, trace (b)). The results of adaptive filtering of the VAG
signal with the muscle-contraction interference channel as the reference are also
shown in Figure 3.59; trace (¢) shows the result of LMS filtering, and trace (d) shows
that of RLS filtering. A single-stage LMS filter with variable step size u(n) as in
Equation 3.120 was used, with M = 7, 4 = 0.05, and & = 0.98. The RLS filter
used M = 7 and A = 0.98,

As in the earlier example in Figure 3.52, it is seen that the muscle-contraction
interference has been removed by the RLS filter; however, the LMS filter faiied to
perform well, due to its limited capabilities in tracking the nonstationarities in the
interference. The spectrograms of the primary, reference, and RLS-filtered signals
are shown in Figures 3,60, 3,61, and 3.62, respectively. (The logarithmic scale is used
to display better the minor differences between the spectrograms.) It is seen that the
frequency components of the muscle-contraction interference bave been suppressed
by the RLS filter.

The primary (original) and fitered VAG signals of 53 subjects were adaptively
segmented and modeled in the study of Rangayyan et al. {92] (see Chapter 8).
The segment boundaries were observed to be markedly different for the primary
and the filtered VAG signals. Parameters extracted from the filtered VAG signals
were expected to provide higher discriminant power in pattern classification when
compared to the same parameters of the unfiltered or primary VAG signals. However,
classification experiments indicated otherwise: the filtered signals gave a lower
classification accuracy by almost 10%. It was reasoned that after removal of the
predominantly fow-frequency muscle-contraction interference, the transient VAG
signals of clinical interest were not modeled well by the prediction-based methods.
Tt was concluded that the adaptive filtering procedure used was not an appropriate
preprocessing step before signal modeling for pattem classification. However, it was
noted that cancellation of muscle-contraction interference may be a desirable step
before spectral analysis of VAG signals.
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Figure 3.59 Top to bottom: (a) VAG signal of a subject with chondromalacia patella of grade
I1; (b) Muscle-contraction interference (MCI); (¢} Result of LMS filtering; and (d) Result of
RLS filtering. The recording setup in shown in Figure 3.10.
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tfrequency in Hz

of length 256 samples (128 mas) was used; an overlap of 32 samples (16 ma) was allowed

Figure 3,60 Spectrogram of the original VAG signal in Figure 3.59 (a). A Hanning window
between adjacent segments.
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time in seconds

frequency in Hz

Figure 3.61 Spectrogram of the muscle-contraction interference signal in Figure 3.59 (b). A
Hanning window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 ms)

was allowed between adjacent segments,
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Figure 3,62 Spectrogram of the RES-filtered VAG signal in Figure 3.59 (d). A Hanning
window of length 256 samples (128 ms) was used; an overlap of 32 samples (16 ms) was
allowed between adjacent segments.
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3.11 REMARKS

We have investigated problems posed by artifact, noise, and interference of vari-
ous forms in the acquisition and analysis of several biomedical signals. Random
noise, structured interference, and physiological interference have been identified
and analyzed separately. Attention has been drawn to the different characteristics of
various types of noise, such as frequency content and nonstationarity. Fixed, optimal,
and adaptive filters were developed in the time and frequency domains for several
applications, and guidelines were drawn to assist in choosing the appropriate filter
for various types of artifacts. Advanced methods for adaptive denoising based on
wavelet and time-frequency decomposition methods have not been discussed in this
chapter, but are described by Krishnan and Rangayyan [93] for filtering VAG signals.
Another category of filters that has not been considered in this chapter is that of
morphological filters {94, 95], which include nonlinear statistics-based operations
and could be formulated under certain conditions to include linear filter operations
as well.

It is important to observe that each practical problem needs to be studied carefully
to determine the type and characteristics of the artifact present; the nature of the
signal and its relationship to, or interaction with, the artifact; and the effect of the
filter being considered on the desired signal or features computed frotn the filtered
resuli, Different filters may be suitable for different subsequent steps of signal
analysis. It is unlikely that a single filter wiil address all of the problems and the
requiretnents in a wide variety of practical situations and applications. Regardless of
one's expertise in filters, it should be remembered that prevention is better than cure:
most filters, while removing an artifact, may introduce another. Attempts should be
made at the outset to acquire artifact-free signals to the extent possible.

3.12 STUDY QUESTIONS AND PROBLEMS

(Note: Some of the guestions deal with the fundamentals of signals and systems, and may
require background preparation with other sources such as Lathi [1] or Oppenheim et al. [2].
Such problems are included for the sake of recoliection of the related concepts.)

1. What are the potential sources of instrumentation and physiological artifacts in recording
the PCG signal? Propose non-electronic methods to prevent or sappress the latter type
of artifacts.

2. List four potential sources of instrumentation and physiological artifacts in recording
the ECG signal. Describe methods to prevent or remove each artifact. Identify the
possible undesired effects of your procedures on the ECG signal.

3. Identify at least three potential sources of physiological artifacts in recording the EEG
signal.
4, In recording the EEG in a clinical laboratory, some channels were found to contain the

ECG as an artifact. 'Will simple lowpass or bandpass filtering help in removing the
artifact? Why (not)? Propose a scheme to remove the artifact.
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. A biomedical signal is bandpass filtered to the range 0 — 150 Hz. Assume the filter

to be ideal, and assume any distribution of spectral energy over the bandwidth of the
signal.

(a) Whal is the minimum frequency at which the signat should be sampled in order to
avoid aliasing errors?

{b) A researcher samples the signal at 500 H z. Draw a schematic representation of the
spectrum of the sampled signal.

(¢) Another researcher samples the signal a1 200 Hz. Draw a schematic representation
of the spectrum of the sampled signal. Explain the differences between case (b) and
case (¢).

Distinguish between ensemble averages and temporal (time) averages. Identify appli-
cations of first-order and second-order averages of both types in EEG analysis.

Explain how one may apply ensemble averaging and temporal (time) averaging pro-
cedures to process ECG signals. ldentify applications of first-order and second-order
averages of both types in ECG analysis.

Explain how you would apply synchronized averaging to remove noise in

(a) ECG signals,

(b) event-related (or evoked) potentials,

(c) heart sound (PCG) signals,

(d) EMG signals.

In each case, explain

(i) how you will obtain the information required for synchronization of the signals
epochs or episodes;

(it} sources of artifacts and how you will deal with them;

(iii) limitations and practical difficulties; and

(iv) potential for success of the method.

. Draw a typical ECG waveform over one cardiac cycle indicating the important compo-

nent waves. How is the waveform affected by passage through

(&) a lowpass filter with a cutoff frequency of 40 Hz?

(b) a highpass filter with a cutoff frequency of 5 Hz?

Draw schematic representations of the expected outputs and explain their characteristics.
What is the z-transform of a signal whose samples are given in the series
{4,3,2,1,0,-1,0,1,0}?

{The first sample represents zero time in all the signal sample arrays given in the
problems, unless stated otherwise.)

A digital filter is used to process a signal at a sampling rate of 2, 000 Hz,

{a) Draw the unit citcle in the complex z-plane and identify the frequencies correspond-
ing to the points z = {1 + j0), z = (0 + §1}, 2 = {(—1 + j0), 2 = (0 — j1), and the
point z = (1 -+ j0) again as approached in the counler-clockwise direction.

(b) What are the frequencies corresponding to these same points if the sampling rate is
500 Hz?

What is the transfer function of a linear shift-invariant system whose impulse response
is given by the series {2,1,9,0,-1,0,1,0} forn = 0,1,2,...,7.7
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The impulse response of a digital filter is {1, —2, 1}. What will be the response of the
filter to the unit step?

The impulse response of a filter is {3, —2, 2}. What will be the response of the filter to
the input {6,4,2,1}?

. The transfer function of a filter is H(z) = 2z~ ~ 3:~7 4 224 — z~%, What is the

difference equation relating the output to the input? What is the impulse response of
the filter?

. The impulse response of a filter is given by the series of values

{3,2,1,0,—1,0,0,1}. What is its transfer function?

. The impulse response of a filter is specified by the seties of sample values {3,1, -1},

(a) What will be the response of the filter to the input whose sample values are
{4,4,2,1}?

(b) Is the filter response obtained by linear convolution or circular convolution of the
input with the impulse response?

(c) What will be the response with the type of convolution other than the one you
indicated as the answer to the question above?

(d) How would you implement convolution of the two signals listed above using the
FFT? Which type of convolution wil] this procedure provide? How would you get the
other type of convolution for the signals in this problem via the FFT-based procedure?

A biomedical signal is expected to be band-limited to 100 H z, with significant com-
ponents of interest up to 80 Hz. However, the signal is contaminated with a periedic
artifact with a fundamental frequency of 80 H z and significant third and fifth harmonics.
A researcher samples the signal at 200 Hz without pre-filtering the signal,

Draw a schematic representation of the spectrum of the signal and indicate the artifact
components, Label the frequency axis clearly in Hz.

What kind of a filter would you recommend to remove the artifact?

A biomedical signal sampled at 500 Hz was found to have a significant amount of
60 H z interference.

(a) Design a notch filter with two zeros to remove the interference.

(b) What is the effect of the filler if a signal sampled at 100 H z is applied as the input?
Two filters with transfer functions Hy(z) = }(1+ 2" ' +2 ) and Ha(z) = 1 -~ 27!
are cascaded.

(a) What is the transfer function of the complete system?

(b) What is its impulse response?

(c) What is its gain at DC and at the folding frequency (that is, £, /2)?

A filter has the transfer function H{z) = (1 4+ 2z~ + 273)/(1 = z~%).

{a) Write the difference equation relating the output to the input.

(b} Draw the signal-flow diagram of a realization of the filter.

(c) Draw its pole-zero diagram.

A digital filter has zeros at 0.5 & 70.5 and poles at ~0.6 =+ j0.3.

(&) Derive the transfer function of the filter,

{b) Derive the time-domain difference equation (input — output relationship) of the filter.
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(¢) [f the filter is used at a sampling frequency of 1,000 H z, what are the frequencies
at which the gain of the filter is maxirmum and minimum?

Two filters with transfer functions Hy(z) = gl (1 — z7%) and Ha(z)} = :ll;_—; are
cascaded. :

(a) What is the transfer function of the complete system?

(b) Draw its pole-zero diagram.

{c) Write the difference equation relating the output to the input.

{d) Draw the signal-flow diagram of a realization of the filter.

{e) Compute the first six values of the impulse response of the filter.

(f) The filter is used 1o process a signal sampled at 1,000 Hz. What is its gain at
0,256, and 500 Hz?

. A filter is described by the difference equation y(n) = y(n — 1) + fz(n) - tz2(n - 4).

{a) What is its transfer function?

(b) Draw the signal-flow diagram of a realization of the filter.

(c) Draw its pole-zero diagram.

Under what conditions will synchronized averaging fail to reduce noise?

signal is passed through a filter described by the transfer function H{z) = %(1— z 1),
What will be the ontput sequence? Plot the output and indicate the amplitode and time
scales in detail with appropriate units,

A signal sampled at the rate of 100 Hz has the samples {0, 10,0, -5,0} in mV. It
is supposed to be processed by a differentiator with the difference equation y{r) =
¥ [2(n) — 2(n — 1)] and then squared. By mistake the squaring operation is performed
before the differentiation. What will be the output sequence? Plot the outputs for
both cases and indicate the amplitude and time scales in detail with appropriate units.
Explain the differences between the two results,

A certain signal analysis technique requires the following operations in order: (a) dif-
ferentiation, (b) squaring, and (c) lowpass filtering with a filter H{w). Considering a
generic signal {2} as the input, write the time-domain and frequency-domain expres-
sions for the cutput of each stage.

Will changing the order of the operations change the final result? Why (not)?

A signal sampled at the rate of 100 H'z has the samples {0, 10,0, ~5,0} in mV. The
signal is processed by a differentiator with the difference equation y(n) = }[:c(n) -
2{(n — 1)}, and then filtered with a 4-point moving-average filter.

(a) Derive the transfer function and frequency response of each filter and the combined
system.

(b) Derive the values of the signal samples at each stage.

(c) Does it matter which filter is placed first? Why (not)?

(d) Plot the output and indicate the amplitude and titne scales in detail with appropriate
units.

Distinguish between ensemble averages and temporal (time) averages.

dentify potential applications of first-order and second-order averages of both types in
heart sound (PCQ) analysis. Explain how you would obtain a trigger for synchroniza-
tion.
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31. Is the heart sound signal (PCG) a stationary signal or not? Provide your answer in the
context of one full cardiac cycle and give reasons,
If you say that the PCG signal is nonstationary, identify parts (segments) that could
possibly be stationary, considering the possibility of murmurs in both systole and
diastole.

32. A signal 2(#) is transmitted through a channel. The received signal ¥(¢) is a scaled,
shifted, and noisy version of z(t) given as y(t} = ax{t — to) + n(t) where o is a scale
factor, to is the time delay, and 5(t) is noise. Assume that the noise process has zero
mean and is statistically independent of the signal process, and that all processes are
stationary.

Derive expressions for the PSD of y(t) in terms of the PSDs of = and 5.

33. Asignal z{n) that is observed in an experiment is modeled as a noisy version of a desired
signal d{n) as 2{n) = d(n) + p(n). The noise process 7 is a zero-mean, unit-variance
random process with uncorrelated samples (“white” noise, with ACFE ¢y (1) = (7))
that is statistically independent of the signal process d. The ACF ¢a{r) of d is given
by the sequence {1.0,0.6,0.2}, for 7 = 0, 1, 2, respectively.

Prepare the Wiener-Hopf equation and derive the coefficients of the optimal Wiener
filter.

3.13 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the site
ftp://ftp.ieee.org/uploads/press/rangayyan/

1. The data file ecg2x60.dat contains an ECG signal, sampled at 200 H z, with a significant
amount of 60 H z power-line artifact. (See also the file ecg2x60.m.)
{a) Design a notch filter with two zeros to remove the artifact and implement it in
MATLAB.
(b) Add two poles at the same frequencies as those of the zeros, but with a radius that

is less than unity. Study the effect of the poles on the output of the filter as their radius
is varied between 0.8 and 0.99.

2. A noisy ECG signal is provided in the file ccg_hfn.dat. (See also the file ecg_hfn.m.)
The sampling rate of this signal is 1,000 Hz.
Develop a MATLAB program to perform synchronized averaging as described in Sec-
tion 3.3.1, Select a QRS complex from the signal for use as the template and use a
suitable threshold on the cross-correlation function in Equation 3.18 for beat detection.
Plot the resulting averaged QRS complex. Ensure that the averaged result covers one
fult cardiac cycle. Plot a sample ECG cycle from the noisy signal for comparison,
Select the QRS complex from a different beat for use as the template and repeal the
experiment. Observe the results when the threshold on the cross-correlation function is
low (say, 0.4} or high (say, 0.95) and comment.

3. Filter the noisy ECG signal in the file ecg.hfn.dat (See also the file ecg_hfnm; f, =
1,000 H2) using four different Butterworth lowpass filters (individually) realized
through MATLAB with the following characteristics:

(a) Otder 2, cutoff frequency 10 Hz;
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(b) Order 8, cutoff frequency 20 Hz;

(c) Order 8, cutoff frequency 40 Hz.

(d) Order 8, cutoff frequency 70 Hz,

Use “help butter” and “help filter” in MATLAB to get details about the Butterworth
filter.

Compare the results obtained using each of the four Butterworth filters (individually)
with those obtained by synchronized averaging, and comment upon the improvements
or distortions in the outputs. Relate your discussions to specific characteristics observed
in plots of the signals.

. The ECG signalin the file ecg_lfn.dat hias a wandering base-line (low-frequency artifact).

(See also the file ecg_lfn.m.) Filter the signal with the derivative-based filters described
in Section 3.3.3 and study the results. Study the effect of variation of the position of
the pole in the filter in Equation 3.47 on the signal.

. Filter the signal in the file ecg_Ifn.dat using Butterworth highpass filters with orders

2—8 and cutoff frequencies 0.5 — 5 Hz. (See also the file ecg_1fn.m.) Study the efficacy
of the filters in removing the base-line artifact and the effect on the ECG waveform
itself. Determine the best compromise acceptable.

Design a Wiener filter to remove the artifacts in the ECG signal in the file ecg_hfn dat.
(See also the file ecg_hfn.m.) The equation of the desired filter is given in Equa-
tion 3.101. The required model PSDs may be obtained as follows:

Create a piece-wise linear model of the desired version of the signal by concatenating
linear segments to provide P, QRS, and T waves with amplitudes, durations, and intervals
similar to those in the given noisy ECG signal. Compute the PSD of the model signal.
Select & few segments from the given ECG signal that are expected to be iso-electric
(for example, the T - P intervals). Compute their PSDs and obtain their average. The
selected noise segments should have zero mean or have the mean subtracted out,
Compare the results of the Wiener filter with those obtained by synchronized averaging
and lowpass filtering.



Event Detection

Biomedical signals carry signatures of physiological events. The part of a signal
related to a specific event of interest is often referred to as an epoch. Analysis
of a signal for monitoring or diagnosis requires the identification of epochs and
investigation of the corresponding events. Once an event has been identified, the
corresponding waveform may be segmented and analyzed in terms of its amplitude,
waveshape {morphology), time duration, intervals between events, energy distribu-
tion, frequency content, and so on. Event detection is thus an important step in
biomedical signal analysis.

4.1 PROBLEM STATEMENT

A generic problem statement applicable to the theme of this chapter may be formu-
lated as follows:

Given a biomedical signal, identify discrete signal epochs and correlate them
with events in the related physiological process.

In the sections to follow, we shall first study a few examples of epochs in different
biomedical signals, with the aim of understanding the nature of the related physio-
logical events. Such an understanding wiil help in the subsequent development of
signal processing techniques to emphasize, detect, and analyze epochs.

177
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4.2 WLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

The following sections provide illustrations of several events in biomedical signals.
The aim of the illustrations is to develop an appreciation of the nature of signal
events. A good understanding of signal events will help in designing appropriate
signal processing techniques for their detection.

4.2.1 The P, GRS, and T waves in the ECG

As we have already observed in Section 1.2.4, a cardiac cycle is reflected in a period
of the repetitive ECG signal as the series of waves labeled as P, QRS, and T. If we
view the cardiac cycle as a series of events, we have the following epochs in an ECG
waveform:

¢ The P wave: Contraction of the atria is triggered by the SA-node impulse. The
atria do not possess any specialized conduction perves as the ventricles do; as
such, contraction of the atrial muscles takes place in a slow squeezing manner,
with the excitation stimulus being propagated by the muscle cells themselves.
For this reason, the P wave is a siow waveform, with a duration of about 30 mas.
The P wave amplitude is much smaller (about 0.1 — 0.2 mV) than that of the
QRS because the atria are smaller than the ventricles. The P wave is the epoch
related to the event of atrial contraction. {Atrial relaxation does not produce
any distinct waveform in the ECG as it is overshadowed by the following QRS
wave.)

s The PQ segment: The AV node provides a delay to facilitate completion
of atrial contraction and transfer of blood to the ventricles before ventricular
contraction is initiated. The resulting PQ segment, of about 80 me duration,
is thus a “non-event”; however, it is important in recognizing the base-line as
the interval is almost always iso-electric.

¢ The QRS wave: The specialized system of Purkinje fibers stimulate contrac-
tion of ventricular muscles in a rapid sequence from the apex upwards. The
almost-simultanecus contraction of the entire ventricular musculature results
in a sharp and tall QRS complex of about 1 mV amplitude and 80 — 100 ms
duration. The event of ventricular contraction is represented by the QRS epoch.

¢ The ST segment: The normally flat (iso-electric) ST segment is related to
the plateau in the action potential of the left ventricular muscle cells (see
Figure 1.3). The duration of the plateau in the action potential is about 200 ms;
the ST segment duration is usvally about 100 — 120 me. As in the case of the
PQ segment, the ST segment may also be termed as a non-event. However,
myocardial ischemia or infarction conld change the action potentials of a
pottion of the left ventricular musculature, and cause the ST segment to be
depressed (see Figure 1.28) or elevated. The PQ segment serves as a useful
reference when the iso-electric nature of the ST segment needs to be verified.
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¢ The T wave: The T wave appears in a normal ECG signal as a discrete wave
separated from the QRS by an iso-electric ST segment. However, it relates
to the last phase of the action potential of ventricular muscle cells, when the
potential returns from the plateau of the depolarized state to the resting potential
through the process of repolarization {23). The T wave is commonly referred
to as the wave corresponding to ventricular relaxation. While this is indeed
correct, it should be noted that relaxation through repolarization is but the final
phase of contraction: contraction and relaxation are indicated by the upstroke
and downstroke of the same action potential. For this reason, the T wave may
be said to relate to a nonspecific event.

The T wave is elusive, being low in amplitude (0.1 — 0.3 mV') and being a
slow wave extending over 120 — 160 me. 1t is almost absent in many ECG
recordings. Rather than attempt to detect the often obscure T wave, one may
extract a segment of the ECG 80 — 360 mas from the beginning of the QRS and
use it to represent the ST segment and the T wave,

4.2.2 The first and second heart sounds

We observed in Section 1.2.8 that the normal cardiac cycle manifests as a series of
the first and second heart sounds — S1 and S2. Murmurs and additional scunds may
appear in the presence of cardiovascular diseases or defects. We shall concentrate on
S1, 82, and murmurs only.

¢ The first heart sound §1: S1 reflects a sequence of events related to ventricular
contraction — closure of the atrio-ventricular valves, isovolumic contraction,
opening of the semilunar valves, and ejection of the blood from the ventricles
[23]. The epoch of S1 is directly related to the event of ventricular contraction.

¢ The second heart sound 82: S2 is related to the end of ventricular contraction,
signified by closure of the aortic and pulmonary valves. As we observed in
the case of the T wave, the end of ventricular contraction cannot be referred
t0 as a specific event per se. However, in the case of $2, we do have the
specific events of closure of the aortic and pulmonary valves to relate to, as
indicated by the corresponding A2 and P2 components of 52. Unfortunately,
separate identification of A2 and P2 is confounded by the fact that they usually
overlap in normal signals. If A2 and P2 are separated due to a cardjovascular
disorder, simultaneous multi-site PCG recordings will be required to identify
each component definitively as they may be reversed in order (see Tavel (41]
and Rushmer {23]).

o Murmurs: Murmurs, if present, could be viewed as specific events. For ex-
ample, the systolic murmur of aortic stenosis relates to the event of turbulent
ejection of blood from the left ventricle through a restricted acrtic valve open-
ing. The diastolic murmur in the case of aortic insufficiency corresponds to
the event of regurgitation of blood from the aorta back into the left ventricle
through a leaky aortic valve.
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4.2.3 The dicrotic notch in the carotid puise

As we saw in Sections 1.2.9 and 1.2.10, closure of the aortic valve canses a sudden
drop in aortic pressure that is already on a downward slope at the end of ventricular
systole. The dicrotic notch insceibed in the carotid pulse is a delayed, upsiream
manifestation of the incisura in the aortic pressure wave. The dicrotic notch is a
specific signature on the relatively nondescript carotid pulse signal, and may be taken
as an epoch related to the event of aortic valve closure (albeit with a time delay); the
same event also signifies the end of ventricular systole and ejection as well as the
beginning of $2 and diastole.

4.2.4 EEG rhythms, waves, and transients

We have already studied a few basic characteristics of the EEG in Section 1.2.5, and
noted the nature of the «, 3, 4, and & waves, We shall now consider a few events
and transients that occur in EEG signals [32, 33, 34, 96, 97, 98], Figure 4.1 shows
typical manifestations of the activities described below [32].

¢ K.complex: Thisis atransient complex waveform with slow waves, sometimes
associated with sharp components, and often followed by 14 Hz waves. It
occurs spontaneousty or in response to a sudden stimulus during sleep, with
an amplitude of about 200 xV.

¢ Lambda waves: These are monophasic, positive, sharp waves that occur in
the occipital location with an amplitude of less than 50 4V'. They are related
to eye movement, and are associated with visual exploration.

o Mu rhythm: This chythm appears as a group of waves in the frequency
range of 7 —~ 11 Hz with an arcade or comb shape in the central location.
The mu rhythm usually has an amplitude of less than 50 uV, and is blocked
or attenuated by contralateral movement, thought of movement, readiness to
move, or tactile stimulation.

o Spike: A spike is defined as a transient with a pointed peak, having a duration
in the range of 20 — 30 mas,

e Sharp wave: A sharp wave is also a transient with a pointed peak, but with a
longer duration than a spike, in the range of 70 — 200 ma.

+ Spike-and-wave rhythm: A sequence of surface-negative slow waves in the
frequency range of 2.5 — 3.5 H 2 and having a spike associated with each wave
is referred to as a spike-and-wave rhythm. There could be several spikes of
amplitude up to 1,000 &V in each complex, in which case the rhythm is called
a polyspike-and-wave complex.

¢ Sleep spindle; This is an episodic rhythm at about 14 Hz and 50 pV,
occurring maximally over the fronto-central regions during certain stages of



ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 181

€ ("/"'\/ﬂ\' ‘\J*J""A ”"'\V",‘,,NMI
[])

0 AL A MAAN AN AN
1b)

e A\ AWAMAANANAARAMAMAMAAMAANS

{clt

F*VAVN"A'J(\‘\/MM

1d)
b te)
= AWV WYY
in
&
(o
Cz
A ‘\,W\“WWW
|
{1
—_—

Figure 4.1 From top to bottom; {a) the K-complex; {b) the lambda wave; (c) the raz rhythm;
(d)a spike; (e) sharp waves; (f) spike-and-wave complexes; (g} a sleep spindle; (h) vertex shamp
waves; and (i) polyspike discharges. The horizontal bar at the bottom indicates a duration
of 1 #; the vertical bars at the right indicate 100 uV. Reproduced with permission from R.
Cooper, J.W. Osselton, and J.C. Shaw, EEG Technology, 3rd Edition, 1980. ©Butterworth
Heinemann Publishers, a division of Reed Educational & Professional Publishing Ltd., Oxford,
UK.
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sleep. A spindle is defined, in general, as a short sequence of monomorphic
waves having & fusiform appearance [33].

s Vertex sharp transient or V-wave: This wave is a sharp potential that is
maximal at the vertex at about 300 1V and is negative in relation to the EEG
in other areas. It occurs spontaneously during sleep or in response to a sensory
stimulus during sleep or wakefulness,

In addition to the above, the term “burst” is used to indicate a phenomenon
composed of two or more waves that are different from the principal (background)
activity in terms of amplitude, frequency, or waveform. A burst is abrupt and has a
relatively short duration [33].

An EEG record is described in terms of [32]

o the most persistent rhythm (for example, o);
e the presence of other thythmic features, such as §, 8, or 3;

¢ discrete features of relatively long duration, such as an episode of spike-and-
wave activity;

o discrete features of relatively short duration, such as isolated spikes or sharp
waves;

o the activity remaining when all the previous features have been described,
referred to as background activity; and

¢ artifacts, if any, giving rise to ambiguity in interpretation.

Each of the EEG waves or activities is described in chronological sequence in terms
of amplitude; frequency, in the case of rhythmic features; waveform, in the case of
both rhythmic and transient features; location or spatial disiribution; incidence or
temporal variability: right - left symmetry in location of activity; and responsiveness
to stimuli, such as eye opening and closure. The EEG record at rest is first described as
above, effects of evocative techniques are then specified in the same terms. Behavioral
changes, such as the subject becoming drowsy or falling asleep, are also noted [32].

The EEG signats in Figure 1.22 demonstrate the presence of the & thythm in ali
the channels. The EEG signals in Figure 1.23 depict spike-and-wave complexes in
almost all the channels.

4.3 DETECTION OF EVENTS AND WAVES

We shall now see how the knowledge that we have gained so far of several biomed-
ical signal events may be applied to develop signal processing techniques for their
detection. Each of the following subsections will deal with the problem of detection
of a specific type of event. The techniques described should find applications in the
detection of other events of comparable characteristics.
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4.3.1 Derivative-based methods for GRS detection

Problem: Develop signal processing techniques to facilitate detection of the QRS
complex, given that it is the sharpest wave in an ECG cycle.

Solution 1: We noted in Section 1.2.4 that the QRS complex has the largest siope
(rate of change of voltage) in a cardiac cycle by virtue of the rapid conduction and
depolarization characteristics of the ventricles. As the rate of change is given by the
derivative operator, the % operation would be the most logical starting point in an
attempt to develop an algorithm to detect the QRS complex,

We saw in Section 3.3.3 that the derivative operator enhances the QRS, although
the resulting wave does not bear any resemblance to a typical QRS complex. Observe
in Figures 3.24 and 3.25 that the slow P and T waves have been suppressed by the
derivative operators, while the output is the highest at the QRS. However, given the
noisy nature of the results of the derivative-based operators, it is also evident that
significant smoothing will be required before further processing can take place.

Balda et al. [99] proposed a derivative-based algorithm for QRS detection, which
was further studied and evaluated by Ahlstrom and Tompkins [100], Friesen et
al. [101), and Tompkins [27]. The algorithm progresses as follows. In a manner
similar to Equation 3.45, the smoothed three-point first derivative yo(n) of the given
signal z(n) is approximated as

yo(n) = [a(n) — z(n - 2)|. 4.1)
The second derivative is'approximaled as
nin) = |z(n) - 2z(n — 2} + z(n — 4)). (4.2)
The two results are weighted and combined to obtain
ya(n) = L3yo(n) + Ll (n). (4.3)

The result y3(n) is scanned with a threshold of 1.0. Whenever the threshold is
crossed, the subsequent eight samples are also tested against the same threshold, If
at least six of the eight points pass the threshold test, the segment of eight samples is
taken to be a part of a QRS complex, The procedure results in a puise with its width
proportional to that of the QRS complex: however, the method is sensitive to noise,

Hlustration of application: Figure 4.2 illustrates, in the top-most trace, two
cycles of a filiered version of the ECG signal shown in Figure 3.5. The signal was
filtered with an eighth-order Butterworth lowpass filter with f. = 90 Hz, down-
sampled by a factor of five, and filtered with a notch filter with f, = 60 Hz. The
effective sampling rate is 200 Hz. The signal was normalized by dividing by its
maximum value.

The second and third plots in Figure 4.2 show the derivatives o(n) and ¢ (n),
respectively; the fourth plot illustrates the combined result y2(n). Observe the
relatively high values in the derivative-based results at the QRS locations; the outputs
are low or negligible at the P and T wave locations, in spite of the fact that the original
signal possesses an unusually sharp and tall T wave. It is also seen that the results
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Figure 4.2 From top to bottom: two cycles of a filtered version of the ECG signal shown
in Figure 3.5; output yo(n) of the first-derivative-based operator in Equation 4.1; output
y1(n) of the second-derivative-based operator in Equation 4.2; the combined result ya(n)
from Equation 4.3; and the result ys(n) of passing ya(n) through the 8-point MA filter in
Equation 3.27.
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have multiple peaks over the duration of the QRS wave, due to the fact that the QRS
complex includes three major swings: Q — R, R - 8, and S — ST base-line in the
present example (an additional PQ base-line — Q swing may also be present in other
ECG signais).

The last plot in Figure 4.2 shows the smoothed result y3(n) obtained by passing
y2(n) through the 8-point MA filter in Equation 3.27. We now have a single pulse
with amplitude greater than 1.0 over the duration of the corresponding QRS complex.
A simple peak-searching algorithm may be used to detect each ECG beat. The net
delay introduced by the filters should be subtracted from the detected peak location
in order to obtain the corresponding QRS location.

Note that peak searching cannot be performed directly on an ECG signal: the QRS
might not always be the highest wave in a cardiac cycle, and artifacts may easily upset
the search procedure. Observe also that the ECG signal in the present illustration was
filtered to a restricted bandwidth of 90 Hz before the derivatives were computed,
and that it is free of base-line drift.

Solution 2: Murthy and Rangaraj [102] proposed a QRS detection algorithm
based upon a weighted and squared first-derivative operator and an MA filter, In this
method, a filtered-derivative operator was defined as

N
am) =Y la(n~-i+1)—z(n- >N -i+1), (4.4)
=1

where z(r) is the ECG signal, and IV is the width of a window within which first-
order differences are computed, squared, and weighted by the factor (N — ¢ + 1).
The weighting factor decreases linearly from the current difference to the difference
N samples earlier in time, and provides a smoothing effect. Further smoothing of
the result was performed by an MA filter over M points to obtain

1 M~1
gr) =37 > arln—j). 4.5)
i=0

With a sampling rate of 100 Hz, the filter window widths were setas M = N = 8,
The algorithm provides a single peak for each QRS complex and suppresses P and T
waves.

Searching for the peak in a processed signal such as g(n) may be accomplished
by a simple peak-searching algorithm as follows:

1. Scan a portion of the signal g(n) that may be expected to contain a peak and
determine the maximum value gpa,. The maximum of g(n) over its entire
available duration may also be taken to be guax.

2. Define a threshold as a fraction of the maximum, for example, Th = 0.5 gpax.

3. For all g(rn) > Th, select those samples for which the corresponding g(n)
values are greater than a ceriain predefined number M of preceding and suc-
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ceeding samples of g(n), that is,

{p} = | n|g(n)>Th ] AND (4.6)
[ g(n)>g(n—i)i=12,...,M ] AND
[ gin)>gn+i),i=12,...,M ]
The set {p} defined as above contains the indices of the peaks in g(n).

Additional conditions may be imposed to reject peaks due to artifacts, such as
a minimum interval between two adjacent peaks. A more efaborate peak-searching
algorithm wili be described in Section 4.3.2.

Mustration of application: Figure 4.3 illustrates, in the top-most trace, two
cycles of a filtered version of the ECG signal shown in Figure 3.5. The signal
was filtered with an eighth-order Butterworth lowpass filter with f. = 40 Hz, and
down-sampled by a factor of ten. The effective sampling rate is 100 Hz to match
the parameters used by Murthy and Rangaraj [102]. The signal was normalized by
dividing by its maximum value.
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Figure 4.3 From top to bottom: two cycles of a filtered version of the ECG signal shown in
Figure 3.5; output g1 (n) of the weighted and squared first-derivative operator in Equation 4.4;
output g(n) of the smoothing filter in Equation 4.5.

The second and third plots in Figure 4.3 show the outputs of the derivative-based
operator and the smoothing filter. Observe that the final output contains a single,
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smooth peak for each QRS, and that the P and T waves produce no significant
output. A simple peak-searching algorithm may be used to detect and segment each
beat [102].

4.3.2 The Pan-Tompkins algorithm for QRS detection

Problem: Propose an algorithm to detect QRS complexes in an ongoing ECG signal.

Solution: Pan and Tompkins [103, 27) proposed a real-time QRS detection al-
gorithm based on analysis of the slope, amplitude, and width of QRS complexes.
The algorithmn includes a series of filters and methods that perform lowpass, high-
pass, derivative, squaring, integration, adaptive thresholding, and search procedures.
Figure 4.4 illustrates the steps of the algorithm in schematic form.

Bandpass . T Squaring Moving-window
filter operation inlegrator

Figure 4.4 Block diagram of the Pan-Tompkins algotithm for QRS detection.

Lowpass filter: The recursive lowpass filter used in the Pan-Tompkins algorithm
has integer coefficients to reduce computational complexity, with the transfer function

defined as
1 (1-270

32 (1~274)*°
(See also Equations 3,37 and 3.38.) The output y(n) is related to the input z(n) as

H(z) = .7

y(n) =2y(n— 1) —y(n - 2) + 515 [#(n) — 22(n ~6) +2(n—12)]. (4.8)

With the sampling rate being 200 Hz, the filter has a rather low cutoff frequency
of f. = 11 Hz, and introduces a delay of 5 samples or 25 ms. The filter provides
an attenuation greater than 35 dB at 60 Hz, and effectively suppresses power-line
interference, if present. '

Highpass filter; The highpass filter used in the algorithm is implemented as an
allpass filter minus a lowpass filter. The lowpass component has the transfer function

_ (=2
Hy(2) = =k 4.9
the input — output relationship is
y(n) = y(n — 1} + 2{n) — z(n — 32). (4.10)

The transfer function Hy,(z) of the highpass filter is specified as

- 1
Hpp(z)=271% - 3 Hol2)- (4.11)



188 EVENT DETECTION
Equivalently, the output p(n) of the highpass filter is given by the difference equation
1
p(n) = 2(n - 16} - ) [¥(n — 1) + z(n} - a(n — 32)}, 4.12)

with z{n) and y(n) being related as in Equation 4.10. The highpass filter has a cutoff
frequency of 5 Hz and introduces a delay of 80 mas.

Derivative operator: The derivative operation used by Pan and Tompkins is
specified as

y(n) = % [2z(n) + 2(n — 1) - 2(n — 3) - 2z(n — 4)], @.13)

and approximates the ideal f; operator up to 30 Hz The derivative procedure
suppresses the low-frequency components of the P and T waves, and provides a
targe gain to the high-frequency components arising from the high slopes of the QRS
complex. (See Section 3.3.3 for details on the properties of derivative-based filters.)

Squaring: The squaring operation makes the result positive and emphasizes large
differences resulting from QRS complexes; the smali differences arising from P and
T waves are suppressed. The high-frequency components in the signal related to the
QRS complex are further enhanced.

Integration: As observed in the previous subsection, the output of a derivative-
based operation will exhibit multiple peaks within the duration of a single QRS
complex. The Pan-Tompkins algorithm performs smoothing of the output of the
preceding operations through a moving-window integration filter as

Yn) = feln— (N = 1) 4 aln— (V=) + - +am)]. @14

The choice of the window width N is to be made with the following considerations:
too large a value will result in the outputs due to the QRS and T waves being merged,
whereas too small a value could yield several peaks for a single QRS. A window
width of N = 30 was found to be suitable for f, = 200 H2. Figure 4.5 illustrates
the effect of the window width on the output of the integrator and its relationship to
the QRS width. (See Section 3.3.2 for details on the properties of moving-average
and integrating filters.)

Adaptive thresholding: The thresholding procedure in the Pan-Tompkins algo-
rithm adapts to changes in the ECG signal by computing running estimates of signal
and noise peaks. A peak is said to be detected whenever the final cutput changes
direction within a specified interval. In the following discussion, SPKT represents
the peak level that the algorithm has learned to be that corresponding to QRS peaks,
and N PK I represents the peak level related to non-QRS events (noise, EMG, etc.).
THRESHOLD Il and THRESHOLD I2 are two thresholds used to categorize
peaks detected as signal (QRS) or noise.

Every new peak detected is categorized as a signal peak or a noise peak. If a peak
exceeds THRESHOLD I1 during the first step of analysis, it is classified as a QRS
(signal) peak. If the searchback technigue (described in the next paragraph) is used,
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"

W- Qs

Figure 4.5 The relationship of 2 QRS complex to the moving-window integrator output.
Upper piot: Schematic ECG signal. Lower plot: Output of the moving-window integralor.
QS: QRS complex width. W: width of the integrator window, given as N/ f, s. Adapted from
Tompkins {27]).

the peak should be above THRESHOLD 12 to be called a QRS. The peak levels
and thresholds are updated after each peak is detected and classified as

SPKI=0.12PEAKI + 0875 SPKI if PEAKTI is asignal peak; (4.15)
NPKI=0125PEAKI + 0875 NPKI if PEAKI is anoise peak;

THRESHOLD I1 = NPKI+025(SPKI—- NPKI); (4.16)
THRESHOLDI2 = 05THRESHOLD I1.

The updating formuia for SPK is changed to
SPKI=0.25 PEAKI +0.756 SPKI .17

if a QRS is detected in the searchback procedure using THRESHOLD I2.

Searchback procedure: The Pan-Tompkins algorithm maintains two RR-interval
averages: RR AVERAGE1 is the average of the eight most-recent beats, and RR
AVERAGE?2 is the average of the eight most-recent beats having RR intervals
within the range specified by RR LOW LIMIT = 0.92 x RR AVERAGE?
and RR HIGH LIMIT = 1.16 x RR AVERAGE2. Whenever a QRS is
not detected for a certain interval specified as AR MISSED LIMIT = 1.66 x
RR AVERAGE?, the QRS is taken to be the peak between the established thresh-
olds applied in the searchback procedure.
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The algorithm performed with a very low error rate of 0,68%, or 33 beats per hour
on a database of about 1186, 000 beats obtained from 24-hour records of the ECGs of
48 patients (see Tompkins [27] for details).

Hiustration of application: Figure 4.6 illustrates, in the top-most trace, the
same ECG signal as in Figure 4.2, The Pan-Tompkins algorithm as above was
implemented in MATLAB. The outputs of the various stages of the algorithm are
illustrated in sequence in the same figure, The observations to be made are similar
to those in the preceding section on the derivative-based method. The derivative
operator suppresses the P and T waves and provides a large output at the QRS
locations. The squaring operation preferentially enhances large values, and boosts
high-frequency components. The result still possesses multiple peaks for each QRS,
and hence needs to be smoothed. The final output of the integrator is a single smooth
pulse for each QRS. Observe the shift between the actual QRS location and the pulse
output due to the cumulative delays of the various filters. The thresholding and search
procedures and their results are not illustrated. More examples of QRS detection will
be presented in Sections 4.9 and 4.10.
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Figure 4.6 Results of the Pan-Tompkins algorithm. From top to bottom: two cycles of a
filtered version of the ECG signal shown in Figure 3.5 (the same as that in Figure 4.2); output
of the bandpass filter (BPF, a combination of lowpass and highpass filters); output of the
derivative-based operator; the result of squaring; and 100 the result of the final integrator,



CORRELATION ANALYSIS OF EEG CHANNELS 191

4.3.3 Detection of the dicrotic notch

Problem: Propose a method to detect the dicrotic notch in the carotid pulse signal.

Solution: Lehner and Rangayyan [66] proposed a method for detection of the
dicrotic notch that used the least-squares estimate of the second derivative p(n) of
the carotid pulse signal y(n) defined as

p(n) =2y(n - 2) ~y(n — 1) = 2y(n) — y(n + 1) + 2y(n + 2). 4.18)

Observe that this expression is noncausal; it may be made causal by adding a delay
of two samples,

The second derivative was used due to the fact that the dicrotic notch appears
as a shont wave riding on the downward slope of the carotid pulse signal (see also
Starmer et al. [104]). A first-derivative operation would give an almost-constant
output for the downward slope. The second-derivative operation removes the effect
of the downward slope and enhances the notch itself. The result was squared and
smoothed to obtain

M
s(n) =" p*(n—k + Dw(k), 4.19)
k=1

where w(k) = (M — k + 1) is a linear weighting function, and M = 18 for
o= 256 Hz.

The method yields two peaks for each period of the carotid pulse signal. The first
peak in the resuit represents the onset of the carctid upstroke. The second peak that
appears in the result within a cardiac cycle is due to the dicrotic notch. To locate the
dicrotic notch, the local minimum in the carotid pulse within a £20 ms interval of
the second peak needs to be located.

Hilustration of application: The upper plot in Figure 4.7 illustrates two cycles
of a carotid pulse signal. The signal was lowpass filtered at 100 Hz and sampled at
250 Hz. The result of application of the Lehner and Rangayyan method to the signal
is shown in the lower plot. It is evident that the second derivative has successfully
accentuated the dicrotic notch. A simple peak-searching algorithm may be used to
detect the first and second peaks in the result. The dicrotic notch may then be located
by searching for the minimum in the carotid pulse signal within a +20 ma interval
around the second peak location.

Observe that the result illustrated in Figure 4.7 may benefit from further smoothing
by increasing the window width M in Equation 4.19. The window width needs to
be chosen in accordance with the characteristics of the signal on hand as weli as
the lowpass filter and sampling rate used. Further illustration of the detection of the
dicrotic notch will be provided in Section 4.10.

4.4 CORRELATION ANALYSIS OF EEG CHANNELS

EEG signals are usually acquired simultaneously over multiple channels. Event
detection and epoch analysis of EEG signals becomes more complicated than the
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Figure 4.7 Two cycles of a carotid pulse signal and the result of the Lehner and Rangayyan
method for detection of the dicrotic notch.
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problems we have seen so far with the single-channet ECG and carotid pulse signals,
due to the need to detect similar events across multiple channels. Autocorrelation
and cross-correlation techniques in both the time and frequency domains serve such
needs.

4.41 Detection of EEG rhythms

Problem: Propose a method to detect the presence of the o rhythm in an EEG
channel, How wonld you extend the method to detect the presence of the same
rhythm simultaneously in two EEG channels?

Solution: Two signals may be compared to detect common characieristics present
in them via their dot product (aiso known as the inner or scalar product), defined as

N-1
zoy={(z,y) = z(ny(n), (4.20)

n=0

where the signals 2(n) and y(n) bave N samples each. The dot product represents
the projection of one signal ento the other, with each signal being viewed as an
N-dimensional vector. The dot product may be normalized by the geometric mean
of the energies of the two signals to obtain a correlation coefficient as [67)

Sase #(njy(n) — @.21)
(S0 a2(m) TV 42 (m)]

The means of the signals may be subtracted out, if desired, as in Equation 3.18.
In the case of two continuous-time signals z(2) and y(¢). the projection of one
signal onto the other is defined as

8,,:/ z(t)y(t)dE. (4.22)

-

Yay =

When a shift or time delay may be present in the occurrence of the epoch of interest
in the two signals being compared, it becomes necessary te introduce a time-shift
parameter to compute the projection for every possible position of overlap. The shift
parameter facilitates searching one signal for the occurrence of an event matching
that in the other signal at any time instant within the available duration of the signals.
The cross-correlation function (CCF) between two signals for a shift or delay of 7
seconds or k samples may be obtained as

Opy(7) = /: - z(t)y(t + v)dt, or 4.23)
Oay (k) = D 2(n)y(n + k). (4.24)

n

The range of summation in the latter case needs to be limited to the range of the
available overlapped data. A scale factor, depending upon the number of data samples
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used, needs to be introduced to obtain the true CCF, but will be neglected here (see
Section 6.4). An extended version of the correlation coefficient -, in Equation 4.21,
to include time shift, is provided in Equation 3.18.

‘When the ACF or the CCF are computed for various shifts, a question arises about
the data samples in one of the signal segments beyond the duration of the other. We
may add zeros to one of the signals and increase its length by the maximum shift
of interest, or we may use the true data samples from the original signal record, if
availabie. The latter method was used wherever possible in the following illustrations.

In the case of random signals, we need to take the expectation or sample average
of the outer product of the vectors formed by the available samples of the signals. Let
x(n) = [z{n),z(n-1),...,2(n-N+1)[T and y(n) = fy(n)y(n-1),...,y(n~
N + 1)]7 represent the N-dimensional vectorial form of the two signals #(r) and
y(n) with the most-recent N samples being available in each signal at the time
instant n. If x(n} and y(n) are sample observations of random processes, their CCF
is defined as

8.y = Ex(n)yT(n)], 4.25)

in a manner similar to what we saw in Equations 3.78 and 3.79. The outer product,
which is an NV x N matrix, provides the cross-terms that include all possible delays
(shifts) within the duration of the signals,

All of the equations above may be modified to obtain the ACF by replacing the
second signal y with the first signal x. The signal  is then compared with itself.

The ACF displays peaks at intervals corresponding to the period (and integral
multiples thereof) of any periodic or repetitive pattern present in the signal. This
property facilitates the detection of rhythms in signals such as the EEG: the presence
of the a thythm would be indicated by a peak in the neighborhood of 0.1 5. The
ACF of most signals decays and reaches negligible values after delays of a few
milliseconds, except for periodic signals of infinite or indefinite duration for which
the ACF will also exhibit periodic peaks. The ACF will also exhibit multiple peaks
when the same event repeats itself at regular or irregular intervals, One may need
o compute the ACF only up to certain delay limits depending upon the expected
characteristics of the signal being analyzed.

The CCF displays peaks at the pericd of any periodic pattern present in both
of the signals being analyzed. The CCF may therefore be used 1o detect common
thythms present between two signals, for example, between two channels of the EEG,
When one of the functions being used to compute the CCF is a template representing
an event, such as an ECG cycle as in the illustration in Section 3.3.1 or an EEG
spike-and-wave complex as in Section 4.4.2, the procedure is known as femplate
matching.

IYustration of application: Figure 4.8 shows, in the upper trace, the ACF of
a segment of the p4 channe! of the EEG in Figure 1.22 over the time interval
4.67 — 5.81 5. The ACF displays peaks at time delays of 0.11 s and its integral
muitiples. The inverse of the delay of the first peak corresponds to 9 Hz, which is
within the o rhythm range. {The PSD in the lower trace of Figure 4.8 and the others
to follow will be described in Section 4.5.} It is therefore obvious that the signal
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segment analyzed contains the o rhythm. A simple peak-search algotithm may be
applied to the ACF to detect the presence of peaks at specific delays of interest or
over the entire range of the ACF.
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Figare 4.8 Upper trace: ACF of the 4.87 — 5.81 s portion of the p4 chamnel of the EEG
signal shown in Figure 1.22, Lower trace: The PSD of the signal segment in dB, given by the
Fourier transform of the ACF,

To contrast with the preceding example, the upper trace of Figure 4.9 shows the
ACF of the 4.2 — 4.96 s segment of the f3 channel of the EEG in Figure 1.22. The
ACF shows no peak in the 0.08 — 1.25 3 region, indicating absence of the o rhythm
in the segment analyzed.

Figures 4.10, 4.11, and 4.12 illustrate the CCF results comparing the following
portions of the EEG signal shown in Figure 1.22 in order: the p3 and p4 channels
over the duration 4.72 — 5.71 s when both channels exhibit the o rhythm; the 02 and
¢4 channels over the duration 5.71 — 6.78 s when the former has the o rhythm but not
the latter channel; and the f3 and f4 channels over the duration 4.13 — 4,96 5 when
neither channel has o activity. The relative strengths of the peaks in the o range, as
described earlier, agree with the joint presence, singular presence, or absence of the
o rthythm in the various segments (channels) analyzed,
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Figure 4,9 Upper trace: ACF of the 4.2 — 4.96 & portion of the £3 channel of the EEG signal
shown in Figure 1.22. Lower trace: The PSD of the signal segment in dB.



CORRELATION ANALYSIS OF EEG CHANNELS 197

1 T T -1 T T T T T T
051 i
of k|
~0.5F J
i R 1 1 A R 1 1 1
0 0.05 0.1 0.15 g2 025 0.3 0.38 0.4 D.45
Celay in seconds
0 ’_ L) L) T t T T ¥ Ll T
5 N
n
b=
=
3 -10f 1
4]
15 r _
L L | - 1 A Il L e
0 5 10 15 20 25 3¢ as 40 45
Fraquency in Hz

Figure 4,10 Upper trace; CCF between the 4.72 — 5.71 s portions of the p3 and p4 channels
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in 4B,
compiited as the Fourier transform of the CCF.
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Figured.11 Upper trace: CCF between the 5.71 — 6.78 # portions of the 02 and c4 channels
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB.
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Figure 4.12 Upper trace: CCF between the 4.13 — 4,96 & portions of the £3 and {4 channels
of the EEG signal shown in Figure 1.22. Lower trace: The CSD of the signal segments in dB.



200 EVENT DETECTION

4.4.2 Template matching for EEG spike-and-wave detection

We have already seen the use of template matching for the extraction of ECG cycles
for use in synchronized averaging in Section 3.3.1. ‘We shall now consider another
application of template matching,

Problem: Propose a method to detect spike-and-wave complexes in an EEG
signal, You may assume that a sample segment of a spike-and-wave complex is
available.

Solution: A spike-and-wave complex is a well-defined event in an EEG signal.
The complex is composed of a sharp spike followed by a wave with a frequency
of ahout 3 Hz; the wave may contain a half period or a full period of an atmost-
sinusoidal pattern. One may therefore extract an epoch of a spike-and-wave complex
from an EEG channel and use it for template matching with the same formula as in
Equation 3.18 (see also Bartow [97]). The template may be correlated with the same
channel from which it was extracted to detect similar events that appear at a Jater
time, or with another channel to search for similar events. A simple threshold on the
result should yield the time instants where the events appear.

INustration of application: The c3 channel of the EEG signal in Figure 1.23 is
shown in the upper trace of Figure 4.13. The spike-and-wave complex between 0,60 s
and 0.82 ¢ in the signal was selected for use as the template, and tempiate matching
was performed with the same channel signal using the formula in Equation 3.18. The
result in the lower trace of Figure 4.13 demonstrates sirong and clear peaks at each
occurrence of the spike-and-wave complex in the EEG signal. The peaks in the result
occur at the same instants of time as the corresponding spike-and-wave complexes.

Figure 4.14 shows the f3 channel of the EEG signal in Figure 1.23, along with the
result of template matching, using the same template that was used in the previous
example from channel c3. The result shows that the £3 channel also has spike-and-
wave complexes that match the template.

4.5 CROSS-SPECTRAL TECHNIQUES

The multiple peaks that arise in the ACF or CCF functions may cause ¢onfusion in
the detection of rhythms; the analyst may be required to discount peaks that appear
at integral multiples of the delay corresponding to a fundamental frequency. The
Fourier-domain equivalents of the ACF or the CCF permit easier and more intuitive
analysis in the frequency domain than in the time domain. The notion of rhythms
would be easier to associate with frequencies in ¢ps or H z than with the corresponding
inversely related periods (see also the introductory section of Chapter 6).

4.5.1 Coherence analysie of EEG channels

Problem: Describe a frequency-domain approach to study the presence of rhythms
in multiple channels of an EEG signal.
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Figure 4.13 Upper trace: the ¢3 channel of the EEG signal shown in Figore 1.23. Lower
trace; result of template matching. The spike-and-wave complex between 0.60 s and 0.82 &
in the signal was used as the template.
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Figure 414 Upper trace: the 3 channel of the EEG signal shown in Figure 1.23. Lower
trace: result of template matching. The spike-and-wave complex between 0.60 # and 0.82 5
in the c3 channel (see Figure 4.13) was used as the template,
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Solution: The Fourier-domain equivalents of the ACF and CCF are the PSD (also
known as the autospectrum) and the cross-spectrum (or cross-spectral density —
CSD), respectively. The PSD 8, (f} of a signal is related to its ACF via the Fourier
transform:

S:a(f) = FT[$a2(7)} = X(H)X*(f) = | X(HI*. (4.26)
The Fourier transform of the CCF between two signals gives the CSD:
Szy(f) = FT[8y(r)] = X(H)Y*(f). 4.27)

(For the sake of simplicity, the double-symbol subscripts zz and gy may be replaced
by their singular versions, or dropped entirely when not relevant in subsequent
discussions.)

The PSD displays peaks at frequencies corresponding to periodic activities in the
signal. This property facilitates the detection of rhythms in signals such as the EEG;
the presence of the ¢ rhythm would be indicated by a peak or multiple peaks in the
neighborhood of 8 — 13 Hz. The PSD may also be studied to locate the presence
of activity spread over specific bands of frequencies, such as formants in the speech
signal or mutmurs in the PCG.

The CSD exhibits peaks at frequencies that are present in both of the signals being
compared. The CSD may be used to detect rhythms present in common between two
channels of the EEG. '

The normalized coherence spectrum of two signals is given by [5, 32]

2 1/2
1Sey(£)] ] . 428)

Talf) = [sn(f)swm

The phase of the coherence spectrum is given by ¥.4(f) = £Sz4(f), which rep-
resents the average phase difference (related to the time delay) between common
frequency components in the two signals.

Hlustration of application: The coherence between EEG signals recorded from
different positions on the scalp depends upon the structural connectivity or func-
tional coupling between the corresponding parts of the brain. Investigations into the
nenrophysiology of seizure discharges and behavior attributable to disorganization
of cerebral function may be facilitated by coherence analysis [32]. The symmetry,
or lack thereof, between two EEG channels on the left and right sides of the same
position (for example, c3 and c4) may be analyzed via the CSD or the coherence
function.

The lower traces in Figures 4.8 and 4.9 illustrate the PSDs of EEG segments with
and without the o« rhythm, respectively. The former shows a strong and clear peak at
about 9 H z, indicating the presence of the a thythm, Observe that the PSD displays
a single peak although the corresponding ACF has multiple peaks at two, three, and
four times the delay corresponding to the fundamental period of the & wave in the
signal. The PSD in Figure 4.9 exhibits no peak in the a range, indicating the absence
of the a rhythm in the signal.
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The lower traces in Figures 4.10, 4.11, and 4.12 illustrate the CSDs corresponding
to the CCFs in the respective upper traces. Once again, it is easier to deduce the
common presence of strong « activity between channels p3 and p4 from the CSD
rather than the CCF in Figure 4.10. The single peak at 9 Hz in the CSD is more
easily interpretable than the multiple peaks in the corresponding CCF. The CSD in
Figure 4.11 lacks a clear peak in the « range, even though the corresponding CCF
shows a peak at about 0.1 s, albeit less significant than that in Figure 4.10. The
resuits agree with the fact that one channel has o activity while the other does not.
Finally, the CSD in Figure 4.12 is clearly lacking a peak in the  range; the two signal
segments have no o activity. Further methods for the analysis of ar activity will be
presented in Sections 6.4.3 and 7.5.2.

4.6 THE MATCHED FILTER

When a sample observation or template of a typical version of a signal event is
available, it becomes possible to design a filter that is matched to the characteristics
of the event. If a signal that contains repetitions of the event with almost the same
characteristics is passed through the marched filter, the output should provide peaks
at the time instants of occurrence of the event, Matched filters are commonly used for
the detection of signals of known characteristics that are buried in noise [105, 106].
They are designed to perform a correlation between the input signal and the signal
template, and hence are also known as correlation filters.

4.6.1 Detection of EEG splke-and-wave complexes

Problem: Design a matched filter to detect spike-and-wave complexes in an EEG
signal. A reference spike-and-wave complex is available.

Solution: Let x(t) be the given reference signal, representing an ideal observation
of the event of interest. Let X (f) be the Fourier transform of 2(¢). Consider passing
z(t) through a linear time-invariant filter whose impulse response is h{t); the transfer
function of the filter is H(f) = FT{h(t)). The output is given by y() = 2(¢) » h(t)
or Y(f) = X()H(F).

It may be shown that the output energy is maximized when

H(f) = KX*(f) exp(—j2n o), (4.29)

where K is a scale factor and ¢, is a time instant or delay [105]. This corresponds to
the impulse response being

h(t) = Kx(tg — t). (4.30)
Thus the transfer function of the matched filter is proportional to the complex conju-
gate of the Fourier transform of the signal event to be detected. In the time domain,
the impulse response is simply a reversed or reflected version of the reference signal

that is scaled and delayed. A suitable delay will have to be added to make the filter
causal, as determined by the duration of the reference signal.
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As the impulse response is a reversed version of x(t), the convolution operation
performed by the matched filter is equivalent to correlation: the output is then equal
to the cross-correlation between the input and the reference signal. When a portion
of an input signal that is different from #(t) maiches the reference signal, the output
approximates the ACF ¢, of the reference signal at the corresponding time delay.
The corresponding frequency domain result is

Y(f) = X(NH(f) = X(HX*(f) = Sz« (f), (4.31)

which is the PSD of the reference signal (ignoring the time delay and scale fac-
tors). The output is therefore maximum at the time instant of occurrence of an
approximation to the reference signal. (See also Barlow [97].)

INustration of application: To facilitate comparison with template matching,
the spike-and-wave complex between 0.60 s and 0.82 s in the ¢3 channel of the
EEG in Figure .23 was used as the reference signal to derive the matched filter.
Figure 4.15 shows the extracted reference signal in the upper trace. The lower trace
in the same figure shows the impulse response of the matched filter, which is simply
a time-reversed version of the reference signal. The matched filter was implemented
as an FIR filter using the MATLAB filter command.

Figures 4.16 and 4.17 show the outputs of the matched filter applied to the ¢3 and
3 channels of the EEG in Figure 1.23, respectively. The upper trace in each plot
shows the signal, and the lower trace shows the maiched-filter output. It is evident
that the matched filter provides a large output for each spike-and-wave complex.
Comparing the matched-filter outputs in Figures 4.16 and 4.17 with those of template
matching in Figure 4.13 and 4.14, respectively, we observe that they are similar, with
the exception that the matched-filter results peak with a delay of 0.22 s after the
corresponding spike-and-wave complex. The delay corresponds to the duration of
the impulse response of the filter. (Note; MATLAB provides the command filtfilt for
zero-phase forward and reverse digital filtering; this method is not considered in the
book.)

4.7 DETECTION OF THE P WAVE

Detection of the P wave is difficult, as it is small, has an ill-defined and variable
shape, and could be placed in a background of noise of varying size and origin,
Problem: Propose an algorithm to detect the P wave in the ECG signal,
Solution 1: In the method proposed by Hengeveld and van Bemme! [107], VCG
signals are processed as follows:

1. The QRS is detected, deleted, and replaced with the base-line. The base-line
is determined by analyzing a few samples preceding the QRS complex.

2. The resulting signal is bandpass filtered with —3 dB pointsat3 Hzand11 Hz.

3. A search interval is defined as QT pax = %RR + 250 ms, where RR is the
interval between two successive QRS complexes.
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Figure 4.15  Upper trace: The spike-and-wave complex between 0,60 ¢ and 0.82 # in the
c3 channel of the EEG signal shown in Figure 1.23. Lower trace: Impulse response of the
maiched filter derived from the signal segment in the upper trace, Observe that the latter is a
time-reversed version of the former.
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Figure 4.16 Upper trace: The c3 channel of the EEQG signal shown it Figure 1.23, used as
input to the matched filter in Figure 4.15. Lower trace: Output of the matched filter, See also
Figure 4.13.
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Figure 4.17 Upper trace: The 3 channel of the EEG signal shown in Figure 1.23, used as
input to the matched filter in Figure 4.15. Lower trace: Qutput of the matched filter. See also
Figure 4.14.
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4. The maximum and minimum values are found in all three VCG leads from the
end of the preceding T wave to the onset of the QRS.

5. The signal is rectified and thresholded at 50% and 75% of the maximum to
obtain a ternary (three-level) signal.

6. The cross-correlation of the result is computed with a ternary template derived
in a manner similar to the procedure in the previous step from a representative
set of P waves.

7. The peak in the cross-correlation corresponds to the P location in the original
ECG.

The algorithm overcomes the dominance of the QRS complex by first detecting
the QRS and then deleting it. Observe that the cross-correlation is computed not
with an original P wave, which we have noted could be rather obscure and variable,
but with a ternary wave derived from the P wave. The ternary wave represents a
simplified template of the P wave.

Figure 4.18 illustrates the results of the various stages of the P-finding algorithm
of Hengeveld and van Bemmel [107]. Observe that the original ECG signal shown in
part (a) of the figure has a P wave that is hardly discernible. The processed versions
of the signal after deleting the QRS, filtering, and rectification are shown in parts (b),
(c), and (d). The ternary version in part {¢) shows that the P wave has been converied
into two pulses corresponding to its upstroke and return parts. The result of cross-
correlation with the template in part (f) is shown in part (g). A simple peak-picking
algorithm with search limits may be used to detect the peak in the result, and hence
determine the P wave position.

Note that the result in pari (d) has other waves preceding those related to the P
wave, An appropriate search interval should be used so as to disregard the unwanted
components.

Solution 2: Gritzali et al. [108] proposed a common approach to detect the QRS, T,
and P waves in multichannel ECG signals based upon a transformation they labeled as
the “length” transformation. Given a collection of ECG signals from N simuitaneous
channels @, {t), 2a{t}), ..., zn (%), the length ransformation was defined as

t+w N 2
L(N,w,t) = f 3 (d—ﬂ) dt, @.32)
s dt

i=1

where w is the width of the time window over which the integration is performed. In
essence, the procedure computes the total squared derivative of the signals across the
various channels available, and integrates the summed quantity over a moving time
window. The advantage of applying the derivative-based operator across multiple
channels of an ECG signal is that the P and T waves may be well-defined in at least
one channel.

In the procedure for waveform detection proposed by Gritzali et al.. the QRS is
first detected by applying a threshold to L{N, w, t}, with w set equal to the average
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Figure 4,18 Illustration of the sesults at various stages of the Hengeveld and van Bernmel
methed for P wave detection. From top to bottom: (a) the original ECG signal; (b) after
replacement of the QRS with the base-line; (¢) after bandpass filtering; (d) after rectification,
with the dashed lines indicating the thresholds; (e) the thresholded ternary signal; (f) the
temary P wave template; and (g) result of cross-correlation between the signals in () and ().
Reproduced with permission from S.J. Hengeveld and I.H. van Bemmel, Computer detection
of P waves, Computers and Biomedical Research, 9:125-132, 1976. ©Academic Press.
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QRS width. The onset and offset (end) points of the QRS are represented by a pulse
waveform, as indicated in Figure 4.19. The QRS complexes in the signals are then
replaced by the iso-electric base-line of the signals, the procedure is repeated with
w set equal to the average T duration, and the T waves are detected. The same
steps are repeated to detect the P waves. Figure 4.19 illustrates the detection of the
QRS, T, and P waves in a three-channel ECG signal, Gritzali et al. also proposed a
procedure based upon correlation analysis and least-squares modeling to determine
the thresholds required, which will not be described here,
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Figure 4.19 Detection of the P, QRS, and T waves in a three-channel ECG signal using the
length transformation. The lower three traces show the three ECG channels. The upper three
traces indicate the onset and end of the P, QRS, and T waves detected by the procedure in the
form of pulse trains. The first P and the Jast T waves have not been processed. Reproduced
with permission from F. Gritzali, G. Frangakis, G. Papakonstantinou, Detection of the Pand T
waves in an ECG, Computers and Biomedical Research, 22:83-91, 1989. ©Academic Press.
See¢ Willems ¢t al. [109, 110] for details on the EC( database used by Gritzali et al,
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4.8 HOMOMORPHIC FILTERING AND THE COMPLEX CEPSTRUM

In Chapter 3, we have seen linear filters designed to separate signals that were
added together. The question asked has been, given y(t) = =(t) + n(t), how
could one extract z{t) only. Given that the Fourier transform is linear, we know
that the Fourier transforms of the signals are also combined in an additive manner:
Y{w) = X(w)+n(w). Therefore, alinear filter will facilitate the separation of X (w)
and n{w), with the assumption that they have significant portions of their energies in
different frequency bands.

Suppose now that we are presented with a signal that contains the product of two
signals, say, y(£) = 2(t) p(t). From the multiplication or convolution property of the
Fourier transform we have Y {w)} = X{w) » P{w), where » represents convolution in
the frequency domain. How would we be able to separate @(t) from p(t)?

Furthermore, suppose we have g(¢) = z(t} » h{t), where = stands for convolution
as in the case of the passage of the glottal pulse train or random excitation z(t) through
the vocal-tract system with the impulse response h(t). The Fourier transforms of the
signals are related as Y (w) = X (w) H(w). How would we attempt to separate ()
and h(t)?

4.8.1 Generalized linear fiering

Given that linear filters are well established and understood, it is attractive to con-
sider extending their application to signals that have been combined by operations
other than addition, especiatly by multiplication and convolution as indicated in the
preceding paragraphs. An interesting possibility to achieve this is via conversion of
the operation combining the signals into addition by one or more transformations.
Under the assumption that the transformed signals occupy different portions of the
transform space, linear filters may be applied to separate them. The inverses of the
transformations used initially would then take us back to the original space of the
signals. This approach was proposed in a series of papers by Bogert et al. [111]
and Oppenheim et al. {112, 113]. As the procedure extends the application of linear
filters to multiplied and convolved signals, it has been referred to as generalized
linear filtering. Furthermore, as the operations can be represented by algebraically
linear transformations between the input and output vector spaces, they have been
called homomorphic systems.

As a simple illustration of a homomorphic system for multiplied signals, consider
again the signal '

¥(t) = =(t) p(t)- (4.33)

Given the goal of converting the multiplication operation to addition, it is evident
that a simple logarithmic transformation is appropriate:

logly(t)] = log[z(t) p(t)] = log[=(¢)] + loglp(t);  =(t} # 0, p(¢) # 0 ‘::-34)
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The logarithms of the two signals are now combined in an additive manner. Taking
the Fourier transform, we get

Yi(w) = Xi(w) + Pi(w), (4.35)

where the subscript ! indicates that the Fourier transform has been applied to a
log-transformed version of the signal.

Assuming that the logarithmic transformation has not affected the separability of
the Fourier components of the two signals z(¢) and p(t), a linear filter (lowpass,
highpass, etc.) may now be applied to Yi(w) to separate them. An inverse Fourier
transform will yield the filtered signal in the time domain. An exponential operation
will complete the reversal procedure (if required).

Figure 4.20 illustrates the operations involved in a multiplicative homomorphic
system (or filter), The symbol at the input or output of each block indicates the
operation that combines the signal components at the corresponding step. A system
of this type is useful in image processing, where an image may be treated as the
product of an illumination function and a transmittance or reflectance function. The
homomorphic filter facilitates separation of the ilumination function and comection
for nonuniform lighting. The method has been used to achieve simuitaneous dynamic
range compression and contrast enhancement [86, 114, 112].

4.8.2 Homomorphic deconvolution

Problem: Propose a homomorphic filter to separate two signals that have been
combined through the convolution operation.
Solution: Consider the case expressed by the relation

y(t) = 2(t) » b(t). (4.36)

As in the case of the multiplicative homomorphic system, our goal is to convent
the convolution operation to addition. From the convolution property of the Fourier
transform, we know that

Y{w) = X(w) H(w). 4.37)

Thus application of the Fourier transform converts convolution to multiplication.
Now, it is readily seen that the multiplicative homomorphic system may be applied
to convert the muitiplication to addition. Taking the complex logarithm of ¥ (w), we
have

log[Y(w)] = log[X (w)] + log{H(w)}; X(w) #0, H{w) #0VYw. (4.38)
{Note: log[X(w)] = X(w) = | X(w)| + jL X (w).)
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A linear filter may now be used to separate the transformed components of ¢ and
h, with the assumption as before that they are separable in the transform space. A
series of the inverses of the ransformations applied initially will take us back to the
original domain.

While the discussion here has been in terms of application of the Fourier transform,
the general formulation of the homomorphic filter by Oppenheim and Schafer (86)
is in terms of the z-transform. However, the Fourier transform is equivalent to the
z-transform evaluated on the unit circle in the z-plane, and the Fourier transform is
more commonly used in signal processing than the z-transform.

Figure 4.21 gives a block diagram of the steps involved in a homomorphic filter
for convolved signals. Observe that the path formed by the first three blocks (the top
row) transforms the convolution operation at the input to addition. The set of the
last three blocks (the bottomn row) performs the reverse transformation, converting
addition to convolution. The filter in between thus deals with (transformed) signals
that are combined by simple addition.

4.8.3 Extraction of the vocal-tract response

Problem: Design a homomorphic filter to extract the basic waveler corresponding
to the vocal-tract response from a veiced-speech signal.

Solution: We noted in Section 1.2.11 that voiced speech is generated by excitation
of the vocal tract, as it is held in a particular form, with a glottal waveform that may
be approximated as a series of pulses. The voiced-speech signal may therefore be
expressed in discrete-time terms as y(n) = x(n) * A(n), where y(n) is the speech
signal, ={n) is the glottal waveform (excitation sequence), and k(n) is the impulse
response of the vocal tract (basic wavelet). The * symbol represents convolution,
with the assumption that the vocal-tract filter may be approximated by a linear, shift-
invariant filter. We may therefore use the homomorphic filter for convolved signals
as introduced in the preceding section to separate k(n) and 2(n).

The gloital excitation sequence may be further expressed as z(n) = p(n) »
g(n), where p(n) is a train of ideal impulses (Dirac delta functions) and g(n} is a
smoothing function, to indicate that the physical vocal-cord system cannot produce
jdeal impulses but rather pulses of finite duration and slope [86). This aspect will be
neglected in our discussions.

Practical application of the homomorphic filter is not simple. Figure 4.22 gives
a detailed block diagram of the procedure {86, 115]. Some of the finer details and
practical technigues are explained in the following paragraphs.

The complex cepstrum: The formal definition of the complex cepstrum states
that it is the inverse z-transform of the complex logarithm of the z-transform of
the input signal [115, 86). (The name “cepstrum” was derived by transposing the
syllables of the word “spectrum™; other transposed terms [111, 86, 115] are less
commonly used.) If y(n} is the input signal and Y (z) is its z-transform, the complex
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cepstrum §(n) is defined as

§(n) = 5-11-5 f log{¥'(2)] "~ dz. (4.39)

The contour integrai performs the inverse z-transform, and should be evalvated within
an annular region in the complex z-plane where Y (2) = log{Y ()] is single-valued
and analytic [86, 2]. The unit of n in §{n), that is, in the cepstral domain, is often
referred 10 as guefrency, a term obtained by switching the syllables in the term
frequency.

Given y(n) = z(n) x h{n}, it follows that

V(2) = X(2) + B(2) or Y(w) = X(w) + H{w), (4.40)
and further that the complex cepstra of the signals are related simply as
#(n) = 2(n) + h(n). (4.41)

Here, the * symbol over a function of z or w indicates the complex logarithm of
the corresponding function of z or w, whereas the same symbol over a function
of time (n) indicates the complex cepstrum of the corresponding signal. It should
be noted that if the original signal y(n) is real, its complex cepstrum fi{n) is real;
the prefix complex is used to indicate the fact that the preceding z and logarithmic
transformations are computed as complex functions. Furthermore, it should be noted
that the complex cepstrum is a function of time.

An important consideration in the evaluation of the complex logarithm of ¥'(z)
or Y (w) relates to the phase of the signal. The phase spectrum computed as its

principal value in the range O — 27, given by tan™! [i"‘z:"“ :: < ] will almost
always have discontinuities that will conflict with the requirements of the inverse
z-transformation or inverse Fourier transform to follow later. Thus Y{w) needs to
be separated into its magnitude and phase components, the logarithmic operation
applied to the magnitude, the phase corrected to be continuous by adding correction
factors of +2x at discontinuities larger than , and the two components combined
again before the subsequent inverse transformation. Correcting the phase spectrum
as above is refetred to as phase unwrapping 115, 86]. 1t has been shown that a linear
phase term, if present in the spectrum of the input signal, may cause rapidly decaying
oscillations in the complex cepstrum [115). k is advisable to remove the linear phase
term, if present, during the phase-unwrapping step. The linear phase term may be
added to the filtered result (as a time shift) if necessary.

Exponential signals are defined as signals that have a rational z-transform, that is,
their z-transforms may be expressed as ratios of polynomials in z. Such signals are
effectively represented as weighted sums of exponentials. A few important properties
of the complex cepstrum of an exponential signal are summarized below {86].

& §{(n) will be of infinite duration even if (n) is of finite duration, and exists for
—00 < 1 < 00 in general.
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o The complex cepstrum §j(n) decays at least as fast as 1.

o If y(n) is a minimum-phase signal (that is, it has all of its poles or zeros inside
the unit circle in the z-plane), then §i(n} = 0 forn < 0.

o If y(n) is a maximum-phase signal (that is, it has no poles or zeros inside the
unit circle in the z-plane), then §(n) =0 forn > 0.

Limiting ourselves to causal signals of finite energy, we need not consider the
presence of poles on or outside the unit circle in the z-plane. However, the z-transform
of a finite-energy signal may have zeros outside the wnit circle. Such a composite
signal may be separated into its minimum-phase component and maximum-phase
component by extracting the causal part (n > 0) and anti-causal part (n < 0),
respectively, of its complex cepstrum, followed by the inverse procedures. The
composite signal is equal to the convolution of its minimum-phase component and
maximum-phase component. (See also Section 5.4.2.)

Effect of echoes or repetitions of a wavelet: Let us consider a simplified signal
y(n) = z(n) * h(n), where

z(n) = §(n} + a 8(r ~ ng), (4.42)

with a and ng being two constants. (The sampling interval T is ignored, or assumed
to be normalized to unity in this example.} The signal may aiso be expressed as

y(n) = h(n) + a h(n ~ ny). (4.43)

The signal thus has two occurrences of the basic wavelet A(n) atn = 0 and n = ny.
The coefficient & indicates the magnitude of the second appearance of the basic
wavelet (called an echo in seistnic applications), and ng indicates its delay (pitch
in the case of a voiced-speech signal). The top-most plot in Figure 4.23 shows a
synthesized signal with a wavelet and an echo at half the amplitude (that is, ¢ = 0.5}
of the first wavelet arriving at ng = 0.01125 &,

Taking the z-transform of the signal, we have

Y{(z) =(1 + az"™)H(z2}. (4.44)

If the z-transfottn is evaluated on the unit circle, we get the Fourier-transform-based
expression

Y(w) = 1+ a exp(—jwno)|H(w). (4.45)
Taking the logarithm, we have
V(w) = A(w) + log[l + a exp(—jwno)]. (4.46)

If & < 1, the log term may be expanded in a power series, to get

. . 3 3
Y(w) = H(w) + o exp{—jwne) — % exp(—2jwng) + %- exp{—3jumng) —+--.
.47
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Figure4.23 From top to bottom: a composite signal with a wavelet and an echo; the complex
cepstrum of the signal (the amplitude axis has been streiched to make the peaks at the echo
time and its multiples more readily visible; values outside the range +1.5 have been clipped);
the basic wavelet extracted by shortpass filtering the cepstrum; and the excitation sequence
extracted by longpass filtering the cepstrum.
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‘Faking the inverse Fourier transform, we get

o 2 3
§(n) = h(n) + ad(n — no) — “3 8(n — 2no) + ‘% §(n—3ng) — . (4.48)

The derivation above shows that the complex cepstrum of a signal with a basic
wavelet and an echo is equal to the complex cepstrum of the basic wavelet plus a
series of impulses at the echo delay and integral multiples thereof {115, 86]. The
amplitudes of the impulses are proportional to the echo amplitude (the factor ) and
decay for the higher-order repetitions (if @ < 1). It may be readily seen that if
the signal has multiple echoes or repetitions of a basic wavelet, the cepstrum will
possess multiple impulse trains, with an impulse at the arrival time of each wavelet
and integral multiples thereof. In the case of a voiced-speech signal, the location of
the first peak will give the pitch. The second plot in Figure 4.23 shows the complex
cepstrum of the signal in the first plot of the same figure. It is seen that the cepstrum
has a peak at 0.01125 s, the echo arrival time; a smaller (negative) peak is also seen
at twice the echo arrival time.

Under the assumption that the complex cepstrum of the basic wavelet decays
to negligible values before the first impulse e d(n — ny} related to the echo, h(n}
may be extracted from the complex cepstrum §(n) of the composite signal by a
simple window that has unit valee for |n| < n., n, being the cutoff point. (This
filter is sometimes referred to as a “shortpass” filter as the cepstrum is a function
of time; it might also be called a lowpass filter.) The inverse procedures will yield
h(n). The remaining portion of the cepstrum (obtained by “longpass™ or highpass
filtering) will give &(n}, which upon application of the inverse procedures will yield
z(n). The third and fourth plots in Figure 4.23 show the basic wavelet k{n) and the
excitation sequence z{n) extracted by filtering the cepstrum with the cutoff point at
n. = 0.005 5.

In the case where @ > 1, it can be shown that the complex cepstrum will have
a train of impulses on its negative time axis, that is, at (n + kng), & = 1,2,...
[t15, 86]. An appropriate exponential weighting sequence may be used to achieve
the condition a < 1, in which case the impulse train will appear on the positive axis
of the cepstrum. If the weighted signal satisfies the minimum-phase condition, the
cepstrum will be causal.

The power cepstrum: Several variants of the cepstrum have been proposed in
the literature; Childers [115] provides a review of the related techniques. One variant
that is commonly used is the real cepstrum or the power cepstrm, which is defined as
the square of the inverse z-transform of the logarithm of the squared magnitude of the
z-transform of the given signal. In practice, the z-transform in the definition stated
is replaced by the FFT. The power cepstrum has the computational advantage of not
requiring phase unwrapping, but does not facilitate separation of the components of
the signal.

By evaluating the inverse z-transform on the unit circle in the z-plane, the power
cepstrum gp(n) of a signal y(n) may be defined as

2
#p(n) = {2—:_3- flog]l’(z)]’z"“ldz} . {4.49)
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If, as before, we consider y(n) = z(n) » h{n), we have [Y(2)|® = | X (z)[*|H(z)|%
and it follows that log [Y'(z)|® = log|X(2)|? + log |H(z)|2. Applying the inverse
z-transform to this relationship, we get

fp(n) = ,(n) + hp(n), (4.50)

where ﬁp(n) is the power cepstrum of the basic wavelet and #,(n) is the power
cepstrum of the excitation signal. Note that in the above equation the cross-product
term was neglected; the cross-term will be zero if the two component power cepstra
occupy non-overlapping quefrency ranges. The final squaring operation in Equa-
tion 4.49 is omitted in some definitions of the power cepstrum; in such a case, the
cross-term does not arise, and Equation 4.50 is valid.

The power cepstrum does not retain the phase information of the original signal.
However, it is useful in the identification of the presence of echoes in the signal, and
in the estimation of their arrival times. The power cepstrum is related to the complex
cepstrum as [115]

fp(n) = [§(n) + g{-n)}. (4.51)

Let us again consider the situation of a signal with two occurrences of a basic
wavelet h(n) and n = 0 and n = ng as in Equations 4.42 and 4.43. Then [115],

Y () = |H(2)*|1 + az~" 2. (4.52)

By taking the logarithm of both sides of the equation and substituting z = exp(jw),
we get

log[Y(w)? = log|H{w)}® +log[l + e® 4+ 2a cos(wng)]
= log|H(w)? + log(1 + a?)

2a
+ log (1 + —— ita cos(wno)) 4.53)

It is now seen that the logarithm of the PSD of the signal will have sinusoidal
components {ripples} due to the presence of an echo. The amplitudes and frequencies
of the ripples are related to the amplitude a of the echo and iis time delay ng.

Illustration of application: A voiced-speech signal y(n) is the result of convo-
lution of a slowly varying vocal-tract response h(n) with a relatively fast-varying
glottal pulse train x{r): y(n) = z(n) » A(n). Under these conditions, it may be
demonstrated that the contributions of h(n) to the complex cepstrum $(n) will be
limited to low values of n within the range of the pitch period of the speech signal
[86]. The complex cepstrum $i(n} will possess impulses at the pitch period and
integral multiples thereof. Therefore, a filter that selects a portion of the complex
cepstrum for low values of n, followed by the inverse transformations, will yield an
estimate of h{n).

When the repetitions of the basic wavelet have magnitudes almost equal to (or
even greater than) that of the first wavelet in the given signal record, the contributions
of the pulse-train component to the complex cepstrum may not decay rapidly and
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may cause aliasing artifacts when the cepstrum is computed over a finite duration. A
similar situation is caused when the delay between the occurrences of the multiple
versions of the basic wavelet is a significant portion of the duration of the given
signal. The problem may be ameliorated by applying an exponential weight a® to
the data sequence, with & < 1. Childers et al. [115]) recommended values of o
in the range 0.99 — 0.96, depending upon the signal characteristics as listed above,
Furthermore, they recommend appending or padding zeros to the input signal to
facilitate computation of the cepstrum to a longer duration than the signal in order to
avoid aliasing errors and ambiguities in time-delay estimates. (See Figure 4.22 for
an illustraticn of the various steps in homomorphic filtering of convolved signals.)

Figure 4.24 illustrates a segment of a voiced-speech signat (extracted from the
signal shown in Figure 1.30) and the basic wavelet extracted by shortpass filtering
of its complex cepstrum with n. = 0.003125 s. The signal was padded with zeros
to twice its duration; exponential weighting with « = 0.99 was used. It is seen that
the basic vocal-tract response wavelet has been successfully extracted. Extraction of
the vocal-tract response facilitates spectral analysis without the effect of the quasi-
periodic repetitions in the speech signal.

The fourth trace in Figure 4.24 shows the glottal (excitation) waveform extracted
by longpass filtering of the cepstrum with the same parameters as in the preceding
paragraph. The result shows impulses at the time of arrival of each wavelet in the
composite speech signal. The peaks are decreasing in amplitude due to the use of
exponential weighting (with & = 0.99) prior to computation of the cepstrum, Inverse
exponential weighting can restore the pulses to their original levels; however, the
artifact at the end of the excitation signal gets amplified to much higher levets than
the desired pulses due to progressively higher values of &~ for large n. Hence the
inverse weighting operation was not applied in the present illustration. Regardless,
the result indicates that pitch information may also be recovered by homomorphic
filtering of voiced-speech signals.

4.9 APPLICATION: ECG RHYTHM ANALYSIS

Problem: Describe a method to measure the heart rate and average RR interval
from an ECG signal,

Solution: Algorithms for QRS detection such as the Pan-Tompkins method de-
scribed in Section 4.3.2 are useful for ECG rhythm analysis or heart-rate moaitoring.
The output of the final smoothing fiiter could be subjected to a peak-searching al-
gorithm to obtain a time marker for each QRS or ECG beat. The search procedure
proposed by Pan and Tompkins was explained in Section 4.3.2. The intervals be-
tween two such consecutive markers gives the R interval, which could be averaged
over a number of beats to obtain a good estimate of the inter-beat interval. The heart
rate may be computed in bpm as 60 divided by the average RR interval in seconds,
The heart rate tnay also be obtained by counting the number of beats detected over a
certain period, say 10 s, and multiplying the result with the required factor (6 in the
present case) to get the number of beats over one minute.
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Figure 4.24 From top to bottom: a segment of 4 voiced-speech signal over six pitch petiods
(extracted from the signal shown in Figure 1,30 and lowpass filtered); the complex cepstrum
of the signal (the amplitude axis has been stretched to make the peaks at the echo time
and its multiples more readily visible; values outside the range +1.0 have been clipped);
the (shifted) basic wavelet extracted by shortpass filtering the cepstrum; and the excitation
sequence extracted by longpass filtering the cepstrum.
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The upper plot in Figure 4.25 shows a filtered version of the noisy ECG signal
shown in Figure 3.5. The noisy signal was filtered with an eighth-order Butterworth
lowpass filter with a cutoff frequency of 90 Hz, and the signal was down-sampled
by a factor of five to an effective sampling rate of 200 Hz. The lower plot shows the
output of the Pan-Tompkins method. The Pan-Tompkins result was normalized by
dividing by its maximum over the data record available (as the present example was
computed off-line). A fixed threshold of 0.1 and a blanking intervat of 250 ms was
used in a simple search procedure, which was successful in detecting all the beats in
the signal. (The blanking interval indicates the period over which threshold checking
is suspended once the threshold has been crossed.) The average RR interval was
computed as 716 mae, leading to an effective heart rate of 84 bpm.
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Figure 4,25 Results of the Pan-Tompkins algorithm. Top: lowpass-filtered version of the
ECG signal shown in Figure 3.5, Botiom: normalized result of the final integrator.

Results at the various stages of the Pan-Tompkins algorithm for a noisy ECG signal
sampled at 200 Hz are shown in Figure 4.26. The bandpass filter has efficiently
removed the low-frequency artifact in the signal. The final output has two peaks that
are much larger than the others: one at the beginning of the signal due to filtering
artifacts, and one at about 7.5 ¢ due to an artifact in the signal. Furthermore, the
output has two peaks for the beat with an artifact at 7.5 a. The simple peak-searching
procedure as explained in the previous paragraph was applied, which resulted in the
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detection of 46 beats: one more than the 45 present in the signal due to the artifact at
about 7.5 . The average RR interval was computed to be 446.6 mas, leading to an
effective heart rate of 137 bpm.

The illustration demonstrates the need for prefiltering the ECG signal to remove
artifacts and the need to apply an adaptive threshold to the output of the Pan-Tompkins
algorithm for QRS detection. It is readily seen that direct thresholding of the original
ECG signal will not be successful in detecting all of the QRS complexes in the signal,

2 4 G B8 10 12 14 16 18 20
Timw in seconds

Figure 4,26 Results of the Pan-Tompkins algorithm with a noisy ECG signal. From top to
bottom: ECG signal sampled at 200 Hz; ovutput of the bandpass filter (BPF); output of the
derivative-based operator; the result of squaring; and normalized result of the final integrator.

410 APPLICATION: IDENTIFICATION OF HEART SOUNDS

Problem: Outiine a signal processing algorithm to identify SI and 52 in a PCG
signal, and further segment the PCG signal into its systolic and diastolic parts. The
ECG and carotid pulse signals are availabie for reference.

Solution: We saw in Section 2.3 how the ECG and carotid pulse signals could be
used to demarcate the onset of S1 and S2 in the PCG:; the procedure, however, was not
based upon signal processing but upon visual analysis of the signals. We have, in the
present chapter, developed signal processing techniques to detect the QRS complex
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in the ECG and the dicrotic notch in the carotid pulse signai. We may therefore use
these methods to transfer the timing information from the ECG and carotid pulse
signals to the PCG signal. In order to perform this task, we need to recognize a few
timing relationships between the signals [41, 66].

The beginning of 51 may be taken to be the same instant as the beginning of the
QRS, The QRS itself may be detected using one of the three methods described in
the present chapter, such as the Pan-Tompkins method.

Detection of the beginning of S2 is more involved. Let the heart rate be HR bpm.
The pre-ejection period PEP is defined as the interval from the beginning of the
QRS o the onset of the corresponding carotid upstroke. The rate-corrected PEP
is defined as PEPC = PEP + 0.4HR, with the periods in ms. PEPC is in the
range of 131 & 13 ms for normal adults {41].

The ejection time ET is the interval from the onset of the carotid upstroke to the
dicrotic notch. The rate-corrected ejection time inms is ETC = ET + 1.6HR, and
is in the ranges of 395 + 13 me for normal adult males and 415 £ 11 ms for normal
adult females,

Using PEPCrax = 144 meand H R = 60 bpm, we get PE P, = 120 ma.
With H Ry = 60 bpm and ETCrayx = 425 ms, we get ETpae = 325 me. With
these parameters, the maximum interval between the QRS and the dicrotic notch is
380 ma, The procedure proposed by Lehner and Rangayyan [66) for detection of
the dicrotic notch recommends searching the output of the derivative-based method
described in Section 4.3.3 in a 500 ma interval after the QRS. After the dicrotic notch
is detected, we need to subtract the time delay between the beginning of $2 and D
to get the time instant where S2 begins. Lehner and Rangayyan [66] measured the
average S2 — D delay over the PCG and carotid pulse signals of 60 patients to be
42.6 ma, with a standard deviation of 5.0 ms.

The following procedure may be used to segment a PCG signal into its systolic
and diastolic parts.

1. Use the Pan-Tompkins method described in Section 4.3.2 to locate the QRS
compiexes in the ECG,

2. Identify one period of the PCG as the interval between two successive QRS
locations. Note that any delay introduced by the filters used in the Pan-
Tompkins method needs to be subtracted from the detected peak locations to
obtain the starting points of the QRS complexes.

3. Use the Lehner and Rangayyan method described in Section 4.3.3 to detect the
dicrotic notch in the carotid puise signal.

4, Let the standardized S2 — D delay be the mean plus two standard deviation
values as reported by Lehner and Rangayyan [66}, that is, 52.6 ms. Subtract
the standardized S2 — D delay from the detected dicrotic notch location to
obtain the onset of S2.

5. The S1 - 82 interval gives the systolic part of the PCG cycle,



APPLICATION: DETECTION OF THE AORTIC COMPONENT OF 52 227

6. The interval between the S2 point and the next detected 51 gives the diastolic
part of the PCG cycle.

Figures 4.27 and 4,28 illustrate the results of application of the procedure de-
scribed above to the PCG, ECG, and carotid pulse signals of a normal subject and a
patient with a split S2, systolic ejection murmur, and opening snap of the mitral valve.
(Clinical diagnosis indicated the possibility of ventricular septal defect, pulmonary
stenosis, or pulmonary hypertension for the 14-month-old female patient with mur-
mur.) The peak positions detected in the output of the Pan-Tompkins method (the
third trace in each figure) and the output of the Lehner and Rangayyan method (the
fifth trace) have been marked with the » symbol. A simple threshold of 0.75 times
the maximum value was used as the threshold to detect the peaks in the output of the
Pan-Tompkins method, with a blanking interval of 250 mas,

The QRS and D positions have been marked on the ECG and carotid pulse traces
with the triangle and diamond symbols, respectively. Finally, the 51 and $2 positions
are marked on the PCG trace with wriangles and diamonds, respectively, The filter
delays and timing relationships between the three channels of signals described
previously have been accounted for in the process of marking the events, Note
how the resulis of event detection in the ECG and carotid pulse signals have been
transferred to locate the corresponding events in the PCG. Lehner and Rangayyan [66]
used a similar procedure to break PCG signals into systolic and diastolic segments;
the segments were then analyzed separately in the time and frequency domains. (See
also Sections 6.4.5 and 7.9.)

4.11 APPLICATION: DETECTION OF THE AORTIC COMPONENT OF
THE SECOND HEART SOUND

Heart sounds are preferentially transmitted 1o different locations on the chest. The
aortic and pulmonary components A2 and P2 of S2 are best heard at the aortic area (to
the right of the sternum, in the second right-intercostal space} and the pulmonary area
(left parasternal line in the third left-intercostal space), respectively (see Figure 1.17).
A2 is caused by the closure of the aortic valve at the end of systole, and is usually
louder than P2 at all locations on the chest. Earlier theories on the genesis of heart
sounds attributed the sounds to the opening and closing actions of the valve leaftets
per se. The more commonly accepted theory at the present time is that described by
Rushmer [23]; see Section 1.2.8.

The relative timing of A2 and P2 depends upon the pressure differences across
the comresponding valves in the left and right ventricular circulatory systems, Ina
normal individual, the timing of P2 with reference to A2 varies with respiration;
the timing of A2 itself is independent of respiration. The pulmonary pressure (in-
trathoracic pressure) is decreased during inspiration, leading to a delayed closure of
the pulmonary valve and hence an increased (audible and visible) gap between A2
and P2 [23, 41, 42]. The gap is closed and A2 and P2 overlap during expiration
in normal individuals. A2 and P2 have individual durations of about 50 ms. The
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Figure 4.27 Results of segmentation of a PCG signal into systolic and diastolic parts using the
ECG and caretid pulse signals for reference. From top to bottom: the PCG signal of a pormal
subject (male subject, 23 years); the ECG signatl; y(n), the cutput of the Pan-Tompkins method
for detection of the QRS after normalization to the range (0, 1}; the carotid pulse signal; s(n),
the output of the Lehner and Rangayyan method for detection of the dicrolic notch, normalized
to the range {0, 1). The peaks detected in the outputs of the two methods have been identified
with * marks. The QRS and D positions have been martked with the triangle and diamond
symbols, respectively. The St and S2 positions are marked on the PCG trace with triangles
and diamonds, respectively. The last cardiac cycle was not processed,
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Figured.28 Results of segmentation of a PCG signal into systolic and diastolic parts using the
ECG and carotid pulse signals for reference. From top to bottom: the PCG signal of a patient
with a split 52, systolic ejection murmur, and opening snap of the mitral valve (female patient,
14 months); the ECG signal; y(n), the output of the Pan-Tompkins method for detection of
the QRS; the carotid pulse signal; s(n), the output of the Lehner and Rangayyan method for
detection of the dicrotic notch. The peaks detected in the outputs of the two methods have
been identified with « marks. The QRS and D positions have been marked with the triangle
and diamond symbols, respectively. The $t and S2 positions are marked on the PCG trace
with triangles and diamonds, respectively.
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normal inspiratory gap between A2 and P2 is of the order of 30 — 40 ma, although
splits as long as 100 ms have been recorded [41].

A split in S2 longer than 40 ms during sustained expiration is considered to be
abnormal [41]. Complete right bundle-branch block could caunse delayed activation
of the right ventricle, therefore delayed pulmonary vaive closure, a delayed P2, and
hence a widely split S2. Some of the other conditions that cause a wide spli¢ in $2 are
atrial septal defect, ventricular septal defect, and pulmonary stenosis. Left bundle-
branch block leads to delayed left-ventricular contraction and aortic valve closure
(with reference to the right ventricle and the pulmonary valve), causing A2 to appear
after P2, and reversed splitting of the two components. Some of the other conditions
that could cause reversed splitting of 52 are aortic insufficiency and abnormally early
pulmonaty valve closure. It is thus seen that identification of A2 and P2 and their
temporal relationships could assist in the diagnosis of severat cardiovascular defects
and diseases.

MacCanon et al. [116] conducted experiments on a dog for direct detection and
timing of aortic valve closure. They developed a catheter with an electrical contacting
device that could be placed at the aortic valve 1o detect the exact moment of closure of
the aortic valve. They also measured the aortic pressure and the PCG at the third left-
intercostal space. It was demonstrated that the aortic valve closes at least § — 13 ms
before the incisura appears in the aortic pressure wave (see Figure 1.27 and 1.28
for iliustrations of the aortic pressure waves recorded from a dog). The conclusion
reached was that S2 is caused not by the collision of the valve leafiets themselves,
but due to the rebound of the acriic blood column and walls after valve closure.
MacCanon et al. alse hypothesized that the relative high-frequency characteristics of
the incisura and 82 result from elastic recoil of the aortic wall and valve in reaction
to the distention by the rebounding aortic blood column.

Stein et al. [117, 118] conducted experiments in which intracardiac and intra-
arterial sounds were recorded and analyzed. Their experiments indicated that S2
begins after the aortic valve closes. They argued that the intensity of S2 depends
upon, among other factors, the distensibility of the aortic and pulmonary valves;
hemodynamic factors that cause the valves to distend and vibrate; viscosity of the
blood and its ability to inhibit diastolic valve motion; and the configuration of the
aorta, the pulmonary artery, and the ventricles. It was demonstrated that the pul-
monary valve, due to its larger surface area than that of the aortic valve, is more
distensible and hence produces a larger sound than the aortic valve even for the same
pressure gradient across the valve. In the case of pulmonary hypertension, it was
argued that the pulmonary valve would distend further at a higher speed; the rate
of development of the diastolic pressure gradient across the closed pulmonary valve
would be higher than in normal cases.

Problem: Given that the second heart sound 52 is made up of an acrtic component
A2 and a pulmonary component P2 with variable temporal relationships, propose a
method 1o detect only A2,

Solution: We have seen in the preceding section how the dicrotic notch in the
carotid pulse signal may be used to detect the beginning of S2. The technique is
based upon the direct relationship between acrtic valve closure and the aortic incisura,
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and consequently the dicrotic notch, as explained above. Now, if we were to detect
and segment S2 over several cardiac cycies and several respiratory cycles, we could
perform synchronized averaging of 2. A2 should appear at the same instant in every
S2 segment, and should be strengthened by the synchronized averaging process. P2,
on the other hand, would appear at different times, and should be cancelled out
(suppressed) by the averaging process.

Figure 4.29 shows segments of duration 300 ms containing S2 segmented from
nine successive cardiac cycles of the PCG of a patient with atrial septal defect. The
PCG signal was segmented using the ECG and carotid pulse signals for reference in
a method similar to that illustrated in Figures 4.27 and 4.28. The PCG signal was
recorded at the second left-intercostal space, which is closer to the pulmonary area
than to the aortic area. The nine S2 segments clearly show the fixed timing of A2
and the variable timing of P2, The last plot is the average of 52 segments extracted
from 21 successive cardiac cycles. The averaged signal displays A2 very well, while
P2 has been suppressed.

The detection of A2 would perhaps have been better, had the PCG been recorded
at the aortic area, where A2 would be stronger than P2. Once A2 is detected, it could
be subtracted from each $2 record to obtain individual estimates of P2. Sarkady et
al. [119], Baranek et al. [120], and Durand et al. [121] proposed averaging techniques
as above with or without envelope detection (but without the use of the carotid pulse);
the methods were called aligned ensemble averaging to detect wavelets or coherent
detection and averaging.

4.12 REMARKS

We have now established links between the characteristics of certain epochs in a
number of biomedical signals and the corresponding physiological or pathological
events in the biomedical systems of concern, We have seen how derivative-based
operators may be applied to detect QRS complexes in the ECG signal as well as
the dicrotic notch in the carotid pulse signal. The utility of correlation and spectral
density functions in the detection of rhythms and events in EEG signals was also
demonstrated. We have studied how signals with repetitions of a certain event or
wavelet, such as a voiced-speech signal, may be analyzed using the complex cepstrum
and homomorphic filtering. Finally, we also saw how events detected in one signal
may be used to locate the corresponding events in another signal: the task of detecting
S$1 and S2 in the PCG was made simpler by using the ECG and carotid puise signals,
where the QRS and D waves can be detected more readily than the heart sounds
themselves,

Event detection is an important step that is required before we may attempt to
analyze the corresponding waves or wavelets in more detail. After a specific wave of
interest has been detected, isolated, and extracted, methods targeted to the expected
characteristics of the event may be applied for directed analysis of the corresponding
physiological or pathological event. Analysis of the event is then not hindered or
obscured by other events or artifacts in the acquired signal.
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Figure 4.29 Synchronized averaging of S2 to detect A2 and suppress P2. The figure displays
nine consecutive segments of §2 (duration = 300 ma) of a patient {female, 7 years) with atrial
septal defect leading to a variable split in $2. The trace at the bottom is the average of 52 over
21 consecutive beats.
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STUDY QUESTIONS AND PROBLEMS

. Prove that the autocorrelation function (ACF) ¢ee(7) of any function a(t) is maximum

atr=190.

(Hing: Start with E[{z(t + r) £ 2(t)}?] > 0.)

For a stationary process 2, prove that the ACF is even symmetric, that is, ¢ (7) =
@20 (~—7). You may use the expectation or time-average definition of the ACF.

. Starting with the continuous time-average definition of the ACF, prove that the Fourier

transform of the ACF is the PSD of the signal.

. What are the Fourier-domain equivalents of the autocorrelation function and the cross-

correlation function? Describe their common features and differences. List their
applications in biomedical signal analysis.

. A signal (t) is transmitted through a channel. The received signal y(2) is a scaled,

shifted, and noisy version of #{t) given as y(i) = axz(t — to) + 9(t) where a is a scale
factor, {p is the time delay, and n(t) is noise. Assume that the noise process has zero
mean and is statistically independent of the signal process, and that all processes are
stationary.

Derive expressions for the mean and the ACF of y(t} in terms of the statistics of  and
7

. Derive an exptession for the ACF of the signal £(¢} = sin{wo?). Use the time-average

definition of the ACF.
From the ACF, derive an expression for the PSD of the signal. Show alt steps.

. A rhythmic episode of a theta wave in an EEG signal is approximated by a researcher

to be 2 sine wave of frequency 5 Hz. The signal is sampled at 100 Hz,
Draw a schematic representation of the ACF of the episode for delays up t0 0.5 s. Label
the time axis in samples and in seconds.

Draw a schematic representation of the PSD of the episode. Label the frequency axis
in Hz.

. The values of a signal sampled at 100 Hz are given by the series

{0,9,6,0,10,10,10,0,0,0,0,0,5,5,5,0,0,0,0,0, -3, -3, -3, 9,0,0}.

An investigator performs template matching with the pattern {0,5, 5,5,0}. The firsi
sample in each array stands for zero time.

Plot the output of the template-matching operation and interpret the result. Label the
time axis in seconds.

. A biphasic signal 2(n) is represented by the series of samples

z(n) = {0,1,2,1,0,-1,-2,~-1,0} forn = 0,1,2,...,8,

a) Draw a plot of 2(n).

b) Compose a signal y(r:) defined as y(n) = 32(n) + 2z(n — 12) — 2(n — 24). Draw
a plot of y(n).

¢) Design a matched filter to detect the presence of z(n) in y(r}. Explain how the
impulse response h{n} and the frequency response H{w) of the filter are related 1o
z{n). Plot A(n).

d) Compute the output of the filter and plot it. Interpret the output of the filter.

A researcher uses the derivative operator (filter) specified as w(n) = z(n) — z(n ~ 1),
where #(n)} is the input and w(n) is the output. The result is then passed through the
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moving-average filter y(n) = w(n) + w(n — 1) + w(n — 2)], where y(r) is the
final output desired.

(a) Derive the transfer functions (in the z-domain) of the two filters individually as well
as that of the combination.

(b) Does it matter which of the two filters is placed first? Why (not)?

(c) Derive the impulse response of each filter and that of the combination. Plot the three
signals.

(d) The signal described by the samples

{0,0,...,0,8,8,6,6,6,6,6,6,0,0,...}

is applied to the system. Derive the values of the final output signal. Explain the effect
of the operations on the signal,

4.14 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the site
ftp:/Hip.icee.org/uploads/press/rangayyan/

1. Implement the Pan-Tompkins method for QRS detection in MATLAB. You may employ
a simple threshold-based method to detect QRS compiexes as the procedure will be run
off-line.

Apply the procedure to the signals in the files ECG3.dat, ECG4.dat, ECG5.dat, and
ECG6.dat, sampled at a rate of 200 H z (see the file ECGS.m), Compute the averaged
heart rate and QRS width for each record. Verify vour results by measuring the
parameters visually from plots of the signals.

2. The files cegl-xx.dat (where xx indicates the channel name) give eight simultaneously
recorded channels of EEG signals with the alpha rhythm. (You may read the signals
using the MATLAB program in the file eegi.m.) The sampling rate is 100 Hz per
channel. Cut out a portion of a signal with a clear presence of the alpha rhythm for
use as a template or reference signal. Perform cross-correlation of the template with
munning (short-time) windows of various channels and study the use of the results for
the detection of the presence of the alpha rhythm.

3. The files eeg2-xx.dat (where xx indicates the channel name) give ten simultaneously
recorded channels of EEG signals with spike-and-wave complexes, (You may read the
signals using the MATLLAB program in the file eeg2.m.) The sampling rate js 100 Hz
per channel. Cut out one spike-and-wave complex from any EEG channel and use it as
a template. Perform template matching by cross-correlation or by designing a matched
fiker. Apply the procedure to the same channel from which the template was selected
as well as to other channels. Study the results and explain how they may be used to
detect spike-and-wave complexes.

4. The files pecl.dat, pec33.dat, and pec52.dat give three-channel recordings of the PCG,
ECG, and carotid pulse signals (sampled at 1,000 Hz; you may read the signals using
the program in the file plotpec.m). The signals in pec.dat (adult male) and pec52.dat
(male subject, 23 years) are normal; the PCG signal in pec33.dat has systolic murmur,
and is of a paticat suspected to have pulmonary stenosis, ventricular septal defect, and
pulmonary hypertension (female, 14 months).
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Apply the Pan-Tompkins method for QRS detection to the ECG channel and the Lehner
and Rangayyan method to detect the dicrotic notch in the carotid pulse channel. Ex-
trapolate the timing informatien from the ECG and carotid pulse channels to detect the
onset of 81 and 52 in the PCG channel. What are the corrections required to compensate
the delays between the corresponding events in the three channels?



Analysis of Waveshape and
Waveform Complexity

Certain biomedical signals such as the ECG and carotid pulse have simple waveshapes
(2lthough the QRS wave is often referred to as a "complex™!). The readily identifi-
able signatures of the ECG and carotid pulse are modified by abnormal events and
pathological processes. Hence analysis of waveshapes could be useful in diagnosis.

Signals such as the EMG and the PCG do not have waveshapes that may be iden-
tified easily. EMG signals are indeed complex interference patterns of innumerable
SMUAPs. PCG signals represent vibration waves that do not possess specific wave-
shapes. Regardless, even the complexity of the waveforms in signals such as the
EMG and the PCG does vary in relation to physiological and pathological phenom-
ena. Analyzing the waveform complexity of such signals may assist in gaining an
understanding of the processes they reflect.

5.1 PROBLEM STATEMENT

Explain how waveshapes and waveform complexity in biomedical signals relate to
the characteristics of the underlying physiological and pathological phenomena.
Propose techniques to parameterize and analyze the signal features you identify.

As in the preceding chapters, the problem statement given above is generic and
represents the theme of the present chapter. The following section presents illus-
trations of the problem with case-studies that provide more specific definitions of
the problem with a few signals of interest. The remaining sections of the chapter
describe techniques to address the stated problems. It should be noted again that
although signal analysis techniques are proposed in the context of specific signals

237
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and applications, they should find applications in other fields where signals with
comparable characteristics and behavior are encountered.

5.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

§.2.1 The QRS complex in the case of bundie-branch biock

We saw in Section 1.2.4 that the His bundle and its branches conduct the cardiac
excitation pulse from the AV node to the ventricles. A block in one of the bundle
branches causes asynchrony between the contraction of the left and the right ven-
tricles. This, in turn, causes a staggered summation of the action potentials of the
myocytes of the left and the right ventricles over a longer-than-normal duration. The
result is a longer and possibly jagged QRS complex. as illustrated by the ECG of a
patient with right bundle-branch block in Figure 1.15.

§.2.2 The effect of myocardial ischemia and infarction on QRS
waveshape

Occlusion of a coronary artery or a branch thereof due to deposition of fat, calcium,
and so on, results in reduced blood supply to a portion of the cardiac musculature,
The part of the myocardium served by the affected artery then suffers from ischemia,
that is, lack of blood supply. Prolonged ischemia leads to myocardial infarction,
when the affected tissue dies. The deceased myocytes cannot contract any more, and
no longer produce action potentials.

The action potential of an under-nourished veatricular myocyte reflects altered
repolarization characteristics: the action potential is of smaller amplitude and shorter
duration [10, 122]. The result of the summation of the action potentials of all of the
active ventricular myocytes will thus be different from the normal QRS complex.
The primary change reflected in the ECG is a modified ST segment that is either
elevated or depressed, depending upon the lead used and the position of the affected
region; the T wave may also be inverted, Chronic myocardial infarction causes a
return to a normat ST segment, and a pronounced Q wave [23].

5.2.3 Ectoplc beats

Ectopic beats are generated by cardiac tissue that possess abnormal pacing capabil-
ities. Ectopic beats originating from focal points on the atria could cause altered P
waveshapes due to different paths of propagation of the excitation pulse and hence
different activation sequences of atrial muscle units. However, the QRS complex of
atrial ectopic beats will appear normal as the conduction of the excitation past the
AV node would be normal.

Ectopic beats originating on the ventricles (that are necessarily premature beats,
thatis, PVCs) typically possess bizarre QRS waveshapes due to widely differing paths



ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES 239

of conduction and excitation of the ventricular muscle units. Figure 1,14 illustrates
an ECG signal with PVCs. PVCs typically lack a preceding P wave; however, an
ectopic beat triggered during the normal AV node delay will demonstrate a normal
preceding P wave. PVCs triggered by ectopic foci close to the AV node may possess
near-normal QRS shape as the path of conduction may be almost the same as in the
case of a normal impulse from the AV node. On the other hand, beats triggered by
ectopic foci near the apex could take a widely different path of propagation, resulting
in a far-from-normal QRS waveshape, In addition to waveshape, the preceding and
succeeding RR intervals play important roles in determining the nature of ectopic
beats.

5.24 EMG interference pattern complexity

We saw in Section 1.2.3 that motor units are recruited by two mechanisms — spatial
and temporal recruitment — in order to produce increasing levels of contraction and
muscular force output. As more and more motor units are brought into action and
their individual firing rates increase (within certain limits), the SMUAPs of the active
motor units overlap and produce a complex interference pattern. Figures 1.9 and
1.10 illustrate an EMG signal obtained from the crural diaphragm of a dog during
one normal breath cycle. The increasing complexity of the waveform with increasing
level of the breath is clearly seen in the expanded plot in Figure 1.10,

Although a surface EMG interference pattern is typically too complex for visual
analysis, the general increase in the level of activity (“busy-ness”) may be readily
seen. It is common practice in EMG laboratories to feed EMG signals to an amplified
speaker: low levels of activity when the SMUAPs are not overlapping (that is,
separated in time} result in discrete “firing” type of sounds; increasing levels of
contraction result in increased “chatter” in the sound produced. EMG signails may be
analyzed to derive parameters of waveform complexity that increase with increasing
muscular contraction, thereby providing a correlate to mechanical activity that is
derived from its electrical manifestation,

5.2.5 PCG intensity patterns

Although the vibration waves in a PCG signal may not be amenable to direct visual
analysis, the general intensity pattern of the signal over a cardiac cycle may be
readily appreciated either by auscultation or visual inspection. Certain cardiovascular
diseases and defects alter the relative intensity patterns of S1 and 52, cause additional
sounds or murmurs, and/or split S2 into two distinct components, as already described
in Section 1.2.8. While many diseases may cause systolic murmurs, for example,
the intensity pattern or envelope of the murmur could assist in arriving at a spegcific
diagnosis. It should also be noted that definitive diagnosis based on the PCG would
usually require comparative analysis of PCG signals from a few positions on the chest.
Figures 1.24, 1.26, 2.4, 4.27, and 4.28 illustrate PCG signals of a normal subject and
patients with systolic murmur, split $2, and opening snap of the mitral valve, The
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differences in the overall intensity patterns of the signals are obvious. However,
signal processing techniques are desirable to convert the signals into positive-valued
envelopes that could be treated as distributions of signal energy over time. Such
a transformation permits the treatment of signal intensity patterns as PDFs, which
lends to the computation of various statistical measures and moments.

5.3 ANALYSIS OF EVENT-RELATED POTENTIALS

The most important parameter extracted from a visual ERP is the timing or latency
of the first major positivity; since the average of this latency is about 120 mas for
normal adults, it is referred to as P120 (see Figure 3.12). The latencies of the troughs
before and after P120, called N80 and N145, respectively, are also of interest. The
amplitudes of the ERP at the corresponding instants are of lesser importance. Delays
in the latencies that are well beyond the normal range could indicate problems in the
visual system. Asymmetries in the latencies of the left and right parts of the visual
system could also be indicative of disorders.

The lowest trace in Figure 3.12 is an averaged flash visual ERP recorded from a
normal adult male subject. The signal has been labeled to indicate the N8O, P120,
and N145 poiats, the corresponding actual latencies for the subject being 85, 100.7,
and 117 ms, respectively.

Auditory ERPs are weaker and more complex than visual ERPs, requiring aver-
aging over several hundred or a few thousand stimuli. Auditory ERPs are analyzed
for the latencies and amplitudes of several peaks and troughs. Clinical ERP analysis
is usually performed manually, there being no pressing need for signal processing
techniques beyond synchronized averaging.

54 MORPHOLOGICAL ANALYSIS OF ECG WAVES

The waveshape of an ECG cycle could be changed by many different abnormalities,
including myocardial ischemia or infarction, bundle-branch block, and ectopic beats.
It is not possible to propose a singie analysis technique that can assist in categorizing
all possible abnormal causes of change in waveshape. The following subsections
address a few illustrative cases.

5.4.1 Correlation coefficient

Problem: Propose a general index to indicate altered QRS waveshape, You are
given a normal QRS template.

Solution: Jenkins et al. [67] applied the correlation coefficient -, as defined
in Equation 4.21 to classify ECG cycles as normal beats or beats with abnormal
morphology. A normal beat was used as a template to compute .y, for each detected
beat. They found that most normal beats possessed ., values above 0.9, and that
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PVCs and beats with abnormal shape had considerably lower values. A threshold
of 0.9 was used to assign a code to each beat as O:abnormal or 1:normal in terms
of waveshape. Figure 2.2 shows an ECG signal with five abnormal beats that have
the first symbol in the 4-symbol code as 0, indicating an abnormal shape due to
generation by an ectopic focus or due to aberrant conduction of a pulse generated by
the SA node. The normal beats have the first symbol of the code as 1, indicating a
high correlation with the normal template.

5.4.2 The minimum-phase correspondent and signal length

The normal ECG signal contains epochs of activity where the signal’s energy is
concentrated. Discounting the usually low-amplitude P and T waves, most of the
energy of a normal ECG signal is concentrated within an interval of about 80 mas that
is spanned by the QRS complex. The normaily iso-electric PQ, ST, and TP segments
contain no energy as the signal amplitude is zero over the corresponding intervals.
We have observed that certain abnormal conditions cause the QRS to widen or the
ST segment to bear a nonzero value. In such a case, it could be said that the energy of
the signal is being spread over a longer duration. Let us now consider how we may
capture this information, and investigate if it may be used for waveshape analysis.

Problem: Investigate the effect of the distribution of energy over the time axis on
a signal’s characteristics. Propose measures to parameterize the effects and study
their use in the classification of ECG beats.

Solution: A signal z(t) may be seen as a distribution of the amplitude of a
certain variable over the time axis. The square of the signal, that is, z3(£), may be
interpreted as the instantaneous energy of the signal-generating process. The function
z*(t), 0 <t < T, may then be viewed as an energy distribution or density function,
with the observation that the total energy of the signal is given by

T
E, = f z3(t) dt. (5.1)
1]

Such a representation facilitates the definition of moments of the energy distribution,
leading to a centroidal time

Tt @)t

ty = ) (5.2)
P IT dt
and dispersion of energy about the centroidal time
; T 2,2
t--t t)dt
, _do (-t 20t 53)

s IT a2t
Observe the similarity between the equations above and Equations 3.1 and 3.3: the

normalized function

_ 2
pz(t) = f:‘ gz(t)dt 5.4
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is now treated as a PDF. Other moments may also be defined to characterize and
study the distribution of 22(¢) over the time axis, The preceding equations have been
stated in continuous time for the sake of generality; they are valid for discrete-time
signals, with a simple change of ttor and [ dito 3 .

Minimum-phase signals: The distribution of the energy of a signal over its dura-
tion is refated to its amplitude spectrum and, more importantly, to its phase spectrum,
The notion of minimum phase is useful in analyzing related signal characteristics,
The minimum-phase property of signals may be explained in both the time and
frequency domains [86, 123, 124, 1285, 126, 127, 102].

In the time domain, a signal z{n} is a minimum-phase signal if both the signal
and its inverse x;(n) are one-sided (that is, completely causal or anti-causal) signals
with finite energy, that is, 3 ou x(n) < oo and 3., 2%(n) < oo. (Note: The
inverse of a signal is defined such that z(n) » 2;(n) = d(n); equivalently, we have
Xi(2) = x5

Some of the important properties of a minimum-phase signal are:

« For a given amplitude spectrumn there exists one and only one minimum-phase
signal.

o Of all finite-energy, one-sided signals with identical amplitude spectra, the
energy of the minimum-phase signat is optimally concentrated toward the
origin, and the signal has the smallest phase lag and phase-lag derivative at
each frequency.

o The z-transform of a minimum-phase signal has all of its poles and zeros inside
the unit circle in the z-plane.

¢ The complex cepstrum of a minimum-phase signal is causal (see also Sec-
tion 4.8.3).

The extreme example of a minimum-phase signal is the delta function 4(¢), which
has all of its energy concentrated at ¢ = 0. The magnitude spectrum of the delta
function is real and equal to unity for all frequencies; the phase lag at every frequency
is zero.

Minimum-phase and maximom-phase components: A signal z{n) that does
not satisfy the minimum-phase condition, referred to as a composite signal or a
mixed-phase signal, may be split into its minimum-phase component and maximum-
phase component by filtering its complex cepstrum #(n) [86, 115, 128). To obtain
the minimum-phase component, the causal part of the complex cepstrum (see Sec-
tion 4.8.3) is chosen as follows;

0 n<0
Zwin(n) = { 052(n) n=0 . (3.5)
&(n) n>0

Application of the inverse procedures yields the minimum-phase component £ y;n (1)
Similarly, the maximum-phase component is obtained by application of the inverse
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procedures to the anti-causal part of the cepstrum, selected as

#(n) A <0
Emax(n) ={ 0.5&(n) n=0 . (5.6)
0 n>0

The minimum-phase and maximum-phase components of a signal satisfy the follow-
ing relationships:

#n) = Emin(n) + Emax(n), .7
and

2(n) = Zmin(n) * Tmax(n). (5.8)

The mintmum-phase correspondent (MPC): A mixed-phase signal may be
converted to a minimum-phase signal that has the same spectral magnitude as the
original signal by filiering the complex cepstrum of the original signal as

0 n<0
#mpo(n) = { #(n) n=0 (5.9)
En)+&(-n} n>0

and applying the inverse procedures [86, 115, 128]. The result is known as the
minimum-phase correspondent or MPC of the original signal [102]. The MPC
will possess optimal concentration of energy around the origin under the constraint
imposed by the specified magnitude spectrum (of the original mixed-phase signal).

Observe that $ygpo(n) is equal to twice the even part of 2{n) forn > 9. This
leads to a simpler procedure to compute the MPC, as follows: Let us assume X (2} =
log X(2) to be analytic over the unit circle in the z-plane. We can write X(w) =
Xelw)+iX; (w), where the subscripts R and I indicate the real and imaginary parts,
respectively. Xg(w} and Xs(w) are the log-magnitude and phase spectra of x(n),
respectively. Now, the inverse Fourier transform of Xr (w) is equal to the even part
of &(n), defined as Z.(n) = [&(n) + £(—n))/2. Thus we have

¢ n<0
gmpc(n) =4 &.n) n=0 . (5.10)
28.(n) n>0

This result means that we do ot need to compute the complex cepstrum, which
requires the unwrapped phase spectrum of the signal, but need only to compute a real
cepstrum using the log-magnitude spectrum. Furthermore, giver that the PSD is the
Fourier transform of the ACF, we have log[FT([¢se(n)]] = 2X g (w). It follows that,
in the cepstral domain, &aa(ﬂ) = 2&.(n), and therefore [128]

0 . n<0
#mpc(n) = { 0.5¢z4(n) n=0 , G110
Pra(n) n>0

where g (n) is the cepstrum of the ACF ¢,2(n) of z(n).
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Signal length: The notion of signal length (S L), as introduced by Berkhout [124],
is different from signal duration. The duration of a signal is the extent of time over
which the signal exists, that is, has nonzero values (neglecting periods within the
total signal duration where the signal could be zero). SL relates to how the energy
of a signal is distributed over its duration. SL depends upon both the magnitude and
phase spectra of the signal. For one-sided signals, minimum SL implies minimum
phase; the converse is also true [124].

The general definition of SL of a signal 2(n) is given as [124)

_ Tce win)zi(n)
SL = ———-——-—-—2::01 22(n) ’

where w(n) is a nondecreasing, positive weighting function with w(0) = 0. The
definition of w(n) depends upon the application and the desired characteristics of
SL. Itis readily seen that samples of the signal away from the origin n = 0 receive
progressively heavier weighting by w(n}. The definition of SL as above may be
viewed as a normalized moment of #2(n). If w(n) = n, we get the centroidal time
instant of *(n) as in Equation 5.2.

For a given amplitude spectrum and hence total energy, the minimum-phase signal
has its energy optimally concentrated near the origin. Therefore, the minimum-phase
signal will have the lowest SL of all signals with the specified amplitode spectrum.
Signals with increasing phase lag have their energy spread over a longer timme duration,
and will have larger SL due to the increased weighting by w(n).

INustration of application: The QRS-T wave is the result of the spatio-temporal
summation of the action potentials of ventricular myocytes. The duration of normal
QRS-T waves is in the range of 350 — 400 mas, with the QRS itself limited to about
80 ma due to rapid and coordinated depolarization of the ventricular motor units via
the Purkinje fibers. However, PVCs, in general, have QRS-T complexes that are wider
than normal, that is, they have their energy distriboted over longer time spans within
their total duration. This is due to different and possibly slower and disorganized
excitation sequences triggering the ventricular motor vnits: ectopic triggers may
not get conducted through the Purkinje system, and may be conducted through the
ventricular muscle celis themselves, Furthermore, PVCs do not, in general, display
separate QRS and T waves, that is, they lack an iso-electric ST segment,

Regardless of the above distinctions, normal ECG beats and PVCs have similar
amplitude spectra, indicating that the difference between the signals may lie in their
phase. SL depends vpon both the amplitude spectrum and the phase spectrum of
the given signal, and parameterizes the distribution of energy over the duration of
the signal. Based upon the arguments above, Murthy and Rangaraj [102) proposed
the application of SL to classify ECG beats as normal or ectopic (or PVC, along
with the use of the RR interval to indicate prematurity). Furthermore, to overcome
ambiguities in the determination of the onset of each beat, they computed the SL of
the MPC of the ECG signals (scgmented so as to include the P, QRS, and T waves
of each cycle). Use of the MPC resulted in a “rearrangement” of the waves such that
the dominant QRS wave appeared at the origin in the MPC,

6.12)
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Figure 5.1 illustrates a normal ECG signal and three PVCs of a patient with
muitiple ectopic foci generating PVCs of widely differing shapes [102]. The figure
also illustrates the corresponding MPCs and lists the SL values of all the signals.
The SL values of the MPCs of the abnormal waves are higher than the SL of the
MPC of the normal signal (see the right-hand column of signals in Figure 5.1). The
SL values of the original PVCs do not exhibit such a separation from the SL of the
normal signal (see the left-hand column of signals in Figure 5.1). Ambiguities due to
the presence of base-line segments of variable lengths at the beginning of the signals
have been overcome by the use of the MPCs. The MPCs have the most-dominant
wave in each case at the origin, reflecting a rearrangement of energy or waves so as
to meet the minimum-phase criteria,

Figure 5.2 shows plots of the RR intervals and SL values computed using the
original ECG signals and their MPCs for several beats of the same patient whose
representative ECG waveforms are illustrated in Figure 5.1 [102]. The SL values
of the normal signals and the ectopic beats exhibit a significant overlap in the range
28 — 35 (plot (a) in Figure 5.2). However, the SL values of the MPCs of the PVCs
are higher than those of the normal beats, which facilitates their classification (plot
(b} in Figure 5.2).

Murthy and Rangaraj [102]) applied their QRS detection method (described in
Section 4.3.1) to ECG signals of two patients with ectopic beats, and used the
8L of MPC to classify the beats with a linear discriminant function (described in
Section 9.4.1). They analyzed 208 beats of the first patient (whose signals are
illustrated in Figures 5.1 and 5.2): 132 out of 155 normals and 48 out of 53 PVCs
were correctly classified; one beat was missed by the QRS detection algorithm.
Misclassification of normal beats as PVCs was attributed to wider-than-normal QRS
complexes and depressed ST segments in some of the normal beats of the patient
(see Figure 5.2). The signal of the second patient included 89 normals and 18 PVCs,
all of which were detected and classified comrectly. It was observed that computation
of the MPC was not required in the case of the second patient: the SL values of the
original signals provided adequate separation between normal and ectopic beats. The
segments of normal ECG cycles used by Murthy and Rangaraj included the P wave;
better results could perhaps be obtaired by using only the QRS and T waves since
most PVCs do not include a distinct P wave and essentially correspond to the QRS
and T waves in a normal ECG signal.

It should be noted that the QRS width may be increased by other abnormal condi-
tions such as bundle-branch block; the definition of SL as above would lead to higher
SL for wider-than-normal QRS complexes. Furthermore, ST segment elevation or
depression would be interpreted as the presence of energy in the corresponding time
intervat in the computation of §L. Abnormally large T waves could also lead to SL
values that are larger than those for normal signals. More sophisticated logic and
other parameters in addition to SL could be used to rule out these possibilities and
affirm the classification of a beat as an ectopic beat.
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Figure 8.1 (a) A normal ECG beat and (b) — (d) three ectopic beats (PVCs) of a patient with
multiple ectopic foci. (e} - (h) MPCs of the signals in {a} - (d). The SL values of the signals
are also indicated [102]. Note that the abscissa is labeled in samples, with a sampling interval
of 10 mas. The ordinate is not calibrated. The signals have different durations and amplitudes
although plotted to the same size. Reproduced with permission from [.5.N. Murthy and M.R.
Rangaraj, New concepts for PVC detection, JEEE Transactions on Biomedical Engineering,
26(7y:409-416, 1979. ©IEEE.
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Figure 5.2 (a) Plot of RR and SL values of several beats of a patient with multiple ectopic
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representative ECG cycles are illustrated. The linear discriminant (decision) function used
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and M.R. Rangaraj, New concepts for PVC detection, IEEE Transactions on Biomedical
Engineering, 26(7).409-416, 1979. ©IEEE,
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5.4.3 ECG waveform analysis

Measures such as the correlation coefficient and S L described in the preceding sub-
sections provide general parameters that could assist in comparing waveforms. The
representation, however, is in terms of gross features, and many different waveforms
could possess the same or similar feature values. Detailed analysis of ECG waveforms
will require the use of several features or measurements for accurate categorization
of various QRS complex shapes and correlation with cardiovascular diseases. Since
the ECG waveform depends upon the lead system used, sets of features may have to
be derived for multiple-lead ECGs, including as many as 12 leads that are commeonly
used in clinical practice,
The steps required for ECG waveform analysis may be expressed as [31]:

1. Detection of ECG waves, primarily the QRS complex, and possibly the P and
T waves.

2. Delimitation of wave boundaries, including the P, QRS, and T waves.

3. Measurement of inter-wave intervals, such as RR, PQ, QT, ST, QQ, and PP
intervals,

4, Characterization of the morphology (shape) of the waves.,

The last step above may be achieved using parameters such as the correlation
coefficient and SL as described earlier, or via detailed measurements of the peaks of
the P, Q, R, 8, and T waves (some could be negative); the durations of the P, Q, R, S,
QRS, and T waves; and the inter-wave intervals defined above {31). The nature of the
PQ and ST segments, in terms of their being iso-electric or not (in case of the laiter,
as being positive or negative, or elevated or depressed), should atso be documented.
However, a large number of such features would make the development of further
pattern classification rules difficult.

Cox et al. [31, 129] proposed four measures to characterize QRS complexes,
defined as follows:

1. Duration — the duration or width of the QRS complex,

2. Height — the maximum amplitude minus the minimum amplitude of the QRS
complex.

3. Offset — the positive or negative vertical distance from the midpoint of the
base-line to the center of the QRS complex. The base-line is defined as the
straight line connecting the temporal boundary points of the QRS complex.
The center is defined as the midpoint between the highest and lowest bounds
in amplitude of the QRS complex,

4. Area — the area under the QRS waveform rectified with respect to a straight
line through the midpoint of the base-line.

Since the measures are independent of time, they are less sensitive fo the preceding
procedures for the detection of fiducial markers.
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The measures were used to develop a system for arrhythmia monitoring, known
as “Argus” for Arrhythmia Guard System, for use in coronary-care units. Figure 5.3
shows the grouping of more than 200 QRS complexes of a patient with multi-focal
PVCs into 16 dynamic families by Argus using the four features defined above [31].
The families labeled 00, 01,02, 04,06, and 10 were classified as normal beats by
Argus (163 beats which were all classified as normals by a cardiologist; 91% of the
normals were correctly labeled by Argus). PVCs of different shapes from more than
two ectopic foci form the remaining families, with some of them having shapes close
to those of the patient’s normal sinus beats. Of the 52 beats in the remaining families,
96% were labeled as PVCs by the cardiologist; Argus labeled 85% of them as PVCs,
13% as not PVCs, and 2% as border-line beats [129]. Cox et al. [31] summarize one
of the clinical tests of Argus with over 50, 000 beats, some noteworthy points being as
foliows: 85% of 45, 364 normal beats detected and classified correctly, with 0.04%
beats missed; 78% of 4, 010 PVCs detected and classified correctly, with 5.3% beats
missed; and 38 normals (less than 0.1% of the beats) falsely labeled as PVCs.

5.5 ENVELOPE EXTRACTION AND ANALYSIS

Signals with complex patterns such as the EMG and PCG may not permit direct
analysis of their waveshape. In such cases, the intricate high-frequency variations
may not be of interest; rather, the general trends in the level of the overall activity
might convey useful information. Considering, for example, the EMG in Figure 1.9,
observe that the general signal level increases with the level of activity (breathing). As
another example, the PCG in the case of aortic stenosis, as iltustrated in Figure 1.26,
demonstrates a diamond-shaped systolic murmur: the envelope of the overall signal
carries important information. Let us therefore consider the problem of extraction of
the envelope of a seemingly complex signal.

Problem: Formulate algorithms to extract the envelope of an EMG or PCG signal
to facilitate analysis of trends in the level of activity or energy in the signal,

Solution: The first step required in order to derive the envelope of a signal with
positive and negative deflections is to obtain the absolute value of the signal at each
time instant, that is, perform full-wave rectification. This procedure will create abrupt
discontinuities at time instants when the original signal values change sign, that is, at
zero-crossings. The discontinuities create high-frequency compenents of significant
magnitude. This calls for the application of a lowpass filter with a relatively low
bandwidth in the range of 0 — 10 or 0 — 50 Hz to obtain smooth envelopes of EMG
and PCG signals. A moving-average filter may be used to perform lowpass filtering,
leading to the basic definition of a time-averaged envelope as

1]
=g [ e .13

where T, is the duration of the moving-average window.
In a procedure similar in principle to that described above, Lehner and Ran-
gayyan [66] applied a weighted MA filter to the squared PCG signal to obtain a
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Figure 5.3 Use of four features to catalog QRS complexes into one of 18 dynamic families of
similar complexes enclosed by four-dimensional boxes. The waveforms of typical members of
each family are shown in the area-versus-offset feature plane, The family numbers displayed
are in the octal (base eight} system. The families labeled 00,01,02,04,06, and 10 were
classified as normal beats, with the others being PVCs or bordet-line beats. Reproduced
with permission from J.R. Cox, Jr., FM, Nolle, and R.M. Arthur, Digital analysis of the
electroencephalogram, the blood pressure wave, and the electrocardiogram, Proceedings of
the IEEE, 60(10):1137-1164, 1972. ©IEEE.
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smoothed energy distribution curve E(n) as

M
E(n) =) 2(n—k+ Dw(k), (5.14)
k=1

where z(n) is the PCG signal, w(k) = M -~ k + 1, and M = 32 with the signal
sampled at 1,024 Hz. Observe that the difference between energy and power is
simply a division by the time interval being considered, which may be treated as a
scale factor or ignored.

The envelope represents the total averaged activity {electrical, acoustic, and so
on) within the averaging window. An improved filter such as a Bessel filter [26]
may be required if a smooth envelope is desired. The filter should strike 2 balance
between the need to smooth discontinuities in the rectified signal and the requirement
to maintain good sensitivity to represent relevant changes in signal level or amplitude.
This procedure is known as envelope detection or amplitude demodulation. A few
related procedures and techniques are described in the following subsections.

5.5.1 Amplitude demodulation

Amplitude modulation (AM) of signals for radio transmission involves multiplication
of the signal z(t) to be transmitted by an RF carrier cos{w,t), where w, is the carrier
frequency. The AM signal is given as y(£} = 2(t) cos{w.t) [1, 2]. If the exact
carrier wave used at the transmitting end were available at the receiving end as well
(including the phase), synchronous demodulation becomes possible by multiplying
the received signal y(t) with the carrier. We then have the demodulated signal as

24(t) = y(t) cos(w.t) = 2(t) cos® (wct) = %m(t) + ;m(t) cos(2w.t). (5.15

The AM component at 2w, may be removed by a lowpass filter, which will leave us
with the desired signal z(t).

If 2(t) is always positive, or a DC bias is added to meet this requirement, it becomes
readily apparent that the envelope of the AM signal is equal to z(2). An extremely
simple asynchronous demodulation procedure that does not require the carrier then
becomes feasibie: we just need to follow the envelope of ¢(t). Given also that the
carrier frequency w, is far greater than the maximum frequency present in z(t), the
positive envelope of y(t) may be extracted by performing half-wave rectification. A
lowpass filter with an appropriate time constant to “fill the gaps” between the peaks
of the carrier wave will give a good estimate of z(¢). The difference between the
use of a full-wave rectifier or a half-wave rectifier (that is, the larger gaps between
the peaks of the carrier wave available after either type of rectification) can be easily
made up by increasing the time constant of the filter. The main differences between
various envelope detectors lie in the way the rectification operation is performed, and
in the lowpass filter used [, 2].

In a related procedure known as complex demodulation , a given arbitrary signal
is demodulated to derive the time-varying amplitude and phase characteristics of the
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signal for each frequency (band) of interest [130, 131, 132]. In this approach, an
arbitrary signal £(¢) is expressed as

z(t) = alt) cos[fot + ¥(t)] + z.(2), (5.16)

where f, is the frequency of interest, a(t) and ¥(t} are the time-varying amplitude
and phase of the component at f,, and z.(t) is the remainder of the signal z(¢)
after the component at f, has been removed. It is assumed that a(t) and ¢(t) vary
slowly in relation to the frequencies of interest. The signal #(¢) may be equivaiently
expressed in terms of complex exponentials as

2(t) = 5 a(t) {explfet + ${OI} + exp{—slot + YO} +2e(8). G4

I the procedure of complex demoduiation, the signal is shifted in frequency by — £,
via multiplication with 2 exp{—j fot), to obtain the result y(t) as

y(t) 22(t) exp(—j fot) (5.18)
a(t) expljy(t)] + a(t) exp{—j[2fot + ¥(1)]} + 22.(t) exp(—j fot)-

The second term in the expression above is centered at 2 f,, whereas the third term is
centered at f,,; only the first term is placed at DC. Therefore, a lowpass filter may be
used to extract the first term, to obtain the final result y,{¢) as

Vo(t) = a{t) exp{i¥(t)]. (5.19)

The desited entities may then be extracted as a(t) =~ |y, (t)| and () = Zy.(¢).

The frequency resolution of the method depends upon the bandwidth of the lowpass
filter used. The procedure may be repeated at every frequency (band) of interest. The
result may be interpreted as the envelope of the signat for the specified frequency
(band). The method was applied for the analysis of HRV by Shin et al. [130] and the
analysis of heart rate and arterial blood pressure variability by Hayano et al. [131].

1n applying envelope detection to biomedical signals such as the PCG and the
EMG, it should be noted that there is no underlying RF carrier wave in the signatl:
the envelope rides on relatively high-frequency acoustic or electrical activity that has
a composite spectrum. The difference in frequency content between the envelope
and the “cartier activity” will not be comparable to that in AM. Regardless, we could
expect at least a ten-fold difference in frequency content: the envelope of an EMG
ot PCG signal may have an extremely limited bandwidth of 0 — 20 Hz, whereas
the underlying signal has components up to at least 200 Hz, if not to 1,000 Hz,
Application of envelope detection to the analysis of EMG related to respiration will
be illustrated in Section 5.9.

I

§.5.2 Synchronized averaging of PCG envelopes

The ECG and PCG form a good signal pair for synchronized averaging: the lat-
ter could be averaged over several cardiac cycles using the former as the trigger.
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However, the PCG is not amenable to direct synchronized averaging as the vibration
waves may interfere in a destructive manner and cancel themselves out, Karpman et
al. [133] proposed to first rectify the PCG signal, smooth the resuit using a lowpass
filter, and then perform synchronized averaging of the envelopes so obtained using
the ECG as the trigger. The PCG envelopes were averaged over up to 128 cardiac
cycles to get repeatable averaged envelopes. It should noted that while synchronized
averaging can reduce the effects of noise, breathing, coughing, and so on, it can also
smudge the time boundaries of cardiac events if the heart rate is not constant during
the averaging procedure.

Figure 5.4 illustrates the envelopes obtained for a normal case and seven cases of
systolic murmur due to aortic stenosis (AS), atrial septal defect (ASD), hypertrophic
subaortic stenosis (HSS), rheumatic mitral regurgitation (MR), ventricular septal
defect (VSD), and mitral regurgitation with posterior leaflet prolapse (PLP). The
typical diamond-shaped envelope in the case of aortic stenosis results in an envelope
shaped like an isosceles triangle due to rectification. Mitral regurgitation results in a
rectangular holo-systolic murmur envelope.
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Figure 5.4 Averaged envelopes of the PCG signals of a normal subject and patients with
systolic murmur due to aortic stenosis (AS), atrial septal defect (ASD), hypertrophic subaortic
stenosis (HSS), rheumatic mitral regurgitation (MR), ventricular septal defect (VSD), and
mitral regurgitation with posterior leaflet prolapse (PLP). Reproduced with permission from L.
Karpman, J. Cage, C. Hill, A.D. Forbes. V., Karpman, and K. Cohn, Sound envelope averaging
and the differential diagnosis of systolic murmurs, American Heart Journal, 90(5) 600606,
1975. ©American Heart Association,

Karpman et al. analyzed 400 cases of systolic murmurs due to six types of diseases
and defects, and obtained an accuracy of 88% via envelope analysis. They proposed a
decision tree to classify systolic murmurs based upon envelope shape and its relation
to the envelopes of S1 and 52, which is illustrated in Figure 5.5.
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§.5.3 The envelogram

Sarkady et al. [119) proposed a Fourier-domain algorithm to obtain envelopes of
PCG signals. They defined the envelogram estimate as the magnitude of the analytic
signal y(t) formed using the PCG x(t) and its Hilbert transform z 4 (t) as

y(t) = 2(t} + jeu(t). (5.20)

(Note: An analytic function is a complex function of time having a Fourier transform
that vanishes for negative frequencies [5, 86].) The Hilbert transform of a signal is
defined as the convolution of the signal with -;, that is,

_ [T ()
exlt) = fm oy 4 (.21)
The Fourier transform of 2, is —j sgn(w), where
-1 w<?
sgp(e)=< 0 w=0 . (5.22)
1 w>0

Then, we have Y (w) = X (w){l + sgn(w)]. Y (w) is a one-sided or single-sideband
function of w containing positive-frequency terms only.

Based upon the definitions and properties described above, Sarkady et al. [119]
proposed the following algorithm to obtain the envelogram estimate:

1. Compute the DFT of the PCG signal.

2, Setthe negative-frequency terms to zero; thatis, X (k) = 0 for -’¥»+2 <k<N,
with the DFT indexed 1 < k& < N as in MATLAB,

3. Multiply the positive-frequency terms, that is, X (k) for2 < k < %5 +Lby2:
the DC term X (1) remains unchanged.

4. Compute the inverse DFT of the result.
5. The magnitude of the result gives the envelogram estimate.

The procedure described above, labeled also as complex demodulation by Sarkady
et al., yields a high-resolution envelope of the input signal. Envelograms and PSDs
computed from PCG signals over single cardiac cycles tend to be noisy and are
affected by respiration and muscle noise. Sarkady et al. recommended synchronized
averaging of both envelograms and PSDs of PCGs over several cycles, A similar
method was used by Baranek et al. [120] to obtain the envelopes of PCG signals for
the detection of the aortic component A2 of S2,

Ilustration of application: The top-most plots in Figures 5.6 and 5.7 show one
cycle each of the PCG signals of a normal subject and of a patient with systolic
murmur, split 82, and opening snap of the mitral valve. The PCG signals were
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segmented by using the Pan-Tompkins method to detect the QRS complexes in
the ECG signal, as illustrated in Figures 4.27 and 4.28 for the same signals. The
envelograms of the PCG cycles illustrated and the averaged envelograms (over 16
beats for the normal and 26 beats for the case with murmur) obtained using the method
of Sarkady et al. [119] are shown in the second and third plots of Figures 5.6 and 5.7,
respectively. Observe that while a split 52 is visible in the individual signa! and
envelogram illustrated in Figure 5.6, the split is not seen in the averaged envelogram
and envelope, possibly due to breathing-related variations over the duration of the
signal record and averaging.

Furthermore, based upon the methed of Karpman et al. [133], the averaged en-
velopes were computed by taking the absolute value of the signal over each cardiac
cycle, smoothing with a Butterworth lowpass filter with N = & and f, = 50 Hz,
and synchronized averaging. The last plots in Figures 5.6 and 5.7 show the averaged
envelopes. (The Butterworth filter has introduced a small delay in the envelope;
the delay may be avoided by using the filtfilr command in MATLAB.) The averaged
envelograms and averaged envelopes for the normal case display the envelopes of S1
and 82; the individual components of S1 and 52 have been smoothed over and merged
in the averaged results. The averaged envelograms and averaged envelopes for the
case with murmur clearly demonstrate the envelopes of §1, the systolic murmur, the
split 52, and the opening snap of the mitral valve,

5.6 ANALYSIS OF ACTIVITY

Problem: Propose measures of waveform complexity or activity that may be used to
analyze the extent of variability in signals such as the PCG and EMG,

Solution: The samples of a given EMG or PCG signal may, for the sake of
generality, be treated as a random variable . Then, the variance o2 = E[(z — p,)?]
represents an averaged measure of the variability or acrivity of the signal about its
mean, If the signal has zero mean, or is preprocessed to meet the same condition, we
have 02 = E[z?; that is, the variance is cqual to the average power of the signal.
Taking the square root, we get the standard deviation of the signal as equal to its
root mean-squared (RMS) value. Thus the RMS value could be used as an indicator
of the level of activity about the mean of the signal. A much simpler indicator of
activity is the number of zero-crossings within a specified interval; the zero-crossing
rate (ZCR) increases as the high-frequency energy of the signal increases. A few
measures refated to the concepts introduced above are described in the following
subsections, with illustrations of application.
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Figure 5.6 Top to bottom: PCG signal of a normal subject (male, 23 vears); envelogram
estimate of the signal shown; averaged envelogram over 16 cardiac cycles; averaged envelope
over 16 cardiac cycles. The PCG signal starts with S1. See Figure 4.27 for an illustration of
segmentation of the same signal.
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Figure 5.7 Top to bottom: PCG signal of a patient (female, 14 months) with systolic
murmur (approximately 0.1 — €.3 4), split 52 (0.3 — 0.4 3}, and opening snap of the mitral
valve (0.4 — 0.43 #); envelogram estimate of the signal shown; averaged envelogram over 26
cardiac cycles; averaged envelope over 26 cardiac cycles. The PCG signal starts with S1. See
Figure 4.28 for an illustration of segmentation of the same signal.
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5.6.1 The root mean-squared value

The RMS value of a signal z(n) over its total duration of N samples is given by

1 N-1 i’
RMS = [ﬁ 3 z3(n)] . (5.23)

n=>0

This global measure of signal level (related to power), however, is not useful for the
analysis of trends in nonstationary signals. A running estimate of the RMS value of
the signal computed over a causal window of M samples, defined as

M-1

]
RMS(n) = [Ilf.r" Y 2*(n- k)] , (5.24)

k=0

could serve as a useful indicator of the average power of the signal as a function
of time. The duration of the window M needs to be chosen in accordance with
the bandwidth of the signal, with M << N. Such an approach for computing
running parameters of signals falls under the general scheme of short-time analysis
of nonstationary signals [46].

Gerbarg et al. [134, 135] derived power versus time curves of PCG signals by
computing the average power in contiguous segments of duration 10 ms, and used
the curves to identify systolic and diastolic segments of the signals. They noted that
within a 10 3 PCG record, at least one diastolic segment would be longer than the
corresponding systolic segment, and that all systolic segments in the record would
have approximately the same duration. Innocent (physiological) systolic murmurs
in children were observed to be limited to the first and middle thirds of the systolic
interval between S1 and 82, whereas pathological systolic murmurs due to mitral
regurgitation were noted to be holo-systolic (spanning the entire systolic period).
Based upon these observations, Gerbarg et al. computed ratios of the mean power of
the last third of systole to the mean power of systole and also to a certain “standard”
noise level. A ratio was also computed of the mean energy of systele to the mean
energy of the PCG over the complete cardiac cycle. Agreement in the range of
78 — 91% was obtained between computer classification based upon the three ratios
defined above and clinical diagnosis of mitral regurgitation in different groups of
subjects.

Use of the RMS function for the analysis of EMG and VMG signals and thereby
muscular activity will be illustrated in Section 5.10.

5.6.2 Zero-crossing rate

An intuitive indication of the “busy-ness™ of a signal is provided by the number of
times it crosses the zero-activity line or some other reference level. ZC'R is defined
as the number of times the signal crosses the reference within a specified interval.
However, ZCR could be easily affected by DC bias, base-line wander, and low-
frequency artifacts. For these reasons, it would be advisable to measure the ZCR of
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the derivative of the signal, which would be similar to the definition of turning points
in the test for randomness described in Section 3.1.1. Saltzberg and Burch {136]
discuss the relationship between ZCR and moments of PSDs, and their application
to EEG analysis.

In spite of its simplicity, ZC'R has been used in practical applications such as
speech signal analysis to perform speech versus silence decision and to discriminate
between voiced and unvoiced sounds [46] (see also Figure 3.1), and PCG analysis
for the detection of murmurs. Jacobs et al. [137] used ZCR to perform normal
versus abnormal classification of PCG signals using the ECG as a trigger, and ob-
tained correct-classification rates of 95% for normals (58/61) and 94% for abnormals
(77/82). They indicated a decision limit of 20 zero-crossings in a cardiac cycle. Yokoi
et al. [138] proposed a mass-screening system based upon measurements of the max-
imum amplitude and ZCR in 8 ms segments of PCG signals (sampled at 2 kH 2),
They obtained correct-classification rates of 98% with 4, 809 normal subjects and
76% with 1, 217 patients with murmurs.

6.6.3 Turns count

Willison [139] proposed to analyze the level of activity in EMG signals by determining
the number of spikes occurring in the interference pattern (see also {22, 140, 141]).
Instead of counting zero-crossings, Willison’s method investigates the significance
of every change in phase (direction ot slope) of the EMG signal called a furn, Turns
greater than 100 V" are counted, with the threshold selected so as to avoid counting
insignificant fluctuations due to noise. The methed is similar to counting turning
points as in the test for randomness described in Section 3.1.1, but is expected to
be robust in the presence of noise due to the threshold imposed. The method is not
directly sensitive to SMUAPs, but significant phase changes caused by superimposed
SMUAPs are counted. Willison [139] found that EMG signals of subjects with
myopathy possessed higher turns counts than those of normal subjects at comparable
levels of volitional effort.

INustration of application: The top-most plot in Figure 5.8 itlustrates the EMG
signal over two breath cycles from the crural diaphragm of a dog recorded via
implanted fine-wire electrodes [26). The subsequent plots iliustrate, in top-to-bottom
order, the short-time RMS values, the turns count by Willison’s procedure, and the
smoothed envelope of the signal. The RMS and turns count values were computed
using a causal moving window of duration 70 ms (210 samples). The window
duration needs to be chosen to strike a balance between the extent of smoothing
desired in the turns count series and the accuracy in reflecting the nonstationary nature
of the signal (increasing level of activity with inspiration in the present example).
The envelope was obtained by taking the absolute value of the signal (equivaient
to fuil-wave rectification) followed by a Butterworth lowpass filter of order V = 8
and cutoff frequency f. = 8 Hz. It is seen that all three of the derived features
demonstrate the expected increasing trend with the leve! of contraction (breath), and
can serve as correlates or indicators of muscle contraction and the concomitant EMG
complexity. The results may be further smoothed (lowpass filtered) if desired.
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Figure 5.8 Top to bottom: EMG signal over two breath cycles from the crural diaphragm of
a dog recorded via implanted fine-wire electrodes; short-time RMS values; turns count using
Willison’s procedure; and smoothed envelope of the signal. The RMS and turns count values
were computed using a causal moving window of T0 me duration. EMG signal courtesy of
R.S. Platt and P.A. Easton, Department of Clinicat Neurosciences, University of Calgary.
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Figure 5.9 illustrates one 70 ms segment of the EMG signal in Figure 5.8 with the
boundary points of the significant turns as detected by Willison's procedure marked
by the “** symbol. The procedure was implemented by first computing the derivative
of the EMG signal and detecting points of change in its sign. A tarn was marked
wherever the EMG signal differed by at least 100 x4V berween successive points of
sign change in the derivative. Observe from Figure 5.9 that the EMG signal need not
cross the zero line to cause a turns count, and that zero-crossings with voltage swings
of less than 100 xV are not counted as turns,

EMG (micro V)

_250 1 I L 1 _I_ L L
1.34 1.35 1.36 1.37 1.38 1.39 1.4
Tima in seconds

Figure 5.9 [Illustration of the detection of tums in a 70 ms window of the EMG signal in
Figure 5.8. The scgments of the signal between pairs of “*’ marks have been identified as
significant turns.

5.6.4 Form factor

Based upon the notion of variance as a measure of signal activity, Hjorth [142, 143,
144] (see also [32]) proposed a method for the analysis of EEG waves. In this method,
short-time segments of duration 1 s or longer are analyzed and three parameters are
computed. The first parameter is called activity and is simply the variance o2 of the
signal segment z(n). The second parameter, called mobiliry M,, is computed as the
square root of the ratio of the activity of the first derivative of the signal to the activity
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of the {original) signal:
[ e (525)
s 03 - o’z ? *

where 2’ stands for the first derivative of @. The third parameter, called complexity
or the form factor FF, is defined as the ratio of the mobility of the first derivative of
the signal to the mobility of the signal itself:

Mz’ _ 0’3"/0'31
M, 0';'/0‘3 !

where 2" stands for the second derivative of the signal. The complexity of a sinusoidal
wave is unity; other waveforms have complexity values increasing with the extent of
variations present in them.

Hjorth [143, 144} described the mathematical relationships between the activity,
mobitity, complexity, and PSD of a signal, and applied them to model EEG signal
generation. Binnie et al, [145, 146} describe the application of FF and spectrum
analysis to EEG analysis for the detection of epilepsy. However, because the com-
putation of FF is based upon the first and second derivatives of the signal and their
variances, the measure is sensitive to noise. A complex and relatively wide-band
signal such as the EMG is not amenable to analysis via F.F'. Application of FF to
discriminate between normal and ectopic ECG beats will be illustrated in Section 5.7.

We have explored a few measures to characterize waveform complexity in this
section. Many authors have proposed several other diverse measures and interpreta-
tions of waveform or system complexity in the literature, examples of which include
features based upon nonlinear dynamics and the correlation dimension [147], and the
embedding dimension of time-varying dynamic systems [148].

FF =

(5.26)

5.7 APPLICATION: PARAMETERIZATION OF NORMAL AND ECTOPIC
ECG BEATYS

Problem: Develop a parameter to discriminate between normal ECG waveforms
and ectopic beats (PVCs).

Solution: We have observed several times that ectopic beats, due to the abnormal
propagation paths of the associated excitation pulses, typically possess waveforms
that are significantly different from those of the normal QRS waveforms of the same
subject. More eften than not, ectopic beats have bizarre and complex waveshapes.
The form factor FF' described in Section 5.6.4 parameterizes the notion of waveform
complexity, providing a value that increases with complexity. Therefore, F'F appears
to be a suitable measure to discriminate between normal and ectopic beats. Note that
the RR interval by itself cannot indicate ectopic beats, as the RR interval could
vary due to sinus arrhythmia and conduction problems, as well as due to heart-rate
variations.

Figure 5.10 displays a segment of the ECG of a patient with ectopic beats; the
segment illustrates the initiation of an episode of ventricular bigeminy where every
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normal beat is followed by an ectopic beat [23]. The ECG of the patient was
processed using the Pan-Tompkins algorithm for QRS detection (see Section 4.3.2).
QRS marker points were detected using a simple threshold applied to the output of
the Pan-Tompkins algorithm. Each beat was segmented at points 160 ms before and
240 mas after the detected marker point; the diamond and circle symbols on the ECG
in Figure 5.10 indicate the starting and ending points of the corresponding beats. The
FF value was computed for each segmented beat. The RR interval (in ms) and FF
value are printed for each beat in Figure 5.10. It can be readily seen that the FF
values for the PVCs are higher than those for the normal beats,

Note from Figure 5.10 that the RR intervals for the PVCs are lower than those for
the normal beats, and that the normal beats that follow the PVCs have higher-than-
normal AR intervals due to the compensatory pause. Pattern classification of the
ECG beats in this example as normal or PVCs using RR and FF will be described
in Section 9.12.

Q4 T T T T T
03¢ ]
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Figure 5,10 Segment of the ECG of a patient (male, 65 years) with ectopic beats. The
diamond and circle symbols indicate the starting and ending points, respectively, of each beat
obtained using the Pan-Tompkins afgorithm for QRS detection. The RR interval (in ma) and
form factor FF values are printed for each beat.
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5.8 APPLICATION: ANALYSIS OF EXERCISE ECG

Problem: Develop an algorithm to analyze changes in the ST segment of the ECG
during exercise.

Solution: Hsia et al. {149] developed a method to analyze changes in the ST
segment of the ECG signal as the subject performed exercises. The analysis was
performed as part of a radionuclide ventriculography (gated blood-pool imaging)
procedure. In this procedure, nuclear medicine images are obtained of the left
ventricle before and after exercising by the patient on a treadmill or bicycle ergometer.
Images are obtained at different phases of the cardiac cycle by gating the radionuclide
(gamma ray) emission data with reference to the ECG; image data for each phase are
averaged over several cardiac cycles. Analysis of exercise ECG is complicated due
to base-line artifacts caused by the effecis of respiration, skin resistance changes due
to perspiration, and soft tissue movement affecting electrode contact. Detection of
changes in the ST segment in the presence of such artifacts poses a major challenge.

One of the main parameters used by Hsia et al. is related to the comelation
coefficient as defined in Equation 3.18. The measure, however, is affected by base-
line variations. To address this, a modified correlation coefficient was defined as

Toaco [2()ly(n) - 4]
\/):ff:o () SN y(n) - AP

Here, z(n} is the template, y(n) is the ECG signal being analyzed, A is a base-line
correction factor defined as the difference between the base-line of y(n) and the
base-line of #{n), and NV is the duration (number of samples) of the template and
the signal being analyzed. The template was generated by averaging up to 20 QRS
complexes that met a specified RE interval constraint.

Hsia et al. proposed a method to establish the base-line of each ECG beat by
searching for the PQ segment by backiracking from the R point detected (trigger for
gating the image data). The region of three consecutive samples with the minimum
change (maximum flatness) preceding the QRS was taken to represent the base-
line of the beat. (Note: The PQ segment is almost always iso-electric, whereas
the ST segment is variable in the case of cardiac diseases.) The search procedure
also established the width of the QRS complex to be used in template matching (V
in Equation 5.27). Beats with v,,, < 0.85 were considered to be abnormal. The
base-line correction factor in Equation 5.27 provided the robustness required.

Groups of 16 successive normal beats were aligned and averaged to obtain a repre-
sentative waveform. The ST segment level was computed as the difference betweena
reference ST point and the iso-electric level of the current averaged beat. The averag-
ing procedure included a condition to reject beats with abnormal morphology, such as
PVCs. The ST reference point was defined as R + 64 ms +max(4, 20-HR) « 4 ;s
or S + 44 ms + max(4, 22=HE) x 4 ms, where R or § indicates the position of
the R or S wave of the prescm beat in ms, and H R is the heart rate in dpm. ST
level differences of more than 2 mV were reported by the program. Furthermore,
the siope of the ST segment was computed by using two samples before and two

(5.27
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samples after the ST point detected as described above (a duration of 16 ms with the
sampling rate being 250 Hz),

In addition to the analysis of the ST segment, the method of Hsia et al. performed
rhythm analysis, identification of PVCs and other abnormal beats, and assisted in the
rejection of radionuclide emission data related to abnormal beats from the imaging
procedure. The combined use of nuclear medicine imaging and ECG analysis was
expected to improve the accuracy of the diagnosis of myocardial ischemia,

5.9 APPLICATION: ANALYSIS OF RESPIRATION

Problem: Propose a method to relate EMG activity to airflow during inspiration.

Solution: Platt et al. [26] recorded EMG signals from the parasternal intercostal
and crural diaphragm muscles of dogs. One EMG signal was obtained from a pair
of electrodes mounted at a fixed distance of 2 mm placed between fibers in the third
left parasternal intercostal muscle about 2 em from the edge of the stemum, The
crural diaphragm EMG was obtained via fine-wire electrodes sewn in-line with the
muscle fibers and placed 10 mm apart. During the signal acquisition experiment, the
dog breathed through a snout mask, and a pneumo-tachograph was used to measure
airflow. Figures 1.9, 1.10, and 5.8 show samples of the crural EMG signal.

Although the EMG signal is commonly vsed in many physiological studies in-
cluding analysis of respiration, the intricate variations in the signal are often not of
interest. A measure of the iotal or integrated electrical activity, ideally reflecting
the global activity in the pool of active motor units of the muscle, would serve the
purposes of most analyses {26]. As the EMG signal is nonstationary, short-time
measures are called for, The smoothed envelope of the EMG signal is commonly
used under these circumstances.

Platt et al. observed that the filters commonly used for smocthing rectified EMG
signals had poor high-frequency attenuation, resulting in noisy envelopes. They
proposed a modified Bessel filter for application to the EMG signal after full-wave
rectification; the filter severely attenuated frequencies beyond 20 Hz with gain
< =70 dB, and yielded EMG envelopes that were much smoother than those given
by other filters.

The EMG envelopes derived by Platt et al. agreed very well with the inspiratory
airflow pattern. Figure 5.11 shows plots of the parasternal intercostal EMG signal
over two breath cycles, the corresponding filtered envelope, and the airflow pattern.
Figure 5.12 shows the correlation between the filtered EMG envelope amplitude and
the airflow in liters per second. Itis evident that the envelope extracted by this method
is an excellent correlate of inspiratory airflow.



APPLICATION: ANALYSIS OF RESPIRATION 267
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Figure §.11 Top to bottom: EMG signal over two breath cycles from the parasternal inter-
costal muscle of a dog recorded via implanted electrodes; EMG envelope obtained with the
madified Bessel filter with a time constant of 100 rre; and inspiratory airflow. The duration
of the signals plotted is 5 8. The several minor peaks appearing in the envelope are related to
the ECG which appears as an artifact in the EMG signal. Data courtesy of R.S. Platt and P.A.
Easton, Department of Clinical Neurosciences, University of Calgary [26].
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Figure 5.12 Correlation between EMG amplitude from Bessel-filtered envelope versus in-
spiratory airflow. The EMG envelope was filtered using a modified Bessel filter with a time
constant of 100 ms. Data courtesy of R.S. Platt and P.A. Easton, Department of Clinical
Neurosciences, University of Calgary [26).



APPLICATION: CORRELATES OF MUSCULAR CONTRACTION 268

5.10 APPLICATION: ELECTRICAL AND MECHANICAL CORRELATES
OF MUSCULAR CONTRACTION

Problem: Derive parameters from the electrical and mechanical manifesiations of
muscular activity that correlate with the level of contraction or force produced.

Solution: Zhang et al. [47, 48] studied the usefulness of simultaneously recorded
EMG and VMG signals in the analysis of muscular force produced by contraction.
In their experimental procedure, the subjects performed isometric contraction (that
is, with no movement of the associated leg) of the rectus femoris (thigh) muscle to
different levels of torque with a Cybex Il dynamometer. Four levels of contraction
were performed from 20% to 80% of the maximal voluntary contraction (MVC) level
of the individual subject. The experiments were performed at three knee-joint angles
of 30°, 60°, and 90°. Each contraction was held for a duration of about 6 s, and
the subjects rested in between experiments to prevent the development of muscle
fatigne. The VMG signal was recorded using a Dytran 3115a accelerometer, and
surface EMG signals were recorded using disposable Ag — AgCl electrodes. The
VMG signals were filtered to the bandwidth 3 — 100 Hz and the EMG signals were
filtered to 10 — 300 Hz, The VMG and EMG signals were sampled at 250 H z and
1,000 Hz, respectively. Figure 2.3 illustrates sample recordings of the VMG and
EMG signals at two levels of contraction.

RMS values were computed for each contraction level over a durationt of 5 s.
Figure 5,13 shows the variation of the RMS values of the EMG and VMG signals
acquired at a knee-joint angle of 60° and averaged over four subjects. The almost-
linear trends of the RMS values of both the signals with muscular contraction indicate
the usefulness of the parameter in the analysis of muscular activity. It should, however,
be noted that the relationship between RMS values and contraction may not follow
the same (linear) pattern for different muscles. Figure 5.14 shows the RMS versus
%MVC relationships for three muscles: the relationship is linear for the first dorsal
interosseus (FDI), whereas it is nonlinear for the biceps and deltoid muscles [150].

5.11 REMARKS

We have now reached the stage in our study where we can derive parameters from
segments of biomedical signals. We focused our attention on characteristics that
could be observed or dertved in the time domain. The parameters considered were
designed with the aim of discriminating between different types of waveshapes, or of
representing change in waveform complexity through the course of a physiological
or pathological process. We have seen how the various parameters explored in the
present chapter can help in distinguishing between normal and ectopic ECG beats,
and how certain measures can serve as correlates of physiological activity such as
respiration.

It should be borne in mind that, in most practical applications, a single parameter
or a couple of measures may not adequately serve the purposes of signal analysis or
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Figure 5,13 RMS values of the VMG and EMG signals for four levels of contraction of the
rectus femoris muscle at 60° knee-joint angle averaged over four subjects. Reproduced with
permission from Y.T. Zhang, C.B. Frank, R. M. Rangayyan, and G.D. Bell, Relationships of
the vibtomyogram to the surface clectromyogram of the human rectus femoris muscle during
voluntary isometric contraction, Journal of Rehabilitation Research and Development, 33(4):
395403, 1996. (©Department of Veterans Affairs.
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Figure 5.14 EMG RMS value versus level of muscle contraction expressed as a percentage
of the maximal voluntary contraction level (%MVC) for each subject. The relationship is
displayed for three muscles. FDI: first dorsal interosseus, N: number of muscles in the study.
Reproduced with permission from I.H, Lawrence and C.J. de Luca, Myoelectric signal versus
force relationship in different human muscles, Journal of Applied Physiology, 54(6):1653-
1659, 1983. @American Physiological Society.
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diagnostic decision making. A single parameter such as the form factor or signal
length may assist in distinguishing some types of PVCs from normal ECG beats;
however, several cardiovascular diseases and defects may cause changes in the ECG
signal that may lead to similar variations in the FF or SL values. A practical appli-
cation would need to maintain a broad scope of analysis and use several parameters
to detect various possible abnormalities. As always, an investigator should consider
the possibility that a parameter observed to be useful in, say, ECG analysis in the
time domain, may serve the needs in the analysis of some other signal, such as the
PCG or EMG, in a different domain,

512 STUDY QUESTIONS AND PROBLEMS

1. Prove that the form factor F'F of a sinusoidal wave is equal to unity.
2. The following discrete-time signals are defined over the interval 0 to 10 & with the
sampling frequency being 1 Hz:
¢ z1(n} = u(n) — u{n - 5).
s 23(n) = 2u(n — 3} — 2u(n — 8).
¢ zy(n)=u(n —2) —u(n—9}.
¢ z4(n) = uin — 2} — u(n — 10).
u(n) is the discrete-time unit step function,
The signal length S of a signal @(n) is defined as

N-1 a
T wn)i(n)
= T )

n=0

where w(n) is a nondecreasing weighting function, and N is the number of samples in
the signal. Let w{n) =n,n=0,1,2,... N -1

Draw sketches of each signal with the weighting function w{n) superimposed. Compute
the SL values for the four signals given. Interpret your results and compare the
characteristics of the four signals in terms of their §L values.

3. You are given a signal with the samples {0,0,2,2,3, —8,2,0,0} and a templaie with
the samples {1, —1}. Perform the template matching operation and derive the sample
values for the output. Provide an interpretation of the result.

4. Discuss the similarities and differences between the problems of
(i) detection of spike transients in EEG signals, and
(i1} the detection of QRS complexes in ECG signals,

5. You have been hired to develop a heart-rate monitor for use in a coronary-care unit,
Design a system to accept a patient’s ECG signal, filter it to remove artifacts and noise,
sample the signal, measure the heart rate, and set off alarms as appropriate. Provide a
block diagram of the system, with details (in point form) of the signal processing steps
to be performed in each block. Specify the important parameters for each processing
step.
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6. A needle EMG signal under low levels of muscle contraction was observed to contain a
mixture of three trains of MUAPs. One of the trains contains quasi-periodic occurrences
of a monophasic MUAP, the second contains occurrences of a biphasic MUAP, and the
third contains occurrences of a triphasic MUAP. It was also observed that the MUAPs
do not overlap in the EMG signal.

Propose a signal analysis procedure to:

(a) detect the occurrence (location in time) of each MUAP of each type individually,
and _

(b) determine the firing rate of cach motor unit.

Note that each MUAP needs to be detected and labeled as being one of monophasic,
biphasic, or triphasic type.

Your solution should inctude:

(i) plots of the EMG signal {make up one according to the description above) with labels
for the components;

(ii) plots of the signal at various stages of your analysis procedure;

(iti) equations for important steps of your signal analysis procedure; and

(iv) point-form statements describing the reason or logic behind each step you propose.

7. A researcher is attempting to develop a digital signal processing system for the ac-
quisition and analysis of heart sound signals (PCG signals). Assist the researcher in
addressing the following concerns and problems:

(a) What are the typical bandwidths of normal PCG signals and those with murmurs?
What is the recommended sampling frequency?

(b) What are the sources of artifacts that one has to consider in recording PCG signals?
Name one physiological source and one other source, and recommend techniques to
limit or eliminate both.

() How can one identify the locations of the first and second heart sounds (S1 and §2)?
Which other biomedical signals would you recommend for assistance in this problem?
Draw schematic diagrams of the signals and identify the corresponding cardiac events
and timing relationships.

(d) Propose a technique to obtain the envelope of the PCG signal. List all steps of the
method you propose and provide the required parameters.

(e} Draw schematic PCG signals and their envelopes over one cardiac cycle for a normal
case, a case with systolic murmur, and a case with diasiolic murmur. Identify each event
in each case.

8. You are given a database of single-motor-unit action potentials (SMUAPs) containing
several types of normat and abnormal patterns. Each signal record has one SMUAP.
The patterns and features of interest are;

(i) Monophasic SMUAPs.

(i1) Biphasic SMUAPs,

(iii) Triphasic SMUAPs.

(iv) Polyphasic SMUAPs with more than three phases.

(a) Propose two parameters (computed features) to help in separating the four classes of
SMUAPs. Give the required equations or procedures and explain their relationship to
the signal characteristics described above. Describe conditions or preprocessing steps
that are required in order for your methods to work well,
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(b) Draw a schematic plot of the feature-vector space and demarcate regions where you
expect features of the four SMUAP types to lie.

{c) State decision rules to classify the four SMUAP types using the two measures you
propose.

Why is the ST segment of the ECG relevant in diagnosis? Recommend signal analysis
techniques for the analysis of ST segment variations in clinical applications.

5.13 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the site
ftp://ftp.ieee.orgfuploads/press/rangayyan/

L

The signal in the file emg.dog2.dat was recorded from the crural diaphragm of a dog
using fine-wire electrodes sewn in-line with the muscle fibers and placed 10 mm apart.
The signal represents two cycles of breathing, and has been sampled at 10 kHz, (Sec
also the file emg_dog2.m.)

Write a MATLAB program to petform full-wave rectification (absolute value) or haif-
wave rectification (threshold at zero, with the mean value of the signal being zero).
Apply a lowpass Butterworth filter of order eight and cutoff frequency in the range
10 to 20 Hz to the result, Analyze and evaluate the results with the two methods of
tectification and at least two different lowpass cutoff frequencies. Compare the results
with the envelope provided in the file emg_dog2_env.dat.

. The root mean squared (RMS) value of a signal within a specific duration is related to

the average power level of the signal. Write a MATLAB program to compute the RMS
value at each instanl for the EMQG signal in the file emg.dog2.dat by using a causal
short-time analysis window of duration in the range 50 — 150 ms. Use at least two
differenmt window durations and analyze the results. (See also the file emg_dog2.m.)

. Develop a MATLAB program to compute the turns count in causal moving windows

of duration in the range 50 — 150 ma. Apply the method to the EMG signal in the file
emg._dog2.dat. (See also the file erng.dog2.m.) Study the results for different thresholds
inthe range O — 200 V.

Compare the envelope, RMS, and turns count curves in terms of their usefulness as
representatives of inspiratory airflow (data provided in the file emg.dog2_flo.dat),

. The file safety.wav contains the speech signal for the word “safety” uttered by a male

speaker, sampled at 8 kH 2. (See also the file safety.m.) The signal has a significant
amount of background noise (as it was recorded in a normal computer laboratory).
Develop procedures to derive short-time RMS, turns count, and ZCR in moving windows
of duration in the range 10 — 100 ms. Study the variations in the parameters in relation
1o the voiced, unvoiced, and silence (background noise) portions of the signal.

What do you expect the resulls to be if the procedures are applied to the first derivative
of the signal? Confimm your assertions or expectations by performing the study.

. Develop a program to derive the envelogram, Apply the procedure to the PCG signals

in the files pecl dat, pec33.dat, and pec52.dat. (See the file plotpec.m.)
Extend the procedure to average the envelograms over several cardiac cycles using the

ECG as the trigger. How will you handie the vasiations in the duration (number of
samples) of the signals from on¢ beat to another?
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6. The ECG signal in the file ecgpve.dat contains a large number of PVCs, including
episodes of bigeminy. (See the file ecgpve.m.) Apply the Pan-Tompkins procedure to
detect and segment each beat. Label each beat as normal or PYC by visual inspection.
Record the number of beats missed, if any, by your detection procedure.

Compute the RR interval and the form factor FF for each beat. Use a duration of 80
samples (400 mas) spanning the QRS - T portion of each beat to compute F'F, The P
wave nieed not be considered in the present exercise.

Compute the mean and standard deviation of the FF and RR values for the normal
beats and the PVCs. Evaluate the variation of the two parameters between the two
categories of beats.



Frequency-domain
Characterization of Signals
and Systems

Many biomedical systems exhibit innate rhythms and periodicity that is more readily
expressed and appreciated in terms of frequency than time units. As a basic example,
consider cardiac function: we express cardiac rhythm more conveniently in terms of
beats per minute — a measure of the frequency of occurrence or the rate of repetition
— than in terms of the duration of a beat or the interval between beats in seconds
(the RR interval). A cardiac rhythm expressed as 72 bpm is more easily understood
than a statement of the corresponding RR interval as 0.833 s, By the same token,
the notion of an EEG rhythm is conveyed more readily by a description in cycles per
second in lay terms, or in Herez (Hz) in technical terms. Even engineers would find
a frequency-domain expression easier to appreciate than a time-domain description,
such as an alpha rhythm having a frequency of 11.5 H z versus the equivalent period
of 0.087 s.

When the signal being studied is made up of discreie (that is, separate and distinct)
events in time, such as the ECG or a train of SMUAPs, the basic rhythm or rate of ac-
tivity present in the signal can indeed be assessed directly in the time domain. On the
other hand, signals such as the PCG display complex or complicated patterns in the
time domain that do not facilitate ready appreciation of their frequency-domain char-
acteristics; furthermore, the time-domain waveforms may differ from one occorrence
of the signal (one heart beat) to another.

The PCG provides an interesting example of a signal with multiple frequency-
domain features: in addition to the beat-to-beat periodicity or rhythm, the heart
sounds within a cardiac cycle exhibit resonance. Due to the multi-compartmental
nature of the cardiac system, we should expect heart sounds to possess multiple
resonance frequencies: this leads to the need to describe the PCG, not only in terms

277
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of a thythm (the heart rate) or a single resonance frequency, but also a composite
spectrum of several dominant or resonance frequencies. Furthermore, constrained
flow of blood through an orifice such as a septal defect or across a stenosed valve
acting as a baffle could lead to turbulence, resulting in wide-band noise. In the case
of noise-like murmurs, we would be able to identify neither rhythms nor resonance
frequencies: the need arises to consider the distribution of the signal’s energy or
power over a wide band of frequencies, leading to the notion of the power spectral
density function,

We have seen in Chapter 3 that it is often more convenient and meaningful to
describe filters in terms of their frequency response — H(z), H(w), or H{f) — than
in terms of their impulse response k(2) or the time-domain input ~ output relationship
(difference equation). Furthermore, we saw in Section 4.4 that it is easier to interpret
the PSDs of EEG waves than it is to interpret their theoretically equivalent ACFs. The
Fourier and other similar transforms provide an invertible or reversible transformation
from the time domain to the frequency domain (and vice-versa). Therefore, it may
be argued that no new information is created by taking a given signal from the time
domain to the frequency domain, However, the distribution of the energy or power
of the signal in the frequency domain that is provided by the Fourier transform —
the spectrum or PSD of the signal — facilitates better analysis and description of the
frequency-domain characteristics of the signal. The PSD of a signal is not only useful
in analyzing the signal, but also in designiog amplifiers, filters, data-acquisition and
transmission systems, and signal processing systems to treat the signal appropriately.
We have seen in Section 3.5 that we need not only the signal PSD but also the noise
PSD in order to be able to implement the optimal Wiener filter.

The treatment of biomedical signals as stochastic processes provides flexibility
and a sense of generality in analysis, but imposes conditions and requirements in
the estimation of their statistics including the ACF and PSD. In the present chapter,
we shall investigate methods to estimate the PSD and frequency-domain parameters
of biomedical signals and systems. We shall also study methods to derive spectral
parameters that can characterize the given signal as well as the system that generated
the signal. The motivation for the study, as always, shall be to distinguish between
normal and abnormal signals or systems, and the potential use of the methods in
diagnosis.

6.1 PROBLEM STATEMENT

Investigate the potential use of the Fourier spectrum and parameters derived thereof in
the analysis of biomedical signals. Identify physiological and pathological processes
that could modify the frequency content of the corresponding signals. Outline the
signal processing tasks needed to perform spectral analysis of biomedical signals
and systems.

As in the preceding chapters, the problem statement given above is generic, and
represents the theme of the present chapter. The various signal analysis techniques
described and the examples used for illustration in the following sections will address
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the points raised in the problem statement, with attention to specific problems and
techniques.

6.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

6.2.1 The effect of myocardial elasticity on heart sound spectra

The first and second heart sounds — S1 and 82 — are typically composed of low-
frequency components; this is to be expected due to the fluid-fitled and elastic nature
of the cardiohemic system. Sakai et al. [151] processed recorded heart sound signals
by using tunable bandpass filters (with a bandwidth of 20 H z, tuned over the range
20 — 40 Hz 10 400 — 420 Hz), and estimated the frequency distributions of S1 and
52. They found the heart sound spectra to be maximum in the 20 — 40 Hz band,; that
S1 had a tendency to demonstrate peaks at lower frequencies than those of 52; and
that 82 exhibited a “gentle peaking” between 60 Hz and 220 Hz.

Gerbarg et al, [134, 135] developed a computer program to simulate a filter bank,
and obtained averaged power spectra of S1 and 52 of 1, 000 adult males, 32 high-
school children, and 75 patients in a hospital. The averaged PSDs of S1 and S2
obtained by them indicated peak power in the range 60 — 70 H 2, and relative power
levels lower than ~10 dB beyond 150 Hz. The PSD of S2 displayed slightly more
high-frequency energy than that of S1.

Frome and Frederickson [152] applied the FFT to the analysis of first and second
heart sounds. They described how segmented S1 and $2 data may be combined
into a single complex signal, and how a single FFT may be used to obtain the FFTs
of the two signals. Computer data processing techniques were described to obtain
smoothed, averaged periodograms {(described later in Section 6.4.1) of S1 and S2
separately.

Yoganathan et al. [153] applied the FFT for the analysis of S1 of 29 normal
subjects. The FFT spectra of 250 ms windows containing S1 were averaged over 15
beats for each subject. It was found that the frequency spectrum of S1 contains peaks
in a low-frequency range (10— 50 H z) and a medium-frequency range (50— 140 Hz)
[153]. In a similar study, the spectrum of S2 was observed to contain peaks in Jow-
frequency (10 — 80 H=z), medium-frequency (80 — 220 Hz), and high-frequency
ranges (220 — 400 Hz) [154]. It has been suggested that the resonance peaks in the
spectra may be related to the elastic properties of the heart muscles and the dynamic
events causing the various components of S1 and S2 (see Section 1.2.8).

Adolph et al. [155] used a dynamic spectrum analyzer to study the frequency
content of S1 during the iso-volumic contraction period. The center frequency of a
filter with 20 Hz bandwidth was initially set to 30 Hz, and then varied in 10 Hz
increments up to 70 Hz. The outputs of the filters were averaged over the same
(prerecorded) 10 consecutive beats. Finally, the ratios of the average peak voltage of
the filtered outputs to that of the total S1 signal during the iso-volumic contraction
period were computed.
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Adolph et al. hypothesized that the frequency content of S1 during the iso-
volumic contraction period should depend on the relative contributions of the mass
and elasticity of the left ventricle. The mass of the left ventricle with its blood content
remains constant during iso-volumic contraction. Therefore, it was reasoned that the
frequency content of S1 should decrease (that is, shift toward lower frequencies) in
the case of diseases that reduce ventricular elasticity, such as myocardial infarction,

Figure 6.1 shows averaged $1 spectra for normal subjects and patients with acute
or healed myocardial infarction; it is seen that the reduced elasticity due to myocardial
infarction has reduced the relative content of power near 40 Hz. However, Adolph
et al. also noted that an increase in ventricular mass as in the case of trained athletes,
or a reduction in elasticity combined with an increase in the mass as in the case
of myocardiopathy, could also cause a similar shift in the frequency content of S1.
Regardiess, they found that frequency analysis of S1 was of value in differentiating
acute pulmonary embolism from acute myocardial infarction. Clarke et al. [156]
also found reduction in the spectral energy of S1 to be a common accompaniment of
myocardial ischemia.
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Figure 6.1 First heart sound spectra for normal, acute myocardial infarct, and healed my-
ocardial infarct cases. The latter two cases exhibit an increased percentage of low-frequency
components. Reproduced with permission from R.). Adolph, J.F. Stephens, and K. Tanaka,
The clinical value of frequency analysis of the first heart sound in myocardial infarction,
Circulation, 41:1003-1014, 1970, ©American Heart Association.

6.2.2 Frequency analysis of murmurs to diagnose valvular defects

As we noted in Section 1.2.8, cardiovascular valvular defects and diseases cause
high-frequency, noise-like sounds known as murmurs. Murmurs are often the only
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indicators of the early stages of certain cardiovascular diseases; prompt diagnosis
could prevent further deterioration of the condition and possible complications.

We noted in Section 5.6.2 that zero-crossing analysis in the time domain was ap-
plied to assistin the detection of murmurs by Jacobs et al. [137] and Yokoi et al. [138].
Although ZC R increases with the presence of higher-frequency components, it does
not yield a direct measure of the frequency content or the spectrum of the signal.

Application of electronic signal filtering techniques to analyze the frequency
content of heart sounds and murmurs was initiated as carly as the 1950s. Geckeler
et al. [157] and McKusick et al. {158, 159] studied the applicability of the sound
spectrograph for the analysis of heart sounds and murmurs. The sound spectrograph
was developed in the late 1940s by Beli Telephone Laboratories as a tool to produce
what was labeled as visible speech. The spectrograph used a bandpass filter (or a bank
of bandpass filters) to determine the power of the given signal in each frequency band
of interest. The signal was usually recorded and played back repeatedly as the center
frequency of the bandpass filter was varied. The output was recorded on heat-sensitive
or light-sensitive paper to produce a 2D distribution of frequency content of the signat
atevery instant of time as a gray-level image (essentially a time-frequency distribution,
to be discussed in Section 8.4.1). Winer et al. [160} proposed iso-intensity contour
plotting of the spectrogram instead of using variations in intensity (gray scale}; they
reported that, whereas normal heart sounds indicated the presence of regularity in the
contours of equal intensity, abnormal sounds and murmurs produced irregular contour
line structures with extensive “convolutions” and roughness. It was suggested that
the cardio-spectrograms (or spectral phonocardiography) could provide physiologic
and pathologic information beyond that provided by auscultation, without suffering
from the psychoacoustic impediments that affected human observers.

Yoshimura et al. [161] used a wunable bandpass filter with low and high cutoff
frequencies in the range 18 — 1,425 Hz to process recorded PCG signals. They
determined that the diastolic rumble of mitral stenosis occupied the range 20 —
200 Hz, whereas the diastolic blow of aortic regurgitation spanned a much higher
frequency range of 200 — 1,600 Hz (although the characteristic range was 400 —
800 H2).

Gerbarg et al. [134, 135] developed a computer program to stimulate a filter bank
and obtain power spectra of heart sounds and murmurs, with the aim of developing
a system for mass-screening to detect cardiovascular diseases. They argued that
itnocent (physiological) systolic murmuyr in children is limited to the first and middle
thirds of the systolic interval between S1 and S2, whereas pathological systolic
murmur due to mitral regurgitation is holo-systolic (spans the entire systolic pariod).
Therefore, they computed ratios of the mean power of the last third of systole to
the mean power of sysiole and also t0 a certain “standard” noise level. A ratio
was also computed of the mean energy of systole to the mean energy of the PCG
over the complete cardiac cycle. Gerbarg et al. obtained 78 — 91% agreement of
their computer classification based upon the three ratios defined above with clinical
diagnosis of mitral regurgitation in different groups of subjects. Although they would
not claim that a fully automated program for the diagnosis of mitral regurgitation
had been developed, they indicated that the feasibility of computer-based diagnosis
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had been established, and that simulation of human auscultation had been partially
achieved.

The specific problem of detection of the murmur due to aortic insufficiency in the
presence of the murmur due to mitral stenosis was considered by van Vollenhoven et
al. [162]. Aortic insufficiency causes an early diastolic murmur (with a blowing or
hissing quality) that is best heard in the aortic area (second right-intercostal space,
just right of the sternum), whereas the mid-diastolic rumbling murmur of mitral
stenosis is best heard at the apex. A tunable bandpass filter with 50 Hz bandwidth
and center frequency tunable in steps of 50 Hz was used by van Vollenhoven et al.
to study the frequency content in a 100 ms window during the diastolic phase of
recorded PCG signals, They found that the murmur of mitral stenosis was limited
in frequency content to less than 400 H z, whereas the murmur in the case of aortic
insufficiency combined with mitral stenosis had more high-frequency energy in the
range 300 —~ 1,000 Hz,

Sarkady et al. [ 119} suggested synchronized averaging of the PSDs of PCG signals
over severa] cardiac cycles computed using the FFT algorithm. Joknson et al. [163,
164} studied FFT-based PSDs of the systolic murmur due to aortic stenosis. They
computed the PSDs of systolic windows of duration 86,170, and 341 ms, and
averaged the results over 10 cardiac cycles, Johnson et al. hypothesized that higher
murmur frequencies are generated as the severity of aortic stenosis increases. In their
study of patients who underwent catheterization and cardiac fluoroscopy, the trans-
valvular systolic pressure gradient was measured during pull-back of the catheter
from the left ventricle through the aortic valve, and found to be in the range 10 —
140 mm of Hg. Spectral power ratios (described in Section 6.5.2) were computed
considering the band 25 — 76 H z as the constant area (C A) related to normal sounds
and the band 75 — 150 H =z as the predictive area (P A) related to murmurs.

Figure 6.2 illustrates the PSDs of four patients with aortic stenosis of different
levels of severity. The PSDs in the figure are segmented into the C'A and P A parts
as described above; the trans-valvular systolic pressure gradient (in mm of Hg)
and the P.A/C A spectral power ratio are also shown for each case. Johnson et al.
found that the spectral power ratio increased linearly with the trans-valvular systolic
pressure gradient, and hence correlated well with the severity of aortic stenosis.
The importance of recording the PCG in the aortic area, pre-filiering the PCG 1o
25 — 1,500 Hz, and the selection of an appropriate systolic murmur window was
discussed by Johnson et al. Although there were confounding factors, it was indicated
that the noninvasive PCG-based technique could be usefu! in identifying the need for
catheterization as well as follow-up of patients with aortic stenosis,

6.3 THE FOURIER SPECTRUM

The Fourier transform is the most commonly used transform to study the frequency-
domain characteristics of signals [1, 2, 14, 86). This is mainly because the Fourier
transform uses sinusoidal functions as its basis functions. Projections are computed
of the given signal x(¢) onto the complex exponential basis function of frequency o
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Figure 6.2 Averaged and normalized PSDs of four patients with aortic stenosis of different
levels of severity. Each PSD is segmented into two parts: a constant area C' A and a predic-
tive area PA. The trans-valvular systolic pressure gradient (meastred via catheterization in
mm of Hg) and the PA/C A spectral power ratio are shown for each case. Reproduced
with permission from the American College of Cardiclogy: G.R. Johnson, R.J. Adolph, and
D.J. Campbell, Estimation of the severity of aortic valve stenosis by frequency analysis of the
murmur, Journal of the American College of Cardiology, 1(5):1315-1323, 1983 @©Elsevier
Science.
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radians/s, given by exp(jwt) = cos(wt) + j sin(wt), as

X(w) = / 2(t) exp(—jut) dt, ®.1)
or in the frequency variable f in Hz as
x()= [ o) exp(-janst) de. 62

(The complex exponential function is conjugated in computing the projection. In
some fields, the forward Fourier transform is defined with exp(+-jwt) in the integral.)
The above equations represent analysis of the signal 2(t)} with reference to the
complex exponential basis functions. The lower limit of the integral will be 0 if the
signal is causal; the upper limit will be equal to the duration of the signal in the case
of a finite-duration signal. The value of X(w) or X(f) at each frequency of interest
w = 2 f represents the “amount”™ of the corresponding cosine and sine functions
present in the signal 2(t). Note that, in general, X (w) is compiex for real signals,
and includes the magnitude and phase of the corresponding complex exponential,

The inverse transformation, representing synthesis of the signal 2(¢) as a weighted
combination of the complex exponential basis functions, is given as

o) =5 [ X@) et o= [~ X)) explint) . 63

The second version of the above equation with the frequency variable f in Hz may
be more convenient in some situations than the first one with o in radians/s, due
to the absence of the 2%, factor. (If the forward Fourier transform is defined with
exp(+jwt), the inverse Fourier transform will have exp(—jwt) in the integral; this
distinction is not significant.)

In the case of a discrete-time signal ®#(n), we may still compute the Fourier
transform with a continuous frequency variable w as

o0

X(w)= Z z(n) exp(—jwn), (6.4)

n=-—-o0

with the normalized-frequency range 0 < w < 2rr (equivalentto 0 < f < 1). The
lower limit of the summation will be 0 if the signal is causal. The upper limit of
the summation will be equal to the index (W — 1) of the last sample in the case
of a finite-duration signal with N samples. The frequency variable w may also be
defined over the range 0 £ w < w, (equivalent to 0 < f < f£,), in which case n
in the above equation should be multiplied by the sampling interval T in seconds.
The Fourier transform is equivalent to the z-transform evaluated on the unit circle
with z = exp(jw). Note that the Fourier transform of a discrete-time (sampled)
signal is periodic with the period equat to the sampling frequency w, or 27 on the
normalized-frequency scale,
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When processing digital signals on a computer, the frequency variable w will
dlso have to be sampled, as w = 214'{\; k, or in the case of normalized frequency as
w = 3%k, where k is the frequency sample index and N is the number of samples
to be used over one period of the periodic spectrum X (w). Then, we have the DFT
(analysis) relationship

N-1
X(k)= ) a(n) exp (—j%,’fkn) , k=0,1,2,...,N-1, (65
n=0
In the above equation, it is assumed that the given signal has N samples; it may
be shown that the Fourier transform of a discrete-time signal with N samples is
completely determined by N samples of its Fourier transform equally spaced around
the unit circle in the z-plane [86]. The inverse DFT (synthesis) relationship is given
by the expression

N-1
x(,,):%,.z X (k) exp (j%rkn), n=0,1,2,...,N-1. (6.6)
k=0

Sampling the frequency variable causes the signal to become periodic in the time
domain. The equations above define the forward and inverse DFTs over one period.
Note that

exp (j?}—g—kn) = cos (%"kn) + j sin (%"kn) (6.7)

represents the sine and cosine functions of normalized frequency f = %k, k=
0,1,2,...,N — 1. The normalized frequency lies in the range 0 < f < 1, and
may be converted to the real frequency in Hz by multiplication with the sampling
frequency f, Hz. Equation 6.5 represents the dot product or projection of the given
signal z{n) onto each complex exponential or sinusoid exp( j%"kn) {conjugated).
Equation 6.6 represents synthesis of the signal z(n) as a linear, weighted combination
of the complex exponential basis functions, the weights being the DFT coefficients
X(k).

Several important properties of the DFT and their implications are listed below [{,
2, 14, 861.

e A signal z(n) and its DFT X (k) are both periodic sequences.

» Ifasignal z{n)has N samples, its DFT X (k) must be computed with at least N
samples equally spaced over the normalized-frequency range 0 < « < 2 (or,
equivalently, around the unit circle in the z-plane) for complete representation
and determination of X(w}, and hence exact reconstruction of x(n) via the
inverse DFT of X (k). Of course, one may use more than N samples to compute
X (k) in order to employ an FFT algorithm with L = 2M > N samples, where
M is an integer, or to obtain X (w) with finer frequency sampling than %
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e The DFT is linear: the DFT of az(n) + by(n) is X (k) + bY'(k), where X (k)

and Y (k) are the DFT's of z(n) and y(n), respectively.

e The DFT of z(n — n,) is exp(—j&F kn,) X (k), where X (k) is the DFT of

z(n). A time shift leads to a linear component being added to the phase of the
original signal, As all sequences in DFT relationships are periodic, the shift
operation should be defined as a circular or periodic shift. If at ieast n,, zeros
are present or are padded at the end of the signal before the shift operation, a
circular shift will be equivalent to a linear shift.

The DFT of z(n) » h(n) is X (k)H (k}, where X (k) and H{k) are the DFTs of
z(n) and h{n), respectively. The inverse DFT of X (k)H(k) is 2(n} * h(n).
Similarly, z(n)}h{n) and X (k) * H(k) form a DFT pair. Convolution in one
domain is equivalent to multiplication in the other. It is necessary for ail the
signals in the above relationships to have the same number of samples V.

As all sequences in DFT relationships are periodic, the convolution operations
in the above relationships are periodic convolution and not linear convolution.
Note that circular or periodic convolution is defined for periodic signals having
the same period, and that the result will also be periodic with the same period
as that of the individual input signals.

The result of linear convolution of two signals z{n) and h(r) with different
durations NV, and IV, samples, respectively, will have a ducation of N + N, —1
samples, If tinear convolution is desired via the inverse DFT of X (k)H({k),
the DFTs must be computed with L > N, -+ Np, — 1 samples. The individual
signals should be padded with zeros at the end to make their effective durations
equal for the sake of DFT computation and multiplication. All signals and
their DFTs are then periodie with the augmented period of L samples.

The DFT of a real signal z(n} will possess conjugate symmetry, that is,
X(-k) = X*(k). As a consequence, the real part and the magnitude of
X (k) will be even sequences, whereas the imaginary part and the phase of
X (k) wilt be odd sequences.

According to Parseval's theorem, the total energy of the signal must remain
the same before and after Fourier transformation. We then have the fotlowing
equalities:

[= -] 1 [~ -]

f el &t = o [ 1X@)P d, 68)
[ o] 1 w
Y kel = = [ K@),

N-1

N-1 i
Y e = % 371Xk
n=0

k=0
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Since the integral of | X (w)}? over all w or the sum of | X (k)|* over ail k
represents the total energy of the signal (or average power, if the quantity
is divided by the duration of the signal), | X (w)|? and | X (k}|* represent the
spread or density of the power of the signal along the frequency axis.

6.4 ESTIMATION OF THE POWER SPECTRAL DENSITY FUNCTION

We have already encountered the ACF and CCF in Equations 3.9, 3.12, and 4.24;
the first two equations cited provided a general definition of the ACF as a statistical
expectation or an integral over a duration tending to co; the third treated the CCF as
the projection of one signal onto another and neglected a scale factor that was of no
consequence in the application. We shall now investigate more closely the procedures
required to estimate the ACF, and hence the PSD, from finite-length signal records,

Let us consider a signal record of N samples: z{n),n = 0,1,2,..., N ~1. In
order to compute the time-averaged ACF ¢, (m) for a delay of m samples, we need
to form the product 2(n)z(n & m) and sum over the available range of data samples.
The true ACF is given as ¢,-(m) = Elz(n)z(n + m)]. Note that one of the copies
of the signal entering the computation of the ACF should be conjugated if the signal
is complex.

It is readily seen that we may sum from n = 0 to n = N — 1 when computing
$:2(0) with 2(r)z(n) = x*(n). However, when computing ¢, (1) with z(n)z(n +
1), we can only sum fromn = QO ton = N — 2, As we apply a linear shift of
m samples to one copy of the signal to compute @p.(£m), m samples of one of
the copies of the signal drop out of the window of analysis indicated by the overlap
between the two copies of the signal. Therefore, only NV — |m| pairs of data samples
are available to estimate the ACF for the delay of £m sampiles. We then have a
sample-mean estimate of the ACF given by

1 N—|mi-1
$1(m) = N—Tml E z(n)ae(n + m). 6.9)
n=0

The subscript 2 has been omitted in the above equation; the subscript 1 indicates
the use of one type of averaging scale factor in estimating the ACF. Oppenheim and
Schafer [86] show that ¢, (m) is a consistent estimate of ¢,.(m): it has zero bias and
has a variance that tends to zero as N — co. However, the variance of the estimate
becomes exceptionally large as m approaches IV: very few non-zero pairs of samples
are then available to compute the ACF, and the estimate is useless.

An alternative definition of the ACF ignores the lack of |m| non-zero pairs of
samples, and applies the same scale factor for all delays, leading to

N—|m|-1
1
da(m) = & r;o z(n)z(n + m). (6.10)
Note that the upper limit of summation in the above expression could be stated as
N ~— 1 with no effect on the result; the first or the last |m| samples of z(n) will not
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overlap with @{n+m), and result in zero product terms. Oppenheim and Schafer [86]
show that ¢a{m) has a bias equal to .. {m): the bias tends to the actual value being
estimated as m approaches N, although the variance is almost independent of m and
tends to zero as N — o0o. Regardless, both the ACF estimates are asymptoticaily
unbiased (the bias of ¢2(m) tends to zero as N — o), and yietd good estimates of
the ACF as long as the number of samples N is Jarge and m << N,

Note that the two ACF estimates ¢, (m) and ¢2{m) are inter-related as

tatm) = L2 4 ), @11)

Thus ¢a{m) is a scaled version of ¢;(m). However, since the scaling factor is a
function of m, it is more commonly referred to as a window; more discussion on
this interpretation will be presented in Section 6.4.1, It should also be observed
that the distinction between ¢ (m) and ¢2(m) is comparable to that between the
unbiased and biased sample variance measures, where the divisionis by N — 1 or IV,
respectively, with JV being the number of samples available.

6.4.1 The periodogram

Since the PSD and the ACF are a Fourier transform pair, we may compute an estimate
of the PSD as
N-1
Saw)= D ¢a(m)exp(~jwm), (6.12)
m=—(N-1)

assuming that, indeed, the ACF is computed or available for {m| up to N — 1, The
Fourier transform of the signal #(n), n = 0,1,2,...,N — 1, is given as

N-1
X(w)= Y (n)exp(~jwn). (6.13)
nzﬂ
It can be shown that 1
Salw) = X (W) (6.14)

The PSD estimate S3{w)} is known as the periodogram of the signal z(n) [86).
Oppenheim and Schafer [86] show that Sa{w) is a biased estimate of the PSD, with

N-1

ESe)l =

m=—(N-1)

N — |m|

Pzz(m) exp(—jwm). (6.15)

If we consider the Fourier transform of ¢,(m), we get a different estimate of the
PSD as
N-1
Siw)= Y.  é1(m)exp(~jwm), (6.16)
m=—(N-1)
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with the expected value [86]
N-1
E[S)(w)] = Z @ze(m) exp(—jwm). 617
m=—{N-1)

Because of the finite limits of the summation, S (w) is a biased estimate of the PSD.

The two estimates S3(w) and 8;(w) may be seen as the Fourier transforms of
windowed ACFs, with the window functions being a triangular function — known as
the Bartleit window, wg(m) — in the first case, and a rectangular window wg(m)
in the second case:

N~|m
_ & im| <N
wp(m) { 0, otherwise ' 6.13)
_J1 lml<N
we(m) = { 0, otherwise ©.19)

Note that the windows defined above have a (non-zero) duration of (2N — 1) samples.
Since the ACF is multiplied with the window function, the PSD is convolved with
the Fourier transform of the window function, leading to spectral leakage and loss
of resolution {more details on windows will follow in Section 6.4.3). The Fourier
transforms of the Bartlett and rectangular windows are, respeciively [86],

_ 1 [sin(wN/2) 2

and

sinfw(2N — 1)/2]
sin{w/2)
Oppenheim and Schafer [86) show that the periodogram has a variance that does
not approach zero as N — co; instead, the variance of the periodogram is of the

order of o2 regardless of N. Thus the periodogram is not a consistent estimate of the
PSD.

6.4.2 The need for averaging

A common approach to reduce the variance of an estimate is to average over a
number of statistically independent estimates. We have seen in Section 3.3.1 how
the variance of the noise in noisy signals may be reduced by synchronized averaging
over a number of observations of the corrupted signal. In a similar vein, a number of
periodograms may be computed over multiple observations of a signal and averaged
to obtain a beiter estimate of the PSD. It is necessary for the process to be stationary,
at Jeast during the period over which the periodograms are computed and averaged.

Problem: How can we obtain an averaged periodogram when we are given only
one signal record of finite duration?
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Solution: Oppenheim and Schafer [86] describe the following procedure, at-
tributed to Bartlett, to average periodograms of segments of the given signat record:

i. Divide the given data sequence z{n),n = 0,1,2,..., N — 1, into K segments
of M samples each. We then have the segments given by

zi(n)=z(n+(i-1)M), 0<n<M-1, 1<i<K. (622

2. Compute the periodogram of each segment as

M-} :
Si(w) = % 3" @(n)exp(—jwn) | , 1<i<K. (6.23)

n=0

The Fourier transform in the above equation is evaluated as a DFT (using the
FFT algorithm) in practice.

3. If the ACF ¢,.(m) is negligible for |m| > M, the periodograms of the
K segments of duration M samples each may be assumed to be mutually
independent. Then, the Bartlett estimate Sg{w) of the PSD is obtained as the
sample mean of the K independent observations of the periodogram:

K
Snlw) = %,-Z Siw). 6.24)
i=1

Oppenbeim and Schafer [86] show that the expected valve of the Bartlett estimate
Sg{w) is the convolution of the true PSD §,,{w) with the Fourier transform of the
Bartlett window given in Equation 6.20 (with &N replaced by M). The coavolution
relationship indicates the bias in the estimate, and has the effect of spectral smearing
and leakage; the bias may therefore be interpreted as a loss in resolution, Although
Sp(w) is a biased estimate, its variance tends to zero as the number of segments K
increases. Therefore, it is a consistent estimate,

When we have a (stationary) signal of fixed duration of N samples, we will face
limitations on the number of segments X that we may obtain, While the variance
of the estimate decreases as K is increased, it should be recognized that there is a
concomitant decrease in the number of samples M per segment, As M decreases,
the main lobe of the Fourier transform of the Bartlett window (see Equation 6.20}
widens; frequency resolution is lost because the estimate is the convolution of the
true PSD with the window's frequency response. An illustration of application of the
Bartlett procedure will be provided at the end of Section 6.4.3.

Cyclo-stationary signals such as the PCG offer a unique and interesting approach
to synchronized averaging of periodograms over a number of cycles, without the
trade-off between the reduction of variance and the loss of resolution imposed by
segmentation as described above. This is presented as an illustration of application
in Section 6.4.5.
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6.4.3 The use of windows: Spectral resolution and leakage

The Bartlett procedure may be viewed as an ensemble averaging approach to reduce
the variance (which may be interpreted as noise) of the pericdogram. Another
approach to obtain a smooth spectrum is to convolve the periodogram S(w) with a
filter or smoothing function W{w} in the frequency domain (similar to the use of an
MA filter in the time domain). The smoothed estimate S, (w) is given by

S = 5 /_ : $(v) Wiw — ) dv, ©625)

where v is a temporary variable for integration.

As the PSD is a nonnegative function, the smoothing function W {w) should satisfy
W(w) > 0, = < w < 7. The Fourier transform of the Bartlett window Wx(w)
meets this requirement, Oppenheim and Schafer [86] show that the variance of the
smoothed periodogram is reduced approximately by the factor

1 M2 1

N Z w?(m) = I / Wi (w) dw, (6.26)
m=—{(M-1) -

with reference to the variance of the original periodogram; here IV is the total
number of samples in the signal and (2M — 1) is the number of samples in the
smoothing window function. A rectangular window offers a variance-reduction
factor of approximately %, whereas the factor for the Bartlett window is %%,’- [86].
It should be noted that smoothing of the spectrum (reduction of variance) is achieved
at the price of loss of frequency resolution.

Since the periodogram is the Fourier transform of the ACF estimate ¢(m), the
convolution operation in the frequency domain in Equation 6.25 is equivalent to
multiplying ¢(m} with w(m), the inverse Fourier transform of W{w). This result
suggests that the same PSD estimate as §,(w) may be obtained by applying a window
to the ACF estimate and then taking the Fourier transform of the result. As the ACF
is an even function, the window should also be even.

Based upon the arguments outlined above, Welch [165] (see also Oppenheim and
Schafer [86)) proposed a method to average modified periodograms. In Weich's
procedure, the given signal is segmented as in the Bartlett procedure, but a window
is applied directly to the original signal segments before Fourier transformation, The
periodograms of the windowed segments are defined as

M-1 2
Swi(w) = —— Z zi(nyw(n)exp(—jwn) | , i=12,....K, (627
¥l n=0
where E,, is the average power of the window given by

;] M-
E, = i E w?(n). (6.28)

n=0
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Note that the duration of the window is now M samples. The Welch PSD estimate
Sw{w) is obtained by averaging the modified periodograms as

K
1
Sw(w) =5 3 Swile). 629)
i=l

Welch [165] showed that, if the segments are not overlapping, the variance of
the averaged modified periodogram is inversely proportional to X, the number of
segments used. Weich also suggested that the segments may be allowed to overlap,
in which case the modified periodograms are not mutually independent. The spec-
tral window that is effectively convolved with the PSD in the frequency domain is
ptoportional to the squared magnitude of the Fourier transform of the time-domain
data window applied. Therefore, no matter which type of a data window is used,
the spectral smoothing function is nonnegative, thereby guaranteeing that the PSD
estimate will be nonnegative as well.

Some of the commonly used data windows are defined below [86, 166]; the
windows are of length N samples and causal, defined for 0 <n < N — 1.

Rectangular:
win) = 1. (6.30)

Bartlett (triangular);

(6.31)
2- 5, Yl<ngN-o1
Hamming:
2rn
w(n) = 0.54 — 0.46 cos (N — 1) . (6.32)
Hanning (von Hann):
1 27n
w(n)_i [l—cos (N—l)]' (6.33)
Blackman:
2rn 4nn
w(n) = .42 — 0.5 cos (m) + 0.08 cos (N —~ 1) . (6.34)

Figure 6.3 illustrates the rectangular, Bartlett, Hanning, and Hamming windows
with N = 256 samples. A Hanning window with N = 128 samples is aiso illustrated
(centered with reference to the longer-duration windows).

Use of the tapered windows (all of the above, except the rectangular window)
ptovides the advantage that the ends of the given signal are reduced to zero (with the
further exception of the Hamming window, for which the end-values are not zero but
0.08). This feature means that there are no discontinuities in the periodic version of
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Figure 6.3 Commonly used window functions: rectangular, Bartlett, Hamming, and Han-
ning windows with N = 256 (Hanningl), and Hanning window with N = 128 samples
{Hanning2). All windows are centered at the 128*® sample.
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the signal encountered in DFT-based procedures. All of the window functions listed
above are symmetric (even) functions, and therefore have a linear phase (or a real
spectrum with zero phase if the window is centered at the origin).

Figures 6.4 to 6.8 illustrate the Jog-magnitude frequency responses of the window
functions shown in Figure 6.3, The frequency responses were computed after padding
the windows to a total duration of I = 2, 048 samples for FFT computation. The plots
are on an expanded scale over the limited normalized-frequency range of (0, 0.1) in
order to illustrate clearly the characteristics of the main-lobe and the side-lobes, The
discontinuities in the frequency responses of the rectangular and Bartlett windows in
Figures 6.4 and 6.5 are due to the log of the zeros of the responses being —co.

The rectangular window has the narrowest main lobe of width %’;‘-; the main lobe is
wider at % for the Bartlett, Hanning, and Hamming windows; it is the widest at 1%
for the Blackman window [86]. A reduction in window width will lead to an increase
in the main-lobe width, as illustrated by the frequency responses of the two Hanning
windows in Figures 6.7 and 6.8, Note that the wider the main lobe, the greater is the
spectral smoothing, and hence the loss of spectrat resolution is more severe.

u E
Al |
EE Wwwmmm\mmmw

Figure 6.4 Log-magnitude frequency response of the rectangular window illustrated in Fig-
ure 6.3, The window width is N = 256 samples,

The rectangular window has the highest peak side-lobe levels of all of the windows
listed at —13 4B, with the Bartlett, Hamming, Hanning, and Blackman windows
having their peak side-lobe levels at —25 4B, —-31 dB, —41 dB, and 57 4B,
respectively [86]. Higherievels of the side-lobes will cause increased spectral leakage
{weighted summation of spectral components with significant weights over a wide
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Figure 6.5 Log-magnitude frequency response of the Bartlett window illustrated in Fig-
ute 6.3. The window width is N = 256 samples.

range of frequencies due to convolution in the frequency domain), resulting in a more
distorted spectrum. Note that reduction of leakage through the use of the tapered
windows comes at the price of increased main-iobe width, and therefore more severe
loss of spectral resolution (more smoothing).

Iliustration of application: The Welch method of windowing signal segments
and averaging their PSDs was applied to the 02 channel of the EEG signal illustrated
in Figure 1.22. The number of samples in the signal is N = 750, with the sampling
frequency being f, = 100 Hz. Note that the specific EEG signal record may be
assumed to be stationary over its relatively short duration of 7.5 s. The dominant
activity in the signal is the alpha rhythm, which appears throughout the duration of
the signal record.

The PSD of the entire signal was first computed using no window (that is, the
rectangular window was applied implicitly); the FFT array was computed with L =
1,024 samples. The top trace in Figure 6.9 itlustrates the PSD of the signal.

For the first averaged periodogram procedure, the EEG signal was segmented with
M = 64 sampies each, with implicit usage of the rectangular window (equivalent to
the Bartlett method). A total of X' = 11 segments were obtained. Each segment was
padded with zeros to a length of L = 1,024 for the sake of FFT computation. The
PSDs of the segments were then averaged, followed by normalization and logarithmic
transformation. The second and third plots in Figure 6.9 illustrate the PSD of a sample
segment (the 11*® segment) and the averaged PSD (the Bartlett estimate), respectively.
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Figure 6.6 Log-magnitude frequency response of the Hamming window illustrated in Fig-
ure 6.3, The window width is N = 286 samples.

It is seen that the averaged PSD (third trace) provides a smooth spectral estimate with
a clearly dominant peak at approximately 10 Hz, representing the alpha rhythm
present in the signal. The PSD of the individual segment (middle trace) displays
many peaks and valleys that are possibly spurious and rot significant, and have been
suppressed or smoothed by the averaging process. The single PSD computed from
the entire signal (top trace) exhibits numerous variations that may not be relevant and
could confound visual or automated analysis. (Note: Direct comparison of the PSDs
is possible since they have the same number of samples, that is, the same frequency
sampling.)

Figure 6.10 illustrates a second set of PSDs similar to that in Figure 6.9, but
with the usage of the Hanning window in the Welch procedure. The effect of the
Hanning window is not significant in the case of the PSD of the entire signal (top
trace}, as the window length is reasonably large (N = 750). However, the Hanning
window has clearly smoothed the multiple (possibly spurious) peaks and valleys in
the PSD of the segment illustrated in the middle trace. The wider mzain-lobe of the
Hanning window's frequency response has caused a more severe loss of frequency
resolution {(smocthing) than the rectangutar window in the case of the corresponding
PSDin Figure 6.9. Finally, the averaged PSD in the lowest trace of Figure 6.10 clearly
illustrates the benefit of the Hanning window in the significantly reduced power leveis
beyond 30 Hz. The lower side-lobe levels of the Hanning window have resulted
in less spectral leakage than in the case of the rectangular window as itlustrated by
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Figure 6.7 Log-magnitude frequency response of the Hanningl window iilustrated in Fig-
ure 6.3. The window width is N = 256 samples.

the corresponding PSD in Figure 6.9. The price paid, however, is evidenced by the
wider peak in the averaged PSD with the Hanning window, which spans the range
5-- 15 Hz at the —10 dB level. The two distinct peaks at about 10 Hz and 12 Hz
that are evident in the top traces of Figures 6.9 and 6.10 as well as in the smoothed
PSD in the bottom trace of Figure 6.9 are no longer seen separately in the bottom trace
of Figure 6.10. Regardless, the averaged PSD with the Hanning window appears to
be smoother and more amenable to analysis than the corresponding result with the
rectangular window,

6.4.4 Estimation of the autocorrelation function

Good estimates of the ACF are required in applications such as the design of the
optimal Wiener filter and estimation of the statistics of stochastic processes. Once a
PSD estimate has been obtained by a method such as the Bartiett or Welch procedures,
we may take the inverse Fourier transform of the result and use the result as an
estimate of the ACF, We may also fit a smooth curve or a parametric model (Gaussian,
Laplacian, etc.) to the PSD or to the equivalent ACF model.

Let us consider again the expression

N-|m]~1

$a(m) = 'JIE Y z(n)z(n+m). (6.35)

n=x0



298 FREQUENCY-DOMAIN CHARACTERIZATION

Frequency response of the Haoning?

T T T

b b5 .

4
=

20 log magnitude, 98
8

o} [
—100 i 1 i A 1 i X i 1

o n.01 o.02 0.0a 0.04 .05 0.06 o.ar .08 0.08 o1
Normalized fraquency

Figure 6.8 Log-magnitude frequency response of the Hanning2 window illustrated in Fig-
ure 6.3. The window width is ¥ = 128 samples.

As the ACF is an even function, we need to compute it only for positive m. It is
evident that the ACF estimate is simply the result of linear convolution of z(n) with
@(—n) (with the scale factor #). If the DFT of z(n} is X (k), the DFT of z(-n)
is X*(k). Since convolution in the time domain is multiplication in the frequency
domain, we could compate the DFT X (k) of z(n), obtain X (k)X*(k) = | X (k)|%,
and take its inverse DFT. However, the DFT procedure provides circular convolution
and not linear convolution. Therefore, we need to pad x(n) with at least M — 1 zeros,
where M is the largest lag for which the ACF is desired. The DFT must then be
computed with at feast L = N + M — 1 samples, where N is the number of samples
in the original signal. If this requirement is built into the periodogram or averaged
periodogram procedure, the inverse DFT of the final PSD estimate may be used as
an estimate of the ACF (with the scale factor 4, or division by ¢..(0) to get the
normalized ACF}.

6.4.5 Synchronized averaging of PCG spectra

Every individual is familiar with the comforting /ub — dub sounds of his or her heart
beat; every prospective parent would have taken pleasure in listening to the throbbing
heart of the yet-to-be-born baby. Use of the heart sounds is extremely comamon in
clinical practice: the stethoscope is the most common sign and tool of a physician.
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Figure 6.9 Barnlett PSD estimate of the 02 channel of the EEG signal in Figure 1.22,
Top trace: PSD of the entire signal. Middle trace: PSD of the 11*® segment. Bottom trace:
Averaged PSD using K = 11 segments of the signal. The rectangular window was (implicitly)
used in all cases. Number of samples in the entire signal: N = 750. Number of samples in
each segment; M = 64. All FFT arrays were computed with L = 1, 024 samples. Sampling
frequency f. = 100 Hz.
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Figure 6.10 Welch PSD estimate of the 02 channel of the EEG signal in Figure 1.22, Top
trace: PSD of the entire signal. Middle trace: PSD of the 112 segment. Bottom trace:
Averaged PSD using K = 11 segments of the signal. The Hanning window was used in all
cases. Number of samples in the entire signal and the size of the Hanning window used in
computing the PSD of the entire signal: N = 750, Number of samples in each segment and
the size of the Hanning window used in the averaged periodogram method: M = 64. AllFFY
arrays were computed with I = 1,024 samples. Sampling frequency f, = 100 Hz.
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Yet, behind this common signal lie many sophisticated and potentially complicating
characteristics.

The PCG is a nonstationary signal due to the fact that the amount of blood in each
cardiac chamber and the state of contraction of the muscles change continually during
each cardiac cycle, S2 usually has more high-frequency content than S1: the PSD of
a normal PCG signal changes within about 300 ms. Valve opening or closing sounds,
being of short duration of the order of 10 ms, are of a transient and high-frequency
character. The presence of murmurs adds another dimension of nonstationarity,
with frequency content well beyond that of the normal heart sounds: the PSD of an
abnormal PCG could change every 100 ms or less. Individual epochs of 81, 52,
valve snaps, and murmurs are of limited durations of the order of 10— 300 mas. These
aspects of the PCG preclude segmented averaging as recommended by the Bartlett
or Welch procedures.

Over and above all of the factors mentioned in the preceding paragraph, the
transmission characteristics of the chest wall change during breathing. (Living
systems are dynamic!) The PCG signals recorded at various locations on the chest are
also subject to different transmission-path effects. While adult subjects may cooperate
in PCG signal acquisition by holding their breath or performing other maneuvers,
these possibilities cannot be considered in the case of infants and young children in
poor states of health. The PCG signal presents more challenges in acquisition and
analysis than most of the other biomedical signals we have encountered [40).

Problem: Propose a method to obtain averaged PSD estimates of the systolic and
diastolic heart sounds.

Selution: The cyclo-stationarity of the PCG lends itself to a unique approach
to averaging PCG segments corresponding to the same phase of the cardiac cycle
extracted from multiple beats. If the subject were to hold his/her breath during the
period of acquisition of the PCG record, the chest-wall transmission characteristics
will be stationary over the multiple cardiac cycles in the record. Therefore, we may
segment S1, 52, or any portion of the cardiac cycle of interest from as many beats as
are available, and average their PSD estimates in a procedure similar to the Bartlett
or Welch procedures. (Note: Direct averaging of the PCG signals themselves or of
their complex Fourier transforms could lead to undesired cancellation of noise-like
murmurs or asynchronous frequency components and their disappearance from the
result! Refer to Sections 4.11 and 6.6 for discussions on intentional cancellation of
asynchronous components in the PCG via synchronized averaging.)

We saw in Sections 5.5.2 and 5.5.3 how the envelope or the envelogram of the
PCG may be averaged over several cardiac cycles. However, there was no need to
segment parts of a cardiac cycle in envelope analysis: nonstationarity of the signal
within a cardiac cycle was not a concern. In the present application of PSD analysis,
there is a need to segment the PCG further.

A procedure was described in Section 4.10 for segmentation of the systolic and
diastolic parts of PCG signals based upon the detection of the QRS complex in the
ECG and the detection of the dicrotic notch in the carotid pulse signal, Further
segmentation of the systolic or diastolic parts into S1 and systolic murmur or §2 and
diastolic murmur, respectively, would require more sophisticated methods, which will
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be the topics of Chapter 8. For now, let us consider the task of obtaining averaged
PSDs of the systolic and diastolic parts of a PCG signal,

Figure 6.11 shows the PCG signal over one cardiac cycle of a normal subject seg-
mented using the procedure described in Section 4.10 and illustrated in Figure 4.27.
The periodograms of the systolic and diastolic parts of the PCG cycle illustrated are
also shown in the figure. In order to obtain better PSD estimates, the periodogram
of each systolic or diastolic segment was computed separately and averaged over 16
cardiac cycles, No data window was applied (the rectanguiar window was used, in
effect), therefore the procedure used is similar to the Bartlett procedure. Individuat
systolic or diastolic segments could be of different durations; for the present illus-
tration, all periodograms were computed with the same number of samples, which
was taken to be the maximum RER interval in the ECG record of the subject. The
averaged systolic and diastolic PSD estimates are shown in Figure 6.11. The aver-
aging procedure provides a smoother estimate of the PSDs by removing beat-to-beat
variations that are neither significant nor of interest. Spectral peaks may be clearly
observed in the averaged periodograms, and may be considered to be more reliable
estimates of resonance than the peaks found in individual periodograms,

Figure 6.12 illustrates a PCG signal cycle as well as the individual and averaged
systolic and diastolic PSD estimates for a patient with systolic murmur, split S2, and
opening snap of the mitral valve (see also Figures 4.28 and 5.7). 1t is unlikely that
the patient held her breath during data acquisition. The presence of increased high-
frequency power in the range 120 — 250 H z due to the systolic murmur is evident in
the averaged systolic PSD, The diastolic PSDs are comparable to the corresponding
normal diastolic PSDs in Figure 6.11.

6.5 MEASURES DERIVED FROM POWER SPECTRAL DENSITY
FUNCTIONS

The Fourier spectrum or PSD provides us with a density function of signal ampli-
tude, power, or energy versus frequency. We would typically have a large number
of samples of the PSD over a wide frequency range, which may not lend itself to
easy analysis. We may, of course, study the shape of the spectrum graphicaily, and
observe its general characteristics. Such an approach is often referred to as non-
parametric spectral analysis. The spectral models we shall study later in Section 7.4
are characterized by a small number of parameters, and are hence called parametric
spectral analysis (or modeling) methods.

Problem: Derive parameters or measures from a Fourier spectrum or PSD that
can help in the characterization of the spectral variations or features contained
therein,

Solution: Since the PSD is a nonnegative function as well as a density function,
we may readily treat it as a PDF, and compute statistics using moments. We may
also detect peaks correspending to resonance, measure their bandwidth or quality
factor, and derive measures of concentration of power in specific frequency bands of
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Figure 6.11 Top to bottom: A sample PCG signal over one cardiac cycle of a normal subject
(male, 23 years; see also Figures 4.27 and 5.6); periodogram of the systolic portion of the
signal (approximately 0 — 0.4 8); averaged periodogram of the systolic pants of 16 cardiac
cycles segmented as illustrated in Figure 4.27; periodogram of the diastolic portion of the signal
shown in the first plot (approximately 0.4 — 1.2 s); averaged periodogram of the diastolic parts
of 16 cardiac cycies. The periodograms are on a log scale (dB).
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Figure 6.12 Top to bottom: A sample PCG signal over one cardiac cycle of a patient with
systolic murmur, split 82, and opening snap of the mitral valve (female, 14 months; see
also Figures 4.28 and 5.7); periodogram of the systolic portion of the signal {(approximately
D — 0.28 »); averaged periodogram of the systolic parts of 26 cardiac cycles segmented as
illustrated in Figure 4.28; periodogram of the diastolic portion of the signal shown in the first
plot (approximately 0.28 — 0.62 s); averaged periodogram of the diastolic parts of 26 cardiac
cycles. The periodograms are on a log scale (d53).
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interest or concern. Although the PSD itself is nonparameitric, we may derive several
parameters that, while not completely representing the entire PSD, may facilitate the
identification of physiological and/or pathological phenomena. We shall investigate
a few different approaches toward this end in the following subsections.

6.5.1 Moments of PSD functions

As the area under the PSD curve represents the total signal power or energy which
need not be unity, we have to normalize all moments by the total power or energy of
the signal E; given by

N-1 , Mo
By = ) k@) =5 > (X®)NP (636)
1 2%

1
= = [ X e = fH X(F) df.

2’ [’}

Note that the frequency variables « and f above are normalized. Assuming that the
PSD has been obtained using one of the methods described in the preceding sections,
we may replace }X(.)}? in the above expressions by ;. (.).

As a simple measure of the concentration of the signal power over its frequency
range, we may compute the mean frequency f as the first-order moment

_ 2 0.5
f = .f: "E_' f Swas(f) ‘#. 6.37)
Ed J=0
or as
2 N2
F=1 NEC ’; k Szo(k), (6.38)

where IV is the number of samples in the DFT-based representation of the PSD. The
upper limit of integration of 0.5 represents integration from DC to the maximum
frequency present in the signal, which is half the sampling frequency, the frequency
variable having been normalized to the range 0 < f < 1. Note that the integration
or summation is performed over one-haif period of the periodic function S, (f) or
Syz(k), which also possesses even symmetry about half the sampling frequency for
real signals,

The median frequency fmed is defined as that frequency which splits the PSD in
half:

Fmed = % f» with the largest m such that . (6.39)

2 < 1 N
NE, kz=o Sza(k)<§1 0<m< 5"

We may also compute higher-order statistics such as
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o variance f3 as the second-order moment by using (f — f)? in place of f (the
function of frequency that is multiplied with S..(f)) in Equation 6.37 or the
equivalent expression in k in Equation 6.38; that is,

9 0.5
fra=tog [ -1 5un ¥ 6.40)
or , N/2
fma=fo 5 2 (k= F)? Soa(k), (6.41)
x kﬂo

where k is the frequency sampie index corresponding to f.

e skewness as

fms
(Ffm2)3/2’

where the third-order moment f,,.3 is computed with (f — f)® in place of f in
Equation 6.37, that is,

skewness = (6.42)

2 0.6 s

fms = fs E_s £=o (f - f) Sza(.f) df (6—43)
or
9 N/l .
fms= 1o FEC g (k — F)® Seelk). (6.44)
¢ kurtosis as P

g = 4™

kurtosis = 72l (6.45)

where the fourth-order moment fi,4 is computed with (f — f)* in place of £
in Equation 6.37, that is,

2 0.5
fma=1s B ff . (f ~ FY Saalf) df (6.46)
or 2 N/2
fma = 1o 5T g (k = k)* S50 (k). (6.47)

The mean frequency is a useful measure of the concentration of signal power,
and could indicate the resonance frequency in the case of unimodal distributions.
However, a nearly uniform PSD could lead to half the maximum frequency as the
mean frequency, which by itself may not be a useful representation of the PSD. The
presence of multiple resonance frequencies could also lead to a mean frequency that
may not be a useful measure. Multimodat PSDs may be characterized better by a
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series of peak frequencies, along with measures of their relative levels and bandwidths
or quality factors (to be described in the next subsection).

The square-root of fr,2 provides a measure of spectral spread (standard deviation
about the mean) and an indication of the bandwidth (but not at —~3 dB) about the
mean frequency. The skewness is zero if the density function is symmetric about the
mean frequency; otherwise, it indicates the extent of asymmetry of the distribution.
Kuriosis indicates if the PSD is a long-tailed function,

Moments of PSDs may be useful in characterizing the general trends in the
distribution of the power of a signal over its bandwidth. The higher-order moments
are sensitive to noise or spurious variations in the PSD estimate, and may not yield
reliable measures if the PSD pattern is not simple or if the PSD estimate is poor (has
a high variance). The reliability of moments may be improved by smoothing the PSD
estimate, or by fitting a smooth parametric curve (Gaussian, Laplacian, spline, etc.)
as a model of the PSD estimate and computing the moments of the model. Saltzberg
and Burch [136] discuss the relationship between moments of PSDs and ZCR, and
their application to EEG analysis.

6.5.2 Spectral power ratios

The moments described in the preceding subsection provide general statistical char-
acterization of the PSD treated as a PDF. In the case of analysis of biomedical signals,
it may be more advantageous to define specific measures based upon a priori infor-
mation or empirical knowledge about the signals, systems, and the physiological or
pathological processes of concern. For example, in the case of PCG analysis for the
detection of murmnurs, we could specifically investigate the presence of signal power
in the frequency range beyond that of $i and/or 2. If a specific type of pathology
of interest is known to cause a shift in the frequency content within a certain band
of frequencies, we may measure spectral power ratios over partitions of the band of
interest. ‘We have already seen in Sections 6.2.1 and 6.2.2 how such measures have
been used for the analysis of ventricular elasticity, diagnosis of myocardial infarction,
and detection of murmurs,

The fraction of signal power in a frequency band of interest (f; : fa} may be
computed as

2 fa . 9 ks .
Bty = g, s | X () df = NE, Y IX ()2, (6.48)
=hn k=k1

where k; and kp are the DFT indices corresponding to fi and fa, respectively.
Fractions of power as above may be computed for several bands of interest that may
or may not span the entire signal bandwidth,

In a variation of the above fractional-power measure, Johnson et al. [163] compared
the integral of the magnitude spectrum of the systolic murmurs due to aortic stenosis
over the band 75 : 150 Hz to that over the band 28 : 75 Hz. They considered the
higher-frequency band to represent the predictive area (P A) of the spectrum related
to the aortic stenosis, and the lower-frequency band to represent a constant area {C A)
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that would be common to all systolic PCG signal segments. The ratio of PAto CA

was defined as
PA_f, XD
CA ™ (I |1X(f)df

with fy =26 Hz, fo =75 Hz,and f3 = 150 Hz. The g—f{ ratio is provided for the
PSDs of systolic murmurs of four patients with aortic stenosis in Figure 6.2; Johnson
et al. showed that the ratio correlates well with the severity of aortic stenosis.

Binnie et al. [145, 146) describe the application of spectrum analysis to EEG for
the detection of epilepsy. Their method was based upon partitioning or banding
of the EEG spectrum into not only the traditional §, @, «, and 8 bands, but also
into seven other nonuniform bands specified as 1 - 2,2 -4, 4-6,6 — 8, 8 —
11, 11 - 14, and > 14 Hz Additional features related to form factor FF (see
Section 5.6.4) were also used. In a study with 275 patients with suspected epilepsy,
90% of the signals of the patients with pathology were classified as abnormal by their
methods; conversely, 86% of the patients whose EEGs were classified as abnormal
had confirmed pathology.

When analyzing a spectral peak, we may also compute the —3 dB bandwidth of
the peak, and furthermore, its quality factor as the ratio of the peak frequency to the
bandwidth. Such measures may be computed for not only the dominant peak, but
several peaks at progressively lower levels of signal power. Essentially, each potential
resonance peak is treated and characterized as a bandpass filter. Durand et al. [167]
used such measures to characterize the PSDs of sounds produced by prosthetic heart
valves (to be discussed in Section 6.6).

(6.45)

6.6 APPLICATION: EVALUATION OF PROSTHETIC HEART VALVES

Efficient opening and closing actions of cardiac valves are of paramount importance
for proper pumping of blood by the heart, When native valves fail, they may be
replaced by mechanical prosthetic valves or by bioprosthetic valves extracted from
pigs. Mechanical prosthetic valves are prone to sudden failure due to fracture of
their components. Bioprosthetic valves fail gradually due to tissue degeneration and
calcification, and have been observed to last 7 — 12 years [167]. Follow-up of the
health of patients with prosthetic valves requires periodic, noninvasive assessment of
the functional integrity of the valves,

Problem: Deposition of calcium causes the normally pliamt and elastic bio-
prosthetic valve leaflets to become stiff. Propose a method to assess the functional
integrity of bioprosthetic valves.

Solution: Based on the theory that valve opening and closure contribute directly to
heart sounds, analysis of PCG components offers a noninvasive and passive approach
to evaluation of prosthetic valves. The increased stiffness is expected to lead to
higher-frequency components in the opening or ¢losing sounds of the valve, Durand
et al. [167] studied the spectra of the entire 81 signal segment to evaluate the sounds
contributed by the closure of porcine (pig) bioprosthetic valves implanted in the
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mitral position in humans. They demonstrated that, whereas normal 51 spectra were
limited in bandwidth to about 100 Hz, degenerated bioprosthetic valves created
significant spectral energy in the range 100 - 250 H 2. Figure 6.13 shows the relative
power spectra of S1 in the case of a normal bioprosthetic valve and a degenerated
bioprosthetic valve.

Durand et al. derived several parameters from S1 spectra and used them io
discriminate normal from degenerated bioprosthetic valves, Some of the parameters
used by them are the first and second dominant peak frequencies; the bandwidth and
quality factor of the dominant peak; integrated mean area above —20 dB; the highest
frequency found at —3 dB; total area and RMS value of the spectrum; area and
RMS value in the 20 — 100 Hz, 100 — 200 Hz, and 200 — 300 H:z bands; and
the median frequency. Normal versus degenerated valve classification accuracies as
high as 98% were achieved.
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Figure 6.13  First heart sound spectra in the case of normal and degenerated porcine biopros-
thetic valves implanted in the mitral position. Reproduced with permission from L.G. Durand,
M. Blanchard, G. Cloutier, H.N. Sabbah, and P.D. Stein, Comparison of pattern recognition
methods for computer-assisted classification of spectra of heart sounds in patients with a
porcine bioprosthetic valve implanted in the mitral position, JEEE Transactions on Biomedical
Engineering, 37(12):1121-1129, 1990 ©IEEE.

Durand et al. [121] also studied the sounds of bioprosthetic valves in the aortic
position. They argued that the aortic and pulmonary components (A2 and P2, re-
spectively) of 52, each lasting about 50 ms, are not temporally correlated during
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normal breathing. The two components of 52 are separated by 30 — 60 mas during
inspiration, but get closer and could overlap during expiration. Furthermore, P2 is
weaker than A2 if the PCG is recorded in the aortic area. Thus P2 may be suppressed
and A2 strengthened by coherent detection and averaging of 82 over several cardiac
and breath cycles; see Section 4.11. Durand et al. performed spectral analysis of A2
extracted as above for the purpose of evaluation of bioprosthetic valves in the aortic
position. Among a selection of spectral analysis methods including the basic peri-
odogram, Welch’s averaged periodogram, all-pole modeling (see Section 7.5), and
pole-zero modeling (see Section 7.6), they found the basic periodogram to provide
the best compromise for estimating both the spectral distribution and the dominant
frequency peaks of bioprosthetic valve sounds.

Cloutier et al. [168] studied the bias and variability of several diagnostic spectral
parameters computed from simulated closing sounds of bioprosthetic valves in the
mitral position. They found that the most-dominant spectral peak frequency and its
quality factor were best estimated using an FFT-based PSD estimate with a rectangular
window. However, the —3 dB bandwidth of the most-dominant spectral peak,
the frequency of the second-dominant peak, and a few other parameters were best
estimated by the Steiglitz-McBride method of pole-zero modeling (see Section 7.6.2).
Some other parameters were best estimated by all-pole modeling using the covariance
method (see Section 7.5). It was concluded that a single method would not provide
the best estimates of all possible spectral parameters of interest.

6.7 REMARKS

We have investigated the frequency-domain characteristics of a few biomedical sig-
nals and the corresponding physiological systems, with particular attention to the PCG
and the cardiovascular system. Frequency-domain analysis via PSDs and parameters
derived from PSDs can enable us to view the signal from a different perspective than
the time domain. Certain signais such as the PCG and EEG may not lend themselves
to easy interpretation in the time domain, and therefore may benefit from a move to
the frequency domain.

PSDs and their parameters facilitate investigation of the behavior of physiotogical
systems in terms of rhythms, resonance, and parameters that could be related to the
physical characteristics of anatomical entities (for example, the loss of elasticity of
the myocardial muscles due to ischemia or infarction, the extent of aortic valvular
stenosis, or the extent of calcification and stiffness of bioprosthetic valves). Patho-
logical states may also be derived or simulated by modifying the spectral parameters
or representations of the corresponding normal physiological states and signals.

It is worthwhile to pause at this stage of our study, and recognize the importance
of the topics presented in the preceding chapters. A good understanding of the phys-
iological systems that produce the biomedical signals we deal with, as well as of
the pathological processes that alter their characteristics, is of paramount importance
before we may process the signals. Preprocessing the signals to remove artifacts and
detect events is essential before we may derive parameters to facilitate their analysis in
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the time and/or frequency domains. Design of biomedical signal analysis techniques
requires a thorough understanding of the characteristics and properties of the biomed-
ical systems behind the signals, in addition to detailed knowledge of mathematical
principles, computer iechnigues, and digital signal processing algorithms.

6.8

STUDY QUESTIONS AND PROBLEMS

. The impulse response of a filter is specified by the series of sample values {3,1, —-1}.

(a) What will be the response of the filter to the input whose sample values are
{4,4,2,1)?

{b) Is the filter response obtained by linear convolution or circular convolution of the
input with the impulse response?

(c)} What will be the response with the type of convolution other than the one you
indicated as the answer to the questions above?

{d) How would you implement convolution of the two signals listed above using the
FFT? Which type of convolution will this procedure provide? How would you get the
other type of convolution for the signals in this problem via the FFT-based procedure?

. A conjugate symmetric (even) signal z.(n) is defined as a signal with the propenty

ze(n) = x3(—n). A conjugate antisymmetric (odd) signal zo(n) is defined as a signal
with the property z.(n) = ~z;(—n). An arbitrary signal x{n} may be expressed
as the sum of its conjugate symmetric and conjugate antisymmetric parts as 2(n} =
24(n) + Zo(n), where z,(n) = }[z(n) + z*(~n)] and z,(n) = }[z(n} - 2" (-n)].
Prove that
FT{z.(n)] = real[ X ()],

and !

FT(zo(n)) = jimagX ()],
where FT[z{n})] = X (w), and FT stands for the Fourier transform [86].

. A signal =(t) is wransmitted through a channel, The received signal (2} is a scaled,

shifted, and noisy version of z(t) given as y(t) = cw(t — tp) + n(t) where o is a scale
factor, {g is the time delay, and n(¢) is noise. Assume that the noise process has zero
mean and is statistically independent of the signal process, and that all processes are
stationary.

Detive expressions for the PSD of y(¢) in terms of the PSDs of x and n [105, 5).

. Consider a continuous-time sinusoidal signal of frequency 10 Hz.

(a) Derive an analytical expression for the ACF of the signal.

(b) Draw a schematic plot of the ACF, including detailed labeling of the time axis.

{c) State the relationship of the PSD to the ACE

(d) Derive the analytical expression for the PSD of the given signal.

{e) Draw a schematic plot of the PSD, including detailed labeling of the frequency axis.

. Two real signals 1 (n) and 23(n) are combined to form a complex signal defined as

y(n) = z1(n) + jza(n). Derive a procedure to extract the DFTs X1(k) and Xz (k) of
z1{n) and zz(n). respectively, from the DFT Y (k) of y(n).

. Distinguish between ensemble averages and temporal (time) averages. Identify appli-

cations of first-order and second-order averages of both types in PCG analysis.
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7. Propose, in point form, a procedure to process PCG signals to identify the possible
presence of a murmur due to aortic stenosis.
8. Propose an algorithm to detect the presence of the alpha thythm in an EEG signal.

Propose an extension to the algorithm to detect the joint presence of the same rhythm
in four simultaneously recorded EEG channels.

6.9 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the site
ftp:/ifip.icec.orgluploads/press/rangayyan/

1. Using MATLAB, prepare a signal that contains the sum of two cosine waves of equal
amplitude at 40 Hz and 45 Hz. Let the sampling rate be 1 kHz.
(2) Compute the power spectrum of the signal with a rectangular window of duration
2s.

(b) Compute the power spectrum of the signal with a Hamming window of duration
2.

(¢) Compute the power spectrum of the signal with a rectangular window of duration
0.5 s.

(d) Compute the power spectrum of the signal with a Hamming window of duration
0.5 s,

To obtain the power spectrum, you may take the FFT and square the result. Compare
the spectra obtained in parts (a} — (d) and comment upon their similarities and/or
differences. In order to visualize the differences clearly, use 2,048-point FFTs and
plot the logarithm of the magnitude-squared spectra with an expanded scale from 0 to
100 Hz only. Be sure to label the frequency axis in H z!

What should the ideal spectrum look like?

2. Two VAG signals are given in the files vagl.dat and vag2.dat (see also the file vag.m).
The sampling rate is 2 XHz Obtain and plot their power spectra (PSDs) using
MATLAB. Label the frequency axis in Hz!

Compixte the mean frequency as the first moment of the PSD for each signal. Compute
also the variance {second central moment) of each PSD. What are the units of these
parameters?

Compare the spectra and the parameters derived and give your evaluation of the fre-
quency content of the signals.

3. The file safety.wav contains the speech signal for the word “safety” wttered by a male
speaker, sampled at 8 kH'z (see also the file safety.m). The signal has a significant
amount of background noise (as it was recorded in a normal computer laboratory). De-
velop precedures to segment the signal into voiced, unvoiced, and silence (background
noise) portions using short-time RMS, turns count, or ZO'R measures. Compute the
PSD for each segment that you obtain and study its characteristics,

4. The files pecl.dat, pec33.dat, and pec52.dat give three-channel recordings of the PCG,
ECG., and carotid pulse signals (sampled at 1,000 H z; you may read the signals using
the program in the file plotpec.m). The signals in peci.dat and pec52.dat are normal;
the PCG signal in pecg33.dat has systolic murmur, and is of a patient suspected 1o have
pulmonary stenosis, ventricular septal defect, and pulmonary hypertension.
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Apply the Pan-Tompkins method for QRS detection to the ECG channel and the Lebner
and Rangayyan method to detect the dicrotic motch in the carotid pulse channel. Ex-
trapolate the timing information from the ECG and carotid pulse channels to segment
the PCG signal into two parts: the systolic part from the onset of an S1 and to the onset
of the following 52, and the diastolic part from the onset of an S2 to the onset of the
following S1. Compute the PSD of each segment.

Extend the procedure to average the systolic and diastolic PSDs gver several cardiac
cycles. Compare the PSDs obtained for the three cases.

. Compute the mean frequency and the ratio of the energy in the range 100 — 300 Hz
to the total energy for each PSD derived in the previous problem. What can you infer
from these measures?

. Compute the PSDs of a few channels of the EEG in the file eegl-ax.dat using Welch's
procedure (see also the file eegl.m). Study the changes in the PSDs derived with
variations in the window width, the number of segments averaged, and the type of the
window used. Compare the resuits with the PSDs computed using the entire signal
in each channel. Discuss the resuits in terms of the effects of the procedures and
parameters on spectral resolution and leakage.



Modeling Biomedical
Signal-generating
Processes and Systems

We have thus far concentrated on the processing and analysis of biomedical signals.
The signals were treated in their own right as conveyors of diagnostic information.
While it was emphasized that the design and application of signal analysis procedures
require an understanding of the physiological and pathological processes and systems
that generate the signals, no specific mathematical model was used to represent the
genesis of the signals in the methods we have studied so far.

We shall now consider the modeling approach, where an explicit mathematical
model is used to represent the process or the system that generates the signal of
interest. The parameiers of the model are then investigated for use in signal analysis,
pattern recognition, and decision making. As we shall see, the model parameters may
aiso be related to the physical or physiological aspects of the related systems. The
parametric modeling approach often leads to succinct and efficient representation of
signals and systems. Regardless of the emphasis on modeling, the final aim of the
methods described in this chapter will be analysis of the signal of interest.

7.1 PROBLEM STATEMENT

Propose mathematical models to represent the generation of biomedical signals.
Identify the possible relationships between the mathematical models and the physi-
ological and pathological processes and systems that generate the signals. Explore
the potential use of the model parameters in signal analysis, pattern recognition, and
diagnostic decision making.

315
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Given the diversity of the biomedical signals that we have already encountered
and the many others that exist, a generic model cannot be expected to represent
a large number of signals. Indeed, a very specific model is often required for
each signal. Bioelectric signals such as the ECG and EMG may be modeled using
the basic action potential or SMUAP as the building block. Sound and vibration
signals such as the PCG and speech may be modeled using fluid-filled resonating
chambers, turbulent flow across a baffle or through a constriction, vibrating pipes,
and acoustic or vibrational excitation of a tract of variable shape. We shall investigate
a few representative signals and models in the following sections, and then study a
few modeling techniques that facilitate signal analysis based upon the parameters
extracted.

7.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

7.2.1 Motor-unit firing patierns

We saw in Section 1.2.3 that the surface EMG of an active skeletal muscle is the
spatio-temporal summation of the action potentials of a large number of motor units
that have been recruited into action (see Figure 1.6). If we consider the EMG of a
single motor unit, we have a train of SMUAPs; the same basic wave (spike, pulse,
or wavelet) is repeated in a quasi-periodic sequence, For the sake of generality, we
may represent the intervals between the SMUAPs by a random variable: although
an overall periodicity exists and is represented by the firing rate in pps, the intervals
between the pulses, known as the inter-pulse interval or IPI, may not precisely be the
same from one SMUAP to another.,

Agarwal and Gottlieb [169]) modeled the single-mator-unit EMG as the convo-
lution of a series of unit impulses or Dirac delta fuactions — known as a point
process [170, 171, 172, 173) — with the basic SMUAP wave. The SMUAP train
p(t) may then be modeled as the output of a linear system whose impulse response
h(t) is the SMUAP, and the input is a point process z{t}:

() = /0 " bt — 7) 2(r)dr. 1)

Physiological conditions dictate that successive action potentials of the same motor
unit cannot overlap: the interval between any two pulses should be greater than the
SMUAP duration. In normal muscle activation, SMUAP durations are of the order
of 3 — 20 ms and motor unit firing rates are in the range 7 — 25 pps; the IPI is
therefore in the range 40 - 140 meg, which is significantly higher than the SMUAP
duration. An SMUAP train therefore consists of discrete (distinct and separated)
events or waves,

The modei as above permits independent analysis of SMUAP waveshape and
firing pattern: the two are indeed physiologically separate entities. The SMUAP
waveshape depends upon the spatial arrangement of the muscle fibers that constitute
the motor unit, while the firing pattern is determined by the motor neuron that
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stimulates the muscle fibers. Statistics of the point process representing the IPI
may be used to study the muscle activation process independently of the SMUAP
waveshape. Details on point processes and their application to EMG modeling will
be presented in Section 7.3.

7.2.2 Cardiac rhythm

The ECG is a quasi-periodic signa! that is also cyclo-stationary in the normal case
(see Section 1.2.4), Each beat is triggered by a pulse from the SA node. The P
wave is the combined result of the action potentials of the atrial muscle units, while
the QRS and T waves are formed by the spatio-temporal summation of the action
potentials of the ventricular muscle units.

In rhythm analysis, one is more interested in the timing of the beats than in their
individual waveshape (with the exception of PVCs). Diseases that affect the SA
node could disturb the normal rhythm, and lead to abnormal variability in the RR
intervals. Disregarding the details of atrial and ventricular ECG waves, an ECG
rhythm may be modeled by a point process representing the firing pattern of the
SA node. Sinus amhythmia and HRV may then be investigated by studying the
distribution and statistics of the RR interval,

Figure 7.1 illustrates the representation of ECG complexes in terms of the instan-
taneous heart rate values defined as the inverse of the RR interval of each beat, in
terms of a series of RR interval values, and as a train of delta functions at the SA node
firing instants [72]. A discrete-time signal may be derived by sampling the signal in
Figure 7.1 (b) at equidistant points; the result, however, may not be continuous or dif-
ferentiable [72). The signal in Figure 7.1 (c), known as the interval series, has values
I, =t — t;,_1, where the instants ¢, represent the time instants at which the QRS
complexes occur in the ECG signal. The I, series is defined as a function of interval
number and not of time, and hence may pose difficulties regarding interpretation in
the frequency domain. Finally, the signal in Figure 7.1 (d} is defined as a train of
Dirac delta functions s(t) = 3_ (¢t — 2x). The series of impulses represents a point
process that may be analyzed and interpreted with relative ease, as will be seen in
Section 7.3. The last two representations may be used to analyze cardiac rhythm and
HRV, which will be described in Section 7.8 (see also Section 8.9).

7.2.3 Formants and pltch in speech

Speech signals are formed by exciting the vocal tract with either a pulse train or a
random signal preduced at the glottis, and possibly their combination as welt (see
Section 1.2.11). The shape of the vocal tract is varied according to the nature of the
sound or phoneme to be produced; the system is therefore a time-variant system. We
may model the output as the convolution of the (time-variant) impulse response of the
vocal tract with the input glottal waveform. The input may be modeled by a random
process for unvoiced speech und as a point process for voiced speech. Clearly, the
speech signal is a nonstationary signal; however, the signal may be considered to be
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Figure7.1 ‘Thetrain of ECG complexes in(a) is represented in terms of: (b) the instantaneous
heart rate values defined as the inverse of the RR interval of each beat: (¢) a series of RR interval
values (known as the interval series); and (d) a train of delia functions at the SA node firing
instants. Reproduced with permission from R.W. DeBoer, J.M. Karemaker, and J. Strackee,
Comparing specira of a series of point events particularly for heart rate variability studies,
IEEE Transactions on Biomedical Engineering, 31(4): 384-387, 1984, ©IEEE.
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quasi-stationary over shott intervals of time during which the same phoneme is being
produced.

Figure 7.2 illustrates the commonly used model for speech production [46]. The
speech signal may be modeled using the same convolutional relationship as in Equa-
tion 7.1, with the limitation that the expression is valid over durations of time when
the vocal-tract shape is held fixed and the same glottal excitation is applied. Then,
h(t) represents the impulse response of the vocal-tract system (filter) for the time
interval considered, and z(t) represents the glottal waveform that is input to the
system, In the case of voiced speech, the IPI statistics of the point-process input,
in particular its mean, are related to the pitch. Furthermore, the frequency response
of the filter H{w) representing the vocal tract determines the spectral content of the
speech signal: the dominant frequencies or peaks are known as formants in the case
of voiced speech.

A. Point process A. Voiced speech
Time-variant
vocal tract
filter system
B. Random noise B, Unveoiced speech

Figure 7.2 Model for production of speech, treating the vocal tract as a time-variant linear
system. A point-process input generates quasi-periodic voiced speech, whereas a random-noise
input generates unvoiced speech.

Point processes will be described in Section 7.3. Parametric spectral modeling and
analysis techniques suitable for formant extraction will be described in Sections 7.4,
1.5, and 7.6.

7.2.4 Patelio-femoral crepitus

Among the various types of VAG signals produced by the knee joint (see Sec-
tion 1.2.13), the most common is a signal known as physiological patello-femoral
crepitus (PPC) (174, 59, 175, 176, 177]. The PPC signal is a random sequence of
vibrational pulses generated between the surfaces of the patelia and the femur, typi-
cally observed during slow movement of the knee joint. The PPC signal may camry
information on the state and lubrication of the knee joint. A mechanical model of the
knee-joint surfaces that generate PPC, as proposed by Beverland et al. [176], will be
described in Section 7.7.2,

Zhang et al. [174] proposed a model for generation of the PPC signal based on point
processes, similar to that for the SMUAP train described in Section 7.2.1. The effects
of the repetition rate (or IPI) and the basic patello-femoral pulse (PFP) waveform
on the spectrum of the PPC signal were analyzed separately. It was suggested that
the model could represent the relationships between physiological parameters such
as the mean and standard deviation of the IPI as well as the PFP waveshape, and
parameters that could be measured from the PPC signal such as its mean, RMS, and
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PSD-based features. Illustrations related to this application wil! be provided at the
end of Section 7.3.

7.3 POINT PROCESSES

Problem: Formulate a mathematical model representing the generation of a train of
SMUAPs, and derive an expression for the PSD of the signal.

Solution: In the model for EMG generation proposed by Agarwal and Got-
tlieb {1691, a point process is used to represent the motor neuron firing sequence,
and the SMUAP train is modeled by the convolution integral as in Equation 7.1. The
IPI is treated as a sequence of independent random variables with identical normal
(Gaussian) PDFs.

Let the interval between the i** SMUAP and the preceding one be ;, and let the
origin be set at the instant of appearance of the first SMUAP at £ = 0 with 1y = 0.
The time of arrival of the i*h SMUAP is then given by ¢; = 1y + 12 + -+ + 7.
The variable ¢; is the sum of { independent random variables; note that 4 > 0. Itis
assumed that the mean g and variance o2 of the random variable representing each
IP! are the same. Then, the imean of £; is i, and its variance is 402, Furthermore, ¢;
is also a random variable with the Gaussian PDF

[ (& - "“)2] : (1.2)

2i02

If the SMUAP train has NV + 1 SMUAPS labeled as § = 90,1, 2,..., N, the motor
neuron firing sequence is represented by the point process

Pt (ti) -

N
o(t) =) 8t - t). (7.3)

i=0
The Fourier transform of the point process is

X(w)

i

f = 3 8(t - t) exp(—jwt) dt (7.4)
N i=0
Z exp{ —jwt;).

i=0

i

X (w) is a function of the random variable ¢;, which is, in tumn, a function of ¢ random
variables 1y, T2, . .., 7;. Therefore, X (w) is random. The ensemble average of X (w)
may be obtained by computing its expectation, taking into account the PDF of £;, as
follows [169]:

N
X(w) = E[X(w)) = Y Elexp(~jwt;)]. (1.5

i=0

Elexp(—jwt;)] = f exp(~jwty) pe. () dts. (1.6)
-0
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Using the expression for py,(t;) in Equation 7.2, we get

1 et . t: — iu)?
Elexp(—jwts)] = o ];m exp{—jwt;) exp [-—{‘—%:;i] dt;. (.7

Substituting ¢; — ig = r, where r is a temporary variable, we get

1 L. o »2 .
Vanic exp(-gwm)f eXp |~ o3 exp(—jwr) dr.
-G
7.8

Elexp(—jwt:)] =

Using the property that the Fourier transform of exp(- %,) is o/ 2m exp(— 93212-)
[1], we get

;02 2
Elexp(—jwt;)) = exp(~jwip) exp [— = ] : (1.9)
Finally, we have
= o - iodu?
X(w) = }: exp(—jwip) exp [— 5 ] . (1.10)

=0

The ensemble-averaged Fourier transform of the SMUAP train is given by
Y(w) = X(w)H(w), (7.11)

where H{w) is the Fourier transform of an individual SMUAP. The Fourier transform
of an SMUAP train is, therefore, a multiplicative combination of the Fourier transform
of the point process representing the moter neuron firing sequence and the Fourier
transform of an individual SMUAP.

IMustration of application to EMG: Figure 7.3 illustrates EMG signals synthe-
sized using the point-process model as above using 1,20, 40, and 60 motor units,
all with the same biphasic SMUAP of 8 ms duration and IP1 statistics ¢ = 50 ms
and ¢ = 6.27 ma [169]. It is seen that the EMG signal complexity increases as
more motor units are activated. The interference patterns obscure the shape of the
SMUAP used to generate the signals, and were observed to closely resembie reai
EMG signals.

Figure 7.4 shows the magnitude spectra of synthesized EMG signals with one
motor unit and 15 motor units, with biphasic SMUAP duration of 8 ms, g = 20 ms,
and & = 4.36 mas [169]). The smooth curve superimposed on the second spectrum
in Figure 7.4 was derived from the mathematical model described in the preceding
paragraphs. An important point to observe from the spectra is that the average
magnitude spectrum of several identical motor units approaches the spectrum of a
single MUAP. The spectral envelope of an SMUAP train or that of an interference
pattern of several SMUAP trains with identical SMUAP waveshape is determined by
the shape of an individual SMUAP.

Figure 7.5 shows the magnitude spectra of surface EMG signals recorded from the
gastrocnemius-soleus muscle, averaged over 1,5, and 15 signal records [169]. The
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SYNTHETIC EMG

Figuore 7.3 Synthesis of an SMUAP train and EMG interference patiern using the point-
process model. Top to bottom: SMUAP train of a single motor unit, and interference patterns
of the activities of 20, 40, and 60 motor units,. SMUAP duration = 8 ms. IPI statistics
4 = 50 ma and ¢ = 6.27 ms. The duration of ¢ach signal is 250 ms, Reproduced with
permission from G.C. Agarwal and G.L. Gottlieb, An analysis of the electromyogram by
Fourier, simulation and experimental techniques, JEEE Transactions on Biomedical Engineer-
ing, 22(3y. 225-229, 1975. ©IEEE.
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Figure 7.4 Magnitude spectra of synthesized EMG signals with (a) one motor unit, and
{b) 15 motor units, with biphasic SMUAP duration of 8 ms, u = 20 ms, and & = 4.36 mas.
The smooth curve superimposed on the spectrum in (b) was derived from the point-process
model with 10 SMUAPs, Reproduced with permission from G.C. Agarwal and G.L. Gottlieb,
An analysis of the electromyogram by Fourier, simulation and experimental techniques, /EEE
Transactions on Biomedical Engineering, 22(3). 225-229, 1975. (©IEEE.
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spectra in Figures 7.4 and 7.5 demonstrate comparable features. If all of the motor
units active in a composite EMG record were to have similar or identical MUAPs, the
spectral envelope of the signal could provide information on the MUAP waveshape
{via an IFT). As we have noted earlier in Section 1.2.3, MUAP shape could be useful
in the diagnosis of neuromuscular diseases. In reality, however, many motor units
of different MUAP shapes could be contributing to the EMG signal even at low
Jevels of effort, and analysis as above may have limited applicabitity, Regardless, the
point-process model provides an interesting approach to model EMG signals. The
same model is applicable to the generation of voiced-speech signals, as illustrated
in Figure 7.2. For other models to represent the characteristics of the EMG signal,
refer to the papers by Parker et al. [178], Lindstrdm and Magnusson {179], Zhang et
al. [180], Parker and Scott (181}, Shwedyk et al. [182], Person and Libkind [183},
Person and Kudina [184], de Luca [185, 24], Lawrence and de Luca [§50], and de
Luca and van Dyk [186].

Hlustration of application to PPC: Zhang et al. [174] proposed a point-process
model to represent knee-joint PPC signals, which they called PFP trains or signals (see
Section 7.2.4). Figure 7.6 illustrates the PSDs of two point processes simulated with
mean repetition rate y, = 21 pps and coefficient of variation CV, = o, /1, = 0.1
and 0.05, where o, is the standard deviation of the repetition rate. A Gaussian
distribution was used to model the IPI statistics. The spectra clearly show the most-
dominant peak at the mean repetition rate of the point process, followed by smaller
peaks at its harmonics. The higher-order harmonics are better defined in the case with
the lower CV,; in the limit, the PSD will be a periodic impulse train with all impulses
of equal strength when the point process is exactly petiodic (o, = 0,CV,. =),

Zhang et al. [174] simulated PFP trains for different IPI statistics using a sample
PFP waveform from a real VAG signal recorded at the patella of a normal subject
using an accelerometer. The duration of the PFP waveform was 21 mas, and the IP1
statistics g, and CV, were limited such that the PFP trains synthesized would have
non-overlapping PFP waveforms and resemble real PFP signals. Figures 7.7 and 7.8
illustrate the PSDs of synthesized PFP signals for different g, but with the same C'V,,,
and for the same g, but with different C'V,., respectively, The PSDs clearly illustrate
the infiuence of IPI statistics on the spectral features of signals generated by point
processes. Some important observations to be made are:

e The PSD envelope of the PFP train remains the same, regardless of the IPT
statistics.

o The PSD envelope of the PFP train is determined by the PSD of an individual
PFP waveform.

¢ The PSD envelope of the PFP train is modulated by a series of impulses with
characteristics determined by the IPI statistics. The first impulse indicates the
mean repelition rate,

¢ The point process has a highpass effect: low-frequency components of the
PSD of the basic PFP are suppressed due to multiplication with the PSD of the
point process.
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Figure 7.5 Magnitude spectra of surface EMG signals recorded from the gastrocnemius-
soleus muscle, averaged over 1, 5, and 15 signal records. Reproduced with permission from
G.C. Agarwal and G.L. Gottlieb, An analysis of the electromyogram by Fourier, simulation
and experimental techniques, JEEE Transactions on Biomedical Engineering, 22(3), 225-229,

1975. ®IEEE.
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Figure 7.6 Nommalized PSDs of synthesized point processes with (a) g, = 21 pps and
CV, = 0.1, and (b) i, = 21 pps and CV,. = 0.05. Note; PDS = power density spectrum =
PSD. Reproduced with permission from Y.T. Zhang, C.B. Frank, R.M. Rangayyan, and G.D.
Bell, Mathematical modelling and spectrum analysis of the physiological patello-femoral
pulse train produced by slow knee movement, JEEE Transactions on Biomedical Engineering,
39(9):971-979, 1992. ®IEEE.
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& Physiological signals rarely exhibit precise periodicity. The CV, value will be
reasonably large, thereby limiting the effect of repetition to low frequencies in
the PSD of the PFP train.

The observations made above are valid for all signals generated by point processes,
including SMUAP trains and voiced-speech signals.

Zhang et al. [174] verified the point-process model for PFP signals by comput-
ing the IPI statistics and PSDs of real PFP signals recorded from normal subjects.
Figure 7.9 shows the IPI histograms computed from the PFP signals of two normal
subjects. The IPI statistics computed for the two cases were g, = 25.2 pps and
CV, = 0.07 for the first, and i, = 16.1 pps and CV, = 0.25 for the second signal.
While the IPI histogram for the first signal appears to be close to a Gaussian distribu-
tion, the second is not. The PSDs of the two signals are shown in Figure 7.10. The
PSDs of the real signals demonstrate features that are comparable to those observed
from the PSDs of the synthesized signals, and agree with the observations listed
above. The envelopes of the two PSDs demonstrate minor variations: the basic PFP
waveform in the two cases were not identical.

7.4 PARAMETRIC SYSTEM MODELING

The importance of spectral analysis of biomedical signals was established in Chap-
ter 6. However, the methods described were based on the computation and use of the
Fourier spectrum; while this approach is, to begin with, nonparametric, we saw how
a few parameters could be computed from Fourier spectra. The limitations of such
an approach were also discussed in Chapter 6. We shall now study methods for para-
metric modeling and analysis that, although based on time-domain data and models
at the outset, can facilitate parametric characterization of the spectral properties of
signals and systems.

Problem: Explore the possibility of parametric modeling of signal charactevistics
using the general linear system model.

Solution: The difference equation that gives the output of a general linear, shift-
invariant (or time-invariant), discrete-time system is

P Q
y(n) = —Z eryln—k)+ G Z b z(n —1), (7.12)
k=1 1=0

with by = 1. (Note: The advantage of the negative sign before the summation with
@ will become apparent later in this section; some model formulations use a positive
sign, which does not make any significant difference in the rest of the derivation.) The
input to the system is x{n); the output is y{rn); the parameters b;,! = 0,1,2,...,Q,
indicate how the present and  past samples of the input are combined, in a linear
manner, to generate the present output sample; the parameters ag, k = 1,2,..., P,
indicate how the past P sampies of the output are linearly combined (in a feedback
loop) to produce the current output; & is a gain factor; and P and @ determine
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Figure 1.7 Normalized PSDs of synthesized PFP trains using a real PFP waveform with a
duration of 21 ms, CV, = 0.05, and (a) gt = 16 pps. (b) g = 21 pps, and (c) pt, = 31 pps.
Note: PDS = power density spectrum = PSD. Reproduced with permission from Y.T. Zhang,
C.B. Frank, R. M. Rangayyan, and G.D, Bell, Mathematical modelling and spectrum analysis
of the physiological patelio-femoral pulse train produced by slow knee movement, I1EEE
Transactions on Biomedical Engineering, 33(9%971-979, 1992. ©IEEE,
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Figure 7.8 Normalized PSDs of synthesized PFP trains using a real PFP waveform with a
duration of 21 mas. u, = 21 pps, and (a) CV; == 0.1, (b) CV,. = 0.05, and (¢) OV, = 0.01.
Note: PDS = power density spectrum = PSD. Reproduced with permission from Y.T. Zhang,
C.B. Frank, R.M. Rangayyan, and G.D. Bell, Mathematical modeliing and spectrum analysis
of the physiological patello-femoral pulse train produced by slow knee movement, [EEE
Transactions on Biomedical Engineering, 39(91.971-979, 1992, ©IEEE.



330  MODELING BIOMEDICAL SYSTEMS

25—

20

15

104

L

o, 2] S

002 003 04 005 006 007 008
INTERVAL !Mf {SECOND)

Dllljlp

o 0025 005 007 041 0125 035 0175
INTERVAL TIME (SECOND)

(b)

]

WANOZMIDICOHNO MO IMDECT

o

o

-

)

VMOZMIDSONO MO IMDECT

Figure7.9 IPT histograms computed from real PFP trains recorded from two normal subjects,
The statistics computed were (a) g, = 25.2 pps and CV,. = 0.07, and (b) . = 16.1 pps and
CV; = 0.25. Reproduced with permission from Y.T. Zhang, C.B. Frank, R.M, Rangayyan,
and G.D. Bell, Mathematical modelling and spectrum analysis of the physiological patello-
femoral pulse train produced by slow knee movement, IEEE Transactions on Biomedical
Engineering, 39(9):971-979, 1992. ®IEEE.
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Figure 7.10 Normalized PSDs of the real PFP trains recorded from two normal subjects
whose 1Pl histograms are shown in Figure 7.9. The IPl statistics of the two cases ace
(a) pr = 25.2 pps and OV, = 0.07, and (b) g, = 16.1 pps and CV, = 0.25. Note:
PDS = power density spectrum = PSD. Reproduced with permission from Y.T. Zhang, C.B.
Frank, R.M. Rangayyan, and G.D. Bell, Mathematical modelling and spectrum analysis of the
physiological patelo-femoral pulse train produced by slow knee movement, IEEE Transactions
on Biomedical Engineering, 3%(9):971-979, 1992. @IEEE.
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the order of the system. The summation over x represents the moving-average or
MA part of the system; the summation over i represents the autoregressive or AR
part of the system; the entire system may be viewed as a combined awforegressive,
moving-average or ARMA system. The fesdback part typically makes the impulse
response of the system infinitely long; the system may then be viewed as an IR filter
(see Figures 3.29 and 3.30).

Equation 7,12 indicates that the output of the system is simply a linear combination
of the present input sample and a few past input samples, and a few past output
samples. The use of the past input and output samples in computing the present
output sample represents the memory of the system. The model also indicates that
the present output sample may be predicted as a linear combination of the present
and a few past input samples, and a few past output samples. For this reason, the
model is also known as the /inear prediction or LP model [187, 46, 77},

Applying the z-transform to Equation 7.12, we can obtain the transfer function of
the system as

_Y@) _ 1+ ER b
X(2) 1+, ax 2k

(The advantage of the negative sign before the summation with 2, in Equation 7.12
is now apparent in the numerator — denominator symmetry of Equation 7.13.) The
system is completely characterized by the parameters ag, & = 1,2,...,P; b, =
1,2,...,Q:; and G. In most applications the gain factor G is not important; the system
is therefore completely characterized by the a and b parameters, with the exception
of a gain factor. Furthermore, we may factorize the numerator and denominator
polynomials in Equation 7.13 and express the transfer function as

Hz)

(7.13)

M2, Q-2z21
Hzy=6 —/F———— = |
) i y (2~ ps 271

where 2,1 = 1,2,...,Q, are the zeros of the system and pe, k = 1,2,..., P, are the
poles of the system, The model may now be referred to as a pole-zere model. 1t is
evident from Equation 7.14 that the system is completely characterized by its poles
and zeros but for a gain factor.

Equations 7.12, 7.13, and 7.14 demonstrate the applicability of the same concep-
tual model in the time and frequency domains. The @ and b parameters are directly
applicable in both the time and the frequency domains in expressing the input —
output relationship or the system transfer function. The poles and zeros are more
specific to the frequency domain, although the contribution of each pole or zero to
the time-domain impulse response of the system may be derived directly from its
coordinates in the z-plane {1].

Given a particular input signal z{(n} and the corresponding output of the system
y(n), we could derive their z-transforms X {z) and Y (z) and hence obtain the system
transfer function H(z) in some form. Difficulties arise at values of z for which
X(z} = 0; as the system is linear, and Y'(2) = H(2)X(2), we have Y (z) = 0 at
such points as well. Then, H{z) cannot be determined at the corresponding values

(7.14)
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of z. [The simplest test signal is the unit-impulse function &(n) = §(n), for which
X(z) = 1 for all z: the response of a linear shift-invariant system to an impulse
completely characterizes the system with the corresponding y(n) = h{n} or its z-
domain equivalent H(z).] Methods to determine an AR or ARMA model for a given
signat for which the corresponding input to the system is not known (or is assumed to
be a point process or a random process) will be described in the following sections.

7.5 AUTOREGRESSIVE OR ALL-POLE MODELING

Problem: How can we obtain an AR (or LP) model when the input to the system that
caused the given signal as its output is unknown?

Solution: In the AR or all-pole model {187, 46], the output is modeled as a linear
combination of P past values of the output and the present input sample as

P

y(n) = - Z ax y{n — k) + G z(n). (7.15)
k=1

(The discussion on AR modeling here closely follows that in Makhoul {187}, with
permission.) Some model formulations use a positive sign in place of the negative
sign before the summatjon in the above equation. It should be noted that the modet
as in Equation 7.15 does not account for the presence of noise.

The all-pole transfer function corresponding to Equation 7.15 is

G
H(z) = .
(=) 1+ Ef=l a, z %

In the case of biomedical signals such as the EEG or the PCG, the input to the system
is totally unknown. Then, we can only approximately predict the current sample of
the output signal using its past values as

(7.16)

F 4
gr)=-3 axyln k), (7.17)
k=1

where the ~ indicates that the predicted value is only approximate. The error in the
predicted value (also known as the residual) is

P
e(n) = y(n) — §(n) =y(n) + ) ox y(n—k). (7.18)
k=1

The general signal-flow diagram of the AR model viewed as a prediction or error
filter is illustrated in Figure 7.11.

The least-squares method: In the least-squares method, the parameters a;, are
obtained by minimizing the MSE with respect to all of the parameters. The proce-
dure is similar to that used to derive the optimal Wiener filter (see Section 3.5 and
Haykin [77]).
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Figure 7.11 Signal-flow diagram of the AR model.

Given an observed signal y{n), the following procedure is applicable for mini-
mization of the MSE {187]. The total squared error (TSE) ¢ is given by

P 2
e=y_ en)=) (y(n) +Y anyln- k)) . (7.19)
n n k=1

(Note: The TSE is the same as the MSE except for a scale factor.) Although the
range of the summation in Equation 7.19 is important, we may minimize & without
specifying the range for the time being. Minimization of £ is performed by applying
the conditions 2

£

— =0, 1<k<P (7.20)
day,

to Equation 7.19, which yields

P
Yooy yn-K)yn-i)==) yr)y(r-i), 1<i<P. (321

k=1 n n

For a given signal y(n), Equation 7.21 provides a set of P equations in the P
unknowns ax,k = 1,2,..., P, known as the normal equarions; the similarities
between the normal equations here and those in the case of the Wiener filter (see
Section 3.5) will become apparent later.

By expanding Equation 7.19 and using the relationship in Equation 7.21, the
minimum TSE ¢ p for the model of order P is obtained as

P
ep=3, )+ o 3 yn)yln— k). (7.22)
n k=1 n

The expression for TSE will be simplified in the following sections.
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The avtocorrelation method: If the range of summation in Equations 7.19
and 7.21 is specified to be —oo < n < oo, the error is minimized over an infinite
duration, and we have

=]

(i) = D ylr)yln—1), (1.23)

n=-—=00

where ¢, (i} is the ACF of y(n). In practice, the signal y(n) will be available only
over a finite interval, say 0 < n £ N ~ 1; the given signal may then be assumed to
be zero ouiside this range and treated as a windowed version of the true signal, as we
have already seen in Section 6.4. Then, the ACF may be expressed as

N=1-§
)= Y yn)yln—i), iz0, (1.24)
n=i

where the scale factor 310’ is omitted. (It will become apparent later that the scale
factor is immaterial in the derivation of the model coefficients.) The normal equations

then become
P

D e dyli ~ k) = —g,(5), 1<i< P (1.25)
k=1
We now see that an AR model may be derived for a signal with the knowledge of
only its ACF; the signal samples themselves are not required. It is seen now that the
scale factor j—{,» that was omitted in defining the ACF is of no consequence in deriving
the model coefficients. It may be advantageous to use the normalized ACF values
given as ¢, (i) = #,(i)/ ¢y (0), which have the property that i$y(£)| <1
The minimum TSE is given by

P
ep = ¢y(0) + D ai dy(k). (7.26)

k=1

Application to random signals: If the signal y(n) is a sample of a random
process, the error e(n) is also a sample of a random process. We then have to use the
expectation operation to obtain the MSE as follows:

P 2
e=E[(n)=E [ (y(n) + Z a y(n — k)) :’ . (7.27)
kel

Applying the condition for minimum error as in Equation 7.20, we get the normal
equations as

P
Y ox Ely(n-k)pln—i))=-Elg(n) yn—i)], 1<i<P.  (7.28)

k=1
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The minimum MSE is

P
er = B[ (n)] + D ax Ely(n) y(n — k)]. (7.29)
k=1

If the signal is a sample of a stationary random process, we have Ely(n — k) y(n—
t)] = ¢, (i — k). This leads to the same normal equations as in Equation 7.25. If the
process is ergodic, the ACF may be computed as a time average as in Equation 7.24,

If the signal is a sample of a nonstationary random process, E{y(n—k) y(n—i)] =
@y(n — k,n —i); the ACF is a function of not only the shift but also time. We would
then have to compute the model parameters for every instant of time n; we then
have a time-variant model. Modeling and analysis of nonstationary signals will be
postponed to Chapter 8.

Computation of the gain factor G: Since we assumed earlier that the input
to the system being modeled is unknown, the gain parameter GG is not important,
Regardless, the derivation of ¢ demonstrates a few important points. Equation 7.18
may be rewritten as

P
)=~ 3 axy(n— k) +e(n). (7.30)
k=1

Comparing this with Equation 7.15, we see that the only input signal 2(n) which can
result in y(n) at the output is given by the condition Gz(n) = e(n). This condition
indicates that the input signal is proportional to the error of prediction when the
estimated model parameters are equat to the real system parameters. Regardless of
the input, a condition that could be applied is that the energy of the output be equal
to that of the signal y(n) being modeled. Since the transfer function H(z) is fixed,
we then have the condition that the total energy of the input signal be equal to the
total energy of the error £p.

As illustrated in the model for speech generation in Figure 7.2, two types of input
that are of interest are the impulse function and a random process that is stationary
white noise. in the case when z(n) = §{n), we have the impulse response h{n) at
the output, and

P
h(n) = - ay h(n — k) + G d(n). (7.31)
=]

Muitiplying both sides of the expression above with h(n — ¢) and summing over all
n, we get expressions in terms of the ACF ¢, (%) of A(n) as

P
oali) ==Y auonli—k), 1<i| <0 (7.32)
k=1
and
P
(0} = -3 au dalk) + G2 (7.33)

k=1
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Due to the condition that the energy of the output of the system be equal to that of
y(n), the condition ¢»(0) = ¢,(0) must be satisfied. Comparing Equations 7.32
and 7.25, we then have

Pn(t) = y(i), 0Si< P (7.34)

Therefore, for a model of order P, the first (P +1) ACF terms of the impulse response
h{n) must be equal to the corresponding ACF terms of the signal y(n) being modeled.
It follows from Equations 7.33, 7.34, and 7.26 that

P
G =cp = ¢ (0) + ) ax ¢y(k). (135)

k=l

in the case when the input is a sequence of uncorrelated samples of a random
process (white noise) with zero mean and unit variance, we could use the same
procedure as for the impulse-input case, with the difference being that expectations
are taken instead of summing over all n. (The conditions to be noted in this case
are E[z(n})] = 0 and E[z(n} =(n — i}] = §(¢).) The same relations as above for
the impulse-input case are obtained. The identical nature of the results for the two
cases follows from the fact that the two types of input have identical ACFs and PSDs.
These characteristics are relevant in the speech mode! shown in Figure 7.2.

Computation of the model parameters: For low orders of the model, Equa-
tion 7.25 may be solved directly. However, direct methods may not be feasible when

P is large. .
The normal equations in Equation 7.25 may be written in matrix form as
$(0) (1) o0 S(P-1) a1 $y(2)
$u(1) #(0) - G(P-2) az $y(2)
: : . : N R : - (7.36)
$y(P—1) ¢{P-2) - #4(0) ag & (P)

For real signals, the P x P ACF matrix is symmetric and the elements along any
diagonal are identical, that is, it is a Toeplitz matrix.

It is worth noting the following similarities and differences between the normal
equations in the case of the Wiener filter as given in Equation 3.85 and those above
in Equation 7.36:

e The matrix on the left-hand side is the ACF of the input to the filter in the case
of the Wiener filter, whereas it is the ACF of the output of the prediction filter
in the present case.

o The filter vector on the left-hand side contains the coefficients of the filter being
designed in both cases — the optirnal Wiener filter or the optimal prediction
filter.

¢ The vector on the right-hand side is the CCF between the input and the desired
response in the case of the Wiener filter, whereas it is the ACF of the output of
the prediction filter in the present case.
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Haykin [77] provides a more detailed correspondence between the AR mode! and the
Wiener filter.

A procedure known as Durbin’s method [188, 189] or the Levinson-Durbin al-
gorithm (see Makhoul [187], Rabiner and Schafer {46), or Haykin [77]) provides a
recursive method to solve the normal equations in Equation 7.36. The procedure
starts with a model order of 1, computes the model parameters, the error, and a
secondary set of parameters known as the reflection coefficients; updates the model
order and the parameters; and repeats the procedure until the model of the desired
order is obtained. The Levinson-Durbin algorithm is summarized below.

Initialize model order i = 0 and error £ = ¢,(0). Perform the following steps
recursively fori = 1,2,..., P.

1. Increment model order { and compute the i*® reflection coefficient +; as

i-1
== o)+ S aicrs dli- )|, .37)

£i-1 =

where a;_y, ; denotes the j*® model coefficient at iteration (i — 1); the iteration
index is also the recursively updated mode! order.

2, Lletai: = .
3. Update the predictor coefficients as
G5 =0ieyy + W Bici-5 1SF<i-1 (7.38)
4. Compute the error value as
& =(1-) i (7.39)

The final model parameters are given as ag = apy, 1 < k < P. The Levinson-
Durbin algorithm computes the model parameters for all orders up to the desired
order P. As the order of the model is increased, the TSE reduces, and hence we have
0 € g; < g4_1. The reftection coefficients may also be used to test the stability of
the model (filter) being designed: || < 1,¢{ = 1,2,..., P, is the required condition
for stability of the model of order P.

The covariance method: In deriving the autocorrelation method, the range of
summation of the prediction error in Equations 7.19 and 7.21 was specified to be
—-00 < n < oo. lf, instead, we specify the range of summation to be a finite interval,
say, 0 < n & N —1, weget

P

Y e C(k,i) = -C(0,d), 1<i<P (7.40)
k=1

instead of Equation 7.25 based upon the ACF, and the minimum TSE is given by

P
ep = C(0,0)+ Y 0 C(0, k) (7.41)
k=1
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instead of Equation 7.26, where

N1
Cli, k)= yln—ily(n—k) (7.42)

n=0

is the covariance of the signal y(n) in the specified interval. The matrix formed by
the covariance function is symmetric as C'(i, k) = C(k, 1), similar to the ACF matrix
in Equation 7.36; however, the elements along each diagonal will not be equal, as
Cli+LE+)=Cli, k) +y(—i~1h{-k-1)-yp(N-1-p(N-1-k).
Computation of the covariance coefficients also requires y{n) to be known for — P <
n < N — 1. The distinctions disappear as the specified interval of summation (error
minimization) tends to infinity.

7.5.1 Spectral matching and parameterization

The AR model was derived in the preceding section based vpon time-domain for-
mulations in the autocorrelation and covariance methods. We shall now see that
equivalent formulations can be derived in the frequency domain, which can lead to a
different interpretation of the model. Applying the z-transform to Equation 7.18, we
get

P
E(z) = [1 + Z @ z‘“"jl Y(z) = A(2)Y(2), (743)
k=1
and
G
H(z) = ok (7.44)
where
P
A) =1+ arz*, (7.45)
k=1

and E(z} is the z-transform of e(n). We can now view the error e(n) as the result
of passing the signal being modeled y(n) through the filter A(z), which may be
considered to be an inverse filter. In the case of y(n) being a deterministic signal,
applying Parseval’s theorem, the TSE to be minimized may be written as

o

e= Y en)= % f i |E{w)|? dw, (7.46)

R=E—o

where E(w) is obtained by evaluating E(z) on the unit circle in the z-plane. Using
Sy{w) to represent the PSD of y{n}, we have

e= g5 [ SN, .4

where A(w) is the frequency response of the inverse filter, and is given by evaluating
A(z) on the unit circle in the z-plane.
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From Equations 7.15, 7.16, and 7.44, we get
G? G?

Sy(w) = |H(w)* = -
| A{w)i2 ll + Y5, ak exp(—jkw)

- (7.48)

Here, 5, (w) represents the PSD of the modeled signal §(n) that is an approximation
of y{n) as in Equation 7.17. From Equation 7.43 we have

2
Sy(w) = 5—% . (7.49)

Now, S,(w) is the model’s approximation of §,(w). Comparing Equations 7.48
and 7.49, we see that the error PSD |E{w)|? is modeled by a uniform (or “flat”
or “white™) PSD equal to G2. For this reason, the filter 4(z) is also known as a
“whitening” filter.

From Equations 7.46, 7.48, and 7.49, we get the TSE as

_G [T 5w
27 g gv(“’) .

(7.50)

As the model is derived by minimizing the TSE ¢, we see now that the model is
effectively minimizing the integrated ratio of the signal PSD S, (w) to its approxima-

tion .§,(w). Makhoul [t87] describes the equivalence of the model in the following
terms:

e As the model order P — oo, the TSE is minimized, that is, ep — 0.

¢ For a model of order P, the first (P 4 1) ACF values of its impulse response
are equal to those of the signal being modeled. Increasing P increases the
range of the delay parameter {time) over which the model ACF is equal to the
signal ACF,

e Given that the PSD and the ACF are Fourier-transform pairs, the preceding
point leads to the frequency-domain statement that increasing P leads to a
better fit of Sy{w) to Sy(w). As P — oo, the model ACF and PSD become
identical to the signal ACF and PSD, respectively. Thus any spectrum may be
approximated by an all-pole model of an appropriate order (see Section 7.5.2
for a discussion on the optimal model order).

Noting from Equation 7.35 that G = ¢p, Equation 7.50 yieids another important

propetty of the model as
1 ™ Sy(w)
— ol de=1. 7.51
2n [ﬂ S,(w) ( )

Equations 7.50 and 7.51 lead to the following spectral-matching properties of the AR
model [1877;
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o Due to the fact that the TSE is determined by the ratio of the true PSD to the
model PSD, the spectral-matching process performs uniformly over the entire
frequency range irrespective of the spectral shape. (Had the error measure been
dependent on the difference between the true PSD and the model PSD, the
spectral match would have been better at higher-energy frequency coordinates
than at lower-energy frequency coordinates.)

¢ S,(w) will be greater than 5,{w) at some frequencies and lesser at others,
while satisfying Equation 7.51 on the whole; the contribution to the TSE is
more significant when S, (w) > §,{w) than in the opposite case. Thus, when
the error is minimized, the fitting of §,(w) to §,(w) is better at frequencies
where Sy(w) > S,(w). Thus the model PSD fits better at the peaks of the
signal PSD.

¢ The preceding point leads to another interpretation: the AR-model spectrum
Sy (w}) is a good estimate of the spectral envelope of the signal PSD, This is par-
ticularly useful when modeling quasi-periodic signals such as voiced speech,
PCG, and other signals that have strong peaks in their spectra representing
harmonics, formants, or resonance. By following the envelope, the effects
of repetition, that is, the effects of the point-process excitation function (see
Section 7.3), are removed.

Since the model PSD is entirely specified by the model parameters (as in Equa-
tion 7.48), we now have a parametric representation of the PSD of the given signal
(subject to the error in the model). The TSE may be related to the signal PSD as
follows [187].

. 1 hd -
50 = 5= [ togi3 @) dw (.52

represents the zeroth coefficient of the (power or real) cepstrum (see Sections 4.8.3
and 5.4.2) of (n). Using the relationship in Equation 7.48, we get

. 1 ”
#(0) = log G? — ﬂ/ log | A{w)|? dw. (1.53)

As all the roots (zeros) of A(z) are inside the unit circle in the z-plane (for the AR
model to be stable), the integral in the above equation is zero [187]. We also have
G? == ¢p. Therefore, X

ep = exp{f(0)]. (7.54)

The minimum of ¢ p is reached as P — oo, and is given by
Emin = €00 = exp[g}(l))]. (755)

This relat|onsh|p means that the TSE ¢p is the geometric mean of the model PSD
S, y{w), which is always positive for a positive-definite PSD. The quantity £p rep-
resents that portion of the signal’s mformauon content that is not predictable by a
model of order P.
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7.5.2 Optimal mode! order

Given that the AR model performs better and better as the order P is increased, where
do we stop? Makhoul [187] shows that if the given signal is the output of a P-pole
system, then an AR model of order P would be the optimal model with the minimum
error, But how would one find in practice if the given signal was indeed produced by
a P-pole system?

One possibility to determine the optimal order for modeling a given signal is to
follow the trend in the TSE as the model order P is increased. This is feasible in
a recursive procedure such as the Levinson-Durbin algorithm, where models of all
lower orders are computed in detiving a model of order P, and the error at each order
is readily available. The procedure could be stopped when there is no significant
reduction in the error as the model order is incremented.

Makhoul [187) describes the use of a normalized error measure Zp defined as

ep _ expli(0)]

Fp = = . (7.56)
¢y(0)  ¢,(0)

As the model order P — 00, '

- exp[§{0)]

Emin = & 7.57

== ~4,0) (
Zmin i5 8 monoctonically decreasing function of P, with s = 1 and . = Fpin:
furthermore, it can be expressed as a function of the model PSD as
exp [% 7 og §y(w) dw]
Ep = (7.58)

zlﬂ' f:w gv(“’) dw

It is evident that £p depends only upon the shape of the model PSD, and that Euin
is determined solely by the signal PSD. The quantity £p may be viewed as the ratio
of the geometric mean of the model PSD to iis arithmetic mean, which is a measure
of the spread of the PSD: the smaller the spread, the closer is the ratio to unity; the
larger the spread, the closer is the ratio to zero. If the signal is the result of an all-pole
system with Py poles, Ep = Ep, for P > Fp, that is, the curve remains flat, In
practice, the incremental reduction in the normalized error may be checked with a
condition such as _
1 22X A (7.59)
Ep

where A is a small threshold. The optimal order may be considered to have been
reached if the condition is satisfied for several consecutive model orders.

Another measure based upon an information-theoretic criterion proposed by
Akaike [150] may be expressed as [187]

H{P)=logZp + E, (7.60)
N,
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where N, is the effective number of data points in the signal taking into account
windowing (for example, ¥, = 0.4N for a Hamming window, where N is the
number of data samples). The first term in the equation above decreases while the
second term increases as P is increased. Akaike’s measure I( P} may be computed
up to the maximum order P of interest or the maximum that is feasible, and then the
model of the order for which J{P) is at its minirnum could be taken as the optimal
model.

Model parameters: The AR (all-pole) model H({z) and its inverse A(z) are
uniquely characterized by any one set of the following sets of parameters [187]:

¢ The model parameters ax, k = 1,2,..., P. The series of o), parameters is also
equal to the impulse response of the inverse filter.

o The impulse response A(n) of the AR model,

¢ The poles of H(z), which are also the roots (zeros) of 4(z).
o The reflection coefficients 4;,4 = 1,2,..., P,

s The ACF (or PSD) of the a; coefficients.

# The ACF (or PSD) of h(n).

o The cepstrum of ay, or h(n).

With the inclusion of the gain factor 7 as required, all of the above sets have a total
of (P 4+ 1) values, and are equivalent in the sense that one set may be derived from
another. Any particular set of parameters may be used, depending upon its relevance,
interpretability, or reiationship to the real-world system being modeled.

Illustration of application to EEG signals: Identification of the existence of
thythms of specific frequencies is an important aspect of EEG analysis. The direct
relationship between the poles of an AR model and resonance frequencies makes this
technique an attractive tool for the analysis of EEG signals.

Figure 7.12 shows the FFT spectrum and AR-model spectra with P = 6 and
P = 10 for the ol channel of the EEG signal shown in Figure 1.22. The FFT
spectrum in the lowest trace of Figure 7.12 includes many spurious variations which
make its interpretation difficult. On the other hand, the AR spectra indicate distinct
peaks at about 10 Hz corresponding to an alpha rhythm: a peak at 10 Hz is clearly
evident even with a low model order of P = 6 (the middle trace in Figure 7.12).

The poles of the AR model with order P = 10 are plotted in Figure 7.13.
The dominant pole (closest to the unit circle in the z-plane) appears at 9.9 Hz,
corresponding to the peak observed in the spectrum in the top-most plotin Figure 7.12.
The radius of the dominant pole is | z{ = 0.95; the other complex-conjugate pole pairs
have [z] < 0.76. The model with P = 6 resulted in two complex-conjugate pole pairs
and two real poles, with the dominant pair at 10.5 Hz with |z| = 0.91; the magnitude
of the other pole pair was 0.74. A simple search for the dominant (complex) pole can
thus provide an indication of the prevalent EEG rhythm with fairly low AR model
orders.
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Figure7.12  From bottom to top: FFT-based and AR-model spectra with P = 6 and P = 10
for the o! channel of the EEG signal shown in Figore 1,22,
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Figure 7.13 Poles of the AR modei with P = 10 for the ol channel of the EEG signal shown
in Figure 1.22. See also Figure 7.12,
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Ilustration of application to PCG signals: Application of AR modeling is an
attractive possibility for the analysis of PCG signals due to the need to identify signif-
icant frequencies of resonance in the presence of multiple components, artifacts, and
noise. Although the model coefficients themselves do not carry any physical corre-
lates or significance, the poles may be related directly to the physical or physiological
characteristics of hearts sounds and murmurs,

Figures 7.14 and 7.15 iliustrate the FFT-based spectrumn of a segment containing
one St and the subsequent systolic portion of the PCG signal of a normal subject, the
AR-modet spectra for order P = 10 and P = 20, and the poles of the model of order
P = 20 (see also Figures 4.27, 5.6, and 6.11). Figures 7.16 and 7.17 illustrate the
same items for a segment containing one §2 and the subsequent diastolic portion of
the same subject. It is evident that the AR spectra follow the dominant peaks in the
spectra of the originai signals. The spectra for the models of order P = 20 provide
closer fits than those for P = 10; peaks in the P = 10 spectra gloss over multiple
peaks in the original specira. Observe the presence of poles close to the unit circle
in the z-plane at frequencies corresponding to the peaks in the spectra of the signals.
The AR-model spectra are smoother and easier to interpret than the periodogram-
based spectra illustrated in Figure 6.11 for the same subject. The spectra for the
diastolic portion indicate more medium-frequency energy than those for the systolic
portion, as expected. The model coefficients or poles provide a compact parametric
representation of the signals and their spectra.

Figures 7.18 and 7.19 illustrate the FFT-based spectrum of a segment containing
one S1 and the subsequent systolic portion of the PCG signal of a subject with systolic
murmur, split $2, and opening snap of the mitral valve (see also Figures 4.28, 5.7,
and 6.12); the AR-model spectra for order P = 10 and P = 20, and the poles of
the model of order P = 20. Figures 7.20 and 7.2t illustrate the same items for a
segment containing one S2 and the subsequent diastolic portion of the same subject.
The systolic murmur has given rise to more medium-frequency components than in
the case of the normal subject in Figure 7.14. The AR-model spectra clearly indicate
additional and stronger peaks at 150 Hz and 250 H z, which are confirmed by poles
close to the unit circle at the corresponding frequencies in Figure 7.19.

7.5.3 Relationship between AR and cepstral coefficients

If the poles of H(z) are inside the unit circle in the complex z-plane, from the theory
of complex variables, In H(z) can be expanded into a Laurent series as

InH(z) =) h(n) 27" (7.61)

n=l

Given the definition of the complex cepstrum as the inverse z-transform of the
logarithm of the z-transform of the signal, and the fact that the left-hand side of the
equation above represents the z-transform of A{n}, it is clear that the coefficients of
the series A{n) are the cepstral coefficients of A(n). I H(z) has been approximated
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Figure 7.14 Bottom 1o top: FFT-based spectrum of the systolic portion of the PCG of a
normal subject (male, 23 years); AR-model spectrum with order P = 10; AR-model spectrum
with order P = 20. (See also Figures 4.27, 5.6, and 6.11.)
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500 Hz o H2z

Figure 7.15 Poles of the AR model with order P = 20 of the systolic portion of the PCG of
a normal subject. (See also Figure 7.14.) :
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Figure 7.16 Bottom to top: FFT-based spectram of the diastolic portion of the PCG of a
normal subject {male, 23 years); AR-model spectrum with order P = 10; AR-model spectram
with order P = 20. (See also Figures 4,27, 5.6,and 6.11.}
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Figure 7.17  Poles of the AR model with order P = 20 of the diastolic portion of the PCG
of a normat subject. (See also Figure 7.16.)
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Figure 7.18 Bottom to top: FFT-based spectrum of the systolic poetion of the PCG of a
subject with systolic murmur, split 82, and opening snap of the mitral valve (female, 14
months); AR-model spectrum with order P = 10; AR-model spectrum with order P = 20.
(See also Figures 4.28, 5,7, and 6.12.)
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500 Hz

O Hz

Figure 7.19  Poles of the AR model with order P = 20 of the systolic portion of the PCG

of a subject with systolic murmur, split 52, and opening snap of the mitral valve. (See also
Figure 7.18))
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Figure 7.2¢ Bottom to top: FFT-based spectrum of the diastolic portion of the PCG of
a subject with systolic murmur, split 82, and opening snap of the mitral valve (female, 14
months), AR-model spectrum with order P = 10; AR-model spectrum with order P = 20.
{See also Figures 4.28, 5.7, and 6.12.)
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OHz

Figure 7.21 Poles of the AR model with order P = 20 of the diastolic portion of the PCG
of a subject with systolic murmus, split S2, and opening snap of the mitral valve. (See also
Figure 7.20.)
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by an AR model with coefficients aj, 1 £ k < P, we have

m( 1 ) =3 h(n}z " (7.62)
n=1

1+ 2::1 ak z—-k

Differentiating both sides of the equation above with respect to 271, we get

- 2P= kay Pk oo .
( k: L ) = Z nh(n) z—ﬂ-i-l’ (7.63)
1+ Ek::l Ak z*k n=1
or
P P =] R
- Z kayz ¥ = (1 + E a;.z"‘) E nh(n)z~ "+, (7.64)
k=1 k=1 n=1

By equating the constant term and the like powers of 2~ on both sides, the following
relationship can be obtained [191]:

1) = =-a, (7.65)

n-1 .
A J a .
= ~—g, - -z ; - < P
k(n) Gn JE=1 (1 n) gjh(in—j), 1<n<P

As we saw in Section 4.8.3, phase unwrapping is 2 major issue in estimating the
cepstral coefficients using the inverse Fourier transform of the logarithm of the Fourier
transform of a given signal [115]. Estimation of the cepstral coefficients using the AR
coefficients has the advantage that it does not require phase unwrapping. Although
the cepstral coefficients are deduced from the AR coefficients, it is expected that the
nonlinear characteristics of the transformation could lead to an improvement in signal
classification using the former than the latter set of coefficients. Cepstral coefficients
have provided better classification than AR coefficients in speech {191], EMG [192],
and VAG [58) signal analysis.

7.6 POLE-ZERO MODELING

Although AR or all-pole modeling can provide good spectral models for any kind
of spectra with appropriately high model orders, it has a few limitations. The AR
model essentially follows the peaks in the PSD of the signal being modeled, and thus
resonance characteristics are represented well. However, if the signal has spectral
nulls or valleys (anti-resonance), the AR-model spectrum will not provide a good fit
in such spectral segments, Spectrai zeros are important in modeling certain signals,
such as nasal speech signals [193]. Furthermore, an all-pole model assumes the
signal to be a minimum-phase signal or a maximum-phase signal, and does not allow
mixed-phase signals [128].

The main conceptual difficuity posed by pole-zero modeling is that it is inherently
non-unique, because a zero can be approximated by a large number of poles, and
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vice-versa [187]. However, if the system being modeled has a number of influential
zeros, the number of poles required for an all-pole model can become very large,
For these reasons, ARMA or pole-zero modeling [187, 193, 128, 80, 194, 195] is
important in certain applications.

The ARMA normal equations: From the ARMA model represented by Equa-
tion 7.13, we can write the model PSD as [187]

B(w)? Splw)
§ H(w)? G" =G? 7.66
) = =708 = ¢ 5@ 769
where
P 2
Sa(w) = [+ ax exp(—jkw) (7.67)
k=1
and
Q 2
Sp(w) = |1+ Y b exp(~jlw) (7.68)
=1
The total spectral-matching error is given by
Salw) 4
/ Sylw )S( ) (7.69)

which may be viewed as the residual energy after passing the modeled signal through
the inverse filter %{% In order to obtain the optimal pole-zero model, we need to
determine the coefficients ax and b; such that the error ¢ is minimized.

Before taking the derivatives of & with respect to ay, and by, the following relation-
ships are worth noting. Taking the partial derivative of §,(w) in Equation 7.67 with
respect 1o a;, we get

65,, w) =2 Z a cos[{i - k)w), (1.70)

k=0

with ag = 1. Similarly, from Equation 7.68 we get

8.5'5((»)

= 22 b cosf(i — Hw). (7.71)
Let .)__l_f Sy(w )[S"(“’) (iw) duw (7.72)
byap(i) = o A cos(iw) dw. .

bya0(i) is the inverse Fourier transform of 8, (w). and hence simply ¢,(%).
Now we can take the partial derivative of € in Equation 7.69 with respect to a; as
8 1 [ Sw) 8
ba; 27 J_, S(w) Ba;

Se(w) dw 7.73)
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1 ™ Sy{w) = ;
o | Siw) 2; ay cos{(i — k)w| dw

P
23" awdyo(i— k), L<i<P
k=0

In the same manner, we can obtain

E_—_gib@, (i-1), 12i<Q (7.74)
8b¢_ o t @y21 t - :

Because ¢y10{¢ — &) in Equation 7,73 is not a function of ay, we obtain a set of linear
equations by setting the final expression in Equation 7.73 to zero, which could be
solved to obtain the ag coefficients in a manner similar to the procedures used in AR
modeling. However, ¢y21(i — ) in Equation 7.74 is a function of the &; coefficients,
which leads to a set of nonlinear equations that must be solved to obtain the &
coefficients; the zeros of the model may then be derived from the & coefficients.
Obtaining the ARMA model therefore requires solving P linear equations and Q
nonlinear equations.

Iterative solution of the ARMA normal equations: Makhoul [187] describes the
following iterative procedure to solve the (P + Q) ARMA model normal equations
based on the Newton-Raphson procedure:

Let & = [a1,a2,...,ap]T, b = [b1,b2,...,bQ]%, and ¢ = [a1,63,...,ap,
b1,ba,...,bq|7 represent the model coefficients to be derived in vector form. The
vector at iteration (m + 1) is derived from that at iteration m as

&
e !

C=Cm,

-1
Cm+l = Cm -J

(7.75)

where J is the (P + Q) x (P + Q) symmetric Hessian matrix defined as J = 5255
The vector ¢ may be partitioned as ¢ = [a¥, b7}, and the iterative procedure may
be expressed as

Bmi1 [ ap
= (7.76)
bm-l-l B bm
o 82 +3 =1
e Fe a=a, Oe a=an,
L FbdaT Do OBT b
b da b b= bm b= bm

Equations 7.73 and 7.74 give the first-order partial derivatives required above, The
second-order partial derivatives are given as follows [187]:
e

Ba; 00y 2¢410(¢ ~ 7), (7.77)
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2 P Q
& _ =23 an by [By20(i +i— 1= k) + Pyao(i — i = I+ k)|, (7.78)
Ba; Bb; k=0 1=0
and
9 L
_8b¢ %, - —2¢y21(i-j)+4zz by by [pysa(f+E—1—k)+dyar(f—i—1+k)).

k=0 1=0
(7.79)
The iterative procedure works well if the initial estimate is close to the optimal model;
otherwise, one of the noniterative methods described in the following sections may
be considered.

7.6.1 Sequential estimation of poles and zeros

Given the difficulties with the nonlinear nature of direct pole-zero modeling, a few
methods have been proposed to split the problem into two parts: identify the poles
first by AR modeling, and then treat the residual error in some manner to estimate
the zeros [187, 193, 128, 80, 194, 195). (Note: Several notational differences exist
batween the various references cited here. The following derivations use notations
consistent with those used so far in the present chapter.)

Shanks’ method: Let us consider a slightly modified version of Equation 7,13 as

_Y(z) _B(z) 1+%% b2t
T X() O A 1+ S ek z ]

where the gain factor G has been set 10 be unity: G = 1. The difference equation
relating the output to the input is given by a small change to Equation 7.12 as

H(z)

(7.80)

P Q
vy =-Y axyn—Fk)+>_ baz{(n-1). (7.81)
k=1 =0

The effect of the numerator and denominator polynomials in Equation 7.80 may be
separated by considering Y'(z) = V(z)B(z), where V(2) = %{3 This leads to the
all-zero or MA part of the system

Q
yin) =Y bio(n-1), (7.82)
1=0
with v(n) given by the all-pole or AR part of the model as
_ P
v(n) = — Z ay v(n — k) + 2(n). (1.8%)
k=1

Let us consider the case of determining the ay and b coefficients (equivalently,
the poles and zeros) of the system H(z) given its impulse response. Recollect
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that y(n) = h{n) when z(n} = §(n}; consequently, we have X(z} = 1, and
Y {(z) = H(z). The impulse response of the system is given by

Lid Q
h{n) == arhin-k)+)_ b é(n-1), (7.84)
k=1 1=0
which simplifies to
P
h(n) ==Y axh(n—k), n>Q. (7.85)
k=1

The effect of the impulse input does not last beyond the number of zeros in the
systemn: the system output is then perfectly predictable from the preceding P samples,
and hence an AR or ali-pole model is adequate to model A(n) forn > Q. Asa
consequence, Equation 7.32 is modified to

P
on(i) == ax pnli—k), i>Q. (7.86)
k=1
This system of equations may be solved by considering P equations with @ + 1 £
i < @+ P. Thus the a; coefficients and hence the poles of the system may be
computed independently of the by coefficients or the zeros by restricting the AR error
analysiston > Q.

In a practical application, the error of prediction needs to be considered, as the
model order P will not be known or some noise will be present in the estimation.
Kopec et al. [193] recommend that the covariance method described in Section 7.5
be used to derive the AR mode] by considering the error of prediction as

P
e(n) = h(n)+ > ax h(n — &), (7.87)
k=1
and minimizing the TSE defined as

e

e= Y le(n) (7.88)

n=0Q+1

The first @ points are left out as they are not predictable with an all-pole model.
Let us assume that the AR modeling part has been successfully performed by the
procedure described above. Let

P
A =14 az* (7.89)
k=1
represent the denominator polynomial of the system that has been estimated. The
TSE in modeling h(n) is given by

o0 2

Q
Coe=) dh(m) =) Hin-)| (7.90)
' =0

n=0
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where #(n) is the impuise response of the AR model derived, with V(z) = 1?1?)
Minimization of & above leads to the set of linear equations

Q
3 b dosllF) = dne(0,), 0<5<Q, (1.91)
I=0
where -
dro(l,3) =), h{n -1 ¥(n - j) (1.92)
n=0

is the CCF between h(n) and #(n), and ¢ is the ACF of &(n).
The frequency-domain equivalents of the steps above may be analyzed as follows.
The TSE is

e =5/
Y. 3

- = |En(w) - B@)P? [V (@) dw,

Q 2
H(W)A(w) - Y b exp(—jlw)| V(W) dw (7.93)
1=0

where Ey(z) = H{z)A(z) is the AR model error in the z-domain. [Recall that the
Fourier spectrum of a signal is obtained by evaluating the corresponding function of
z with z = exp(jw).] The method described above, which is originally attributed
to Shanks [80] and has been described as above by Kopec et al. [193], therefore
estimates the numerator polynomial of the model by fitting a polynomial (spectral
function) to the z-transform of the AR or all-pole medel error.

Makhoul [187] and Kopec et al. [193] suggest another method labeled as inverse
LP modeling, whete the inverse of the AR model error e; ! (n) given as the inverse
z-transform of B !(z) is subjected to all-pole modeling, The poles so obtained are
the zeros of the original system being modeled.

7.6.2 Iterative system identification

Problem: Given a noisy observation of the output of a linear system in response
to a certain input, develop a method 1o estimate the numerator and denominator
polynomials of a rational z-domain model of the system,

Solution: In consideration of the difficulty in solving the nonlinear problem
inherent in ARMA modeling or pole-zero estimation, Steiglitz and McBride {194]
proposed an iterative procedure based upon an initial estimate of the denominator
(AR) polynomial. Since their approach to system identification is slightly different
from the LP approach we have been wsing so far in this chapter, it is appropriate to
restate the problem.

The Steiglitz-McBride method: Figure 7.22 shows a block diagram illustrating
the problem of system identification. The system is represented by its transfer
function H(z), input z(n), output y{n) = h(n) * 2(n), and the noisy observation
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w(n) = y(n) + n(n), where n(n) is a noise process that is statistically independent
of the signals being considered. H{z) is represented as a rational function of z, as

_Y(@ _ B _ Tl

Hi(z) = = = . (7.94)
@)= %G = A6) ~ o, ant
noisen
X
system - System — System
input Hiz) output
¥
B{z)
Afz)
model
output v :/_\:‘_
—-?"-
model e
error

Figure 7.22 Schematic representation of system identification. Adapted from Steiglitz and
MecBride [194].

The error to be minimized may be written as [194]

phie B(z 24

Z% *(n) = 5;6 f ‘X(z)-A—E;% ~wi| 2, (7.95)
where the right-hand side represents the inverse z-iransform of the function of 2
involved, and V is the number of data samples available. The functions of z within
the integral essentially compare the predicted model output with the observed output
of the physical system.

As seen earlier, this approach leads to a nontlinear problem. The problem may be
simplified (linearized) by taking the approach of separate identification of the numer-
ator and denominator polynomials: the estimation problem illustrated in Figure 7.23
treats A(z) and B(z) as separate systems. The error to be minimized may then be
written as [194]

N-1

> =g § XE@BE-WE@ARPZ. 099

n=0
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noise 1
X System y A w
system . Y p—  SyStem
input H(z)} output
1 L J
B(z) Alz)
+ -

r%}-ﬁu

a2

Figure 7.23 Schematic representation of system identification with separate estimation of
A(z) and B(z). Adapted from Steiglitz and McBride [194].

(This approach was originally proposed by Kalman [196].)
The sample model error is given by

e(n) = Zb; z(in—-1) - Za,. win - k) — w(n). (7.97)

=0

The model coefficients and the input — output data samples may be written in vector
form as

¢ = [bo,by,...,bg, ~a1,—03,...,~ap|T, (7.98)
and
d(n) = [z(r),z(n-1),...,2(n-Q), w(n—1),w(n—-2),...,w(n—P)%, (7.99)
with the vectors being of size (P + Q + 1). Then, the error is given by
e(n) = dT(n)c — w(n). (7.100)
The condition for minimum TSE is given by
N-1

5 Z (n )__22 03(“) e(n )..22 d(n)e(n) = (7.101)

n=0 n=0

Substitution of the expression for the error in Equation 7.100 in the above condition

gives
N-1 N-1
(Z d(n)dT(n)) c= Y w(n)d(n). (7.102)
n=0 n=l
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If we let
N-1

=) d(n)dT(n) (7.103)
n=0
represent the (P + @ + 1) x (P + @ + 1) correlation matrix of the combined string
of input ~ output data samples d(rn), and let

-1
O = Z w(n)d(n) (7.104)

n=0

represent the correlation between the signal w(n) and the data vector d(n) of size
(P + Q + 1), we get the solution to the estimation problem as

c=%"10. (7.105)

Although the vectors and matrices related to the filter coefficients and the signal cor-
relation functions are defined in a different manner, the solution above is comparable
to that of the optimal Wiener filter (see Section 3.5 and Equation 3.84),

The limitation of the approach above is that the error used has no physical signifi-
cance. The separation of the numerator and denominator functions as in Figure 7.23,
while simplifying the estimation problem, has led {o a situation that is far from reality.

To improve upon the match between the real physical situation and the estima-
tion problem, Steiglitz and McBride [194] proposed an iterative procedure which is
schematically iliustrated in Figure 7.24. The basic approach is to treat the system
identified using the simplified procedure described above as an initial estimate, la-
beled as A, (z) and B;(z}); filter the original signals £(n} and w{n} with the system

:l(z ; use the filtered signals to obtain new estimates Az(z) and B(z); and iterate
the procedure until convergence is achieved.

The error to be minimized may be written as [194)

N-1
n) = Bi(2) 4y Ail2)
g ) 2nj IX( )As 1(z) - W )A| 1(5) T 108
_ __1_ B;(z) A;(2)
- 27rj |X( ) Ai_l(z) 2z’

with Ag(2) = 1. It is obvious that upon convergence, when A,(z} = A;_1(z2),
the minimization problem above reduces to the ideal (albeit nonlinear) situation
expressed in Equation 7.95 and illustrated in Figure 7.22.

Steiglitz and Mc¢Bride [194] suggest a modified iterative procedure to further
improve the estimate, by imposing the condition that the pattial derivatives of the true
error criterion with respect to the model coefficients be equal to zero at convergence.
The true (ideal) model error is given in the z-domain as (refer to Figure 7.22)

B(z)

E(z) = X(Z)A(z)

- Wz} =V(z) - W(2). (7.107)
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Figure 7.24 Schematic reptesentation of system identification via iterative prefiltering.
Adapted from Steiglitz and McBride [194].
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V' (2} is the output of the model for the input #(n). The derivatives of E(z) with
respect to the model coefficients are given by

de _ X()B(z) _;_ V(2

———— = —i = - j/ -t .
Ba = A0 z ) z V(z2)z (7.108)
and 8 X(2)
E _ AN ¢ % -
a6 = Az) 270 = X{2)z 7, (7.109)

where the superscript ~ represenis a filtered version of the corresponding signal, the
filter transfer function being z7y. A new data vector is defined as

di(n) = [#(n), #(n-1),...,8(n—Q), 5(n-1),5(rn—2),...,5(n—P)T. (7.110)
The error gradient in Equation 7.101 is modified to

8 ! = Be(n) =
o Y ) = 23 3 e(n) =2 di(n)e(n) (T.111)
< n=0 n={0 ¢ n=0
N-1
= 2 Z [dl(n)d'f(n)c - w(n)dl(n)ja
n=0

where the last equality is true only at convergence. The rest of the procedure remains
the same as before, but with the corvelation functions defined as

N-1
&= di(n)d](n) (7.112)
n=0
and
N~1
81 =Y w(n)di(n). (7.113)
n=0

Once the a; and b; coefficients are obtained, the related polynomials may be
solved to obtain the poles and zeros of the system being modeled. Furthermore,
the polynomials may be used to derive spectral models of the system or the signal
of interest. Note that the procedures given above are applicable to the special case
of system identification when the impulse response h(n) is given: we just need to
change x(n} = §(n) and X(z) = 1. Steiglitz and McBride [194] did not provide
any proof of convergence of their methods; however, it was indicated that the method
performed successfully in many practical applications.

The Steiglitz-McBride method was applied to the modeling and classification of
PCG signals by Joo et al. {197]. The first and second peak frequencies were detected
from the model spectra and used to analyze porcine prosthetic valve function. Murthy
and Prasad [198] applied the Steiglitz-McBride method to ECG signals. Pole-zero
models derived from ECG strips including a few cardiac cycles were were used to
reconstruct and identify the ECG waveform over a single cycle, and also to reconstruct
separately (that is, to segment) the P, QRS, and T waves.
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7.6.3 Homomorphic prediction and modeling

Problem: Given the relative ease of all-pole modeling, is it possible to convert the
zeros of a system to poles?

Solution: As mentioned earlier, an all-pole model assumes the signal being mod-
eled to be a minimum-phase signal or a maximum-phase signal, and does not allow
mixed-phase signals {128], We have seen in Sections 4.8.3 and 5.4.2 that homomor-
phic filtering can facilitate the separation of the minimum-phase and maximum-
phase components of a mixed-phase signal, and further facilitate the derivation
of a minimum-phase version or correspondent (MPC) of a mixed-phase signal.
Makhoul [187], Oppenheim et al. {128], and Kopec et al. {193] suggest methods
to combine homomorphic filtering and LP into a procedure that has been labeled
homomorphic prediction or cepstral prediction.

An intriguing property that arises in homomorphic prediction is that if a signal
z(n) has a rational z-transform, then n&(n} [where #(n) is the complex cepstrum
of z{n)] has a rational z-transform whose poles correspond to the poles and zeros
of z(n). The basic property of the z-transform we need to recollect here is that
if X(z) is the z-transform of z(n), then the :-transform of nz(n) is —z %
Now, the complex cepstrum £(n) of x(n) is defined as the inverse z-transform of
X(2) = log X(z). Therefore, we have

R dX(z) 1 dX(2)
ZTné(n)) = —2 5 = X(z) T’ (7.114)
where ZT ] represents the z-transform operator. If X(z) = % 25, we get
t _ '
ZTiné(n)] = —» AEB) — B()A(2) (7.115)

A(2)B(z) ’

where the prime ' denotes the derivative of the associated function with respect to z.
A general representation of a rational function of 2 (which represents an exponential
signal in the z-domain) in terms of its poles and zeros is given by [128]

X(Z) =Az Hl-l (1 — Zi 2_1) H =1 (1 — Zon z)
H":! (1 Pik z-l) Hm=1 (1 Pom z)

with the magnitudes of all of the 2, z,, p;, and p, coefficients being less than unity,
The p; and z; values above give the P; poles and Q; zeros, respectively, of the system
that are inside the unit circle in the 2-plane; L and L give the P, poles and Q,
zeros, respectively, that lie outside the unit circle. Of cowrse, a causal and stable
system will not have any poles outside the unit circle; the general representation
above will permit the analysis and modeling of maximum-phase signals that are
anti-causal. Computation of the complex cepstrum requires the removal of any linear
phase component that may be present, and hence we could impose the condition
r = 0. We then have

X(z) = logX(z)=1logd (7117

(7.116)
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+ E log{t — 2y 2z~ 1)+Z log(l — zon 2)

1=1 n=1
Z log(1—pu z74) — Z log(1 — pom 2},
m=1
and furthermore,
dX(z) 9 zyg 21 @ Zon 2
S m*z T-wmn

+

Mzﬂ i

Pz _PomZ
(1 Pik Z“l) Z (1~ Pom 2)

From the expression above, it is evident that n&(n) has simple (first-order) poles
at every pole as well as every zero of z(n). Therefore, we could apply an all-
pole modeling procedure to n&(n), and then separate the poles so obtained into the
desired poles and zeros of @{n}. An initial all-pole model of 2(n) can assist in the
task of separating the poles from the zeros. Oppenheim et al. [128] show further
that even if X (z) is irrational, n&(n) has a rational 2-transform with first-order poles
corresponding to each irrational factor in X(z).

Ilustration of application to a synthetic speech signal: Figures 7.25 and 7.26
show examples of the application of several pole-zero and all-pole modeling tech-
nigues to a synthetic speech signal [128]). The impulse response of the synthetic
system with two poles at 292 Hz and 3, 500 H z with bandwidth 79 Hz and 100 H z,
and one zero at 2, 000 H 2z with bandwidth 200 H z, is shown in Figure 7.25 (a), with
its log-magnitude spectrum in Figure 7.26 (a). The formant or resonance structure of
the signal is evident in the spectral peaks. (The sampling rate is 12 kH 2.) Excitation
of the system with a pulse train with repetition rate 120 Hz resulted in the signal in
Figure 7.25 (b), whose spectrum is shown in Figure 7.26 (b); the spectrum clearly
shows the effect of repetition of the basic wavelet in the series of waves that are
superimposed on the basic spectrum of the wavelet. Application of homomorphic
filtering to the signal in Figure 7.25 (b) provided an estimate of the basic waveler as
shown in Figure 7.25 {¢), with the corresponding spectrum in Figure 7.26 (c).

The pole-zero modeling method of Shanks was applied to the result of homo-
morphic filtering in Figure 7.25 (c) with four poles and two zeros. The impulse
response of the model and the corresponding spectrum are shown in Figure 7.25 (d)
and Figure 7.26 (d), respectively. It is seen that the two peaks and the valley in the
original spectrum are faithfully reproduced in the modeled spectrum. The frequen-
cies of the poles (and their bandwidths) given by the model were 291 Hz (118 Hz)
and 3,498 Hz (128 Hz), and those of the zero were 2,004 Hz (242 Hz), which
compare well with those of the synthesized system listed in the preceding paragraph.

Application of the autocorrelation method of LP modeling with six poles to the
original signal in Figure 7.25 (a) resulted in the model impulse response and spectrum
iliustrated in Figures 7.25 (¢) and 7.26 (e). While the all-pole model spectrum has

=
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Figure 7.25 Time-domain signals: (a) impulse response of a 4-pole, 2-zero synthetic system;
(b) synthesized voiced-speech signal obtained by triggering the system with an impulse train;
(c) result of basic wavelet ¢xtraction via application of homomorphic filtering to the signal in
(b); (d) impulse response of a 4-pole, 2-zero model of the signal in (c) obtained by Shanks’
method; (2) impulse response of a 8-pole AR model. Reproduced with permission from A.V.
Oppenheim, G.E. Kopec, and J.M. Tribolet, Signal analysis by homomotphic prediction, IEEE
Transactions on Acoustics, Speech, and Signal Processing, 24(4):327-332, 1976, ©IEEE.
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(c)

(d)

0 2 3 a 5 6
FREQUENCY (kHz)

Figure 7.26 Log-magnitude spectra of the time-domain signals in Figure 7.25: (a) actual
spectral response of the 4-pole, 2-zero synthetic system; (b) spectrum of the synthesized
voiced-speech signal obtained by triggering the system with an impulse train; (¢} spectrum of
the basic wavelet extracted via application of homoemorphic filtering to the signal corresponding
to (b); {d) spectral response of a 4-pole, 2-zero model of the signal in (¢) obtained by Shanks’
method; (e} spectral response of a 6-pole AR model. Reproduced with permission from A.V.
Oppenheim, G.E. Kopec, and 1.M. Tribolet, Signal analysis by homomorphic prediction, JEEE
Transactions on Acoustics, Speech, and Signal Processing, 24(4):327-332, 1976. (©IEEE.



370  MODELING BIOMEDICAL SYSTEMS

followed the spectral peaks well, it has failed to represent the valley or null related
to the zero.

Hlustration of application to a real speech signal: Figure 7.27 (a) shows the
log-magnitude spectrum of a real speech signal (pre-emphasized) of the nasalized
vowel /U/ in the word “moon” [193]. Part (b} of the same figure shows the spectrum
after homomorphic filtering to remove the effects of repetition of the basic wavelet.
Parts (¢) and (d) show 10-pole, 6-zero model spectra obtained using Shanks’ method
and inverse LP modeling, respectively. The spectra of the models have successfully
followed the peaks and valleys in the signal spectrum,

aoaaimwwwwmm A (a)
ZOGBIM (b)

2048 I /\/\/\/\ ©
20“1/\_/\—’\/\_,_ )

| i 1
Q I 2 3 4

(kHZ)

Figure 7.27 (a) Log-magnitude spectrum of the pre-emphasized, real speech signal of the
nasalized vowel /U/ in the word “moon”; (b) spectrum after homomorphic filtering to remove
the effects of repetition of the basic wavelet; (c) spectral response of a 10-pole, 8-zero model
obtained by Shanks’ method; (d) spectral response of a 10-pole, 8-zero model obtained by
inverse LP modeling. Reproduced with permission from G.E. Kopec, A.V. Oppenheim, and
J.M. Tribolet, Speech anatysis by homomorphic prediction, JEEE Transactions on Acoustics,
Speech, and Signal Processing, 25(1):40-49, 1977, @©IEEE.

Shanks’ method was applied to the minimum-phase and maximum-phase com-
ponents of ECG signals obtained via homomorphic filtering by Murthy et al. [199).
Akay et al. [200] used ARMA techniques to mode! diastolic heart sounds for the
detection of coronary heart disease; however, only the dominant poles of the model
were used in pattern analysis (see Section 7.10 for details of this application).
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7.7 ELECTROMECHANICAL MODELS OF SIGNAL GENERATION

While purely mathematical models of signal generation such as point processes and
linear system models provide the advantage of theoretical elegance and convenience,
they may not be able to represent certain physical and physiological aspects of the
systems that generate the signals. For example, the models we have seen in the
preceding sections cannot directly accommodate the physical dimensions of blood
vessels or valves, the loss in the compliance of a valve leaflet due to stenosis, or the
Jubrication {or the lack thereof) or friction between joint surfaces.

Sikarskie et al. [201] proposed a model to characterize aortic valve vibration for
the analysis of its contribution to S2; in addition to mathematical relationships, they
included physical factors such as the valve forcing function, valve mass, and valve
stiffness. It was shown that the amplitude and frequency of A2 depend strongly
on the valve forcing function and valve stiffness. Valve mass was shown to have
little effect on the amplitude and frequency of A2; blood density was shown to
have no effect on the same parameters. We shall now study two representative
applications of electromechanical modeling, where mechanical models and their
electrical counterparts are used to represent the generation and altered characteristics
of sounds in arteries and knee joints.

7.7.1 Sound generation in coronary arteries

Problem: Propose an electromechanical model to characterize the sounds produced
due to blood flow in stenosed arteries,

Solution: Blood vessels are normally flexible, elastic, and pliant, with smooth
internal surfaces. When a segment of a blood vessel is hardened due to the de-
position of calcium and other minerals, the segment becomes rigid. Furthermore,
the development of plaque inside the vessel causes narrowing or constriction of the
vessel, which impedes the fiow of blood, The result is a turbulent flow of blood, with
accompanying high-frequency sounds,

Wang et al. {202, 203] proposed a sound-source model combining an incremen-
tal-network model of the left coronary-artery tree with a transfer-function model
describing the resonance characteristics of arterial chambers. The network model,
illustrated in Figure 7.28, predicts fiow in normal and stengsed arteries. It was noted
that stenotic branches may require division into muitiple segments in the model due
to greater geomelric variations. Furthermore, it was observed that a stenotic segment
may exhibit post-stenotic dilation as illustrated in Figure 7.29, due to increased
pressure fluctuations caused by turbulence at the point of stenosis.

The resonance frequency of a segment depends upen the length and diameter of
the segment, as well as upon the distal (away from the heart) hydraulic pressure
Joading the segment. The physical parameters required for the model were obtained
from arteriograms of the patient being examined. The terminal resistances, labeled
Z in Figure 7.28, represent loading of the resistive arteriolar beds, assumed to be
direcily related to the areas that the terminal branches serve.
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Figure 7.28  Electromechanical model of a coronary artery tree, (a) The left coronary-artery
tree is divided into 14 branches. (b) Circuit model of a segment. (¢} Circuit model of the artery
tree. Reproduced with permission from J.Z. Wang, B, Tie, W. Welkowitz, J.L. Semmiow,
and J.B. Kostis, Modeling sound generation in stenosed coronary arteries, IEEE Transactions
on Biomedical Engineering, 37(11):1087-1094, 1990, ©IEEE; and J.Z. Wang, B. Tie, W.
Welkowilz, J. Kostis, and J. Semmiow, Incremental network analogue model of the coronary
artery, Medical & Biological Engineering & Computing, 27:416-422, 1989, ©IFMBE.
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S1: Proximal to Stenosis Segment
§2: Stenotic Segment

$3: Poststenotic Dilation Segment
$4: Djsial to Difation Segment

Figure 7.29 Hypothetical example of stenosis in coronary artery branch 9. Reproduced with
permission from J.Z. Wang, B, Tie, W. Welkowitz, J.L. Semmlow, and J.B. Kostis, Modeling
sound generation in stenosed coronary arteries, [EEE Transactions on Biomedical Engineering,
37¢(11):1087-1094, 1990. ©IEEE.

Wang et al. related the network elements (resistance R, inertance or inductance
L, and capacitance C) to the physical parameters of the artery segments as

R = Sﬂ'v%, (7.119)
l
L = 921
D
C = AnZ,

where v = 0.04 gem™1 s is the viscosity of blood, p = 1.0 gem ™3 is the density
of blood, E = 2 x 10% gem—? 82 is the Young's modulus of the blood vessel, D is
the diameter of the segment, 4 = w%ﬁ is the cross-sectional area of the segment,
h = 0.08D is the wall thickness of the segment, and [ is the length of the segment.
Wang et al. [203] remarked that while the network elements may be assumed to be
approximately constant during diastole, the assumption would not be valid during
systole due to variations in the parameters of the segments.

In analyzing the artery — network model, voltage is analogous to pressure (P), and
current is analogous to blood flow (). State-variable differential equations were
used by Wang et al. [203] to derive the flow through the artery tree model for various
pressure waveforms. It was hypothesized that turbulence at the point of stenosis
would provide the excitation power, and that the stenotic segment and the dilated
segment distal to the point of stenosis (see Figure 7.29) would act as resonance
chambers.
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Wang et al. [202] vsed the following relationships to compute the RMS pressure
fluctuation (see also Fredberg {204]):

(Pmax = 107%pu?f(z), (7.120)

f(z) = 25.1-37.1z+ 15.52% ~ 0.082° — 0.80z* + 0.122°,
0.75
e
z = 10 ” (d) ,

where u is the blood velocity in the stenotic segment, and d is the diameter of the
stenotic segment. The incremental network mode! was used to estimate the bicod
velocity in each segment.

The wide-band spectrum of the sound associated with turbulent flow was modeled
as (see also Fredberg [204]);

0.7 & (PY)mex
1+05[78)%

where U is the velocity of blood in a normat segment and £ is frequency in Hz. Wang
et al. used the function S{ f) as above as the source of excitation power to derive the
response of their network model. It was observed that the model spectra indicated
two resonance frequencies, the magnitude and frequency of which depended upon
the geometry and loading of the segments, Wang et al. cautioned that the results of
the mode! are sensitive to errors in the estimation of the required parameters from
arteriograms or other sources,

Figure 7.30 illustrates the model spectra for segment 12 of the artery tree model
in Figure 7.28 with no stenosis and with stenosis of two grades. Narrowing of the
segment with increasing stenosis is seen to shift the second peak in the spectrum
to higher frequencies, while the magnitde and frequency of the first peak are both
reduced. The results were confirmed by comparing the model spectra with spectra
of signals recorded from a few patients with stenosed coronary arteries. Examples
of spectral analysis of signals recorded from patients before and after angioplasty to
correct for stenosis will be presented in Section 7.10.

S (7.121)

7.7.2 Sound generation in knee joints

Problem: Develop a mechanical analog of the knee joint fo model the generation of
the pulse train related to physiological patello-femoral crepitus.

Solution: Beverland et al. {176] studied the PPC signals produced during very
slow movement of the leg (at about 4°/s). The signals were recorded by taping
accelerometers to the skin above the upper pole and/or the lower pole of the patella.
Reproducible series of bursts of vibration were recorded in their experiments. Fig-
ure 7.31 illustrates two channels of simultaneously recorded PPC signals from the
upper and lower poles of the patelia during extension and fiexion of the leg. The
signals display reversed similarity when extension versus flexion or upper-pole versus
lower-pole recordings are compared.



ELECTROMECHANICAL MODELS OF SIGNAL GENERATION 375

o vy

mocHA—-ZOr%

————————

0 S0 100 130 200 250 300 350 400

eerere 50% STENGSIS FREQUENCY IN HERTZ

------ 80% STENOSIS
— %

Figure 7.30  Shift in frequency components predicted by the transfer-function model for the
case of stenosis in element 12 in the model of the coronary artery in Figure 7.28. Reproduced
with permission from J.Z. Wang, B. Tie, W. Welkowitz, J.L. Semmiow, and }.B. Kostis,
Modeling sound generation in stenosed coronary arteries, IEEE Transactions on Biomedical
Engineering, 37(11):1087-1094, 1990. (©IEEE.
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Figure 7.31 Simultaneously recorded PPC signals from the upper and lower poles of the
patelta during extension and flexion of the leg. The duration of the signal was not specified.
Reproduced with permission from D.E. Beverland, W.G. Kemohan, G.F. McCoy, and R.A.B.
Mollan, What is physiclogical patellofemnoral crepitus?, Proceedings of XIV International
Conference on Medical and Biological Engineering and VII Intermational Conference on
Medical Physics, pp 1249-1250, Espoo, Finland, 1985, ©IFMBE
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Beverland ct al, proposed a mechanical model o explain the generation of the
PPC signals. The patella was considered to behave like a see-saw in the model,
which was supported by the observation that a pivot point exists at the mid-point of
the patelta. The apparatus constructed, as illustrated in Figure 7.32, included a rubber
wheel to represent the trochlear surface of the femur, on top of which was tensioned
a rectangular piece of hardboard to represent the pateila.

It was argued that as the wheel in the model is slowly rotated clockwise (repre-
senting extension), it would initially stick to the overlying patella (hardboard) due
to static friction. This would tend to impart an anticlockwise rotatory motion, as
a rotating cogwheel would impart an opposite rotation to a cog in contact with it
(as illustrated in the upper right-hand corner of Figure 7.32). The upper end of the
patelia would then move toward the wheel, A point would be reached where the static
friction would be overcome, when the patella would slip and the rotation is suddenly
reversed, with the upper pole jerking outward and the lower pole jerking inward.
The actions would be the opposite to those described above in the case of flexion.
The mechanical model was shown to generate signals similar to those recorded from
subjects, thereby confirming the stick-slip frictional model for the generation of PPC
signals.

ACCEL EROMETERS

{ANTICLOCKWISE)
FLEXION

Figure 7.32 Apparatus to mimic the generation of PPC signals via a stick-slip frictional
model. Reproduced with permission from D.E. Beverland, W.G. Kernohan, G.F. McCoy, and
R.A B, Moilan, What is physiological patellofernoral crepitus?, Proceedings of XiV Interna-
tional Conference on Medical and Biological Engineering and VII International Conference
on Medical Physics, pp 1249-1250, Espoo, Finland, 1985. ©IFMBE
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7.8 APPLICATION: ANALYSIS OF HEART-RATE VARIABILITY

Problem: Explore the applicability of Fourier spectral analysis methods to study
heart-rate data.

Solution: DeBoer et al. [72) applied Fourier analysis techniques to two types of
data derived from heart-rate data, (See also Akselrod et al. [205].} They noted that
the standard Fourier analysis methods cannot be applied directly to a series of point
events, Therefore, they derived three types of signals from trains of ECG beats as
illustrated in Figure 7.1.

The interval spectrum was derived by computing the Fourier spectrum of the
interval series, normalized as I, = (I — I} / I, where I is the mean interval length.
The frequency axis was scaled by considering the time-domain data to be spaced at
dislan;es equal to the mean interval length I, that is, the effective sampling frequency
isl/L

The spectrum of counts was derived by taking the Fourier transform of the impulse-
train representation, derived from RR interval data as shown in Figure 7.1. The signal
was normalized and scaled as 5(t) = 3" [T §(t — tx)] — N, where IV is the number of
data samples, and the Fourier transform was computed. The spectra computed were
smoothed with a 27-point rectangular window. DeBoer et al. demonstrated that the
two spectra exhibit similar characteristics under certain conditions of slow or slight
modulation of the data about the mean heart rate.

The RR interval data of a subject breathing freely and the two spectra derived
from the data are shown in Figure 7.33. Three peaks are seen in both the spectra,
which were explained as foliows [72]:

¢ the effect of respiration at about 0.3 Hz;
¢ the peak at 0.1 Hz related to 10 s waves seen in the blood pressure signal; and

« a peak at a frequency lower than 0.1 Hz caused by the thermo-regulatory
system.

Figure 7.34 shows the RR interval data and spectra for a subject breathing at a
fixed rate of 0.16 Hz. The spectra display weli-defined peaks at both the average
heart rate (1.06 Hz) and at the breathing rate, as well as their harmnonics. The spectra
clearly illustrate the effect of respiration on the heart rate, and may be used to analyze
the coupling between the cardiovascular and respiratory systems.

Note that direct Fourier analysis of a stream of ECG signals will not provide the
same information as above. The reduced representation (model) of the RR interval
data, as illustrated in Figure 7.1, has permitted Fourier analysis of the heart rate
and its relationship with respiration. The methods have application in studies on
HRYV (689, 70, 71, 73, 74].
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Figure 7.33 (a) 400 RR interval values from a healthy subject breathing freely. (b) Interval
spectrum computed from a total of 940 intervals, including the 400 shown in (a) at the
beginning. {c) Spectrum of counts. The spectra are shown for the range 0 — 0.5 Hz
only. Reproduced with permission from R.W. DeBoer, J.M. Karemaker, and J. Strackee,
Comparing spectra of a series of point events particularly for heart rate variability studies,
IEEE Transactions on Biomedical Engineering, 31(4): 384-387, 1984. ©IEEE.
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Figure 7.34 (2) 340 RR interval values from a healthy subject breathing at a fixed rate of
0.16 Hz. (b) Spectrum of counts for the range 0 — 2.5 Hz, {c) Spectrum of counts for the
range 0 — 0.5 Hz. (d} Interval spectrum. Reproduced with permission from R.W. DeBoer,
J.M. Karemaker, and §. Strackee, Comparing spectra of a series of point events particularly for
heart rate variability studies, IEEE Transactions on Biomedical Engineering, 31(4): 384-387,
1984, ©IEEE.
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7.9 APPLICATION: SPECTRAL MODELING AND ANALYSIS OF PCG
SIGNALS

Iwata et al. [206, 207] applied AR modeling and parametric spectral analysis tech-
niques to PCG signals for the detection of murmurs as well as the detection of the
onset of S1 and 52. Their techniques included AR modeling, extraction of the domi-
nant poles for pattern classification, and spectrat tracking, which are explained in the
following paragraphs.

Dominant poles: After the ag, k= 1,2,..., P, coefficients of an all-pole or AR
model of order P have been computed, the polynomial A(z) may be factorized and
solved to obtain the locations of the poles pg, k = 1,2,..., P, of the system. The
closer a pole is to the unit circle in the z-plane, the narrower is its bandwidth, and the
stronger is its contribution to the impulse response of the system. Poles that are close
to the unit citcle may be related to the resonance frequencies of the system, and used
in system identification and pattern recognition.

In view of the nonstationary nature of the signal, Iwata et al. [206) computed a new
model with order P = 8 for every window or frame of duration 25 ms, allowing an
overlap of 12.5 me between adjacent frames (with the sampling rate f, = 2 kH2).
The frequency of a pole ps, was calculated as

LDy
fk “- "ﬁ fn (7122}
and its bandwidth as \
by, = 35-;13!‘1 4. (7.123)

Conditions based upon the difference in the spectral power estimate of the mode!
from one frame to the next, and the existence of poles with f < 300 Hz with
the minimal bandwidth for the model considered, were used to segment each PCG
signal into four phases: S1, a systolic phase spanning the $1 — S2 interval, §2, and
a diastolic phase spanning the interval from one $2 to the following S1. (See also
Section 4.10.)

Figures 7.35 and 7.36 show the PCG signals, spectral contours, the spectral power
estimate, and the dominant poles for a normal subject and a patient with murmur
due to patent ductus arteriosus (PDA). Most of the dominant poles of the model for
the normal subject are below 300 H z; the mode) for the patient with PDA indicates
many dominant poles above 300 Hz.

The mean and standard deviation of the poles with buwy, < 80 Hz of the model
of each PCG phase were computed and used for pattern classification. The five
coefficients of a fourth-order polynomial fitted to the series of spectral power estimates
of the models for each phase were also used as features. Twenty-six out of 29 design
samples and 14 out of 19 test samples were cotrectly classified. However, the number
of cases was low compared to the number of features used in most of the six categories.

Spectral tracking: In another application of AR modeling for the analysis of
PCG signals, Iwata et al. [207] proposed a spectral-tracking procedure based upon
AR modeling to detect S1 and §2. PCG signals were recorded at the apex with a
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Figure 7.35 Illustration of feature extraction based upon all-pole modeling of a normal PCG
signal. From top to bottom: PCG signal; model spectrum in the form of iso-intensity contours:
mode] spectral power estimate &*, where i refers to the frame number; the frequencies ﬁ'}
of the dominant poles with bandwidth f:‘} < 80 Hz Reproduced with permission from
A. Iwata, N. Suzumara, and K. Tkegaya, Pattern classification of the phonocardiogram using
linear prediction analysis, Medical & Biological Engineering & Computing, 15:407-412, 1977
(©IFMBE.
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Figure 7.36  lllustration of feature extraction based upon all-pole modeling of the PCG signal
of a patient with murmur due to patent ductus arteriosus. From top to bottom: PCG signal;
maodel spectrum in the form of iso-intensity contours; model spectral power estimate &',
where ¢ refers to the frame number; the frequencies ] of the dominant poles with bandwidth
ﬁ; < 80 Hz. Reproduced with permission from A. lwata, N. Suzumara, and K. Ikegaya,
Pattern classification of the phonocardiogram using linear prediction analysis, Medical &
Biological Engineering & Computing, 15:407-412 ©IFMBE.
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highpass filter that, at 100 Hz, had a gain —40 dB below the peak gain at 300 Hz
(labeled Ap-H). The signals were lowpass filtered with a gainof —20 dB at 1,000 Hz
and sampled at 2 kHz. The AR model was computed with order P = 8 for frames
of length 25 mne; the frame-advance interval was only 5 ms. The model PSD was
computed as

- o2 1
= , : 7.124
)= 2r S (k) o) 7129

where

P~k
$a(k) =D a; ajix, (7.125)
i=0

with the a; being the AR model coefficients, P = 8, T' = 0.5 ma, o2 being the
model residual energy (error), and apg = 1.

Based upon a study of the spectra of 69 normal and abnormal PCG signals, Iwata
et al. [207) found the mean peak frequency of S1 to be 127 Hz and that of S2 to be
170 H z; it should be noted that the PCG signals were highpass filtered (as described
in the preceding paragraph) at the time of data acquisition. The model spectral power
at 100 Hz was used as the tracking function to detect S1: the peak in the tracking
function after the location ¢z of the R wave in the ECG was taken to be the position
of $1. The tracking function to detect $2 was based upon the spectral power at
150 Hz; the peak in the interval tg + 0.25RR < t < tg + 0.6R, where RR is
the inter-beat interval, was treated as the position of §2. The use of a normalized
spectral density function based upon the AR model coefficients but without the o2
factor in Equation 7,124 was recommended, in order to overcome problems due to
the occurrence of murmurs close to S2,

Figure 7.37 illustrates the performance of the tracking procedure with a normal
PCG signal. The peaks in the 106 Hz and 150 Hz spectral-tracking functions
(lowest traces) coincide weil with the timing instants of S1 and S2, respectively.
Figure 7.38 illustrates the application of the tracking procedure to the PCG signal of
a patient with mitral insufficiency. The systolic murmur completely fills the interval
between S1 and 52, and no separation is seen between the sounds and the murmur,
Whereas the 150 H'z spectral-tracking function labeled (b) in the figure does not
demonsirate a clear peak related to 52, the normalized spectral-tracking function
labeled (c) shows a clear peak corresponding to S2. The two additional PCG traces
shown at the bottom of the figure (labeled Ap-L for the apex channel including more
low-frequency components with a gain of —20 dB at 40 Hz, and 3L-H for a channel
recorded at the third left-intercostal space with the same bandwidth as the Ap-H
signal) illustrate S2 more distinctively than the Ap-H signal, confirming the peak
location of the spectral-tracking function lzbeled (¢) in the figure,
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Figure 7.37 Illustration of the detection of S1 and 82 via spectral tracking based upon
all-pole modeling of a normal PCG signal. From top to bottom: ECG signal; PCG signal;
spectral-tracking functions at 100 H'z for 51 and 150 Hz for S2. The 51 and §2 locations
detected are marked as ¢; and £77, respectively. Reproduced with permission from A. Iwala,
N. Ishii, N, Suzumara, and K. lkegaya, Algorithm for detecting the first and the second heart

sounds by spectral tracking, Medical & Biological Engineering & Computing, 18:19-26, 1980
©IFMBE.
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Figure 7.38 Ilustration of the detection of S1 and 52 via spectral tracking based upon all-
pole modeling of a PCG signal with systolic murmur due to mitral insufficiency. From top
to bottom: ECG signal; PCG (Ap-H) signal; spectral-tracking functions at 100 Hz for S1
and 150 Hz for S2; normalized spectral-tracking function at 150 Hz for 82; PCG (Ap-L)
signal from the apex with more low-frequency components included; PCG (3L-H) signal from
the third left-intercostal space with the same fiiters as for Ap-H, The $! and S2 locations
detected are marked as ¢r and 2y, respectively. Reproduced with permission from A. Iwata,
N. Ishii, N. Suzumara, and K. Ikegaya, Algorithm for detecting the first and the second heart

sounds by spectral tracking, Medical & Biological Engineering & Computing, 18:19-26, 1980
©IFMBE.
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7.10 APPLICATION: DETECTION OF CORONARY ARTERY DISEASE

The diastolic segment of a normal PCG signal after 82 is typically silent: in particular,
the central portion of the diastolic segment after the possible occurrence of atrio-
ventricular valve-opening snaps is silent. Akay et al. [65] conjectured that blood flow
in the coronary arteries is maximum during mid-diastole, and further that coronary
artery disease (occlusion, stenosis, etc.) could present high-frequency sounds in this
period due to turbulent blood flow (see Section 7.7.1).

Akay et al. [65] studied the spectra of mid-diastolic segments of the PCGs, av-
eraged over 20 — 30 beats, of normal subjects and patients with coronary artery
disease confirmed by angiography. It was found that the PCG signals in the case of
coronary artery disease exhibited greater portions of their energy above 300 H 2 than
the normal signals.

Figure 7.39 illustrates the AR-model spectra of two normal subjects and two
patients with coronary artery disease. The signals related to coronary artery disease
are seen to possess a high-frequency peak in the range 400 — 600 Hz that is not
evident in the normal cases.

Akay et al. [208] further found that the high relative-power levels of resonance
frequencies in the range of 400 — 600 H z that were evident in patients with coronary
artery disease were reduced after angioplasty, Figure 7.40 shows the spectra of
the diastolic heart sounds of a patient before and after coronary artery occlusion
was corrected by angioplasty. It may be readily observed that the high-frequency
components that were present before surgery (“preang.”) are not present after the
treatment (“postang.”). (The minimum-norm method of PSD estimation used by
Akay et al. [208] — labeled as “MINORM?” in the figure — is not discussed in this
book.)

7.11 REMARKS

We have studied in this chapter how mathematical models may be derived to represent
physiological processes that generate biomedical signals, and ferthermore, how the
models may be related to changes in signal characteristics due to functional and
pathological processes. The important point to note in the modeling approach is that
the models provide a small number of parameters that characterize the signal and/or
systemn of interest; the modeling approach is therefore useful in parametric analysis
of signals and systems. As the number of parameters derived is usually much smaller
than the number of signal samples, the modeling approach could also assist in data
compression and compact representation of signals and related information.

Pole-zero models could be used to view physiological systems as control systems,
Pathological states may be derived or simulated by modifying the parameters of the
related models. Models of signals and systems are also useful in the design and
control of prostheses.

A combination of mathematical medeling with electromechanical modeling can
allow the inclusion of physical parameters such as the diameter of a blood vessel,
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Figure 7.3% Diastolic heart sound spectra of (a, b} two normal subjects and (¢, d) two patients
with coronary artery disease. The method of estimating AR models identified in the figure as
“RLSL” will be described in Section 8.6.2; the gradient predictor method is not discussed in
this book. Reproduced with permission from A.M. Akay, L.L. Semmlow, W. Welkowitz, M.D.
Bauer, and ).B. Kostis, Detection of coronary occlusions using autoregressive modeling of
diastolic heart sounds, [EEE Transactions on Biomedical Engineering, 37(4):366-373, 1990,
©IEEE.
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Figure 740 Diastolic heart sound spectra before (preang.} and after angioplasty (postang.)
of a patient for whom coronary artery occlusion was comected. {The minimum-norm method
of PSD estimation used by Akay et al. {208] — labeled as “MINORM" in the figure — is not
discussed in this book.) Reproduced with permission from A.M. Akay, J.L. Semmlow, W.
Welkowitz, M.D. Bauer, and J.B. Kostis, Noninvasive detection of coronary stenoses before and
after angioplasty using eigenvector methods, JEEE Transactions on Biomedical Engineering,
37(11%:1095-1104, 1990. @IEEE.
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constriction due to plaque buildup, stiffness due to stenosis, and friction coefficient,
Although accurate estimation of such parameters for human subjects may not always
be possible, the models could lead to better understanding of the related biomedical
signals and systems.

7.12 STUDY QUESTIONS AND PROBLEMS

B

Consider the simple linear prediction model given by §(n) = ay(n — 1}. Define the
prediction error, and derive the optimal value for ¢ by minimizing the total squared
€ETor.

The autoregressive model coefficients of a signal are ag = 1,01 = 1,43 = 0.5, What
is the transfer function of the model? Draw the pole-zero diagram of the model. What
are the resonance frequencies of the system?

The autoregressive model coefficient vectors of a number of signals are made avail-
able 1o you. Propose two measures to compare the signals for (a) similarity, and (b)
dissimilarity.

In autoregressive modeling of signals, show why setting the derivative of the total
squared error with respect to any coefficient to zero will always lead to the minimum
error (and not the maximum).

What type of a filier can convert the autocorrelation matrix of a signal to a diagonal
matrix?

A biomedical signal is sampled at 500 Hz and subjected to AR modeting. The poles
of the model are determined to be at 0.4 £ 0.5 and =0.7 £ 70.6.

{a) Derive the transfer function of the model.

{b} Derive the difference equation in the time domain,

(c) What are the resonance frequencies of the system that is producing the signal?

A model is described by the relationship
y(n) = 2(n) + 0.52(n — 1) + 0.252(n — 2),

where x(n) is the input and y(n) is the output,

‘What is the type of this system among AR, MA, and ARMA systems?
What is the model order?

What is its transfer function?

Draw the pole-zero diagram of the sysiem.

Comment upon the stability of the system.

A model is described by the relationship
g(n) = —05y(n ~ 1} — y{n — 2) + z(n) + 0.52(n — 1) — 2(n - 2),

where z(n) is the inpul and y(n) is the outpu,

What is the type of this system among AR, MA, and ARMA systems?
What is the model order?

What is its transfer function?
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Draw the pole-zero diagram of the system,
Comment upon the stability of the system.

7.13 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the site
ftp:#/ftp.iece. org/uploads/press/rangayyan/

1.

The file safety.wav contains the speech signal for the word “safety” uttered by a male
speaker, sampled at B kH z (see the file safety.m). The signal has a significant amount
of background noise (as it was recorded in a norma! computer laboratory). Develop
procedures to segment the signal into voiced, unvoiced, and silence (background noise)
portions using short-time RMS, turns count, or ZC' R measures,

Apply the AR modeling procedure to each segment using the command /pc in MATLAB.
Compuie the AR-model PSD for each segment. Compare the model PSD with the
FFT-based PSD for each segment. What are the advantages and disadvantages of the
model-based PSD in the case of voiced and unvoiced sounds?

. Derive the poles of the models you obtained in the preceding problem. Express each

pole in terms of not only its z-plane coordinates but also its frequency and bandwidth,
Study the variations in the pole positions as the type of the sound varies from one
segment to the next over the deration of the signal.

. The files pecl.dat, pec33.dat, and pec32.dat give three-channel recordings of the PCG,

ECG, and carotid pulse signals (sampled at X, 040 Hz; you may read the signais using
the program in the file plotpec.m). The signals in pecl.dat and pec52.dat are normal;
the PCG signal in pecg33.dat has systolic murmur, and is of a patient suspected to have
pulmonary stenosis, ventricular septal defect, and pulmonary hypertension.

Segment each signal into its systolic and diastolic panis. Apply the AR modeling

procedure to each segment and derive the model PSD. Compare the result with the

corresponding PSDs obtained using Welch's procedure.

. Derive the poles of the models you obtained in the preceding problem, Express each

pole in terms of not only its z-plane coordinates but also its frequency and bandwidth,
Study the variations in the pole positions from the systolic pant to the diastolic part of
each signal. What are the major differences between the pole plots for the normal cases
and the case with murmur?

. The files ECG3, ECG4, ECGS, and ECG6 contain ECG signals sampled at the rate of

200 Hz (see the file ECGS.m). Apply the Pan-Tompkins method for QRS detection to
each signal. Create impulse sequences including a delta function at every QRS location
for the four signals. Create also the interval series for each signal as illustrated in
Figure 7.1. Compute the spectra corresponding to the two representations of cardiac
rhythm and study their relationship to the heart rate and its variability in each case.



Analysis of Nonstationary
Signals

A stationary (or homogeneous) signal is one that possesses the same statistical mea-
sures for all time, or at least over the duration of observation, We have seen in the
preceding chapters that most biomedical signals, being manifestations of dynamic
systems and patho-physiological processes, are nonstationary (or heterogeneous):
Figure 3.3 shows that the variance of the speech signal used as an example varies
with time; Figure 3.4 shows that the spectrum or frequency content of the speech
signal also varies considerably over its duration. Figures 6.11 and 6.12 show that the
spectrum of a heart sound signal or PCG varies from systole to diastole, and could
vary in between the two events as well.

When the characteristics of a signal being studied vary considerably over the
duration of interest, measures and transforms computed over the entire duration do
not carry useful information: they gloss over the dynamics of the signal. A single
PSD computed from a long EMG, PCG, VAG, or speech record is of no practical
value, The PSD does not provide information on time localization of the frequency
components of the signal. We addressed this concern in PCG signal analysis in
Section 6.4.5 by segmenting the PCG into its systolic and diastolic parts by using the
ECG and carotid pulse signals as timing references. But how would we be able to
handle the situation when murmurs are present in systole and diastole, and we need
to analyze the spectra of the murmurs without the contributions of S1 and $2?

Furthermore, the EEG signal changes its nature in terms of rhythms, waves,
transients, and spindles for which no independent references are available. In fact,
the EEG is a conglomeration of a number of mental and physiological processes
going on in the brain at any given instant of time. The VAG signal has nonstationary
characteristics related to the cartilage surfaces that come into contact depending upon
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the activity performed, and no other source of information can assist in identifying
time instants when the signal properties change. Indeed, a VAG signal contains no
specific events that may be identified as such, but is a concatenation of nonspecific
vibrations (with, perhaps, the exception of clicks). Wouid we able to extend the
application of the well-established signal analysis techniques that we have studied so
far to such nonstationary signals?

8.1 PROBLEM STATEMENT

Develop methods to study the dynamic characteristics of nonstationary biomedical
signals. Propose schemes to apply the well-established Fourier and autoregressive
modeling techniques to analyze and parameterize nonstationary signals.

In order to limit the scope of the present chapter, we shall consider the extension
of only Fourier spectral analysis and AR modeling to nonstationary signals. The
case-studies presented in the following section will provide the motivation for the
study from the perspective of a few representative biomedical signals. Approaches
to solving the stated problem will be presented in the sections to follow.

This chapter concentrates on segmentation-based analysis of nonstationary signals.
Topics such as the Kalman filter, time-frequency distributions, and wavelets are not
considered.

8.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

8.2.1 Heart sounds and murmurs

We noted in Section 6.4.5 that the spectral contents of S1 and S2 are different due
to the different states of contraction or relaxation of the ventricalar muscles and the
differences in their blood content during the cotresponding cardiac phases. In the
normal case, the QRS in the ECG signal and the dicrotic notch in the carotid pulse
signal may be used to split the PCG into S1 and S2, and separate PSDs may be
obtained for the signal parts as illustrated in Section 6.4.5. However, when a PCG
signal contains murmurs in systole and/or diastole and possibly valve opening snaps
(see Figure 6.12), it may be desirable to split the signal further.

Iwata et al. [206] applied AR modeling to PCG signals by breaking the signal into
fixed segments of 25 ms duration (see Section 7.9). While this approach may be
satisfactory, it raises questions on optimality. What should be the window duration?
Is it necessary to break the intervals between Si and S2 into multiple segments?
Would it not be more efficient to compute a single AR model for the entire durations
of each of 81, S2, systolic murmur, and diastolic murmur - that is, a total of only four
models? It is conceivable that each model would be more accurate as all available
signal samples would be used to estimate the required ACF if the signal were to be
segmented adaptively as mentioned above.
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8.2.2 FEG rhythms and waves

The scalp EEG represents a combination of the multifarious activities of many stnall
zones of the cortical surface beneath each electrode, The signal changes its character-
istics in retation to mental tasks, external stimuli, and physiological processes. As we
have noted in Section 1.2.5 and observed in Figure 1.21, a visual stimulus blocks the
alpha rhythm; slower waves becoine prominent as the subject goes to deeper stages
of sleep; and patients with epilepsy may exhibit sharp spikes and trains of spike-
and-wave complexes. Description of an EEG record, as outlined in Sections 1.2.5
and 4.2.4, requires the identification of several types of waves and rhythims, This
suggests that the signal may first have to be broken into segments, each possessing
certain properties that remain the same for the duration of the segment. Each segment
may then be described in terms of its characteristic features.

8.2.3 Articular cartliage damage and knee-joint vibrations

Movement of the knee joint consists of coupled translation and rotation. The configu-
ration of the patella is such that some portion of the articular susface is in contact with
the femur throughout knee flexion and to almost full extension (see Section 1.2.13
and Figure 1.31). Goodfellow et al. [209] demonstrated that initial patello-femoral
engagement occurs at approximately 20° of flexion involving both the medial and
lateral facets, Figure 8.1 shows the patellar contact areas at different joint angles.
As the knee is flexed, the pateilo-femoral contact area moves progressively upward,
involving both the medial and lateral facets. At 90° of fiexion, the band of contact
engages the upper pole of the patella. The odd facet does not articulate with the
lateral margin of the medial femoral condyle until about 120% — 1352 of knee flexion.

Atticular cartilage is composed of a solid matrix and synovial fluid {210}; ithas no
nerves, blood vessels, or lymphatics, and is nourished by the synovial fluid covering
its free surface. During articulation, friction between the bones is reduced as a result
of the lubrication provided by the viscous synovial fAluid [49, 52]. The material
properties of articular cartilage and cartilage thickness are variable not only from
joint to joini but also within the same joint. In case of abnormal cartilage alterations
in the matrix structure such as increased hydration, disruption of the collagen fibrillar
network and dis-aggregation or loss of proteoglycans occur. As the compositional
and biomechanical properties of abnormal articular cartilage continue to deteriorate,
substance loss eventually occurs. This may be focal or diffuse, restricted to superficial
fraying and fibrillation, or partial-thickness loss to full-thickness loss. In some cases,
focal swelling or blistering of the cartilage may be seen before there is fraying of the
articular surface [211)].

Chondromalacia patella (soft cartilage of the patella) is a condition in which
there is degeneration of patellar cartilage, often associated with anterior knee pain.
Exposed subchondral bone and surface fibrillation of the articular cartilage are evident
on the posterior patellar surface in chondrornalacia patella [212]. Chondromalacia
patella is usually graded in terms of the severity of the iesions [213, 214] as follows:

¢ Grade I: Softening, cracking, and blistering, but no joss of articular cartilage.
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Figure 8.1 Contact areas of the patella with the femur during patello-femoral articulation.
Adapted, with permission, from $. Krishnan, Adaptive Signal Processing Techniques for
Analysis of Knee Joint Vibroarthrographic Signals, Ph.D>. Thesis, University of Calgary, 1999,

o Grade II: Damage is moderate and there is some loss of cartilage.

o Grade {lI: Severe damage of fibrocartilage has occurred but bone is not ex-
posed.

« Grade IV: The cartilage is eroded and the subchondral bone is exposed.

Osteoarthritis is a degenerative joint disease that involves specific changes to
bone in addition to cartilage. In the late stages of osteoarthritis, there is full-thickness
articular cartilage degeneration and exposed bone. Other structural changes include
fibrous changes to the synovium, joint capsule thickening, and further alterations to
the bone such as osteophyte formation {215]. Higher-grade chondromalacia may be
categorized as ostecarthritis.

The menisci are subject to vertical compression, horizontal distraction, and rotary
and shearing forces of varying degrees in the course of normal activities {216).
Advance of the aging process in both articular cartilage and fibrocartilage causes
progressive liability to horizontal cleavage lesion [216).

The semi-invasive procedure of arthroscopy (fiber-optic inspection of joint sur-
faces, usually under general anesthesia) is often used for diagnosis of cartilage
pathotogy. Through an arthroscope, the surgeon can usually see the patello-femoral
joint, the femoral condyles, the tibial plateau (menisci), the anterior cruciate ligament,
and the medial and lateral synovial spaces. Arthroscopy has emerged as the “gold
standard” for relatively low-risk assessment of joint surfaces in order to determine
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the prognosis and treatment for a variety of conditions. Figure 8.2 shows the different
stages of chondromalacia patella as viewed during arthroscopy.

(d)
(c)

Figure 8.2 Arthroscopic views of the patello-femoral joint. (2) Normal cartilage surfaces.

(t) Chondromalacia Grade II at the patella. (c) Chondromalacia Grade IIT at the patella.

(d) Chondromalacia Grade IV at the patella and the femur; the bones are exposed. The under-

surface of patella is at the top and the femoral condyle is at the bottom. Figure courtesy: G.D.

Bell, Sport Medicine Centre, University of Calgary.

Abnormal structures and surfaces in the knee joint are more likely to generate
sound during extension and flexion movements than normal structures. Softened
articular cartilage in chondromalacia patella, and cracks, fissures, or thickened areas
in ostecarthritis almost certainly increase the friction between the articular surfaces,
and are therefore likely to increase the sounds emitted during normal joint move-
ment [217, 54]1. Injury to the menisci in the form of tearing causes irregularity in
shape and disruption to normal joint movement. and may produce sharp clicking
sounds during normal knee movement [218, 59, 54].

It is obvious from this discussion that the VAG signal is nonstationary. Different
aspects of the articulating surfaces come into contact at different joint angles; their
quality in terms of lubrication and functional integrity could vary from one position
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to another. Inspection of the VAG signals and their spectrograms illustrated in
Sections 3.6.3 and 3.10 reveals that the nature of a VAG signal changes significantly
over the duration of the signal. As no prior or independent information is availeble
about changes in the knee-joint structures that could lead to vibrations, adaptive
segmentation of the VAG signal is required before it may be analyzed, using the
methods we have studied so far in this book. Illustration of adaptive segmentation of
VAG signals will be provided in Sections 8.6.1 and 8.6.2.

8.3 TIME-VARIANT SYSTEMS

The linear system mode! represented by Equation 7.1 is a time-invariant system: the
coefficients ax and b; of the system do not change with time, and consequently, the
poles and zeros of the system stay fixed for all time. A nonstationary (or dynamic)
system will possess coefficients that do vary with time: we saw in Sections 3.6.2
and 3.6.3 that the coefficient {tap-weight) vectors of the adaptive LMS and RLS filters
are expressed as functions of time. (Note: The Wiener filter described in Section 3.5,
once optimized for a given set of signal and noise statistics, is a time-invariant filter.)
Since the coefficients of an LMS or RLS filter vary with time, so do the transfer
function and the frequency response of the filter. It follows that the impulse response
of such a system also varies with time.

Let us consider an ail-pole filter for the sake of simplicity; the filter characteristics
are determined by the positions of the poles to within a gain factor. If the poles are
expressed in terms of their polar coordinates, their angles correspond to (resonance)
frequencies and their radii are related to the associated bandwidths. We may therefore
characterize time-variant or nonstationary systems and signals by describing their
pole positions in the complex z-plane — or, equivalently, the related frequencies and
bandwidths — as functions of time. A description of the variation or the modulation
of the pole parameters over time can thus capture the nonstationary or dynamic
nature of a time-variant system or signal. Variations in the gain factor also lead to
nonstationarities in the signal produced by the system. Appel and v. Brandt [219, 220]
describe the simulation of different types of nonstationary behavior of signals and
systems.

In the general case of a nonstationary system that is an AR process, we may
modify Equation 7.17 to indicate that the model coefficients are functions of time:

P

j(n) =~ axln)y(n — k). (8.1)

k=1

Methods related to the Katman filter or the least-squares approach may be used
to analyze such a system [77, 221, 222, 223] (not considered in this book). Time-
varying AR and ARMA modeling techniques have been applied to analyze EEG [224],
EGG (38], and HRV [225] signals; the application to HRV signals wili be discussed
in Section £.9,
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8.3.1 Characterization of nonstationary signals and dynamic systems

The output of a time-variant or dynamic system will be a nonstationary signal. The
system may be characterized in terms of its time-variant model coefficients, transfer
function, or related parameters derived thercof. Various shori-time statistical mea-
sures computed over moving windows may be used to characterize a nonstationary
signal; the measures may also be used to test for stationarity, or lack thereof, of a
signal.

¢ Mean: The short-time mean represents the average or DC level of the signal
in the analysis window. Variation of the mean from one window to another is
usually an indication of the presence of a wandering base-line or low-frequency
artifact, as in the case of the ECG signal in Figure 3.6. Clearly, the signal in
Figure 3.6 is nonstationary in the mean. However, the mean is not an important
measure in most signals, and is typically blocked at the data-acquisition stage
via capacitive coupling and/or a highpass filter. Furthermore, since 2 DC level
carries no sound or vibration information, its removal is of no consequence in
the analysis of signals such as heart sounds, speech, VAG, and the VMG.

s Variance: Figure 3.3 illustrates the shori-time variance for a speech signal.
It is evident that the variance is high in regions of high signal variability
(swings or excursions) about the mean, as in the case of the vowels in the
signal. The variance is low in the regions related to the fricatives in the signal
where the amplitude swing is small, in spite of their high-frequency nature.
Since the mean of the signal is zero, the variance is equal to the MS value,
and represents the average power level in the corresponding signal windows.
Although variations in the power level of speech signals may be useful in
making voiced/ unvoiced/ silence decision, the parameter does not bear much
information, and provides a limited representation of the general statistical
variability of signal characteristics. Regardless of the interpretation of the
parameter, it is seen that the speech signal in Figure 3.3 is nonstationary in its
variance (and the related measures of SD, MS, and RMS). From the discussion
in Section 1.2.11, it is also clear that the vocal-tract system producing the
speech signal is a dynamic system with time-varying configuration and filtering
characteristics.

+ Measures of activity: We have studied several measures of activity that
indicate the “busy-ness” of the given signal, such as turning points, ZCR,
and turns count {in Chapters 3 and 5). The short-time count of wrning points
is plotted in Figure 3.1 for a speech signal: it is evident that the signal is more
active or busy in the periods related to the fricatives than those related to the
vowels (a trend that is the opposite of that in the short-time variance of the
same signal shown in Figure 3.3). The short-time tums count piot of the EMG
signal in Figure 5.8 indicates the rising level of complexity of the signal with
the level of breathing. Although tuming points, ZCR, and turns count are not
among the traditional statistical measures derived from PDFs, they characterize
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signal variability and complexity in different ways. Both the examples cited
above illustrate variation of the parameters measured over the duration of the
corresponding signals: the signals are therefore nonstationary in terms of the
number of turning points or the turns count.

¢ ACF: The ACF was defined in Section 3.1.1 in general as ¢z (1,81 + 7) =
E{x{t1)z(t1 + 7)]. In Section 3.1.2, one of the conditions for (wide-sense or
second-order) stationarity was defined as the ACF being independent of time,
that is, ¢.a(t1,81 + 7) = ¢z2(r). A nonstationary signal will not satisfy
this condition, and will have an ACF that varies with time. Since the ACF is
based on the expectation of pairs of signal samples separated by a certain time
difference or lag, it is a more general measure of signal variability than the
variance and related measures, Note that the ACF for zero lag is the MS value
of the signal.

One faces limitations in computing the ACF of short-time segments of a signal
to investigate (non)stationarity: the shorier the analysis window, the shorter
the maximum lag up to which the ACF may be estimated reliably. Regardless,
the short-time ACF may be used to track nonstationarities in a signal. If the
signal is the result of a dynamic AR system, the system parameters may be
derived from the ACF (see Section 7.5).

# PSD: The PSD and ACF of a signal are inter-related by the Fourier transform.
Therefore, a signal that is (non)stationary in its ACF is also (non)stationary in
its PSD. However, the PSD is easier to interpret than the ACF, as we have seen
in Chapter 6. The spectrogram of the speech signal in Figure 3.4 indicates
significant variations in the short-time PSD of the signal: the speech signal is
clearly nonstationary in its PSD (and ACF). The spectrograms of VAG signals
in Sections 3.6.3 and 3.10 illustrate the nonstationary nature of VAG signals.

» Higher-order statistics: A major limitation of signal analysis using the ACF
(or equivalently the PSD) is that the phase information is lost. The importance
of phase in signals is discussed by Oppenheim and Lim [226). Various condi-
tions under which a signal may be reconstructed from its magnitude spectrum
only or from its phase spectrum only are described by Hayes and Oppen-
heim [227] and Oppenheim and Lim {226]. Analysis based only upon the ACF
cannot be applied to signals that are of mixed phase (that is, not minimum
phase), that are the result of nonlinear systems, or that foliow a PDF other than

a Gaussian [228].
The general n**-order moment of a random signal x(t} at the instant ¢, is
defined as (228, 229, 77]

m:(tbtl +r,t1+ 19,..., 4 +Tu—1) = (8.2)

Ele(t1)x(t1 + n)z(tr + 12} - 2(ty + Ta)),

where 11, Ta2,. .., Tn—1 are various delays or lags. It is evident that the ACF is
a special case of the above with n = 2, that is, the ACF is the second-order
moment,
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A set of parameters known as cumulants may be related to the moments as
follows: The second-order and third-order cumulants are equal to the corre-
sponding moments., The fourth-order cumulant is related to the fourth-order
moment as [77, 228, 229]

c:(tl,h + 7,4 + T, +T) = m:(tl,tl + 71,1+ 2,0 4+ fs) (8.3)
— my(ts b+ 71) ma(ty + 2,8y + 73)
- mi(tl,tl +1’2) mﬁ(t; + 713, +1‘1)
- mﬁ(tl,tl + 1"3) m:(tl + 7.t + 1'2).

The Fourier transforms of the cumulants provide the corresponding higher-
order spectra or polyspectra (with as many frequency variables as the order
minus one). The Fourier transforms of the second-order, third-order, and
fourth-order cumulants are known as the power spectrum (PSD), bispectrum,
and trispectrum, respectively. A Gaussian process possesses only first-order
and second-order statistics: moments and spectra of order higher than two
are zero. Higher-order moments, cumulants, and spectra may be used to
characterize nonlinear, mixed-phase, and non-Gaussian signals [77, 228, 229].
Variations over time of such measures may be used to detect the related types
of nonstationarity.

¢ System parameters: When a time-varying model of the system producing the
signal is available in terms of its coefficients, such as ax(n) in Equation 8.1, we
may follow or track changes in the coefficients over time. Significant changes
in the model parameters indicate corresponding changes in the output signal,

8.4 FIXED SEGMENTATION

Given a nonstationary signal, the simplest approach to break it into quasi-stationary
segments would be to consider small windows of fixed duration. Given a signal z(i)
fori =0,1,2,..., N =1, we could consider a fixed segment duration of M samples,
with M << N, and break the signal into K parts as

ep(n)=z(n+(k-1}M), 0<n<M-1, 1<k<K. (8.4)

With the assumption that the signal does not change its characteristics to any signifi-
cant extent within the duration corresponding to M samples (or % ), each segment
may be considered to be quasi-stationary.

Note that the segmentation here is similar to that in the Bartlett and Welch proce-
dures described in Sections 6.4.2 and 6.4.3. However, we will not be averaging the
spectra over the segments now, but will be treating them as separate entities. The
signal processing techniques we have studied so far may then be applied to analyze
each segment separately,



8.4.1 The short-time Fourler transform

Once the given signal has been segmented into quasi-stationary parts zz(n) as above,
we may compute the Fourier spectrum for each segment as

M-1
Xu(w) = Z zx(n) exp(—jun). (8.5)

na=l

The array of spectra Xy(w) for k& = 1,2,..., K will describe the time-varying
spectral characteristics of the signal.

Segmentation of the given signal as above may be interpreted as the application
of a moving window to the signal. The k*® segment z4(n) may be expressed as
the multiplication of the signal 2(n) with 2 window function w(n) positioned at the
beginning of the segment as

zx(n) = 2(nwin — (k- 1)M}, 1<k LK, (8.6)

where

3.7

(n) = 1 ford<n<M-1
W =1 0 otherwise

Figure 8.3 (a) illustrates the PCG of a patient with systolic murmur and opening
snap of the mitral valve, with a imoving rectangular analysis window of duration
64 ms superimposed on the signal at three different instants of time, The duration of
each window is 64 samples, equal to 64 ms with f, = 1 kHz. The three windows
have been positioned approximately over the S1, systolic murmnur, and S2 events in
the signal. Figure 8.3 (b) shows the log PSDs of the signal segments extracted by the
three analysis windows. It is seen that the PSDs differ significantly, with the second
window displaying the largest amount of high-frequency power due to the murmaur.
The third window displays more medium-frequency content than the first. It is clear
that the PCG signal is nonstationary in the PSD.

In general, the window may be positioned at any time instant m, and the resulting
segment may be expressed as z{n)w(n — m). We need to state how the window is
moved or advanced from one segment to another; in the extreme situation, we may
advance the window one sample at a time, in which case adjacent windows would
have an overlap of (M — 1) samples. We may then compute the Fourier transform
of every segment as

M-1
X(m,w) = E z(n)w(n — m}exp{—jwn). (8.8)
n=0
In the case when both the time and frequency variables are continuous, we may write
the expression above in a more readily understandable form as

=]

X(r,w) =. / x(t)w(t — 7) exp{—jwt) dt. (8.9

—
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Figure 8.3 (a) PCG signal of a patient (female, 14 months) with systolic murmur and
opening snap {O5) of the mitral valve. Three short-time analysis windows are superimposed,
each one being a rectangular window of duration 64 mas. (b} Log PSDs of the three windowed
signal segments. Each FFT was computed with zero-padding to a total length 256 samples.
fo = 1 kHTz. See also Figwre 6.12.
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The spectrum is now expressed not only as a function of frequency w, but also as a
function of time 7. Although the limits of the integral have been stated as {—o0, 00),
the finite duration of the window placed at time 7 will perform segmentation of the
signal as desired.

The spectral representation of the signal as a function of time in Equations 8.8
and 8.9 is known as a time-frequency distribution or TFD [230, 231, 232, 233}. Since
the Fourier transform is applied, in the procedure above, to short windows of the
signal in time, the result is known as the short-time Fourier transform or STFT of
the signal. The method of analysis of a nonstationary signal in shont windows is, in
general, known as short-time analysis. The magnitude of the STFT (squared and/or
with the togarithmic operation if desired) is known as the spectrogram of the signal.

Figure 8.4 illustrates the spectrogram of the PCG signal of a patient with systolic
murmur and opening snap of the mitral valve: the signal and the window parameters
are the same as in Figure 8.3, but now the spectra are plotted for every window
position with a displacement of 32 ms. The refatively high-frequency nature of the
murmur as compared to S1 and S2 is clearly evident in the spectrogram.

We have previously encountered spectrograms of speech and VAG signals: refer
to Figure 3.4 and Sections 3.6.3 and 3.10. More examples of spectrograms will be
provided at the end of this section and later in this chapter.

8.4.2 Considerations in short-time analysis

Short-time analysis of signals could be computationally expensive. In the case of
the STFT, the Fourier transform has to be computed for each segment of the signal.
In practice, there shouvid be no need to compute the Fourier transform for every
possible window position, that is, for every m in Equation 8.8. We could advance the
analysis window by M samples, in which case adjacent windows will not overlap.
It is commeon practice to advance the analysis window by ’—{ samples, in which case
adjacent windows will overlap for % samples; some overlap is desirable in order to
maintain continuity in the STFT or TFD computed.

An important question arises regarding the duration of the analysis window M to
be used. The window should be short enough to ensure that the segment is stationary,
but long enough to permit meaningful analysis. We have seen in Section 6.3 that a
short window possesses a wide main lobe in its frequency response. Since the given
signal is multiplied in the time domain with the analysis window, the spectrum of
the signal gets convolved with the spectral response of the window in the frequency
domain. Convolution in the frequency domain with a function having a large main
lobe leads to significant loss of spectral resolution.

The limitation imposed by the use of a window is related to the uncertainty
principle or time-bandwidth product, expressed as {231]

Al x Aw

v
LT

) 3.10)
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Figure 8.4 Spectrogram of the PCG signal of a patient (female, 14 months) with systolic
murmur and opening snap of the mitral valve, computed with a moving shori-time analysis
window of duration 64 samples (84 ms with f, = 1 kHz), with the window advance interval
being 32 samples. Each FFT was computed with zero-padding to a total length 256 samples.
fe =1 kHz See also Figures 6.12 and 8.3,
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where .
(a8)? = f_ - ) l=(t)]* at, (8.11)
£=/:: ¢l2(t)|? dt, (8.12)
o = [~ =0 1X(@) 3.13)
@=f_m w | X (w)? dw, (8.14)

and At and Aw represent the time extent (duration) and frequency extent (bandwidth)
of the signal 2(¢) and its Fourier transform X{w), respectively. The gist of the
limitation stated above is that a signal and its Fourier transform cannot be made
arbitrarily narrow. The effect of this limitation on the STFT and TFD-based analysis
is that we cannot simultaneously obtain arbitrarily high resolution along both the
time and frequency axes.

At the extremes, a continuous-time signat z(t) provides infinite time resolution
but no frequency resolution: the value of the signal is known at every instant of
time ¢, but nothing is known about the frequency content of the signal. Conversely,
the PSD 8,.(f) provides infinite frequency resolution but no time resolution: the
overall strength of sinusoids at every frequency f present in the signal over all time
t is known, but nothing is known about where exactly in time a given frequency
component begins or ends. (The phase spectrum: contains this information but cannot
be readily interpreted and used for the purposes of this discussion.)

In the case of sampled signals and spectra, the sampling intervals A in the time
domain and A £ in the frequency domain will be finite, and limited by Heisenberg's
inequality as stated above. Increasing the time resolution of the STFT by making
the analysis window short in duration will compromise frequency resolution; on the
other hand, increasing the window duration will lead to a loss in time resolution.

In general, the window function w(n) included in Equation 8.8 need not be a
rectangle: any of the window functions listed in Section 6.4.3 may be used. Once
a window is chosen, the joint time-frequency (TF) resolution is the same over the
entire TF plane.

The STFT expression in Equation 8.8 indicated the placement of a causal analysis
window beginning at the time instant of reference m in the argument of the STFT.
It is also common practice to use a symmetrical noncausal window defined for
—% <n< %’ in which case the reference point of the analysis window would be
the center of the window,

Hlustration of application: Spectrograms of the speech signal in Figure 1.29
with different window parameters are provided in Figures 8.5 and 8.6, The spectro-
grams are shown here as gray-scale images, with the darkness at each point being
proportional to the log PSD for the corresponding temporal analysis window position
and frequency coordinate. It is evident that increasing the length of the analysis
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window provides better frequency resolution (the definition or clarity of the fre-
quency components) while at the same time reducing the temporal resolution (that is,
causing smearing in the temporal dimension). Decreasing the window length causes
the reverse effects. The spectrogram in Figure 8.5 (b) with the analysis window
duration being 16 ms clearly illustrates the high-frequency (broad-band) nature of
the fricatives; the transient and broad-band nature of the plosive /T/ is also clearly
shown. The same features are not clearly depicted by the spectrogram in Figure 8.6
(b) where the analysis window is fairly long (128 ma); however, the formant struc-
ture of the voiced-speech components (the vowels) is clearly depicted. The formant
structure of the voiced-speech components is not clearly visible in the spectrogram
in Figure 8.5 (b).

8.5 ADAPTIVE SEGMENTATION

One of the limitations of short-time analysis lies with the use of a fixed window dura-
tion. A signal may remain stationary for a certain duration of time much longer than
the window duration chosen, and yet the signal would be broken into many segments
over such a duration. Conversely, a signal may change its characteristics within the
duration of the fixed window: short-time analysis cannot guarantee stationarity of the
signal over even the relatively short duration of the analysis window used. It would
be desirable to adapt the analysis window to changes in the given signal, allowing
the window to be as long as possible while the signal remains stationary, and to start
a new window at the exact instant when the signal or the related system changes its
characteristics.

Problem: Propose methods to break a nonstationary signal into quasi-stationary
segments of variable duration,

Solution: We saw in Section 7.5 that a signal may be represented or modeled as a
linear combination of a small number of past values of the signal, subject to a small
error of prediction. It then follows that if a signal were to change its behavior, it
would no longer be predictable from its preceding samples as they would correspond
10 the previous state of the time-variant system generating the nonstationary signal.
Therefore, we could expect a large jump in the prediction error at instants of time
when the signal changes in its characteristics. Furthermote, the AR model parameters
represent the system generating the signal, and provide the poles of the system. If
the system were to change in terms of the locations of its poles, the same model
would no longer hold: a new model would have to be initiated at such instants of
change. This suggests that we could estimate AR models on a short-time basis, and
monitor the model parameters from segment to segment: a significant change in the
model parameters would indicate a point of change in the signal. (We have seen in
Section 7.9 how a similar approach was used by Iwata et al. [207] to detect S1 and
82 in PCGs.) Adjacent segments that have the same or similar model parameters
could be concatenated to form longer segments. As the AR model provides several
parameters and may be interpreted in several ways (see Section 7.5.2), tracking the
behavior of the mode] over a moving analysis window may be accomplished in many
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Figure 8.5 (a) Time-domain speech signal of the word “safety” uttered by a male speaker.
(The signal is also illustrated in Figures 1.29, 3.1, and 3.3.) (b} Spectrogram (log PSD) of the
signal computed with a moving short-time analysis window of duration 16 ms (128 samples
with f, = 8 kH z), with the window advance interval being 8 ma.
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(b)

Figure 8.6 Spectrograms (log PSD) of the speech signal in Figure 8.5 (a) with a moving
window of duration 64 ma (512 samples with f, = 8 kHz), with the window advance
interval being 32 ma. (b) with a moving window of duration 128 ms (1024 samples), with
the window advance interval being 64 mas.
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ways, The following subsections provide the details of a few approaches for adaptive
segmentation based upon the notions stated above.

8.5.1 Spectral error measure

Bodenstein and Praetorius [98, 2341 used the ali-pole LP or AR model (see Sec-
tion 7.5) for adaptive segmentation of EEG signals into quasi-stationary segmeats
and also for further feature extraction. They made the following observations about
the application of AR modeling to EEG signals:

¢ Time domain: The present value of the prediction error indicates the instanta-
necus degree of “unexpectedness” in the signal.

s Autocorrelation domain: The prediction error is decorrelated.

¢ Spectral domain: The prediction error being white noise, the AR model yields
an all-pole representation of the signal spectrum, which is particularly suitable
for the modeling of resonance.

These properties are useful for
¢ detection and elimination of transients;
¢ segmentation of the EEG into quasi-stationary segments; and
¢ feature extraction and pattern recognition (diagnosis).

Ferber [235) provides a description of nonstationarities in the EEG and suggests
a few approaches to treat the same.

Analysis of spectral change: Let the PSD of the given nonstationary signal
be §(0,w) at zero time, and S(¢,w} at time ¢, The spectral error of S(t,w) with
respect to §(0,w) may be taken to be dependent upon the difference between the
corresponding log PSDs, that is, to be proportional to log[S(¢, w)] — 1og[$(0, )], or
equivalently, to be proportional to 5 ":’, . Consider the state when an AR model has
been adapted to the signal spactrum $(0, w) at zero time, If we pass the signal at time
¢ through the AR model, the prediction error will have an instantaneous spectrum
given by
S(t,w)
5(0,w)’

which is similar to the spectral ratio in Equation 7.50. Thus the problem of comparing
two arbitrary PSDs of a nonstationary signal at two different instants of time may
now be expressed as testing S.(w) for deviation from a uniform PSD.

Let ag(k), k = 1,2,..., P, represent the reference AR model, When the current
signal y(n) is passed through the filter represented by the AR model, we obtain the
prediction error

Se(w) = (8.15)

P
e(n) =Y aalk)y(n—k). (8.16)

k=l
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The error indicates the deviation of the current signal from the previously computed
model. Consider the integral

s =f [1 = Se(w))? dw, (8.17)

where S.(w) is the PSD of the prediction error. Ideally, when the AR model has been
optimized for the signal on hand, the prediction error is expected to have a uniform
PSD. However, if the signal is nonstationary, some changes would have occurred in
the spectral characteristics of the signal, which would be refiected in the PSD of the
ervor, If ¢.(k) is the ACF corresponding to S.(w), the latter is given by the Fourier
transform of the former. However, since both functions are real and even, we have

Se(w) = ¢e(0) + 2 i $e(k) cos(2mwk). (8.18)
h=1

Then, )
£= fm [1 — ¢.{0) — ZE (k) cos(2rwk)| dw. (8.19)
Biiad k=1

Due to the orthonormality of the trigonometric functions, we get
e=[1-¢.0] +2) ¢2(k). (8.20)
k=1

In practice, the summation may be performed up to some lag, say M. Bodenstein
and Praetorius [98] recommended normalization of the error measure by division by
$2(0), leading to the spectral error measure (SEM )

2
STy

set= [ -1] 2[4

Here, the first term represents the change in the total power of the prediction error; the
second term depends upon the change in spectral shape only. Note that the prediction
error is expected to have a uniform (flat) PSD as long as the signal remains stationary
with respect to the AR model designed. The SEM was shown to vary significantly in
response to changes in the spectral characteristics of EEG signals, and to be useful in
breaking the signals into quasi-stationary parts. Figure 8.7 shows the general scheme
of EEG segmentation by using the SEM,

Algorithm for adaptive segmentation [98]:

Let » = O represent the starting point of analysis where the first reference or fixed
analysis window is placed for each adaptive segment, as in Figure 8.7 (a). (N + P)
samples of the signal y(n} should be available prior to the arbitrarily designated
origin atn = 0, where (2N + 1) is the size of the analysis window and P is the order
of the AR model to be used.
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Figure8.7 Adaptive segmentation of EEG signals via use of SEM. (a} Original EEG signal.
The rectangular window at the beginning of each adaptive segment indicates the signal window
te which the AR model has been optimized. (b) Prediction error. The initial ACF of the error
is computed over the fixed window; the ronning ACF of the etror is computed over the moving
window. (c) Segmentation threshold. (d) SEM. The vertical lines represent the segmentation
boundaries. Reproduced with permission from G. Bodenstein and H.M. Praetorius, Feature
extraction from the electroencephalogram by adaptive segmentation, Proceedings of the IEEE,
65(5):642-652, 1977. ®IEEE.

1,

2.
3

Using the signal samples y{—N) to y(N), compute the signal ACF up to lag
P.

Derive the corresponding AR model of order P.

Using the signal values y{—N — P} to y(n + N), compute the prediction error
e(—N) to e(n + N}, and compute the running short-time ACF ¢.(n, m) of
the prediction error as

N-m
Pe(n,m) = E—N-l-l-_l ng e(n+k)e(n+k+m). {8.22)

Note that the ACF now has two indices: the ficst index n to indicate the position
of the short-time analysis window, and the second index m o indicate the lag
for which the ACF is computed.

Calcuiate ¢.{0,m) for m = 0,1,..., M. This represents the fixed window at
the beginning of each adaptive segment in Figure 8.7 (a).

Perform the following three steps for each data point:

. Compute ¢.(n, m) for the moving window [see Figure 8.7 (b)] by the recussive

relationship

pe(n,m) = ¢en-1,m)+e(n+Nle(ln+N-m) (823)
— e(fn—N-1e(rn—-N-1-m).
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This represents the moving window in Figure 8.7 (b).

6. Compute the SEM at time n as

2 M 2
s (323 ' oF (508
L] ¥ k=1 L3 L]

where ¢, (0, 0) accounts for the fact that the signal may have an arbitrary power
level.

7. Testif SEM(n) > Thy, where Thy is a threshold.
If the condition is not satisfied, increase n by 1 and return to Step 5.

If the condition is satisfied, a segment boundary has been detected at time n,
as indicated by the vertical lines in Figure 8.7. Reset the procedure by the
following step:

8. Shift the time axis by substituting (n + k) with (k — N') and start the procedure
again with Step 1.

In the investigations of Bodenstein and Praetorius [98), S EM demonstrated sharp
jumps as transients of duration less than 100 ms entered and left the moving analysis
window of duration 2 s (2N 4+ 1 = 101 samples with f, = 50 Hz). Such jumps
could lead to inappropriate segmentation, especially with burst-suppression type EEG
episodes as illusirated in Figure 8.8. To overcome this problem, it was suggested that
the prediction error e¢(n) be limited (clipped) by a threshold Thy as

— ( if le(n}| < Th
eln) = { :gin‘%e(n)] Thy if [e(:)| > Th: ' (8.25)

The threshold Thy is shown by the dashed lines in Figure 8.8 (c). The SEM
computed from the clipped e{n) is shown in Figure 8.8 (d), which, when checked
against the original threshold Th;, will yield the correct segmentation boundary.
The signal reconstructed from the clipped prediction error is shown in Figure 8.8 (e),
which shows that the clipping procedure has suppressed the effect of the wansient
without affecting the rest of the signal.

In spite of the clipping procedute as in Equation 8.25, it was indicated by Boden-
stein and Praetorius [98] that the procedure was too sensitive and caused false alarms.
To further limit the effects of random fluctuations in the prediction error, a smoothed
version e,(n) of the squared prediction error was computed as

es(n) = €2 (n — 1) + 26*(n) + ®(n + 1) {8.26)

for those samples of e(n) that satisfied the condition |e{n)| > Th,y. Another threshold
Ths was applied to e,(n}, and the triplet {y(n — 1}, y(n), y(n + 1)} was considered
to be a part of a transient only if e,(n) > Ths. The procedure of Bodenstein and
Praetorius combines adaptive segmentation of EEG signals with transient detection
as the two tasks are interrelated.
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Figure 8.8 Elimination of transients by clipping the prediction error. (a) Original EEG signal
of the burst-suppression type. The sharp wave marked by the ammow 1 is followed by the onset
of a burst marked by the arrow 2. (b) S EM showing sudden jumps at points indicated by the
arrows 3 and 4 as the shatp wave enters and leaves the analysis window. (c) Clipping of the
prediction error with threshold Tha. (d) S EM after clipping the prediction error. The dashed
line tepresents the threshold Thy. (e) Signal reconstructed from the clipped prediction error.
Reproduced with permission from G. Bodenstein and H.M. Praetorius, Feature extraction from
the electroencephalogram by adaptive segmentation, Proceedings of the IEEE, 65(5):642-652,
1977, ©IEEE.
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Illustration of application: Figure 8.9 shows the EEG signal of a child in sleep
stage I, superimposed with 14 Hz spindles. The SEM and its components are also
shown in the figure. The vertical lines indicate the segment boundaries detected.
Bodenstein et al. [236] and Creutzfeldt et al. [237] describe further extension of the
approach to computerized pattern classification of EEG signals including clustering
of similar segments and labeling of the types of activity found in an EEG record.

The SEM method was applied for adaptive segmemation of VAG signals by
Tavathia et al. [55]. It was indicated that each segment could be characterized by
the frequency of the most-dominant pole obtained via AR modeling and the spectral
power ratio Egg.120 as per Equation 6.48; however, no classification experiments were
performed. More examples of application of the SEM technique will be presented in
Sections 8.5.4 and 8.7.
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Figure 8.9 Use of the spectral error measure SEM to segment an EEG signal. {a) Original
EEG signal of a child in sleep stage I with superimposed 14 Hz spindles. (b) Segmentation
threshold. (c) SEM. (d) Deviation in prediction error power. (e} Deviation in prediction
error spectral shape, The vertical lines represent the segmentation boundaries. Reproduced
with permission from G. Bodenstein and H.M. Praetorius, Feature extraction from the elec-
troencephalogram by adaptive segmentation, Proceedings of the IEEE, 65(5).:642-652, 1977.
©IEEE.

8.5.2 ACF distance

Michael and Houchin [238] proposed a method comparable to that of Bodenstein
and Practorius (98], but based upon a simpler scheme using the ACF. It should be
noted that the AR model coefficients are indeed derived from the ACF, and that the
spectra used to compute SEM are related to the corresponding ACFs by the Fourier
transform. However, direct use of the ACF removes the assumption made in AR
modeling that the signal is the result of an AR process.

In the method of Michael and Houchin, the ACF is treated as a statistical measure
of the given signal, and significant variations in the ACF are used to detect nonstation-
arity. A reference window is extracted at the beginning of each scan, and the given
signal (EEG) is observed through a moving window. The duration of the window has



414 ANALYSIS OF NONSTATIONARY SIGNALS

to be chosen such that it is shorter than the shortest expected quasi-stationary segment
of the given signal, but long enough to characterize the jowest frequency present. If
the difference between the signal’s statistics (ACF) in the moving window and the
reference window is significant, a segment boundary is drawn, and the procedure is
restarted,

Let ¢r(k) be the ACF of the reference window at the beginning of a new segmen-
tation step, where k is the lag or delay. Let ¢p(n, k) be the ACF of the test window
positioned at time instant n. Given that the ACF for zero lag is the power of the
signal, Michae! and Houchin computed a normalized power distance dp{n) between
the ACFs as (see also Appel and v, Brandt {220])

|vVér(n,0) — +/ér(0)|

dp(n) = — . (8.27)
P in (/820 om0
A spectral distance dp(n) was computed using the ACF coefficients only up to lag g
as
g -
dF(ﬂ) — Z:k:l |¢T(nl k) ¢R(k)l (823)

0.5+ 27_, min{\/¢r(n,0), /or(0)}

The lag limit ¢ was set as the lower value of the lags at which the ACFs changed
from positive to negative values for the first time. The net ACF distance d{n) was

then computed as
dp(n) + dr(n)
The Thr '’

where Thp and Thy are thresholds. The condition d(n) > 1 was considered to
represent a significant change in the ACF, and used to mark a segment boundary.

Due to the use of a moving window of finite size, the true boundary or point
of change in the signal characteristics will lie within the last test window before
a segment boundary is triggered. Michael and Houchin used a linear interpolation
procedure based upon the steepness of the ACF distance measure to correct for such a
displacement. Barlow et al. [239] provide illustrations of application of the method to
clinical EEGs. Their work includes clustering of similar segments based upon mean
amplitude and mean frequency measures, “dendrograms” to illustrate the clustering of
segments, as well as labeling of the various states found in an EEG record. INustration
of application of the ACF method will be provided in Section 8.5.4.

d(n) = (8:29)

8.5.3 The generalized likelihood ratio

The generalized likelihood ratio (GLR) method, proposed by Appel and v. Brandt
[2191, uses a reference window that is continuously grown as long as no new boundary
is marked. The test window is a sliding window of constant duration as in the case
of the SEM and ACF methods. Figure 8.10 illustrates the windows used. The
advantage of the growing reference window is that it contains the maximum amount
of information available from the beginning of the new segment to the current instant.
Three different data sets are defined: the growing reference window, the sliding test
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window, and a pooled window formed by concatenating the two. Distance measures
are then derived using AR model prediction errors computed for the three data sets,

growing slicing
reference test
window wirdow .
1 m n
podlad wirkiow —_————

Figure 8,10 The growing reference window, the sliding test window, and the pooled window
used in the GLR method for adaptive segmentation,

Let (m : n) represent the prediction error energy (TSE ¢ as in Equation 7.19)
within an arbitrary data set or window with boundaries m and n. The maximum log
likelihood measure H{m : n} for the window is defined as

R e(m:n)

Hm:n)=(n m+1)ln[—-——-~—~———(n_m+1):|. (8.30)
Three measures are computed for the three data sets described above as H(1: m—~1)
for the growing reference window, H{m : n) for the test window, and H(1 : n)
for the composite or pooled window, Here, the reference window is denoted as
commencing from the time instant or sample 1, m is the last sample of the growing
reference window, and the current test window spans the duration from m to the
current time instant n (see Figure 8.10). The GLR distance measure is defined as

dn)=H(1:n)—[H(1:m —1)+ H{m:n)). 8.31)

Here, the first quantity represents the TSE if the test window is added to the growing
reference window; the second quantity represents the TSE of the reference window
grown so far; and the third quantity represents the TSE in modeling the test window
itself. The measure d(n) answers the question: “How much is the increase in the
TSE if we add the test window to the growing reference window"?

Appel and v. Brandt [219] and Cohen [173] provide more details on the GLR.
The GLR distance is a measure of the statistical similarity of the reference and test
data sequences, with the assumption that their AR model coefficients have a normal
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(Gaussian) distribution. The GLR distance is also a measure of the loss of information
caused if no segment boundary is drawn at the position of the test window, that is, if
it is assumed that the null hypothesis that the two sequences are similar is true.

Appel and v, Brandt [219] discuss issues related to the choice of the parameters
invotved in the GLR method, including the AR model order, the test window length,
and the threshold, on the GLR distance measure. The GLR method was also used by
Willsky and Sones [240] to detect abrupt changes (sporadic anomalies and failures)
in the variables of stochastic linear systems, and by Basseville and Benveniste [241]
for segmentation of nonstationary signals (see also Cohen [173]). [llustration of
application of the GLR method wil be provided in Section 8.5.4.

8.5.4 Comparative analysis of the ACF, SEM, and GLR methbds

Appel and v. Brandt [220] performed a comparative analysis of the performance of
the ACF, SEM, and GLR methods of adaptive segmentation using synthesized signals
as well as EEG signals, A simple two-pole system was used as the basis to simulate
nonstationary signals. The gain, pole radius, and pole angle were individually varied
back and forth between two sets of values. Several outputs of the dynamic system
were computed with random signals (Gaussian-distributed white noise) as input. The
signals were processed by the ACF, SEM, and GLR methods for adaptive segmenta-
tion. The variability of the segment boundaries detected for various realizations of the
nonstationary (random) output signals for the same sequences of system parameters
was analyzed.

Figure 8.11 shows the results related to variations in the angles of the poles, that s,
in the rescnance frequency of the system. The angle of the pole in the upper-half of the
z-plane was changed from 20° to 40° and back at samples 200 and 400; the conjugate
pole was also varied accordingly. The same changes were repeated at samples 700
and 800. The upper panel in the figure shows the pole positions and the related
PSDs. The middle panel illustrates one sample of the 200 test signals generated: the
higher-frequency characteristics of the signal related to the shifted pole positioned
at 40° is evident over the intervals 200 — 400 and 700 — 800 samples. The lower
panet illustrates the variability in the detected segment indices (dotted curve) and the
estimated segment boundary positions (solid curves) for the three methods over 200
realizations of the test signals. (The true segment indices and boundaries are 1 : 200,
2 : 400, 3 : 700, and 4 : 800; ideally, the curves should exhibit steps at the points
of change.) It is evident that the GLR method has provided the most consistent and
accurate segmentation results, although at the price of increased computational load.
The SEM method has petformed better than the ACF method, the latter showing the
poorest results,

Figure 8.12 shows the results related to variations in the distance of the poles from
the origin, that is, in the bandwidth of the resonance frequency of the system. The
distance of the poles from the origin was changed from 0.7 to 0.9 and back at samples
200 and 400. The same changes were repeated at samples 700 and 800. The PSDs
display the increased prominence of the spectral peak when the poles are pushed
toward the unit circle. The ACF method has not performed well in recognizing the
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Figure 8,11 Comparative analysis of the ACF, SEM, and GLR methods for adaptive seg-
mentation with the pole angle varied. Upper panel: pole positions and the related PSDs. Nore:
Norm. Frequency is normalized frequency such that the maximum frequency present in the
sampled signal is unity. Middle panel: sample test signal; TS = time series. Lower panel:
variability in the detected segment indices (dotted curve) and the estimated segment boundary
positions (solid curves} for the three methods over 200 realizations of the test signals. See the
text for more details. Reproduced with permission from U. Appel and A. v. Brandt, A com-
parative analysis of three sequential time series segmentation algorithwms, Signal Processing,
6:45-60, 1984, ©Elsevier Science Publishers B.V. (North Holland).
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nonstationarities of this type in the test signals. The GLR method has performed
better than the ACF method in segmentation.
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Figure 8.12 Comparative analysis of the ACF, SEM, and GLR methods for adaptive seg-
mentation with the pole radius varied. Upper panel: pole positions and the related PSDs.
Note; Norm. Frequency is normalized frequency such that the maximum frequency present in
the sampled signal is vnity. Middie panel: sample test signal; TS = time series. Lower panel;
variability in the detected segment indices (dotted curve) and the estimated segment boundary
positions ¢solid curves) for the three methods over 200 realizations of the test signals. See the
text for more details. Reproduced with permission from U. Appel and A. v. Brandt, A com-
parative analysis of three sequential time series segmentation algorithms, Signal Processing,
6:45-60, 1984. ©Elsevier Science Publishers B.V. (North Holland).

Figure 8.13 shows the results of application of the three methods to an EEG
signal. Although the exact locations where the signal changes its characteristics are
not known for the EEG signal, the boundaries indicated by the GLR method appear
to be the most accurate, It may be desirable in real-life applications to etr on the
side of superfluous segmentation; a subsequent clustering step could merge adjacent
segments with similar model parameters.
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Figure 8.13 Comparative analysis of the ACF, SEM, and GLR methods for adaptive seg-
mentation of an EEG signal. Reproduced with permission from U. Appel and A. v. Brandt, A
comparative analysis of three sequential time seties segmentation algorithms, Signal Process-
ing, 6:45-60, 1984, ©EIlsevier Science Publishers B.V. (North Holland).

8.6 USE OF ADAPTIVE FILTERS FOR SEGMENTATION

We saw in Sections 3.6.2 and 3.6.3 that the coefficient (tap-weight) vectors of the
adaptive LMS and RLS filters are expressed as functions of time. The filters adapt to
changes in the statistics of the primary and reference signals, Couid we, therefore,
use the tap-weight vector w(n} to detect nonstationarities in a signal?

Problem: Investigare the potential use of the RLS adaptive filter for adaptive
segmentation of nonstationary signals,

Solution: When we have only one signal to work with — the signal that is to be
segmented — the question arises as to how we may provide two inputs, namely, the
primary and reference signals, to the adaptive filter. If we assume that the signal to
be segmented (applied at the primary input) was generated by an AR system, then
we may provide the same signal with a delay as the reference input to the adaptive
filter. The delay is to be set such that the reference input at a given instant of time is
uitcorrelated with the primary tnput; the delay may also be set on the basis of the order
of the filter. (It is also possible to apply white noise at the reference input.) In essence,
the adaptive filter then acts the role of an adaptive AR model. The filter tap-weight
vector is continvally adapted to changes in the statistics (ACF) of the input signal. The
output represents the prediction error. Significant changes in the tap-weight vector or
the prediction error may be used to mark points of prominent nonstationarities in the
signal. Figure 8.14 shows a signal-flow diagram of the adaptive filter as described
above; the filter structure is only slightly different from that in Figure 3.51.
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Figure 8,14 Adaptive RLS filter for segmentation of nonstationary signals.

8.6.1 Monitoring the RLS fiiter

The RLS filter as in Figure 8.14 attempts (o predict the current signal sample from
the available knowledge of the previous samples stored in the filter's memory units.
If a large change occurs in the signal, the prediction error exhibits a correspondingly
large value. In response, the adaptive filter’s tap-weight vector is modified by the
RLS algorithm,

Moussavi et al. [56] applied the RLS filter for segmentation of VAG signals, The
order of the filter was set to be 5 in order to be low enough to detect transient changes
and also to provide fast convergence. The forgetting factor was defined as A = 0.98
so that the filter may be assumed to operate in an almost-stationary situation. The
delay between the input and the reference input was set to be 7 samples (which
corresponds t0 3.5 ms with f, = 2 kHz),

The adaptive segmentation algorithim of Moussavi et al. is as follows:

1. Initialize the RLS algorithm.

2. Find the squared Euclidean distance between the current tap-weight vector
w(n) and the preceding vector win — 1) as

An) = jw(n) — win - 1)f?. (8.32)
3. After computing A(n) for all samples of the signal available (in off-line pro-

cessing), compite the standard deviation of the A(n) values. Define a threshold
as three times the standard deviation,
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4, Label all samples n for which A(n) exceeds the threshold as primary segment
boundaries.

5. Compute the primary segment lengths (durations) as the differences between
successive primary segment boundaries. Reject all primary segment bound-
aries that result in segment duration less than a preset minimum (defined in
the work of Moussavi et al, [56] as 120 samples or 60 ma, corresponding to a
knee-joint angle range of approximately 4°).

6. The remaining boundary points are the final segment boundaries.

The main advantage of the RLS method is that there are no explicit reference and
test windows as in the case of the ACF, SEM, and GLR methods. The RLS method
computes a new filter tap-weight vector at each sample of the incoming signal. The
method was foand to perform well in the detection of trend-wise or gradual changes
as well as sudden variations in VAG signals.

INustration of application: Figures 8.15 and 8.16 illustrate the segmentation of
the VAG signals of a normal subject and a patient with arthroscopically confirmed
cartilage pathology, respectively. The figures also illustrate the spectrograms of
the two signals. While the segmentation of the abnormal signal in Figure 8.16
may appear to be superfluous at first sight, close inspection of the corresponding
spectrogram indicates that the speciral characteristics of the signal do indeed change
within short intervals. It is evident that the RLS method has detected the different
types of nonstationarity present in the signals. Moussavi et al. [56] tested the method
with 46 VAG signals and observed that the segmentation boundaries agreed well with
the nature of the joint sounds heard via auscultation with a stethoscope as well as
with the spectral changes observed in the spectrograms of the signals.

8.6.2 The RLS lattice filter

In order to apply the RLS method for adaptive segmentation in a nonstationary
environment, it is necessary to solve the least-squares problem recursively and rapidly.
The recursive least-squares lattice (RLSL) algorithm is well suited for such purposes.
Since the RLSL method uses a lattice filter, and is based upon forward and backward
prediction and time-varying reflection coefficients, it is necessary to define some of
the related procedures.

Forward and backward prediction: Let us rewrite Equation 7.17 related to LP
or AR modeling as

M
§(n) = =" amr y(n - k), (8.33)
k=1

with the inclusion of the order of the model M as a subscript for the model coefficients
ax. In this procedure, M past samples of the signal y(n— 1), y(n —2),...,y(n - M)
are used in a linear combination to predict the current sample y{n) in the forward
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Figure 8.15 (a) Segmentation of the VAG signal of a normal subject using the RLS method.
A click heard in auscultation of the knee joint is labeled. (b) Specirogram (STFT) of the
signal. Reproduced with permission from Z.M.K. Moussavi, R.M. Rangayyan, G.D. Bell,
C.B. Frank, K.O. Ladly, and Y.T. Zhang, Screening of vibroarthrographic signals via adaptive
segmentation and linear prediction modeling, IEEE Transactions on Biomedical Engineering,
43(1):15-23, 1996. (DHEEE,
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Figure 8.16 () Segmentation of the VAG signal of a subject with cartilage pathology using
the RLS method. Clicking and grinding sounds heard during auscultation of the knee joint
are labeled. (b) Spectrogram (STFT) of the signal. Reproduced with permission from ZM.K.
Moussavi, R M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, and Y.T. Zhang, Screening
of vibroarthrographic signals via adaptive segmentation and linear prediction modeling, JEEE
Transactions on Biomedical Engineering, 43(1):15-23, 1996. (OIEEE.
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direction. The forward prediction error is

M
em,s(n) = y(n) —§(n) = 3 amu yin ~ k), (8.34)
k=0

with aps,0 = 1. This equation is a restatement of Equation 7.18 with the inclusion of
the order of the model M as a subscript for the error e as well as the subscript f to
indicate that the prediction is being performed in the forward direction,

The term backward prediction refers to the estimation of y(n — M) from the
samples y(n),y(n—1),...,3(n — M + 1) as

M-1

Fn—-M)==Y_ o}, vln—-k), (8.35)
k=0

where af‘f‘ + are the backward prediction coefficients. Application of the least-squares
method described in Section 7.5 for a stationary signal leads to the result

A =emm_r, k=0,12,... .M, (8.36)

that is, the backward prediction coefficients are the same as the forward prediction
coefficients, but in reverse order {77). The backward prediction error is, therefore,
given by

empln) = yln—M)-j(n— M) (837
M M
= Y ol vn—k) =3 amm-_ryln-k).
k=0 k=0

The Burg-lattice method: The Burg-lattice method [77} is based on minimizing
the sum of the squared forward and backward prediction errors. Assumning that the
input y(n) is ergodic, the performance index &, is given by

N
tm= Y [e} s(n) + ek (m)), (8.38)

n=m+1

where e, ¢ (n) is the forward prediction error and e, 3 (n) is the backward prediction
error, with the model order m being recursively updated as m = 1,2,..., M. The
length of the available block of data is IV samptes.

If we use the Levinson-Durbin method to estimate the forward prediction coeffi-
cients, we get (see Section 7.5 and Equation 7.38)

Gk = Cm—1.k T Ym Cm—1,m—k, (8.39)

where -y, is the reflection coefficient for order m. Similarly, for the case of backward
prediction, we get

Cm,m~k = Cm-1,m-k T Ym Cm-1,m; (8.40)
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including the substitution af,‘ k= Gmm—k-

Combining the relationships in Equations 8.34, 8.38, 8.39, and 8.40 leads to the
lattice structure for computation of the forward and backward prediction errors, where
the two prediction error series are inter-refated recursively as [77]

€m,f (n) = em—l,f(n) + Y em—l,b(n - }-) (8.41)

and
ems{n) = em-15(n — 1) + Ym €m_1,7(n). (8.42)

(AH coefficients are assumed to be real-valued in this derivation; Haykin [77] allows
for all coefficients to be complex-valued.) Figure 8.17 illustrates a basic unit of the
lattice structure that performs the recursive operations in Equations 8.41 and 8.42.
The reflection coefficient v,,, may be chosen so as to minimize the performance index
given in Equation 8.38, that is, by setting

Bm . Be.m.¢(n) Bemp(n)] _
m = 2 E [em,f(n) “-*5;{:—*' + ems(n) W =0. (8.43)

n=m-+1

Partial differentiation of Equations 8.41 and 8.42 with respect (o 4, yields

i)
e—g‘_‘,‘? = em_18(n = 1) (8.44)
and 2 (n)
n
e = emovg(n). (8.45)
Substituting the results above in Equation 8.43, we get
N
Z [em, £(n) em_15(n =~ 1) + emp(n) em-1,5(n)] = 0. (8.46)
n=m-+1

Substituting Equations 8.41 and 8.42 in Equation 8.46, we get

N
Y. Hem-1,5(n) + v em-16(n — 1)} em_1p(n — 1)

n=m-+1

+ {em-16(n — 1) + Ym em-1,7(n)} em_1,4(n)] = 0. (8.47)

The reflection coefficients 4,, can then be calculated as

Erj::m-kl em—-l,f(ﬂ) em—l,b(n - 1)
N -
2on=m41 [efn—l,f(ﬂ) + efn..llb(“ -1)]

The magnitudes of the reflection coefficients are less than unity. The Burg formula
always yields a minimum-phase design for the lattice predictor.

Ym =—2 (8.48)
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Figure 8,17 Basic unit of the lattice structure that performus the recursive operations in
Equations 8.41 and 8.42 as well as the recursive operations in Equations 8.52 and 8.53. In
the case of the former, due to the stationarity of the processes involved, the forward and
backward reflection coefficients are the same and are independent of time. Adapted, with
permission, from S. Krishnan, Adaptive Signal Processing Techniques for Analysis of Knee
Joint Vibroarthrographic Signals, Ph.D. Thesis, University of Calgary, 1999.
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The prediction coefficients or the AR model parameters can be computed from
the reflection coefficients by using the relationship in Equation 8.39. The order m
is updated recursively as m = 1,2,...,M, with amo = 1, and gm_1 % = 0 for
k > m — 1, From Equation 8.3% and Figure 8.17, it can be observed that the AR
coefficients can be computed for any model order by simply adding one or more
lattice stages without affecting the earlier computations for lower orders. This is
one of the main advantages of the Burg-lattice AR modeling algorithm, especiaily in
situations where the order of the system being modeled is not known in advance.

RLSL algorithm for adaptive segmentation: A general schematic representa-
tion of the RLSL filter structure is given in Figure 8.18. Two levels of updating are
used in the RLSL algorithm:

1. Order-update: This involves updating the forward prediction error e, s(n},
the backward prediction error ey, s(n), the forward prediction error power
£m,#{n), and the backward prediction error power e,»,5(n). Here, m indicates
the model order, and n indicates the time instant.

2. Time-update: This involves time-updating of the parameters that ensure adap-
tation, including the forward reflection coefficients v, s(n) and backward
reflection coefficients ~,, 5(n). Note that, in the general nonstationary envi-

Tonment, ¥m,s(n) # ¥mp(n}.

Order-updating and time-updating together enable the RLSL algorithim to achieve
extremely fast convergence and excellent tracking capability.
The RLSL algorithm can be expressed in three stages [77, 88, 90]:

L. Initialization of the algorithm and lattice for filter order M: The parameters
of the algorithm are initialized at n = @ and for each orderm = 1,2,..., M
by setting the forward prediction error power £,,,_1,#(0) and the backward
prediction error power &,,_1,5(0) equal to a smail positive constant; the for-
ward reflection coefficients vy, 7(0) = 0; the backward reflection coefficients
Tm,5(0) = 0; the conversion factor 49 .(0) = 1; and an auxiliary variable
Am-1(0)=0.

For each time instant n > 1, the following zeroth-order variables are generated:
the forward prediction error eg, ¢ (n) equal to the data input {n}; the backward
prediction error eg,5(r) = y(n); €0,#(n) = €op{n) = Aeg s{n — 1) + [g(n)]?,
where A is the forgetting factor, and 4 .(n) = 1.

The variables involved in joint process estimation, for each order m == 0, 1,
.-+, M attime n = 0, are initialized by setting the scalar p,,, (0) = 0, and for
each instant n > 1 the zeroth-order variabie of a priori estimation error ep =
d(n), where d(n) is the desired response of the system.

2. Prediction part of the RLSL aigorithm: Forn = 1,2,...,N,, where N, is the
number of signal samples available, the various order-updates are computed in
the sequence m = 1,2,..., M, where M is the final order of the least squares
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Figure 8.18 General schematic cepresentation of the RLSL filter structure for adaptive seg-
mentation of nonstationary signals. Adapted, with permission, from S. Krishnan, Adaptive
Signal Processing Techniques for Analysis of Knee Joint Vibroarthrographic Signals, Ph.D.
Thesis, University of Calgary, 1999.
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predictor, as follows:

Am-1(n) = AAm_s(n — 1) 4+ Smz1b(n 1) em-14(n)

. 849
P ) ®49)

where Ap,—1(n) is the cross-correlation between the delayed backward pre-
diction etror em,—1,(r — 1) and the forward prediction error e,,~3,7{n) of the
lattice filter.

The forward reflection coefficient vy, #(n) is then updated as

Ap_1{n)
=——T— 8.50
‘fm-f (n) Em—l,ﬁ(n) ( )
Similarly, the backward reflection coefficient is updated as
Ao
S —— (8.51)

Em-l,f(n - 1) )

In general, £,,-1 ¢(n) and £,..1 3(n — 1} are unequal, so that in the RLSL
algorithm, unlike in the Burg algorithm described earlier in this section, we
have Ym, s (n) # Ym,b(n}.

From the lattice structure as described earlier in the context of Equations 8.41
and 8.42 and depicted in Figure 8.17. and noting that the reflection coeffi-
Cients Y, s (n) and 4,4 4 (n} are now different and time-variant parameters, we
. can write the order-update recursion of the forward prediction error as (see
Figure 8.17)

em,1(n) = em-1,¢(1) + Ym, s (n) em—1,6(n — 1), (8.52)
and the order-update recursion of the backward prediction error as
em,b(n) = em_1,6(n = 1) + Yms(n) €m—1,5(n). 853
The prediction error powers are updated as
Em,1(n) = Em—1,5(n) + Ym,(7) Brm-1(n), (8.54)

and
Emp(n) = em_18(n ~ 1) + Y p(n) Bnz(n). (8.55)

The conversion factor Y,,,.{n — 1) is updated as

e?ﬁul,b(n)

. 8.56
Em10(7) (8.36)

Yme(n) = Ym_1,e(n) —

The equations in this step constitute the basic order-update recursions for the
RLSL predictor. The recursions generate two sequences of prediction errors:
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the forward prediction error and the backward prediction error. The two ertor
sequences play key roles in the recursive solution of the linear least-squares
problem.

3. Filtering part of the RLSL algorithm: Forn = 1,2,..., N,, the various order-
updates are computed in the sequence m =0, 1, ..., M as follows:

() = Apon(n — 1) + %”-% ema(n).  (BST)

The regression coefficients k., (n) of the joint process estimator are defined in
terms of the scalar p,,,(n} as

Km{n} = s“::‘:;:) (8.58)

The order-update recursion of the a posteriori estimation error ey, (1) is then
given as

em(n) = em_1(n) — Km(n) enmp(n). (8.59)

The dynamics of the input signal, that is, the statistical changes occurring in
the signal, are reflected in the lattice filter parameters. Parameters such as the
reflection coefficients (v and ;) and the MS value of the estimation error
(that is, Ele?, (n}]) may therefore be used to monitor the statisticat changes.

The conversion factor . that appears in the algorithm can be used as a good
statistical detection measure of the “unexpectedness” of the recent data sam-
ples. As long as the data belong to the same distribution, the variable ~, will
be near upity. If the recent data samples belong to a dlfferem distribution,
v will tend to fall from unity. This will cause the factor - %o appearing in the
time-update formula (Equation 8.49) 1o be large, whlch leads to abrupt changes
in the lattice parameters. The quantities Yer 500 OF 1—-— may be used for fast
tracking of changes in the input data, and to test for segment boundaries in a
nonstationary environment.

IRustration of application: The advantage in using the RLSL filter for segmen-
tation of VAG signals is that the statistical changes in the signals are well reflected in
the filter parameters, and hence segment boundaries can be detected by monitoring
any one of the filter parameters such as the MSE, conversion factor, or the reflection
coefficients, Krishnan et al. [57, 88) used the conversion factor () to monitor statis-
tical changes in VAG signals. In a stationary environment, -, starts with a low initial
value, and remains small during the early part of the initialization period. After a
few iterations, . begins to increase rapidly toward the final value of unity. In the
case of nonstationary signals such as VAG, 4, will fall from its steady-state value
of unity whenever a change occurs in the statistics of the signal. This can be used
in segmenting VAG signals into quasi-stationary components. The segmentation
procedure proposed by Krishnan et al. [§7, 88] is summarized as follows:
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1. The VAG signal is passed twice through the segmentation filter: the first pass
is used to allow the filter to converge, and the second pass is used to test the
+. value ai each sample against a threshold value for the detection of segment
boundaries.

2, Whenever «, at a particular sample during the second pass is less than the
threshold, a primary segment boundary is marked.

3. If the difference between two successive primary segment boundaries is less
than the minimum desired segment length (120 samples in the work of Krishnan
et al.), the later of the two boundaries is deleted.

Figures 8.19 and 8.20 show the results of application of the RLSL segmentation
method to two VAG signals. Plots of v.(n) are also included in the figures, It may be
observed that the value of v,(n) drops whenever there is a significant change in the
characteristics of the signal. Whereas the direct application of a threshold on «.(n)
would result in superfluous segmentation, inclusion of the condition on the minimum
segment length that is meaningful in the application is seen to provide practically
useful segmentation. The number of segments was observed to be, on the average,
eight segments per VAG signal. Signals of patients with cartilage pathology were
observed to result in more segments than normal signals.

An advantage of the RLSL method of adaptive segmentation is that a fixed thresh-
old may be used; Krishnan et al. found a fixed threshold value of §.9985 to give good
segmentation results with VAG signals. The adaptive segmentation procedure was
found to provide segments that agreed well with manual segmentation based upon
auscultation and/or arthroscopy. Adaptive analysis of VAG signals will be further
described in Section 9.13.

8.7 APPLICATION: ADAPTIVE SEGMENTATION OF EEG SIGNALS

Problem: Propose a method for parametric representation of nonstationgry EEG
signals.

Solution: Bodenstein and Praetorius [98) applied their adaptive segmentation
procedure based upon the SEM (see Section 8.5.1) for representation and analysis
of EEG signals with the following propositions.

1. An EEG signal consists of quasi-stationary segments upon which transients
may be superimposed.

2. Asegmentis specified by its time of occurrence, duration, and PSD (represented
by its AR model coefficients). A transient is specified by its time of occurrence
and a set of grapho-elements (or directly by its samples).

3. An EEG signal consists of a finite number of recurrent states,

It should be noted that whereas the adaptive segments have variable length, ¢ach
adaptive segment is represented by the same number of AR model coefficients.
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Figure 8.19 (8) VAG signal of a normal subject with the final segment boundaries given by
the RLSL method shown by vertical dashed lines. (b) Plot of the conversion factor «y.(n); the
horizontal dashed lite represents the fixed threshold used to detect segment boundaries. The
duration of the signal is § &, with f, = 2 kH z. Reproduced with permission from 5, Krishnan,
R.M. Rangayyan, G.D. Beli, C.B. Frank, and K.O, Ladly, Adaptive filtering, medelling, and
classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular
cartilage pathology, Medical and Biological Engineering and Computing, 35(6):677~684,
1997, ©IFMBE.
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Figure 8.20 {a) VAG signal of a subject with cartilage pathology, with the final segment

boundaries given by the RLSL method shown by vertical dashed lines.

(b) Plot of the

conversion factor y.(n}); the horizontal dashed line represents the fixed threshold used to
detect segment boundaries. The duration of the signal is 5 s, with f, = 2 kHz Reproduced
with permission from S. Krishnan, R.M. Rangayyan, G.D. Bell, C.B. Frank, and K.O. Ladly,
Adaptive filtering, modelling, and classification of knee joint vibroarthrographic signals for
non-invasive diagnosis of articular cartilage pathology, Medical and Biological Engineering
and Compuiing, 35(6):677-684, 1997. ©IFMBE.
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The number of parameters is therefore independent of segment duration, which
is convenient when pattern classification techniques are applied to the segments.
Since the AR model is computed once at the beginning of each segment and some
prediction error is permitted in the moving analysis window, the initial AR model
may not adequately represent the entire adaptive segment. A new model may be
computed using the signal samples over the entire duration of each adaptive segment.
Instead, Bodenstein and Praetorius maintained the initial AR model of order P of
each adaptive segment, and an additional correcrive predictor of order M was derived
for each adaptive segment using the ACF of the prediction error which is computed
and readily available in the segmentation procedure, Each adaptive segment was then
represented by the (P + M) AR model coefficients, the associated prediction error
RMS values, and the segment length. The PSD of the segment may be derived from
the two sets of AR model coefficients.

With the EEG signals bandpass filtered to the range 1 — 25 Hz and sampled
at 50 Hz in the work of Bodenstein and Praetorius [98], the ACF window length
was set to be 2 s with 2V + 1 = 101 samples. Bodenstein and Praetorius used
the rule of thumb that the AR mode! order should be at least twice the number of
expected resonances in the PSD of the signal. Short segments of EEG signals rarely
demonstrate more than two spectral peaks, which suggests that an AR model order
of P = b should be adequate. Regardless, Bodenstein and Praetorius used P = 8,
which met the Akaike criterion as well (sce Section 7.5.2). The order of the ACF
of the prediction error and the associated corrective predictor was set to a low value
of M = 3, allowing for one spectral peak (the error should ideally have a flat PSD).
The thresholds were defined as Thy = 0.5 (empirical), and Tha = 2.5¢, where o is
the RMS value of the prediction error (see Section 8.5.1). The range of 2002 to 4002
was recommended for Ths. A transitional delay of 25 samples was allowed between
each segmentation boundary and the starting point of the foflowing fixed window to
prevent the inclusion of the spectral components of one segment into the following
segment,

Figure 8.21 shows a few examples of adaptive segmentation of EEG signals. A
clustering procedure was included to remove spuricus boundaries, some examples of
which may be seen in Figure 8.21 (d): neighboring segments with similar parameters
were merged in a subsequent step. Visual inspection of the results indicates that
most of the adaptive segments are stationary (that is, they have the same appearance)
over their durations. It is worth noting that the longest segment in Figure 8.21 (d) of
duration 16 2 or 800 samples is represented by just 12 parameters.

Figure 8.22 shows examples of detection of transients in two contralateral channels
of the EEG of a patient with epilepsy. The EEG signal between seizures (inter-ictal
periods) is expected to exhibit a large number of sharp waves. The length of the
arrows shown in the figure was made proportional to the cumulated supra-theeshold
part of the squared prediction error in order to indicate how pronounced the event
was regarded to be by the algorithm,

The method was further extended to parallel analysis of multichannel EEG signals
by Bodenstein et al, [236] and Creutzfelds et al. [237}. Procedures were proposed for
computerized pattern classification and labeling of EEG signals, inciuding clustering
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Figure 8.21 Examples of segmentation of EEG signals. (a) Newborn in non-REM sleep.
REM = rapid eye movement. (b) Child of age 7 years in sleep stage 1. {c) Child of age 8
years in sleep stage III. (d) Alpha thythm of an adult. (e) EEG of an adult with paroxysms.
The vertical lines represent the segmentation boundaries. Reproduced with permission from
G. Bodenstein and H.M. Praetorius, Feature extraction from the electroencephalogram by
adaptive segmensation, Proceedings of the IEEE, 65(5%.642-652, 1977. ©®IEEE.
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Figure 8.22 Example of detection of transients in the EEG signal of a patient with epilepsy.
The signals shown are from contralateral channels between seizures (inter-ictal period). The
longer the arrow the more pronounced is the transient detected at the corresponding time
instant. Transients detected simultanecusly in the two contralateral channels are marked
with dots. Reproduced with permission from G. Bodenstein and H.M. Praetorius, Feature
extraction from the electroencephalogram by adaptive segmentation, Proceedings of the IEEE,
65(5):642-652, 1977. ©®IEEE.

of similar segments and state diagrams indicating the sequence of the types of activity
found in an EEG record. Figure 8.23 itlustrates the record produced by the application
of the procedure to two channels of an EEG signal. Typical EEG segments belonging
to the four clusters detected in the signal are shown on the left-hand and right-hand
sides of the upper portion of the figure. Each signal segment is labeled with the
frequencies (FRQ, in H z) and amplitudes (AMP, in uV') of the resonances detected
using an eighth-order AR model. The central coinvmn of the upper portion of the
figure illustrates the PSDs of the corresponding segments on the left-hand side (solid
line) and right-hand side (dashed ling). The middle portion of the figure provides
the state diagram, indicating the transitions between the four states (represented by
the four clusters of the EEG segments) detected in the two channels of the signal.
The states represent 1: background, 2: eyes open, 3: paroxysm, and 4: epileptiform
spike-and-wave complexes. The values on the right-hand side of the state diagram
give the percentage of the total duration of the signal for which the EEG was in the
comresponding states. The bottom portion of the figure illustrates singular events, that
is, segments that could not be grouped with any of the four clusters. It was indicated
that the segments of most EEG signals could be clustered into at most five states,
and that the summarized record as illustrated in Figure 8.23 could assist clinicians in
analyzing lengthy EEG records in an efficient manner.
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Figure 8.23 Examptle of application of segmentation and pattern analysis to the EEG signal
of a patient with epileptiform activity. Refer tothe text for details. Reproduced with permission
from G. Bodenstein, W, Schneider, and C.V.D. Malsburg, Computerized EEG pattern classi-
fication by adaptive segmentation and probability-density-function classification. Description
of the method, Computers in Biology and Medicine, 15(5):297-313, 1985, ©Elsevier Science.
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8.8 APPLICATION: ADAPTIVE SEGMENTATION OF PCG SIGNALS

We have noted several times that the PCG signal is nonstationary, Let us now assess
the feasibility of adaptive segmentation of PCG signals using the RLSL method, with
no other signal being used as a reference.

Figure 8.24 illustrates the results of segmentation of the PCG signal of a normal
subject. The top trace shows the PCG signal over three cardiac cycles; the segment
boundaries detected are indicated by the vertical dotted lines as well as by the trian-
gular markers on the time axis. The second trace illustrates a plot of the conversion
factor +,: the conversion factor drops from unity whenever there is a change in the
signal characteristics, in particular at the boundaries of S1 and §2. A threshold of
0.995 (indicated by the horizontal line overlaid on the second trace) applied to ~,
and a condition imposing a minimum segment length of 50 samples (50 ms) were
used to obtain the segment boundaries. The third and fourth traces illustrate the ECG
and carotid pulse signals of the subject acquired simultaneously with the PCG. The
segment boundaries obtained by the RLSL method agree very well with the readily
noticeable 81 and 82 boundaries as well as the QRS and dicrotic notch positions.
(See also Sections 1.2.8, 2.3, and 4.10.)

Figure 8.25 illustrates the results of adaptive segimentation of the PCG signal of a
subject with systolic murmur due to acrtic stenosis. The results in this case, however,
are not as clear or as easy to interpret as in the preceding case. The method has indeed
identified the beginning of $1 and 52; furthermore, the split nature of S2 has been
identified by an additional segment boundary within each 52. However, the method
has not reliably identified the boundaries between the episodes of 51 and systolic
murmur itlustrated: the condition on the minimum segment length has affected the
placement of the segment boundary after the beginning of 81. Use of other conditions
on +, may provide better segmentation results.

8.9 APPLICATION: TIME-VARYING ANALYSIS OF HEART-RATE
VARIABILITY

The heart rate is controlled by the autonomous and central nervous systems: the vagat
and sympathetic activities lead to a decrease or increase, respectively, in the heart
rate (see Section 1.2.4). We saw in Section 7.8 how respiration affects heart rate, and
how Fourier analysis may be extended to analyze HRV. When heart rate data such as
beat-to-beat RR intervals are collected over long periods of time (several hours), the
signal could be expected to be nonstationary.

Bianchi et al. [225] extended AR modeling techniques for time-variant PSD anal-
ysts of HRV data in order to study transient episodes related to ischemic attacks. The
prediction error was weighted with a forgetting factor, and a time-varying AR model
was derived. The RLS algorithm was used to update the AR model coefficients at
every RR interval sample (every cardiac cycle). The AR coefficients were then used
to compute a time-varying PSD. The following frequency bands were indicated to be
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Figure 8.24 Adaptive segmentation of the PCG signal of a normal subject using the RLSL
method. Top to bottom: PCG signal (the vertical dotted lines and triangular markers represent
the segmentation boundaries); conversion factor -y, (the horizontal line is the threshold used);
ECG; carotid pulse (clipped due to saturation).
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Figure 8.25 Adaptive segmentation of the PCG signal of a subject (female, 11 years) with
systolic murmur due to aortic stenosis. Top to bottom: PCG signal (the vertical lines and
triangular markers cepresent the segmentation boundaries); conversion factor 4. (the horizontal
line is the threshold used); ECG; carotid pulse.
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of interest in the analysis of RR interval PSDs: very-low-frequency (VLF) band in the
range 0 — 0,03 H z related to humoral and thermoregulatory factors; low-frequency
(LF)bandin the range 0.03 —0.15 H z related to sympathetic activity; high-frequency
(HF) band in the range 0.18 — 0.4 Hz related to respiration and vagal activity.

Figure 8.26 shows an RR interval series including an ischemic episode (delineated
by B for beginning and E for ending points, respectively). Figure 8.27 shows the
time-varying PSD in the form of a spectrogram. Figure 8.28 shows a segment of RR
interval data and a few measures derived from the data.
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Figure 8,26 RR interval series including an ischemic episode. B: beginning and E: end
of the episode. Reproduced with permission from A.M. Bianchi, L. Mainardi, E. Petrucci,
M.G. Signorini, M. Mainardi, and S. Cerutti, Time-variant power spectrum analysis for the
detection of transient episodes in HRV signal, IEEE Transactions on Biomedical Engineering,
40(2):136-144, 1993, ©IEEE.

Some of the important observations made by Bianchi et al. (and illustrated by the
spectrogram in Figure 8.27 and the parameters in Figure 8.28) are:

e There is an increase in LF power about 1.5 — 2 mimutes before an ischemic
event.

The RR variance decreases as an episode begins.

*

There is a predominant rise in LF power at the end of an ischemic episode.

A small HF component appears toward the end of an episode.

s Early activation of an LF component precedes tachycardia and ST displacement
in the ECG that are generally indicative of the onset of an ischemic episode,

The results suggest an arcusal of the sympathetic system before an acute
ischemic attack.

Time-varying AR modeling techniques have also been applied for the analysis of
EEG signals [224]. Time-varying ARMA modeling techniques have been applied to
analyze EGG signals [38].
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Figure 8.27 Spectrogram of the RR interval series in Figure 8.26. Time progresses from
the top to the bottom. B: beginning and E: end of an ischemic episode. Reproduced with
permission from A.M. Bianchi, L. Mainardi, E. Petrucci, M.G. Signorini, M. Mainardi, and S.
Cerutti, Time-variant power spectrum analysis for the detection of transient episodes in HRV
signal, JEEE Transactions on Biomedical Engineering, 402136144, 1993. ©IEEE.
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Figure 828 Top to bottom: RR interval series including an ischemic episode; variance;
low-frequency (LF) to high-frequency (HF) power ratio; percentage of LF power; percentage
of HF power; LF power; and HF power. B: beginning and E: end of the episode. Reproduced
with permission from A.M. Bianchi, L. Mainardi, E. Petrucci, M.G. Signorini, M. Mainardi,
and S, Cerutti, Time-variant power spectrum analysis for the detection of transient episodes in
HRYV signal, IEEE Transactions on Biomedical Engineering, 40(2):136-144, 1993. ®IEEE.
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8.10 REMARKS

We have now reached the stage where we have extended the application of a number
of signal processing, modeling, and analysis techniques to nonstationary biomedical
signals, Fixed or adaptive segmentation of the signals into quasi-stationary segments
was seen to be a pre-requisite step, and we studied several approaches for segmen-
tation. Adaptive segmentation facilitates not only the identification of distinct and
separate events at unknown time instants in the given signal, but also the character-
ization of events of variable duration using the same number of parameters. This is
advantageous in pattern classification tasks (to be studied in Chapter 9) as well as for
efficient data compression.

8.1

2.

STUDY QUESTIONS AND PROBLEMS

Describe the characteristics of PCG signals that would make them nonstationary. Pro-
pose signal processing strategies to break a PCG signal into quasi-stationary segments,

Discuss features of the EEG that make the signal nonstationary. Propose signal pro-
cessing strategies to detect each type of nonstationarity and to break an EEG signal into
quasi-stationary segments.

Investigate features of the EMG that make the signal nonstationary. Propose signal
processing strategies to track the time-varying characteristics of the signal. Under what
conditions can the signal be partitioned into quasi-stationary segments? What are the
physiological features that you would be able to derive from each segment?

8.12 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the site
ftp:/ifip.ieee.orgluploads/press/rangayyan/

The speech signal of the word “safety” is given in the file safety.wav. You may use
the program safety.m to read the data. Explore the use of short-time statistics such as
ZC R and RM S values for segmentation of the signal. Study the effect of the duration
of the short-time analysis window on the trends in the parameters computed and on
segmentation.

The files pecl.dat, pec22.dat, pec33.dat, and pec52.dat give the PCG, ECG, and carotid
pulse signats of two normal subjects and two patients with systolic murmur. You may use
the program plotpec.m to read the data. Explore the use of short-time ZCR, RM S, and
AR model coefficients for segmentation of the signals. Evaluate the segment boundaries
obtained in relation to the events in the PCG signals as well as the corresponding events
in the ECG and carotid pulse channels.



Pattern Classification and
Diagnostic Decision

The final purpose of biomedical signal analysis is to classify a given signal into
one of a few known categories, and to arrive at a diagnostic decision regarding the
condition of the patient. A physician or medical specialist may achieve this goal
via visual or auditory analysis of the signal presented: comparative analysis of the
given signal with others of known diagnoses or established protocols and sets of rules
assist in such a decision-making process. The basic knowledge, clinical experience,
expertise, and intuition of the physician play significant roles in this process. Some
measurements may also be made from the given signal to assist in its analysis, such
as the QRS width from an ECG signal plot.

When signal analysis is performed via the application of computer algorithms,
the typical result is the extraction of a number of numerical features. When the
numerical features relate directly to measures of the signal such as the QRS width
and RR interval of an ECG signal, the clinical specialist may be able to use the
features in his or her diagnostic logic. Even indirect measures such as the frequency
content of PCG signals and murmurs may find such direct use. However, when
parameters such as AR model coefficients and spectral statistics are derived, a human
analyst is not likely to be able to comprehend and analyze the features. Furthermore,
as the number of the computed features increases, the associated diagnostic logic
may become too complicated and unwieldy for human analysis. Computer methods
would then be desirable for performing the classification and decision process,

At the outset, it should be borne in mind that a biomedical signal forms but one
piece of information in arriving at a diagnosis: the classification of a given signal
into one of many categories may assist in the diagnostic procedure, but will almost
never be the only factor. Regardless, pattern classification based upon signal analysis

445
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is indeed an important aspect of biomedical signal analysis, and forms the theme of
this chapter. Remaining within the realm of computer-aided diagnosis as introduced
in Figure 1.32 and Section 1.5, it would be preferable to design methods so as to
assist a medical specialist in arriving at a diagnosis rather than to provide a decision.

8.1 PROBLEM STATEMENT

A number of measures and features have been derived from a biomedical signal, Ex-
plore methods to classify the signal into one of a few specified categories. Investigate
the relevance of the features and the classification methods in arriving at a diagnostic
decision about the patient.

Observe that the features may have been derived manually or by computer methods.
Note the distinction between classifying the given signal and arriving at a diagnosis
regarding the patient: the connection between the two tasks or steps may not always
be direct. In other words, a pattern classification method may facilitate the labeling
of a given signal as being a member of a particular class; arriving at a diagnosis of
the condition of the patient will most likely require the analysis of several other items
of clipical information. Although it is common to work with a pre-specified number
of pattern classes, many problems do exist where the number of classes is not known
a priori.

The following sections present a few illustrative case-studies. A number of meth-
ods for pattern classification, decision making, and evaluation of the results of clas-
sification will be reviewed and itlustrated.

9.2 ILLUSTRATION OF THE PROBLEM WITH CASE-STUDIES

9.2.1 Diagnosis of bundle-branch biock

Bundle-branch block affects the propagation of the excitation pulse through the
conduction system of the heart to the ventricles. A block in the left bundle branch
results in delayed activation of the left ventricle as compared to the right; a block in
the right bundle branch has the opposite effect. Essentially, contraction of the two
ventricles becomes asynchronous. The resulting ECG typically displays a wider-
than-normal QRS complex (100 — 120 ms or more), which could have a jagged or
slurred shape as well [23); see Figure 1.15.

The orientation of the cardiac elecromotive forces will be affected by bundie-
branch block. The initial forces in left bundle-branch block are directed more
markedly to the left-posterior, whereas the terminal forces are directed to the superior-
left and posterior [23]). Left bundle-branch block results in the loss of Q waves in
leads L, V5, and V6,

The following logic assists in the diagnosis of incomplete left bundle-branch
block [242]):
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IF (QRS duration > 105 ms and < 120 ms) AND

(QRS amplitude is negative in leads V1 and V2) AND

(Q or S duration > 80 ms in leads V1 and V2) AND

(no Q wave is present in any two of leads I, V5, and V6) AND

(R duration > 60 ms in any two of leads I, aVL, V5, and V6) THEN
the patient has incomplete left bundle-branch block.

Incomplete right bundle-branch block is indicated by the following conditions [242):

IF (QRS duration > 91 ms and < 120 ms) AND

(S duration > 40 ms in any two of leads I, aVL, V4, V3, and V6) AND
in lead V1 or V2 EITHER

[ (R duration > 30 ms) AND (R amplitude > 100 V) AND

(no § wave is present) ] OR

[ (R’ duration > 30 ms) AND (R’ amplitude > 100 V) AND

(no 8’ wave is present) ] THEN

the patient has incomplete right bundle-branch block.

{Note: The first positive deflection of a QRS complex is referred to as the R wave
and the second positive deflection is referred to as the R’ wave. Similarly, S and §'
indicate the first and second negative deflections, respectively, of a QRS wave.)

Note that the logic ot decision rules abave may be used either by a human analyst
or in a computer algorithm after the durations and amplitudes of the various waves
mentioned have been measured or computed. Cardiologists with extensive training
and expertence may perform such decisions via visual analysis of an ECG record
without resorting to actual measurements,

9.2.2 Normal or ectoplc ECG beat?

Premature ventricular contractions caused by ectopic foci could be precursors of
more setious arthythmia, and hence detection of such beats is important in cardiac
monitoring. As illustrated in Sections 5.4.2 and 5.7 as well as in Figures 5.1 and 5.10,
PVCs possess shorter preceding RR intervals than normal beats and display bizarre
waveshapes that are markedly different from those of the normal QRS complexes of
the same subject. Therefore, a simple rule to detect PVCs or ectopic beats could be
as follows:

IF (the RR interval of the beat is less than the normal at the current heart rate) AND
(the QRS waveshape is markedly different from the normal QRS of the patient)
THEN the beat is a PVC.

As in the preceding case-study of bundie-branch block, the logic above may
be easily applied for visual analysis of an ECG signal by a physician or a trained
observer. Computer implementation of the first part of the rule relating in an objective
or guantitative manner to the RR interval is simple, However, implementation of the
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second condition on waveshape, being qualitative and subjective, is neither direct nor
casy. Regardless, we have seen in Chapter 5 how we may characterize waveshape.
Figures 5.1 and 5.10 illustrate the application of waveshape analysis to quantify
the differences between the shapes of normal QRS complexes and ectopic beats.
Figure 5.2 suggests how a 2D feature space may be divided by a simple linear
decision boundary to categorize beats as normal or ectopic. We shall study the
details of such methods later in this chapter.

9.2.3 Is there an alpha rhythm?

The alpha rhythm appears in an EEG record as an almost-sinusoidal wave (see
Figure 1.22); a trained EEG technotogist or physician can readily recognize the
pattern at a glance from an EEG record plotted at the standard scale. The nusnber of
cycles of the wave may be counted over one or two seconds of the plot if an estimate
of the dominant frequency of the rhythm is required.

In computer analysis of EEG signals, the ACF and PSD may be used to detect the
presence of the alpha rhythm. We saw in Chapter 4 how these two functions demon-
strate peaks at the basic period or dominant frequency of the rhythm, respectively
(see Figure 4.8). A peak-detection aigorithm may be applied to the ACF, and the
presence of a significant peak in the range 75 — 125 ms may be used as an indication
of the existence of the alpha rhythm. If the PSD is available, the fractional power
of the signal in the band 8 — 12 Hz (sec Equation 6.48) may be computed: a high
value of the fraction indicates the presence of the alpha rhythm. Note that the logic
described above includes the qualifier “significant”; experimentation with a number
of signals that have been categorized by experts shonld assist in assigning a numerical
value to represent the significance of the features described.

9.2.4 Is a murmur present?

Detection of the presence of a heart murmur is a fairly simple task for a trained
physician or cardiologist: in performing auscultation of a patient with a stethoscope,
the cardiologist needs 10 determine the existence of noise-like, high-frequency sounds
between the low-frequency S1 and S2. It is necessary to exercise adequate care to
reject high-frequency noise from other sources such as breathing, wheezing, and
scraping of the stethoscope against the skin or hair. The cardiologist also has to
distinguish between innocent physiclogical murmurs and those due to cardiovascular
defects and diseases. Further discrimination between different types of murmurs
requires more careful analysis: Figure 5.5 illustrates a decision tree to classify
systolic murmurs based upon envelope analysis.

‘We have seen in Chapters 6 and 7 how we may derive frequency-domain parame-
ters that relate to the presence of murmurs in the PCG signal. Once we have derived
such numerical features for a number of signals of known categories of diseases (di-
agnoses), it becomes possible to design and train classifiers to categorize new signals
into one of a few pre-specified classes.
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The preceding case-studies suggest that the classification of patterns in a signal
may, in some cases, be based upon thresholds applied to guantitative measurements
obtained from the signal; in some other cases, it may be based upon objective
measures derived from the signal that attempt to quantify certain notions regarding
the characteristics of signals belonging to various categories. Classification may also
be based upon the differences between certain measures derived from the signal on
hand and those of established examples with known categorization. The succeeding
sections of this chapter describe procedures for classification of signals based upon
the approaches suggested above.

9.3 PATTERN CLASSIFICATION

Pattern recognition or classification may be defined as categorization of input data into
identifiable classes via the extraction of significant features or attributes of the data
from a background of irrelevant detail [243, 244, 245, 246, 247, 248, 249]. Inbiomed-
ical signal analysis, after quantitative features have been extracted from the given
signals, each signal may be represented by a feature vector x = (x1, 22,..., 2o )T,
which is also known as a measurement vector ot a pattern vector. When the values
@; are real numbers, x is a point in an n-dimensional Euclidean space: veciors of
similar objects may be expected to form clusters as ilustrated in Figure 9.1.
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Figure 9.1 Two-dimensional feature vectors of two classes Cy and Ca. The prototypes of
the two classes are indicated by the vectors %, and s2. The optimal linear decision function
shown d{x) (solid line) is the perpendicular bisector of the straight line joining the two class
prototypes (dashed line).
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For efficient pattern classification, measurements that could lead to disjoint sets
ot clusters of feature vectors are desired, This point undertipes the importance of
appropriate design of the preprocessing and feature extraction procedures. Features
or characterizing attributes that are common to all patterns belonging to a particular
class are known as intraset ot intraclass features. Discriminant features that represent
differences between pattern classes are called interser or interclass features,

The pattern classification problem is that of generating optimal decision boundaries
or decision procedures to separate the data into pattern classes based on the feature
vectors, Figure 9.1 illustrates a simple linear decision function or boundary to
separate 2D feature vectors into two classes.

9.4 SUPERVISED PATTERN CLASSIFICATION

Problem: You are provided with a number of feature vectors with classes assigned 1o
them, Propose techniques to characterize the boundaries that separate the classes.
Selation: A given set of feature vectors of known categorization is often referred
10 as a training set. The availability of a training set facilitates the development of
mathematical functions that can characterize the separation between the classes, The
functions may then be applied to new feature vectors of unknown classes to classify
or recognize them. This approach is known as supervised pattern classification. A set
of feature vectors of known categorization that is used to evaluate a classifier designed
in this manner is referred to as a test set. The following subsections describe a few
methods that can assist in the development of discriminant and decision functions.

9.4.1 Discriminant and decision functions
A general linear discriminant or decision function is of the form
d(X) = w12y + waky + -+ + WnTn + Wny1 = W X, ®.1

wherex = (z1,%32,...,Tn, 1)T is the feature vector augmented by an additional entry
equal to unity, and w = (w1, W2, ..., Wy, Wna 1)"" is a correspondingly augmented
weight vector. A two-class pattern classification problem may be stated as

T >0 ifxeC;
dix)=w x{ <0 ifxeC, ° 9.2)
where ('} and Cy represent the two classes. The discriminant function may be inter-
preted as the boundary separating the classes Cy and Cs, as illustrated in Figure 9.1.
In the general case of an M-class pattern classification probiem, we will need M
weight vectors and M decision functions to perform the following decisions:

>0 ifxeC;

<0 otherwise * += D2 M, 9.3)

di(x) = w?x{

where w; = (wn, Wiy veey Win, w;,nH)T is the weight vector for the class C.
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‘Three cases arise in solving this problem [243]:
Case 1: Each class is separable from the rest by a single decision surface:
if di(x) >0 then x € C;. 9.4
Case 2: Each class is separable from every other individual class by a distinct deci-

sion surface, that is, the classes are pair-wise separable. There are M(M —1)/2
decision surfaces given by dy;(x) = w?} x.

if dij(x)>0¥j#4¢ then x€ Ci. 9.5)
Note: di;(x) = —dji(x).]

Case 3; There exist M decision functions d(x) = wi x, k = 1,2,..., M, with
the property that

if di(x) > d;(x)Vj#i, then x€C;. (9.6)
This is a special instance of Case 2. We may define
dij(x) = di(x) ~ dj(x) = (wi — wy)T x=whix. 9D

If the classes are separable under Case 3, they are separable under Case 2; the
converse is, in general, not true,

Patterns that may be separated by linear decision functions as above are said to
be linearly separable. In other situations, an infinite variety of complex decision
boundaries may be formulated by using generalized decision functions based upon
nonlinear functions of the feature vectors as

d(x) = wifi(x)+wafa(x}+---+ wifx(x) + wis (9.8)
K+1

= Z w; fi(x). (9.9)
i=1

Here, {fi(x)}, i=1,2,..., K, arereal, single-valued functions of x; fx41(x) = 1.

Whereas the functions f;(x) may be nonlinear in the n-dimensional space of x, the
decision function may be formulated as a linear function by defining a transformed
feature vector x! = (f1(x), fa(x),..., fx(x),1)T. Then, d(x) = wTx!, with
w = (wy,ws, ..., WK, Wk+1)T . Once evaluated, {fi(x}} s just 2 set of numerical
values, and x! is simply a K -dimensional vector augmented by an entry equal to
unity.

9.4.2 Distance functions

Consider M patiern classes represented by their prototype patterns 24,22, ..., Zas.
The prototype of a class is typically computed as the average of all the feature vectors
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belonging to the class, Figure 9.1 illustrates schematically the prototypes 3, and 22
of the two classes shown.

The Euclidean distance between an arbitrary pattern vector x and the i*® prototype
is given as

Di=|x-%l= \/(x — 2T (x — ). (9.10)

A simple rule to classify the pattern vector x would be to choose that class for which
the vector has the smallest distance:

ifD.'<DjVj7’-'i, then x € C}. 9.11)

A simple relationship may be established between discriminant functions and
distance functions as follows [243];

D} = |x-%l? = (x-2)T(x-%) 9.12)
= xTx-2xTz +272; = xTx - 2(xTs — %s?z,-).
Choosing the minimum of D? is equivalent to choosing the minimum of D
(as all D; > 0). Furthermore, from the equation above, it follows that choosing
the minimum of D} is equivalent to choosing the maximum of (xTz; — 127 z;).
Therefore, we may define the decision function

di(x) = (xTz — %z?m), i=1,2,..., M. ©.13)
A decision rule may then be stated as
if di(x) > d;j{x) ¥V j # i, thenx € C;. (9.14)

This is a linear discritninant function, which becomes obvious from the following
representation: If zy;, § = 1,2,...,n, are the components of z;, let w;; = z;,
F=12..,n wing = —3272;; and x = (21, 22,..., 25, 1)T. Then, d;(x) =
wix, i=1,2,...,M, where w; = (Wi, wiz,. .., Wins1)? - Therefore, distance

functions may be formulated as linear discriminant or decision functions.

9.4.3 The nearest-neighbor rule

Suppose that we are provided with a set of N sample patterns {8y,83,...,85} of
known classification: each pattern belongs to one of M classes {C1,Ch, ..., Cp}.
We are then given a new feature vector x whose class needs to be determined. Let us
compute a distance measure [3(8;, x) between the vector x and each sample pattern,
Then, the nearest-neighbor rule states that the vector X is to be assigned to the class
of the sample that is the closest to x:

x € C; if D(s;,x) = min{D(s;,x)}, { = 1,2,...,N. {9.15)

A major disadvantage of the above method is that the classification decision
is made based upon a single sample vector of known classification. The nearest
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neighbor may happen to be an outlier that is not representative of its class. It would
be more reliable to base the classification upon several samples: we may consider
a certain pumber k of the nearest neighbors of the sample to be classified, and then
seek a majority opinion. This leads to the so-called k-nearesi-neighbor or k-NN rule:
Determine the k nearest neighbors of x, and use the majority of equal classifications
in this group as the classification of x.

9.5 UNSUPERVISED PATTERN CLASSIFICATION

Problem: We are given @ set of feature vectors with no categorization or classes
attached to them. No prior training information is available. How may we group the
vectars into multiple categories?

Solution: The design of distance functions and decision boundaries requires a
training set of feature vectors of known classes. The functions so designed may then
be applied to a new set of feature vectors or sampies to perform pattern classification,
Such a procedure is known as supervised pattern classification due to the initial
training step. In some situations a training step may not be possible, and we may
be required to classify a given set of feature vectors into either a pre-specified or
unknown number of categories. Such a problem is labeled as unsupervised pattern
classification, and may be solved by cluster-seeking methods.

9.5.1 Cluster-seeking methods

Given a set of feature vectors, we may examine them for the formation of inherent
groups or clusters. This is a simple task in the case of 2D vectors, where we may plot
them, visually identify groups, and label each group with a pattern class, Allowance
may have to be made to assign the same class to multiple disjoint groups. Such an
approach may be used even when the number of classes is not known at the outset.
When the vectors have a dimension higher than three, visual analysis will not be
feasible.. It then becomes necessary to define criteria to group the given vectors on
the basis of similarity, dissimilarity, or distance measures. A few examples of such
measures are {243]:

& EBuclidean distance
n
Dy=lx—zlP=(x-2)T(x-2)=)_ (- z)" (9.16)
i=1

"Here, x and z are two feature vectors; the latter could be a class prototype if
available. A small value of Dg indicates greater similarity between the two
vectors than a large value of Dg,

¢ Mahalanobis distance

D} = (x—-m)TC }{x —m), 0.17
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where x is a feature vector being compared to a pattern class for which m is
the class mean vector and C is the covariance matrix. A small value of Dpy
indicates a higher potential membership of the vector x in the class than a large
value of Dyy.

¢ Normalized dot product {cosine of the angle between the vectors x and z)

xTz

EET

A large dot product value indicates a greater degree of similarity between the
two vectors than a small value.

Dy =

(9.18)

The covariance matrix is defined as
C = E[(y - m){y — m)7), 9.19)

where the expectation operation is performed over all feature vectors y that belong
to the class. The covariance matrix provides the covariance of all possible pairs of
the features in the feature vector over all samples belonging to the given class. The
clements along the main diagonal of the covariance matrix provide the vatiance of the
individual features that make up the feature vector. The covariance matrix represents
the scatter of the features that belong to the given class. The mean and covariance need
to be updated as more samples are added to a given class in a clustering procedure.

When the Mahanalobis distance needs to be calculated between a sample vector
and a number of classes represented by their mean and covariance matrices, a pooled
covariance matrix may be used if the numbers of members in the various classes are
unequal and low [246]. For example, if the covariance matrices of two classes are Cy
and C3, and the numbers of members in the two classes are N; and N;, the pooled
covariance matrix is given by

C = (Nl - 1)01 + (Ng - 1)02
- N+ N; ~2 )

(9.20)

Various performance indices may be designed to measure the success of a cluster-
ing procedure {243]). A measure of the tightness of a cluster is the sum of the squared
errors performance index:

Nc
J=3 3" lx-myl?, 9.21)
i=1 xes,

where N, is the number of cluster domains, S; is the set of samples in the 7 cluster,

1
m; = — E x (9.22)
! Ny v

is the sample mean vector of §;, and N; is the number of samples in ;.
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A few other exampies of performance indices are:

o Average of the squared distances between the samples in a cluster domain.

e Intra-cluster variance.

e Average of the squared distances between the samples in different cluster

domains.

» Inter-cluster distances.

o Scatter matrices.

o Covariance matrices.

A simple cluster-seeking algorithm [243]: Suppose we have N sample patterns
{111121 . '1x.N}-

1.
2.

6.

Let the first cluster center z; be equal to any one of the samples, say z; = X;.

Choose a non-negative threshold 8.

. Compute the distance Dy between xz and 23, If Day < 8, assign x2 to the

domain (class) of cluster center 2, ; otherwise, start a new cluster with its center
as 22 = x3. For the subsequent steps, let us assume that a new cluster with
center 29 has been established,

. Compute the distances D3y and D3, from the next sample x3 to 2y and 2za,

respectively. If D3y and Dj; are both greater than @, start a new cluster with
its center as %3 = Xg; otherwise, assign x4 to the domain of the closer cluster,

. Continve to apply steps 3 and 4 by computing and checking the distance from

every new (unclassified) pattemn vector to every established cluster center and
applying the assignment or cluster-creation rule.

Stop when every given pattern vector has been assigned to a cluster,

Note that the procedure does not require knowledge of the number of classes a
priori. Note also that the procedure does not assign a real-world class to each cluster:
it merely groups the given vectors into disjoint clusters. A subsequent step is required
to label each cluster with a class related to the actual problem. Muitiple clusters may
relate to the same real-world class, and may have to be merged.

A major disadvantage of the simple cluster-seeking algorithm is that the results
depend upon

# the first cluster center chosen for each domain or class,

the order in which the sample patterns are considered,

o the value of the threshold 8, and
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+ the geometrical properties {distributions) of the data (or the feature-vector

space).

The maximin-distance clustering algorithm [243]: This method is similar to
the previous “simple™ algorithm, but first identifies the cluster regions that are the
farthest apart. The term “maximin” refers to the combined use of maximum and
minimum distances between the given vectors and the centers of the clusters already
formed.

1

2.

5.

Let xy be the first cluster center 24.
Determine the farthest sample from x;, and call it cluster center z3.

Compute the distance from each remaining sample to 2y and to %3. For every
pair of these cornputations, save the minimum distance, and select the maxi-
mum of the minimum distances. If this “maximin” distance is an appreciable
fraction of the distance between the cluster centers z; and 22, label the cor-
responding sample as a new cluster center 23; otherwise stop forming new
clusters and go to Step 5.

. If a new cluster center was formed in Step 3, repeat Step 3 using a “typical” or

the average distance between the established cluster centers for comparison.

Assign each remaining sample to the domain of its nearest cluster center.

The K-means algorithm [243]: The preceding “simple” and “maximin™ algo-
rithms are intuitive procedures. The K-means algorithm is based on iterative mini-
mization of a performance index that is defined as the sum of the squared distances
from all points in a cluster domain to the cluster center.

1.

Choose K initial cluster centers 3, (1}, 22(1), ..., 8k (1). The index in paren-
theses represents the iteration number.

At the k*% iterative step, distribute the samples {x} among the K cluster
domains, using the relation

xX¢€ S.f(k) if Hx - z.i{k)" < “x - 8.(")“ Vi=12,.. K, i#j (9.23)
where §;(k) denotes the set of samples whose cluster center is z;(k}.

From the results of Step 2, compute the new cluster centers s;{(k + 1), j =
1,2, ..., K, such that the sum of the squared distances from all points in S; (k)
to the new cluster center is minimized. In other words, the new cluster center
z;{k + 1) is computed so that the performance index

Ji= Y lx-mk+ 1% j=12...,K, (9.24)
xES;(k)
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is minimized. The z;(k + 1} that minimizes this performance index is simply
the sample mean of §;(k). Therefore, the new cluster center is given by

1

-1 i=1,2,...,K, 9.25

z;(k + 1) N xe}g(:k}x,g 12,.... K (9.25)
3

where IV; is the number of samples in 8;(k). The name “K-means" is derived
from the manner in which cluster centers are sequentially updated.

4. If z;(k + 1) = zz(k) for j = 1,2,...,K, the algorithm has converged:
terminate the procedure; otherwise go to Step 2.

The behavior of the K-means algorithm is influenced by:
o the number of cluster centers specified,
o the choice of the initial cluster centers,
e the order in which the sample patterns are considered, and

o the geometrical propetties (disuibutions) of the data (or the feature-vector
space).

9.6 PROBABILISTIC MODELS AND STATISTICAL DECISION

Problem: Pattern classification methods such as discriminant functions are depen-
dent upon the set of training samples provided. Their success, when applied to new
cases, will depend upon the accuracy of representation of the various pattern classes
by the training samples. How can we design pattern classification techniques that
are independent of specific training samples and optimal in a broad sense?

Solution: Probability functions and probabilistic models may be developed to
represent the occurrence and statistical attributes of classes of patterns. Such func-
tions may be based upon large collections of data, historical records, or mathematicai
models of pattern generation. In the absence of information as above, a training
step with samples of known categorization will be required to estimate the required
model parameters. It is common practice to assume 8 Gaussian PDF to represent
the distribution of the features for each class, and estimate the required mean and
variance parameters from the training sets. When PDFs are available to characterize
pattern classes and their features, optimal decision functions may be designed based
upon statistical functions and decision theory, The following subsections describe a
few methods that fall into this category.

9.6.1 Likelihood functions and statistical decision

Let P{C;)} be the probability of occurrence of class C;, § = 1,2,..., M this is
known as the a priori, prior, or unconditional probability. The a posteriori or
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posterior probability that an observed sample pattern x comes from C; is expressed
as P(C;|x). I a classifier decides that x comes from C; when it actually came from
C;, then the classifier is said to incur a loss Ly, with Ly; = 0 or a fixed operational
cost and L,‘j »>LuVis#i,

Since x may belong to any of M classes under consideration, the expected loss,
known as the conditional average risk ot loss, in assigning x to C; is {243]

M
Rj(x) =Y Ly P(Cilx). (9.26)

i=1

A classifier could compute R;(x), j = 1,2,..., M, for each sample x, and then

assign x to the class with the smallest conditional loss. Such a classifier will minimize

the total expected loss over all decisions, and is called the Bayes classifier. From a

statistical point of view, the Bayes classifier represents the optimal classifier.
According to Bayes formula, we have [243, 244]

P(C3) p(x|Ci)

PG = ==

, (9.27)
where p(x|C;) is called the likelihood function of class C; or the state-conditional
PDF of x, and p(x} is the PDF of x regardless of class membership (unconditional).
[Note: P(y) is used to represent the probability of occurrence of an event y; p(y) is
used to represent the PDF of 2 random variable i, Probabilities and PDFs involving
a multi-dimensional feature vector are multivariate functions with dimension equal
to that of the feature vector.] Bayes formula shows how observing the sample x
changes the a priori probability P(C;) to the a posteriori probability P(C;lx). In
other words, Bayes formula provides a mechanism to update the @ priori probability
P(C;) to the a posteriori probability P(C;|x} due to the observation of the sample
x. Then, we can express the expected loss as [243]

M
Ry(x) = 5?155 ‘g Li; p(x|C:) P(Cy). (9.28)

As ;{1,—:7 is common for all j, we could modify R;(x) to

M
ri(x) =Y Li; p(xICy) P(C). (9.29)
i=1

In a two-class case with M = 2, we obtain the following expressions {243]:
r1(x) = Ly p(x|Ch) P(C1) + L2y p(x{C3} P(C3). (9.30)

r,(x) = Lys p(xlCl) P(Cl) 4 Lzo p(X|Cz) P(Cz). (9.31)
x & Cy if r(x} < r(x), (9.32)
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that is,

XEe Cl if Lu p(xlC;) P(C]) + L:il p(XICg) P(Cz) (933)
< Lz p(x|Cy) P(C1) + L2 p(x|C2} P(Cy),

or equivalently,
X€ y if (Ln - ng) p(:lthg} P(Cz) < (Lu - Lu) p(x{Cl) P(Cl). (9.34)
This expression may be rewritten as [243}

.. P(x|CL) P(C2) (L1 — La2)
*COH S0 7 P(C) (B = L)

The left-hand side of the inequality above, which is a ratio of two likelihood functions,
is often referred o as the likelihood ratio:

(9.35)

_ p(x|C1)
112(1) = m (936)

Then, Bayes decision rule for M = 2 is [243};
1. Assign x to class €y if li2{x) > 852, where 83 is a threshold given by
b = FE) TaT:
2. Assign x to class Cy if l12(x) < 6)3.
3. Make an arbitrary or heuristic decision if Iy2(x) = 8;3.

The rule may be generalized to the M -class case as [243]:

M M
x€C; if Y Liip(xiCh) P(Ck) < Y Loj p(xIC) P(Cy)y 937

k=1 g=1

i=4%...,M, 3# i

In most pattemn classification problems, the loss is nil for correct decisions. The
loss could be assumed to be equal to a certain quantity for all erroneous decisions.
Then, Ly; = 1 — 8;5, where

1 ifi=j
&3 _‘{ 0 otherwise ° (9.38)
and
M
ri(x) = 3 (1- &) p(x|Ci) P(Cy) (9.39)
i=1

p(x) - p(x|C;) P(Cy),
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since
M

3" p(xIC:) P(C) = p(x). (9.40)

i=1
The Bayes classifier will assign a pattern x to class C; if

p(x) = PXICP(C)) < p(x) = P(XICHP(C)), 5= 1,2,..., M, j # i, (9.4])
that is,
x € Ci if p(x|COP(C) > px|ICIP(Cy), 5=1,2,..., M, j#i.  (942)
This is nothing more than using the decision functions
di{x) = p(x|C;) P(Cy), i =1,2,..., M, (9.43)

where a pattern x is assigned to class C; if d;(x) > d;(x) ¥V j # i for that pattern.
Using Bayes formula, we get

di(x) = P(Ci|x) p(x), i =1,2,..., M. (9.44)
Since p(x) does not depend upon the class index 1, this can be reduced to
d;(x.) =P(C,-ix), t= 1,2,...,M. (9.45)

The different decision functions given above provide altemative yet equivalent ap-
proaches, depending upon whether p{x|C;) or P(Ci|x) is used (or available). Es-
timation of p(x|C;) would require a training set for each class C;. It is common to
assume a Gaussian distribution and estimate its mean and variance using the training
set.

9.6.2 Bayes classifler for normal patterns

The univariate normal or Gaussian PDF for a single random variable  is given by

2
pla) = _v_z’iﬁ exp [—% (”—;—m) ] ‘ (9.46)

which is completely specified by two parameters: the mean

m = Elz] = /‘” z p(z) dz, (947)

-0

and the variance

o? = E[(z —m)?] = /ao (z — m)? p(z) dz. (9.48)
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In the case of M pattern classes and pattern vectors x of dimension n governed
by multivariate normal PDFs, we have

1 1 -
p{x|C;) = W exp [“E(x - my)TC 7 (x - mi)] ’ (9.49)

i=1,2,..., M, where each PDF is completely specified by its mean vector m; and
its n x n covariance matrix C;, with

m; = E; [x], (950)
and
C: = Ei[(x — m;){x — m;)7]. {9.51)

Here, E;[ ] denotes the expectation operator over the patterns belonging to class Cj.
Normal distributions occur frequently in nature, and have the advantage of an-
alytical tractability. A multivariate normal PDF reduces to a product of univariate
normal PDFs when the elements of x are mutually independent (then the covariance
matrix is a diagonal matrix).
We earlier had formulated the decision functions

di(x) =P(I|C,) P(Cl)y i= 1$2|“-$M' (9.52)
Given the exponential in the normal PDF, it is convenient to use
di(x)} = In [p(xiC;) P(C;)} = lnp(x|Ci) + In P(C;), (9.53)

which is equivalent in terms of classification performance as the natural logarithm In
is a monotonically increasing function. Then [243),

n
2

i=1,2,..., M. The second terrn does not depend upon ¢; therefore, we can simplify
di(x) to

di(x) = In P(C;) ~ = In2m — %m 1Ci| - %[(x -m)TC (x— my)], (9.54)

di(x) = mn P(C;) — -;—ln |C:| — -;—[{x -m)TC M (x - my)), i =1,2,..., M.

(9.55)
The decision functions above are hyperquadrics; hence the best that a Bayes
classifier for normal patterns can do is to place a general second-order decision
surface between each pair of pattern classes. In the case of true normal distributions
of patterns, the decision functions as above will be optimal on an average basis; they

minimize the expected loss with the simplified loss function Ly; = 1 — §;; [243].
if all the covariance matrices are equal, thatis, C; = C, i =1,2,..., M, we get

di(x) = W P(C;) + xTC 'm; — % TC'my, i=1,2,...,M, (9.56)

after omitting terms independent of {. The Bayesian classifier is now represented by
a set of linear decision functions.
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Before one may apply the decision functions as above, it would be appropriate
to verify the Gaussian nature of the PDFs of the variables on hand by conducting
statistical tests [5, 245]. Furthermore, it would be necessary to derive or estimate the
mean vector and covariance matrix for each class; sample statistics computed from a
training set may serve this purpose.

9.7 LOGISTIC REGRESSION ANALYSIS

Logistic classification is a statistical technique based on a logistic regression model
that estimates the probability of occurrence of an event [250, 251, 252]). The tech-
nique is designed for problems where patterns are to be classified into one of two
classes, When the response variable is binary, theoretical and empirical considera-
tions indicate that the response function is often curvilinear. The typical response
function is shaped as a forward or backward tilted *'S”, and is known as a sigmoidal
function. The function has asymptotes at 0 and 1,

In logistic pattern classification, an event is defined as the membership of a pattern
vector in one of the two classes. The method computes a variable that depends upon
the given parameters and is constrained to the range (0, 1) so that it may be interpreted
as a probability. The probability of the pattern vector belonging to the second class
is simply the difference between unity and the estimated value,

For the case of a single feature or parameter, the logistic regression model is given

as
_ _exp(bg + by T)
P(event) = TT explbo F 513)" (9.57)
or equivalently, )
Pevent) = 9.58)

1 + exp{—(bo + b12)]’

where bg and b, are coefficients estimated from the data, and 2 is the independent
(feature) variable. The relationship between the independent variable and the esti-
mated probability is nontinear, and follows an S-shaped curve that ciosely resembles
the integral of a Gaussian function. In the case of an n-dimensional feature vector x,
the model can be written as

1
P (event.) = m, (9.59)
where z is the linear combination
z =bo+b1z1+5232 +“‘+bnzﬂ = (b,x), (9.60)

that is, z is the dot product of the augmented feature vector x with a coefficient or
weight vector b,

In linear regression, the coefficients of the model are estimated using the method of
least squares; the selected regression coefficients are those that result in the smallest
sum of squared distances beiween the observed and the predicted values of the
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dependent variable. In logistic regression, the parameters of the model are estimated
using the maximum likelihood method [250, 245]; the coefficients that make the
observed results “most likely” are selected. Since the logistic regression model is
noniinear, an iterative algorithm is necessary for estimation of the coefficients [251,
252]. A training set is required to design a classifier based upon logistic regression.

9.8 THE TRAINING AND TEST STEPS

In the situation when a limited number of sample vectors with known classification
are available, questions arise as to how many of the samples may be used to design
or train a classifier, with the understanding that the classifier designed needs to be
tested using an independent set of samples of known classification as well. When a
sufficiently large number of samples are available, they may be randomly split into
two approximately equal sets, one for use as the training set and the other to be used
as the test set. The random-splitting procedure may be repeated a number of times to
generate several classifiers. Finally, one of the classifiers s0 designed may bea selected
based upon its performarnce in both the training and test steps.

9.8.1 The leave-one-out method

The leave-one-out method [245] is suitable for the estimation of the classification
accuracy of a pattern classification technique, particutarty when the number of avail-
able samples is small. In this method, one of the available samples is excluded, the
classifier is designed with the remaining samples, and then the classifier is applied to
the excluded sample. The validity of the classification so performed is noted. This
procedure is repeated with each available sample: if N waining samples are available,
N classifiers are designed and tested. The training and test sets for any one classifier
so designed and tested are independent. However, whereas the training set for each
classifier has V — 1 samples, the test set has only one sample. In the final analysis,
every sample will have served (N — 1) times as a training sample, and once as a
test sample, An average classification accuracy is then computed using all the test
results,

Let us consider a simple case in which the covariances of the sample sets of two

classes are equal. Assume that two sample sets, $; = {xi”, vy x;ﬁ)} from class

Cy,and §; = {x?), ...,xﬁ:} from class C; are given. Here, Ny and N, are the
numbers of samples in the sets §; and 32, respectively. Assume also that the prior
probabilities of the two classes are equal to each other, Then, according to the Bayes
classifier and assuming x to be governed by a multivariate Gaussian PDF, a sample
x is assigned to class  if

(x — my)T(x - my) — (x - mz)"(x - my) > 4, 9.61)
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where @ is a threshold, and the sample mean 1, is given by

)
W= 3 = (9.62)

i=1

In the leave-one-out method, one sample x}f’ is excluded from the training set and
then used as the test sample. The mean estimate for class C; without x}, labeled as
1, may be computed as

Ny
- 1 () _ @
M = x;" —x° |, (9.63)

N, -1 J_Zﬂ

which leads to

. N,
xg) Wi = 57 :

- (x}) — 1), (9.64)

Then, testing a sample xi” from Cy can be carried out as

() ~ )T () = aian) = () — 1) T (xf” — thg) (9.65)
N\ ) ) i )
( Ny _1_1) ("in - ml)T(xin —1iy) —- (xil} - Inz)T(x}.“ - xp) > 6.

Note that when xil) is tested, only i, is changed and thy is not changed.
Likewise, when a sample xf) from C is tested, the decision rule is

(xP — )T — 1) — (1) — )T (%P - ) (9.66)
. . N \? . .
= (xf? - i) (x) - ving) - (N, > 1) (x? — 1) T (x{? 1) < 0.

The leave-one-out method provides the least biased (practically unbiased) estimate
of the classification accuracy of a given classification method for a given training
set, and is useful when the number of samples available with known classification is
small.

9.9 NEURAL NETWORKS

In many practical problems, we may have no knowledge of the prior probabili-
ties of patterns belonging to one class or another. No general classification rules
may exist for the patterns on hand. Clinical knowledge may not yield symbolic
knowledge bases that could be used to classify patterns that demonstrate exceptional
behavior. In such situations, conventional pattern classification methods as described
in the preceding sections may not be well-suited for classification of pattern vec-
tors. Artificial neural networks (ANNs), with the properties of experience-based
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learning and fault tolerance, should be effective in solving such classification prob-
lems {247, 248, 249, 253, 254, 253, 256].

Figure 9.2 illustrates a two-layer perceptron with one hidden layer and one output
layer for pattern classification. The network learns the similarities among patterns
directly from their instances in the training set that is provided initially. Classification
rules are inferred from the training data without prior knowledge of the pattern class
distributions in the data. Training of an ANN classifier is typically achieved by the
back-propagation algorithm [247, 248, 249, 253, 254, 255, 256]). The actual output
of the ANN y, is calculated as

J

=f(z wﬂzj*-&f), k=12... K, 9.67)

i=1

where .
xf=f(z W4 xi—ej); J.=1|21---1Ja (968)

and 1

= —— 9.69
(B} ¥ exp(—B) (9.69)

In the above equations, 8; and G‘f are node offsets, w;; and wﬁ are node weights,
@, are the elements of the pattern vectors (input parameters), and I, J, and K are the
numbers of nodes in the input, hidden, and output layers, respectively. The weights
and offsets are updated by

wﬁ(n«l—l) = ﬁ,(n)+q[y;,(1-y;,)(dk—-y;,)}zf+a[wﬁ(n)—wﬁ(n—l)], (9.70)
67 (n+1) = 6§ (n) +nlya(1 -y} ~ ) (= 1) +al8F (n) - 0F (n - 1)], ©O.7D)

ng(n+ 1 = 'ng( n) (9.72)

+ 9 [ (1-=}) Z {ve(1 — ) (de —yk)wﬁ.}] -

+  afw(n) - wu(ﬂ—l)],
and
bn+1) = 6 9.73)
+ n[ #(1~2F) Z {ve(2 — g }(dr -‘yk)w;a}] (-1)
k=1

+ affi(n) - 8;(n - 1)),

where dj are the desired outputs, o is a momentum term, 7 is a gain term, and n
refers to the iteration number Equations 9.70 and 9.71 represent the backpropaganon
steps, with (1 — yk)a: being the sensitivity of gy to w;i, that is, —25,—
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X X, Yk
J
INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Figure 9.2 A two-layer perceptron.

The classifier training algorithm is repeated until the errors between the desired
outputs and actual outputs for the training data are smalier than a predetermined
threshold value. Shen et al. [256] present a leave-one-out approach to determine the
most suitable values for the parameters J, 1, and a.

9.10 MEASURES OF DIAGNOSTIC ACCURACY AND COST

Pattern recognition or classification decisions that are made in the context of medical
diagnosis have implications that go beyond statistical measures of accuracy and
validity. We need to provide a clinical or diagnostic interpretation of statistical or
rule-based decisions made with signal pattern vectors.

Consider the simple situation of screening, which represents the use of a test to
detect the presence or absence of a specific disease in a certain study population: the
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decision to be made is binary, Let us represent by A the event that a subject has the
particular pathology (or is abnormal), and by IV the event that the subject does not
have the disease (or is normal). Let the prior probabilities P{A) and PV} represent
the fractions of subjects with the disease and the normal subjects, respectively, in
the test population. Let T represent a positive screening test result (indicative of
the presence of the disease) and T'~ a negative result. The following possibilities
arise [257]:

& A frue positive (TP) is the situation when the test is positive for a subject
with the disease (also known as a hir). The true-positive fraction (TPF) or
sensitivity 87 is given as P(TH|A) or

. number of TP decisions
" number of subjects with the disease

9.74)

The sensitivity of a test represents its capability to detect the presence of the
disease of concern.

o A true negative (TN) represents the case when the test is negative for a subject
who does not have the disease. The true-negative fraction (TN F) or specificity
85~ is given as P(T~|N) or

_ number of TN decisions
" number of subjects without the disease -

(9.73)

The specificity of a test indicates its accuracy in identifying the absence of the
disease of concemn.

® A false negative (FN) is said to occur when the test is negative for a subject who
has the disease of concern; that is, the test has missed the case. The probability
of this error, known as the false-negative fraction (FNF) is P(T~)A4).

o A false positive (FP) is defined as the case where the result of the test is positive
when the individual being tested does not have the disease. The probability of
this type of error or false alarm, known as the false-positive fraction (FPF) is
P(T+|N).

Table 9.1 summarizes the classification possibilities, Note that
e PNF 4+ TPF =1,
¢ FPF+4+TNF =1,
¢ S =1-FPF =TNF,and
¢ St =1-FNF =TPF.
A summary measure of accuracy may be defined as [257]

accuracy = St P(A4) + §~ P(N), (9.76)
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Actual Group Predicted Group
Nomal Abnormat

Normal S =TNF FPF

Abnormal FNF St =TPF

Table 9.1 Schematic representation of a classification matrix. 5~ denotes the specificity
(true-negative fraction or TV F), FPF denotes the false-positive fraction, FNF denotes the
false-negative fraction, and 8+ denotes the sensitivity (true-positive fraction or TPF).

where P(A) is the fraction of the study population that actuvally has the disease (that
is, the prevalence of the disease) and P(N} is the fraction of the study population
that is actually free of the disease.

The efficiency of a test may also be indicated by its predictive values. The positive
predictive value PPV of a test, defined as

TP
PPV = 100 TPYFP’ 9.77)
represents the percentage of the cases labeled as positive by the test that are actually
positive. The negative predictive value NPV, defined as

TN
NPV =100 TN+ FN’ (8.78)
represents the percentage of cases labeled as negative by the test that are actually
negative,

When a new test or method of diagnosis is being developed and tested, it will be
necessary to use another previously established method as a reference to confism the
presence or absence of the disease. Such a reference method is often called the gold
standard. When computer-based methods need to be tested, it is common practice
to use the diagnosis or classification provided by an expert in the field as the gold
standard. Results of biopsy, other established Iaboratory or investigative procedures,
or long-term clinical follow-up in the case of normal subjects may also serve this
purpose. The term “actual group” in Table 9.1 indicates the result of the gold standard,
and the term “predicted group” refers to the result of the test conducted.

Health-care professionals {and the general public) would be interested in knowing
the probability that a subject with a positive test result actually has the disease: this
is given by the conditional probability P{A|T™). The question could be answered
by using Bayes theorem [245], using which we can obtain

P(A) P(T4)
P{A)P(T+A) + P(N)P{T+|N)

P(AIT*) = (9.79)
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Note that P(T+{4) = 8+ and P(TF|N) = 1 — §~. In order to determine the
posterior probability as above, the sensitivity and specificity of the test and the prior
probabilities of negative cases and positive cases (the rate of prevalence of the disease)
should be known.

A cost matrix may be defined, as in Table 9.2, to reflect the overall cost effective-
ness of a test or method of diagnosis, The cost of conducting the test and arriving at
a TN decision is indicated by C: this is the cost of subjecting a normal subject to
the test for the purposes of screening for a disease. The cost of the test when a TP is
found is shown as C'4: this might include the costs of further tests, treatment, follow-
up, and so on, which are secondary to the test itself, but pant of the screening and
health-care program. The value C'* indicates the cost of an FP result: this represents
the cost of erroneously subjecting an individual without the disease to further tests
or therapy. Whereas it may be easy to identify the costs of clinical tests or treatment
procedures, it is difficult to quantify the traumatic and psychological effects of an
FP result and the consequent procedures on a normal subject. The cost C~ is the
cost of an FN result: the presence of the disease in a patient is not diagnosed, the
condition worsens with time, the patient faces more complications of the disease, and
the health-care system or the patient has to bear the costs of further tests and delayed
therapy.

A ltoss factor due to misclassification may be defined as

L=FPFxC* + FNFxC~. (9.80)
The total cost of the screening program may be computed as
Cs=TPF xCy+TNF xCx+FPFxC* + FNFxC~. (98]

Metz [257] provides more details on the computation of the costs of diagnostic tests.

Actual Group  Predicted Group

Normal Abnormal

Normal Cn Ccr

Abnormal C- Ca

Table 9.2 Schematic representation of the cost matrix of a diagnostic method.

9.10.1 Recelver operating characteristics

Measures of overall correct classification of patterns as percentages provide limited
indications of the accuracy of a diagnostic method. The provision of separate per-
centage correct classification for each category, such as sensitivity and specificity,
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can facilitate improved analysis, However, these measures do not indicate the depen-
dence of the results upon the decision threshold. Furthermore, the effect of the rate
of incidence or prevalence of the particular disease is not considered.

From another perspective, it is desirable to have a screening or diagnostic test that
is both highly sensitive and highly specific. In reality, however, such a test is usvally
not achievable. Most tests are based on clinical measurements that can assume limited
ranges of a variable (or a few variables) with an inherent trade-off between sensitivity
and specificity. The relationship between sensitivity and specificity is illustrated
by the receiver operating characteristics (ROC) curve, which facilitates improved
analysis of the classification accuracy of a diagnostic method [257, 258, 259).

Consider the situation illustrated in Figure 9.3. For a given diagnostic test with the
decision variable z, we have predetermined state-conditional PDFs of the decision
variable z for actually negative or normal cases indicated as p(z]N), and for actually
positive or abnormal cases indicated as p{z|A4). As indicated in Figure 9.3, the two
PDFs will almost always overlap, given that no method can be perfect. The user or
operator necds to determine a decision threshold (indicated by the vertical line) so
as to strike a compromise between sensitivity and specificity. Lowering the decision
threshold will increase T PF at the cost of increased FPF. (Note: TNF and FNF
may be derived easily from FPF and TPF, respectively.)
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Flgure 9.3 State-conditional probability density functions of a diagnostic decision variable
z for normal and abnormal cases. The vertical line represents the decision threshold,

An ROC curve is a graph that plots (FPF,TPF) points obtained for a range
of decision threshold or cut points of the decision method (see Figure 9.4). The
cut point could correspond to the threshold of the probability of prediction. By
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varying the decision threshold, we get different decision fractions, within the range
{0,1). An ROC curve describes the inherent detection (diagnostic or discriminant)
characteristics of a test or method: a receiver {user) may choose to operate at any
point along the curve. The ROC curve is independent of the prevalence of the disease
or disorder being investigated as it is based upon normalized decision fractions. As
alt cases may be simply labeled as negative or all may be labeled as positive, an ROC
curve has to pass through the points (6,0) and (1, 1}.
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Figure 9.4 Examples of receiver operating characteristic curves.

In a diagnostic situation where a human operator or specialist is required to provide
the diagnostic decision, ROC analysis is usually conducted by requiring the specialist
to rank each case as one of five possibilities [257]:

1. definitely or almost definitely negative (normal),
2, probably negative,
3. possibly positive,

4. probably positive,
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5. definitely or almost definitely positive (abnormal).

Item 3 above may be replaced by “indeterminate” if desired. Various values of
TPF and FPF are then calculated by varying the decision threshold from level 5
to level 1 according to the decision items listed above. The resulting (FPF,TPF)
points are then plotted to form an ROC curve. The maximum likelihood estimation
method [260] is commonly used to fit a binormal ROC curve to data as above.

A suminary measure of effectiveness of a test is given by the area under the ROC
curve, traditionally labeled as A,. Itis clear from Figure 9.4 that A, is limited to
the range (0,1). A test that gives a larger area under the ROC curve indicates a
better method than one with a smaller area: in Figure 9.4, the method corresponding
to ROC3 is better than the method corresponding to ROC2; both are better than the
method represented by ROC1 with A, = 0.5. An ideal method will have an ROC
curve that follows the vertical line from (0, 0) to {0, 1), and then the horizontal line
from (0,1) to (1,1), with A, = 1: the method has TPF = 1 with FPF = 0,
which is ideal. (Note: This would require the PDFs represented in Figure 9.3 to be
non-overlapping.)

9.10.2 McNemar's test of symmetry

Problem: Suppose we have two methods to perform a certain diagnostic test, How
may we compare the classification performance of one against that of the other?

Solution: Measures of overall classification accuracies such as a percentage of
correct classification or the area under the ROC curve provide simple measures to
compare two or more diagnostic methods, If more details are required as to how the
classifications of groups of cases vary from one method to another, McNemar's test
of symmetry [261, 262] would be an appropriate tool.

McNemar's test is based on the construction of contingency tables that compare
the results of two classification methods. The rows of a contingency table represent
the outcomes of one of the methods used as the reference, possibly a gold standard
(labeled as Method A in Table 9.3); the columns represent the outcomes of the other
method, which is usually a new method (Method B) to be evaluated against the gold
standard. The entries in the table are counts that correspond to particular diagnostic
categories, which in Table 9.3 are labeled as normal, indeterminate, and abnormal. A
separate contingency table should be prepared for each true category of the patterns;
for example, normal and abnormal. {The class “indeterminate” may not be applicable
as a true category.) The true category of each case may have to be determined by a
third method (for example, biopsy or surgery).

In Table 9.3, the variables a, b, ¢, d, e, f, g, b, and i denote the counts in each
cell, and the numbers in parentheses denote the cell number. The variables C1, C2,
and C'3 denote the total numbers of counts in the corresponding columns; R1, R2,
and R3 denote the total numbers of counts in the corresponding rows. The total
number of cases in the true category represented by the tableis N = C1 4+ C2 4+ €3
= Rl + R2 + R3.
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Method B
Method A Normal Indeterminate Abrormal Total

Normal a(l) b(2) c(3) Ri
Indeterminate  d (4) e (5) F6) R2
Abnormal g (M h(B) i(9 R3
Total C1 C2 C3 N

Table 9.3 Schematic representation of a contingency table for McNemar’s test of asymmetry,

Each cell in a contingency table represents a paired outcome. For example, in
evaluating the diagnostic efficiency of Method B versus Method A, cell number 3
will contain the number of samples that were classified as normal by Method A but
as abnormal by Method B. The row totals B1, R2, and R3, and the column totals C1,
C2, and C3 may be used to determine the sensitivity and specificity of the methods.

High values along the main diagonal {a, e, 7) of a contingency table (see Table 9.3)
indicate no change in diagnostic performance with Method B as compared to Method
A. In a contingency table for truly abnommal cases, a high value in the upper-right
portion {cell number 3) will indicate an improvement in diagnosis thigher sensitivity)
with Method B as compared to Method A. In evaluating a contingency table for
truly normal cases, Method B will have a higher specificity than Method A if a
large value is found in cell 7. McNemar’s method may be used to perform detailed
statistical analysis of timprovement in performance based upon contingency tables if
large numbers of cases are available in each category [261, 262).

9.11 RELIABILITY OF CLASSIFIERS AND DECISIONS

In most practical applications of biomedical signal analysis, the researcher is pre-
sented with the problem of designing a pattern classification and decision making
systemn using a small number of training samples (signals), with no knowledge of the
distributions of the features or parameters computed from the signals. The size of
the training set, relative to the number of features used in the pattern classification
system, determines the accuracy and reliability of the decisions made [263, 264].
One should not increase the number of features to be used without a simultaneous
increase in the number of training samples, as the two quantities together affect the
bias and variance of the classifier. On the other hand, when the training set has a fixed
number of samples, the addition of more features beyond a certain fimit will lead to
poorer performance of the classifier: this is known as the “curse of dimensionality™.
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It is desirable to be able to analyze the bias and variance of a classification rule while
isolating the effects of the functional form of the distributions of the features used.

Raudys and Jain [264] give a rule-of-thumb table for the number of training
samples required in refation to the number of features used in order to remain within
certain timits of classification errors for five pattern classification methods. When the
available features are ordered in terms of their individual classification performance,
the optimal number of features to be used with a certain classification method and
training set may be determined by obtaining unbiased estimates of the classification
accuracy with the number of features increased one at a time in order. A point will be
reached when the performance deteriorates, which will indicate the optimal humber
of features to be used. This method, however, cannot take into account the joint
performance of various combinations of features: exhaustive combinations of all
features may have to be evaluated to take this aspect into consideration. Software
packages such as the Statistical Package for the Social Sciences (SPSS) [251, 252]
provide programs to facilitate feature evaluation and selection as well as the estimation
of classification accuracies.

Durand et al. [167] reported on the design and evaluation of several pattern clas-
sification systems for the assessment of bioprosthetic valves based upon 18 features
computed from PCG spectra (see Section 6.6). Based upon the rule of thumb that
the number of training samples should be five or more times the number of features
used, and with the number of training samples limited to data from 20 norma} and
28 degenerated valves, exhaustive combinations of the 18 features taken 2, 3,4, 5,
and 8 at a time were used to design and evaluate pattern classification systems. The
Bayes method was seen to provide the best performance (98% correct classification)
with six features; as many as §11 combinations of the 18 features taken six at a
time provided correct classification between 90% and 98%. The nearest-neighbor
algorithm with the Mahalanobis distance provided 94% correct classification with
only three features, and did not perform any better with more features.

8.12 APPLICATION: NORMAL VERSUS ECTOPIC ECG BEATS

We have seen the distinctions between normal and ectopic (PVC) beats in the ECG
in several different contexts {see Sections 1.2.4, 542, 5.7, and 9.2.2, as well as
Figures 5.1 and 5.10). We shall now see how we can put together several of the topics
we have studied so far for the purpose of detecting PVCs in an ECG signal.

Training step: Figure 9.5 shows the ECG signal of a patient with several ectopic
beats, including episodes of bigeminy (alternating normal beats and PVCs). The
beats in the portion of the signal in Figure 9.5 were manually labeled as'normals (‘o’
marks) or PVCs (‘x’ marks), and used tc train a pattern classification system. The
training set includes 121 normal beats and 39 PVCs.

The following procedure was applied to the signal to detect each beat, compute
features, and develop a pattern classification rule:
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Figure 9.5 The ECG signal of a patient (male, 85 years) with PVCs (training set)., Each strip
is of duration 10 #; the signal continues from top to bottom. The second half of the seventh
strip and the first half of the eighth strip illustrate an episode of bigeminy. Each beat was
manually labeled as normal (‘0’) or PYC (*x’). The last beat was not processed.
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1. The signal was filtered with a Butterworth lowpass filter of order 8 and cutoff
frequency 70 Hz to remove noise {see Section 3.4.1); the sampling rate is
200 H=.

2. The Pan-Tompkins algorithm was applied to detect each beat (see Section4.3.2).

3. The QRS - T portion of each beat was segmented by selecting the interval
from the sample 160 ms before the peak of the Pan-Tompkins outpus to the
sample 240 ms after the peak (see Figure 5.10).

4. The RR interval and form factor FF were computed for each beat (see Sec-
tions 5.6.4 and 5.7, and Figure 5.10). Figure 9.6 illustrates the feature vector
plot for the training set.

5. The prototype (mean) feature vectors were computed for the normal and PVC
groups in the training set. The prototype vectors are (RR, FF) = (0.66, 1.58)
and (RR, FF) = {0.45, 2.74) for the normal and PVC classes, respectively.

6. The equations of the straight line joining the two prototype vectors and its
normal bisector were determined; the latter is the optimal linear decision
function (see Section 9.4.1 and Figure 9.1). Figure 9.6 illustrates the two lines.

7. The equation of the linear decision function is RR — .56 FF + 11.44 = 0.
The decision rule may be stated as

> 0 normal beat

<0 PVC. ©4.82)

if RR—556FF + 11.44 {

All of the beats in the training set were correctly classified by the decision rule in
Equation 9.82,

Observe from Figure 9.6 that a simple threshold on FF alone can effectively
separate the PVCs from the normals in the training set, A viable classification mle
to detect PVCs may also be stated in a manner similar to that in Section 9.2,2. The
example given here is intended to serve as a simple illustration of the design of a 2D
linear decision function.

Test step: Figure 9.7 illustrates an ECG segment immediately following that in
Figure 9.5. The same procedure as described above was applied to detect the beats in
the signal in Figure 9.7 and to compute their features, which were used as the test set,
The degision rule in Equation 9.82 was applied to the feature vectors and the beats
in the signal were automatically classified as normal or PVC. Figure 9.8 illustrates
the feature-vector space of the beats in the test set, along with the decision boundary
given by Equation 9.82. Figure 9.7 shows the automatically applied labels of each
beat: all the 37 PVCs were correctly classified, and only one of the 120 normal beats
was misclassified as a PVC (that is, there was one false positive).

It should be observed that a PVC has, by definition, an RR interval that is less than
that for a normal beat (at the same heart rate). However, the heart rate of a subject
will vary over time, and the reference RR intervat to determine the prematurity of
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Figure 9.6 (RR, FF) feature-vector space corresponding to the ECG in Figure 9.5 (training
set). Normal: ‘o, PVC: 'x’. The straight line joining the two prototype vectors (dashed) and
its normal bisector (solid) are also shown, the latter is the optimal linear decision function.
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Figure 9.7 The ECG signal of a patient with PVCs (test set); this portion immediately
follows that in Figure 9.5. Each strip is of duration 10 s; the signal continues from top to
bottom. Each beat was automaticaily labeled as normal (*0’) or PVC (“x’) by the decision rule
stated in Equation 9.82. The 10*" beat in the 9*® strip with (RR, FF) = (0.66,2.42) was
misclassified. The last beat was not processed.
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Figure 9.8 (RR, FF) feature-vector space comesponding to the ECG in Figure 9.7 {test
set). Normal: ‘o', PVC: 'x’. The straight line is the optimal linear decision fonction given in
Equation 9.82. The ‘x' mark closest to the decision boundary with (RR, FF} = (0.66,2.42)
corresponds to a false positive classification.
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PVCs needs to be updated periodically. A decision rule as in Equation 9.82 cannot be
applied on a continuing basis even to the same subject. Note that the proposed method
can be extended for the identification of sinus beats {originating from the SA node)
that meet the prematurity condition due to sinus arthythmia but are, nevertheless,
normal in waveshape.

The FF values will depend upon the waveshape of each ECG beat, which will
vary from one ECG lead to another. Therefore, the same decision rule based upon
waveshape cannot be applied to all ECG leads of even the same subject. Furthermore,
a given subject may have PVCs originating from various ectopic foci resulting in
widely different waveshapes even in the same ECG lead. A shape factor to be used
for pattern classification must be capable of maintaining different values between
PVCs of various waveshapes as one group, and of normal beats as the other,

‘The preceding illustration is intended to serve as a simple example of the design of
a pattern classification system; in practice, more complex decision rules based upon
more than two features will be required. Furthermore, it should be observed that a
pattern classification procedure as described above provides beat-by-beat labeling;
the overall diagnosis of the patient’s condition requires many other items of clinical
information and the expertise of a cardiologist.

9.13 APPLICATION: DETECTION OF KNEE-JOINT CARTILAGE
PATHOLOGY

Moussavi et al. [56], Krishnan et al. [57], and Rangayyan et al. {58] proposed a series
of adaptive segmentation, modeling, and pattern classification techniques for the
detection of knee-joint cartilage pathology using VAG signals (see Sections 1.2.13
and 8.2.3). In consideration of the fact that VAG signals are nonstationary, each VAG
signal was first divided into locally stationary segments vsing the RLS or the RLSL
algorithm (see Sections 8.6.1 and 8.6.2). Each segment was considered as a separate
signal and modeled by the forward-backward linear prediction or the Burg-lattice
method (see Section 8.6.2). The model ceefficients or poles were used as parameters
for pattern classification.

A striking difference that may be observed visually and aurally between normal and
abnormal VAG signals is that abnormal signals are much more variable in amplitude
across a swing cycle than normal signals. However, this difference is lost in the
process of dividing the signals into segments and considering each segment as a
separate signal. To overcome this problem, the means (time averages) of the segments
of each subject’s signal were computed, and then the variance of the means was
computed across the various segments of the same signal. The variance of the means
represents the above-mentioned difference, and was used as one of the discriminant
features.

In addition to quantitative parameters derived from VAG signal analysis, clinical
parameters (to be described in the following paragraphs) related to the subjects were
also investigated for possible discriminant capabilities. At the outset, as shown
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in Figure 9.9, knee joints of the subjects in the study were categorized into two
groups: normal and abnormal. The normal group was divided into two subgroups:
normal-silent and normal-noisy. If no sound was heard during auscultation, a normal
knee was considered to be normal-silent; otherwise, it was considered io be normal-
noisy. All knees in the abnormal group used were examined by arthroscopy (see
Section 8.2.3 and Figure 8.2), and divided into two groups: arthroscopically normal
and arthroscopically abnormal.

Labeling of VAG signal segments was achieved by comparing the auscultation
and arthroscopy results of each patient with the corresponding segmented VAG and
joint angle signals. Localization of the pathology was performed during arthroscopy
and the joint angle ranges where the affected areas could come into contact with
other joint surfaces were estimated. These results were then compared with the
auscultation reports to determine whether the joint angle(s) at which pathology existed
corresponded to the joint angle(s) at which sound was heard, For example, if it was
found from the arthroscopy report of a patient that the abnormal parts of the patient’s
knee could cause contact in the range 30° — 90°, VAG signal segments of the subject
corresponding to the angle range of 30° — 90° were labeled as arthroscopically
abnormal; the rest of the segments of the signal were labeled as arthroscopically
normal.

Knee joint

via clinical
obsarvation

Hormal Abnormal

via via
auscultation larthroscopy

Hormal-silent Normal-nolsy

Arthroscopically Archroscopically
normal abnormal

Figure 9.9 Categorization of knee joints based upon auscultation and arthroscopy.

Categorization into four groups as above was done based upon the presumptions
that normal-noisy and arthroscopically abnormal signals might be distinguishable in
their characteristics, and that normal-silent and arthroscopically normal knees would
also be distinguishable. The possibilities of arthroscopically normal knees being
associated with sounds, normal-noisy knees not having any associated pathology,
and normal-silent knees having undetermined pathologies were also admitted. Ki-
ishnan et al. [57] further subdivided the arthroscopically normal and arthroscopically
abnormal categories into silent and noisy categories, thereby having a total of six
categories; this is not shown in Figure 9.9.
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Based on clinical reports and auscultation of knee joints, the following clini-
cal parameters were chosen as features (in addition to AR model parameters) for
classification:

Sound: The sound heard by auscultation during flexion and extension movement of
the knee joint was coded as:

0 silent,
1- click,

2-- pop,
3- grinding, ot
4— a mixture of the above-mentioned sounds or other sounds.

Each segment of the VAG signals was labeled with one of the above codes.
Activity level;: The activity level of each subject was coded as:

1- exercising once per week or less,
2— exercising two cr three times per week, or
3— exercising more than three times per week.

Age: The age of the subject in years.
Gender: The gender of the subject, which was coded as

0~ female, or
1— male.

Among the parameters mentioned above, gender may not be a discriminant param-
eter, however, it is customary to record gender in clinical analysis. Note that among
the four parameters listed above, only the first one can vary between the different
segments of a given subject’s VAG signal.

Moussavi et al. [56] compared the performance of various sets of features in the
classification of VAG signals into two groups and four groups (see Figure 9.9) with
random selections of cases. Using a set of 540 segments obtained from 20 normal
subjects and 16 subjects with cartilage pathology, different numbers of segments were
randomly selected for use in the training step of designing 2 discriminant function,
and finally the selection which provided the best resuit in the test step was chosen
for the final classification system. Two-group classification accuracies in the range
77 — 91% and four-group classification accuracies in the range 65 — 88% were
obtained.

By combining the steps of classification into two groups and four groups, a two-
step method was proposed by Moussavi et al. [56]; a block diagram of this method is
illustrated in Figure 9.10. The algorithm first uses training sets to design classifiers
for two and four groups. The resulting discriminant functions are used as Classifier 1
(two groups) and Classifier 2 (four groups), respectively. An unknown signal, which



AEMARKS 483

has been adaptively divided into segments, enters Classifier 1. If segments spanning
more than 80% of the duration of the signal are classified as being normal, the
signal (subject) is considered to be normal. On the other hand, if more than 90%
of the duration of the signal is classified as being abnormal, the signal (subject) is
considered to be abnormal, If more than 10% but tess than 90% of the signal duration
is classified as abnormal, the signal goes to Classifier 2, which classifies the signal
into four groups (see Figure 9.9). In the second step, if more than 10% of the duration
of the signal is classified as being arthroscopically abnormal, the signal is considered
to be abnormal; otherwise it is considered to be normal. At this stage, information
on the numbers of segments belonging to the four categories shown in Figure 9.9 is
available, but the final decision is on the normality of the whole signal (subject or
knee joint).

The two-step diagnosis method was trained with 262 segments obtained from 10
normat subjects and eight subjects with cartilage pathology, and was tested with 278
segments obtained from a different set of 10 normal subjects and eight subjects with
cartilage pathology but without any restriction on the kind of abnormality. Except for
one normal signal which was indicated as being abnormal over 12% of its duration,
all of the signals were correctly classified. The results also showed that all of the
abnormal signals including signals associated with chondromalacia grades I to 1V
(see Section 8.2.3 and Figure 8.2) were classified correctly. Based upon this result,
it was indicated that the method has the ability to detect chondromalacia patella at
its early stages as well as advanced stages. Krishnan et al. [57] and Rangayyan et
al. {58] reported on further work along these directions.

9.14 REMARKS

The subject of pattern classification is a vast area by itself. The topics presented in
this chapter provide a brief introduction to the subject.

We have now seen how biomedical signals may be processed and analyzed to
extract quantitative features that may be used to classify the signals as well as to
design diagnostic decision functions. Practical development of such techniques is
usually hampered by a number of limitations related to the extent of discriminant
information present in the signals selected for analysis, as well as the limitations of
the features designed and computed. Artifacts inherent in the signal or caused by the
signal acquisition systems impose further limitations.

A pattern classification system that is designed with limited data and information
about the chosen signals and features will provide results that should be interpreted
with due care. Above all, it should be borne in mind that the final diagnostic decision
requires far more information than that provided by signal analysis: this aspect is
best left to the physician or health-care specialist in the spirit of computer-aided
diagnosis.
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VAG signal

|

Classifier i
(2 groups)

Yes more than

90% Normal?

more than
90% Abnormal?

Yes

l

Classifier 2
{4 groups)

more than Yes

10% AA?

Normal Abnormal

Figure 9.10 A two-step classification method for the diagnosis of cartilage pathology. AA
— Arthroscopically abnormal. See also Figure 9.9. Reproduced with permission from Z.M.K.
Moussavi, R.M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, and Y.T. Zhang, Screening
of vibroarthrographic signals via adaptive segmentation and linear prediction modeling, JEEE
Transactions on Biomedical Engineering, 43(1):15-23, 1996, ©IEEE.
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9.15 STUDY QUESTIONS AND PROBLEMS

1. The prototype vectors of two classes of signals are specified as Class 1 : (1,0.5), and
Class 2 ; (3,3). A new sample vector is given as (2,1). Give the equations for two
measutes of similarity or dissimilarity, compute the measures for the sample vector,
and classify the sample as Class | or Class 2 using each measure.

2. Inathree-class pattern classification problem, the three decision boundaries are dy (x) =
—Zy + T2, da(x) =21+ 23— 5, and da(x) = —z2 + 1.
Draw the decision boundaries on a sheet of graph paper.
Classify the sample pattern vector x = (6, §) using the decision functions.

3. Two pattern class prototype vectors are given to you as =1 = {3,4) and 2 = (10, 2).
Classify the sample pattern vecior x = (4, 5) using (a} the normalized dot product, and
(b} the Euclidean distance.

4, Aresearcher makes two measurements per sample on a set of 10 normal and 10 abnormal
samples.
The set of feature vectors for the normal samples is
{(2,8), (22, 20), {10, 14), (10, 10}, (24, 24), (8, 10), (8, 8), (6, 10}, (8,12), (8,12)}.
The set of feature vectors for the abnormal samples is
{(4, 10), (24, 18}, (18, 18), (18, 20), (14, 20}, {20, 22), (18, 16), (20, 20), (18, 18), (20, 18}}.
Plot the scatter diagram of the samples in both classes in the feature-vector space (on a
sheet of graph paper). Draw a linear decision function to classify the samples with the
least error of misclassification. Write the decision function as a mathematical rule.
How many (if any) samples are misclassified by your decision function? Mark the
misclassified samples on the plot.
Two new observation sample vectors are provided to you as x; = (12,15) and x; =
{14, 15). Classify the samples using your decision rule,
Now, classify the samples x; and x3 using the k-nearest-neighbor method, withk = 7.
Measure distances graphically on your graph paper plot and mark the neighbors used
in this decision process for each sample.
Comment upon the results — whether the two methods resulted in the same classification
result or not — and provide reasons.

5. A researcher makes measurements of ftR intervals (in seconds) and form factor (FF)
for a number of ECG beats including (i) normal beats, (ii) premature ventricular con-
tractions {PVC), and (iii) normal beats with a compensatory pause (NBCP). The values
(training set) are given in Table 9.4.

(a) Plot the (RR, F'F) feature-vector points for the three classes of beats on a graph
paper.

(b) Compute the prototype vectors for each class as the class means. Indicate the
prototypes on the plot.

(¢} Derive the optimal linear discriminant functions (or decision functions) as the
perpendicular bisectors of the straight lines joining the prototypes. State the decision
rule(s) for each type of beat.

(d) Three new beats are observed to have the parameters listed in Table 9.5. Classify
each beat using the decision functions derived in part (¢).

6. For the training data given in the preceding problem, compuie the mean and covariance
matrices of the feature vectors for each class, as well as the pooled covariance matrix.
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Normal Beats PV(Cs NBCPs
RR FF RR FF RR FF

0700 15 0600 55 0800 12
0720 10 0580 61 0805 1.1
0710 1.2 0560 64 0810 16
0705 13 G570 59 0815 1.3
0725 14 0610 63 07950 14

Table 9.4 Training set of (RR, FF) feature vectors,

BeatNo. RR FF

1 0.650 5.5
2 0680 1.9
3 0820 18

Table 9.5 Test set of (RR, F'F) feature vectors.

Design a classifier based upon the Mahalanobis distance using the pooled covariance
matrix.

. You have won a contract to design a software package for computer-aided diagnosis

of cardiovascular diseases using the heart sound signal (PCG) as the main soutce of
information. The main task is to identify the presence of murmurs in systole andfor
diastole. You may use other signals for reference,

Propose a stgnal processing system to
(i) acquire the required signals;
(ii) preprocess them as required;
(iti) extract at least two features for classification; and
(iv) classify the PCG signals as:

class 1 — Normal (no murmurs),
class 2 - Systolic murmur,
class 3 - Diastolic murmur, or

class 4 — Systolic and diastolic murmur,

Provide a block diagram of the complete procedure. Explain the reason behind the
apptication of each step and state the expected results or benefits, Provide algorithmic
details and/or mathematical definitions for at least two major steps in your procedure.

Diraw a schematic plot of the feature-vector space and indicate where samples from the

four classes listed above would fall. Propose a framework of decision rules to classify
an incoming signal as betonging to one of the four classes.
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8.16 LABORATORY EXERCISES AND PROJECTS

Note: Data files related to the exercises are available at the siie
fep://ftp.icee.org/uploads/press/rangayyan/

1. The data file ecgpve.dat contains the ECG signal of a patient with PVCs (sec Figures 9.5
and 9.7). Refer to the file ecgpve.m for details. Use the first 40% of the signal as training
data to develop a PVC detection system (see Section 9.12). Develop code to segment
the QRS - T portion of each beat using the Pan-Tompkins method (see Section 4.3.2),
and compute the RR interval, QRS width (see Figure 4.5), and form factor F.F for
cach beat (see Section 5.6.4). Design linear discriminant functions using (i} RR and
QRS width, and (ii) RR and F'F as the features; see Figure 9.6. Analyze the results in
terms of TPF and FPF.

Code the decision function into your program as a classification rule. Test the pattern
classifier program with the remaining §0% of the signal as the test signal. Compute the
test-stage classification accuracy in terms of TPF and FPF.,

2. Repeat the previous exercise replacing the linear discriminant function with the k-
nearest-neighbor method, with k = 1,3, 5, and 7. Evaluate the method with feature
sets composed as

¢ RR and QRS width,
o RRand FF, and
¢ RR, FF, and QRS width.

Compare the performances of the three classifiers and provide reasons for any differ-
ences between them.
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Bayes formula
bias
bilinear transformation
blood pressure
brain

anatomy

waves, see EEG
bundle-branch block
Burg-lattice method
Butterworth highpass filter

Butterworth lowpass filter

C

cardiac cycle
cardiac rhythm
cardio-respiratory interaction
carotid pulse

dicrotic notch

detection

filtering

relation to ECG

relation to PCG
catheter-tip signals

centroidal time
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Index Terms Links

cepstral prediction 366

cepstrum
complex 216 242 366
power 220
real 220 243 341
relation to autoregressive model 346

chondromalacia patella 47

clinical parameters 480 482

cluster seeking 453
K-means 456
maximin-distance 456

coherence 200

coherent averaging, see synchronized averaging

comb filter 130 162
compensatory pause 264
complexity 263
computer-aided diagnosis 55
concurrent processes 61
conduction velocity 9
contingency table 472
convolution
circular 286
linear 286
periodic 286
coronary artery
disease 386
sounds 371
stenosis 371
tree 371
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Index Terms

correlated processes
correlation analysis
correlation coefficient
correlation filter
coupled processes
covariance
covariance matrix
covariance method
CP, see carotid pulse

cross-correlation

cross-spectral density
cumulants

cyclo-stationary signal
D

decision function
decision making
decision rule
decision tree
deconvolution
speech
demodulation
amplitude
asynchronous
complex
synchronous

depolarization
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301

476

476

255
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153
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Index Terms

derivative

three-point central difference

deterministic signal
diagnostic accuracy
diagnostic decision

diastole

dicrotic notch, see carotid pulse: dicroticnotch
differentiation, see derivative

difficulties in signal analysis

discriminant function

distance function

distance measure
Euclidean
Mahalanobis

dot product
normalized

Durbin’s method

dynamic system

E

ECG
12-channel
bigeminy
bundle-branch block
Einthoven’s triangle
exercise
fetal
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Index Terms Links

ECG (Cont.)

filtering 106 111 115 127 130
135 144 162 165

interval series 317

introduction 14

leads 22

maternal 90 165

cancellation 165

myocardial ischemia 40 238 266

P wave 19 178

detection 205 209

pattern classification 474

power spectral density 162

PQ segment 19 178

PVC 21 40 238 244 263
447

classification 474

QRS wave 19 178

detection 183 187 209

relation to atrial electrogram 64

relation to carotid pulse 35 69

relation to PCG 35 62 69

rhythm analysis 222 317 377

RR interval 64 222 264 277 317
377

ST segment 19 178 265

synchronized averaging 95

T wave 19 179

detection 209
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Index Terms Links

ECG (Cont.)
template matching 95
trigger 95 253
waveform analysis 244 248
waves 19 178
Wilson’s terminal 22

echo 218

ectopic beats, see ECG: PVC

EEG 28
alpha rhythm 30 193 448
detection 194 203
power spectral density 295 343
autoregressive model 343
coherence analysis 200
correlation analysis 191
description of a record 182 431 436
electrode positions 28
form factor 262
introduction 28
power spectral density 436
rhythms 30 180
detection 193
segmentation 393 409 418 431
spike 180
spike-and-wave 180 436
detection 200 204
state diagram 436
transients 180
detection 434
waves 180
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Index Terms

EGG
Einthoven’s triangle
electrocardiogram, see ECG
electroencephalogram, see EEG
electrogastrogram, see EGG
electromyogram, see EMG
electroneurogram, see ENG
EMG
envelope
interference pattern
introduction
motor unit firing pattern
muscle force
point process model
relation to VMG
respiration
root mean-squared value
spectral analysis
turns count
zero-crossing rate
energy distribution
moments of
ENG
ensemble averages
ensemble averaging, see synchronized averaging
envelogram
envelope
EMG

extraction
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Index Terms

envelope (Cont.)

PCG

spectral
epoch
ergodic proces
ERP

synchronized averaging
Euclidean distance
event detection
event-related potential, see ERP
evoked potential, see ERP

exponential signals
F

false negative

false positive

feature vector

filter
adaptive
bandpass
Butterworth highpass
Butterworth lowpass
comb
derivative-based
finite impulse response
frequency-domain
generalized linear
Hanning

highpass
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Index Terms

filter (Cont.)
homomorphic
infinite impulse response
inverse
least-mean-squares
lowpass
matched
moving-average
relation to integration
notch
optimal
recursive least-squares
recursive least-squares lattice
selection of
time-domain
whitening
Wiener

finite impulse response filter
form factor
forward-backward prediction
Fourier transform

properties

short-time

frequency response

frequency-domain analysis

frequency-domain filter
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Index Terms

G

Gaussian probability density function
generalized likelihood ratio
generalized linear filtering

glottal waveform

gold standard
H

Hanning filter
heart
anatomy
electrical system
prosthetic valves
sounds, see PCG
valvular defects
heart rate
spectrogram
variability
higher-order moments
higher-order statistics
highpass filter
Hilbert transform
homomorphic deconvolution
homomorphic filtering
homomorphic prediction
human -instrument system
infinite impulse response filter

inner product, see dot product
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Index Terms

instrumentation

integration

inter-pulse interval

interference
maternal
cancellation
muscle-contraction
removal
nonstationary
physiological
power-line

interval series

inverse filter

inverse linear prediction

inverse of a signal

iso-electric segment

K

K-means clustering

knee joint
cartilage pathology
detection
anatomy
arthroscopy
cartilage pathology
crepitus
sound generation model
sounds, see VAG
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Index Terms

kurtosis
L

least-mean-squares filter
least-squares method
leave-one-out method
length transformation
Levinson-Durbin algorithm
likelihood function
linear prediction

inverse

inverse model
logistic regression
loss function

lowpass filter
M

Mahalanobis distance
matched filter
maximin-distance clustering
maximum-phase component

maximum-phase signal

McNemar’s test of symmetry

mean
mean frequency
mean-squared value
median frequency
minimum phase

minimum-phase component
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Index Terms Links

minimum-phase correspondent 241 243
minimum-phase signal 218 355 366
mixed phase 242
mixed-phase signal 355 366
mobility 262
model
all-pole 333
autoregressive 332 333
EEG 343
optimal order 342
parameters 343
PCG 346 380
relation to cepstrum 346
autoregressive moving-average 332 356
electromechanical 371
linear prediction 332
linear system 327
moving-average 332
piece-wise linear 144
pole-zero 332
speech 367
time-varying 396 419 421
modeling 315
modulation amplitude 251
moments
first-order 75 82
of energy distribution 241
of power spectral density 305
second-order 75 82
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Index Terms

morphological analysis
motion artifact
motor unit

firing pattern

recruitment

motor-unit action potential, see MUAP

moving-average filter
relation to integration
MUAP
biphasic
polyphasic
triphasic
muscle contraction
muscle sounds, see VMG
muscle-contraction interference
removal
myocardial elasticity
myocardial infarction
myocardial ischemia

myocyte
N

nearest-neighbor rule
negative predictive value
neural networks
Newton-Raphson procedure
noise

high-frequency

removal
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Index Terms

noise (Cont.)
in ECG
in ERP
low-frequency
removal
removal
structured
nondeterministic signal

nonstationary process

normal equation

notch filter
O

objectives of signal analysis
optimal filter
oto-acoustic emission

outer product
P

Pan-Tompkins algorithm

parametric modeling
Parseval’s theorem
pattern classification
ECG
reliability

supervised
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Index Terms Links

pattern classification (Cont.)

test set 450 476
test step 463 476
training set 450 473 474
training step 463 474
unsupervised 453
VAG 480
PCG 34
aortic component 227
aortic stenosis 282 307
autoregressive model 346 380 386
bundle-branch block 230
coronary artery disease 386
envelope 239 252
first heart sound 35 179 225 279
detection 62 226 380
introduction 34
murmur 37 179 253 259 260
307 448
decision tree 254
spectral analysis 280 346 380
myocardial elasticity 279
myocardial infarction 280
power spectral density 280 282 307 386 400
prosthetic heart valves 308
pulmonary component 227
relation to carotid pulse 35 63 69
relation to ECG 35 62 69
second heart sound 35 179 225 227 279
detection 63 226 380
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Index Terms

PCG (Cont.)
split

segmentation

spectral analysis

spectrogram

synchronized averaging

zero-crossing rate
peak searching
perceptron
periodogram
phase

linear component

unwrapping

phonocardiogram, see PCG

physiological interference
point process

pole-zero model
pole-zero plot

poles

dominant
EEG
PCG
positive predictive value

power spectral density

averaging

Bartlett estimate
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Index Terms Links

power spectral density (Cont.)

ECG 162
EEG 295 436
EMG 321
estimation 287
heart rate 441
moments 305
parameters 302 309
PCG 280 282 301 400
point process 324
VAG 327
Welch estimate 291 296
power-line interference 80 85 87 146 162
removal 130 162
pressure 2
in coronary artery 371
intracardiac 41
probabilistic models 457
Bayes formula 458
conditional probability 458
likelihood function 458
posterior probability 458
prior probability 457
probability density function 75
Gaussian 460
projection 193 282 285
prototype 78 451 476

PVC, see ECG: PVC
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Index Terms

Q

QRS, see ECG: QRS wave
quasi-periodic process

quasi-stationary process
R

random noise
random signal
randomness

test for
receiver operating characteristics
rectification
recursiveleast-squares filter
recursive least-squares lattice filter
reflection coefficient
refractory period
repolarization

resonance frequency

respiration
analysis of

resting potential

rhythm analysis

root mean-squared value
S

screening

searchback procedure
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Index Terms

segmentation
adaptive
EEG
fixed
PCG
VAG
sensitivity
SEP, see ERP
Shanks’ method

short-time analysis

window
signal length

signal-flow diagram

single-motor-unit action potential, see MUAP

skewness
SMUAP, see MUAP

somatosensory evoked potentials, see ERP

specificity
spectral analysis

EEG

PCG
spectral contours
spectral envelope
spectral error measure
spectral leakage
spectral matching
spectral parameters

spectral power ratios
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Index Terms

spectral resolution
spectral tracking
spectral windows
spectrogram
heart rate
PCG
speech
VAG
speech
formants
homomoxphic filtering
introduction
phoneme
pitch
pole-zero model
spectrogram
voiced
spike
spike-and-wave
stationary process
statistical decision
statistically independent processes
Steiglitz-McBride method
stick-slip model
structured noise

synchronized averaging

system identification

systole
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37
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Index Terms

T

tap weights

temperature

template matching

temporal statistics, see time averages
thresholding

time averages

time shift

time-bandwidth product
time-domain filter
time-frequency distribution
time-invariant system
time-variant system
transfer function

true negative

true positive

turning points

turns count

\

VAG
crepitus
filtering
introduction
pattern classification

point process model
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Index Terms

VAG (Cont.)
relation to VMG
segmentation
spectrogram

variance

vibroarthrogram, see VAG
vibromyogram, see VMG
VMG

introduction

muscle force

relation to EMG

relation to VAG

root mean-squared value
vocal tract

vocal-tract response
W

waveform analysis ECG
waveform complexity
waveshape

weighting function
Welch method
whitening filter
Widrow-Hoff algorithm

Wiener filter

Wiener-Hopf equation

Wilson’s terminal
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Index Terms

window
Bartlett
Hamming
Hanning
in short-time analysis

rectangular
Z

zero padding
zero-crossing rate

ZEros
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