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Preface

Enhancing human’s quality of life is the ultimate aim of technology. Newer
technologies are being developed to collaborate into a highly advanced and
sophisticated applications that support the human life and well-being. Innova-
tions in Artificial Intelligence, Electronics, Information Theory, and Wearable
Computing complement each other to provide an arsenal of healthcare services
and biomedical applications. Wireless networks are crucial for the interaction
between these components, thus making it one of digital healthcare’s impor-
tant pillars.

This book is timely as it is published on the verge of two technology
generations. It summarizes the advancements in new wireless technologies
like 5G and LoRaWAN and prepares the readers to what future technologies
like 6G can bring to the healthcare industry. This the right time to identify
what the coming healthcare 5.0 needs from wireless technologies and how its
applications can change and save the lives of many. This identification helps
medical personnel expect the future and wireless technology researchers set
their constraints.

This book is dedicated to address the new advancements in technologies
supporting biomedical applications. The technologies focused on in this book
are mainly wireless such as, Body Sensor Networks, Mobile Networks, Inter-
net of Things, Mobile Cloud Computing, Pervasive Computing, and Wearable
Computing. Other technologies are covered as well such as Articial Intelli-
gence, data mining and deep learning, but all in the context of wireless net-
works for biomedical applications.

This book is divided into 3 main parts where the first introduces healthcare
4.0, its applications and public policies supporting its adoption. It also sets
the scene to be used in the second part. The second part discusses in details
various wireless technologies such as LoRaWAN, LPWAN, and 5G and their
role in enable biomedical applications. The last part focuses on the quality of
the medical data exchanged over the wireless networks.

Jacques Bou Abdo

Jacques Demerjian
Abdallah Makhoul
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1

Healthcare 4.0: Technologies and Policies

Sabine Khalil** and Jacques Bou Abdo?
(1) ICD Business School Paris, France

(2) University of Nebraska at Kearney, USA.
*. Corresponding author.

1.1 Introduction

In 2015, the United Nations (UN) adopted a number of Sustainable Devel-
opment Goals (SDGs) as a universal call for a prosperous life for all human
beings, no matter their location, age or income. One of these SDGs was the
need for all people to have equitable access to good health and well-being.
The healthcare sector relies on doctors, nurses, pharmacists, and their skills.
However, we should also take advantage of technology in order to improve
our healthcare systems. The healthcare sector is expected to grow to $511
billion by 2027, leading to the emergence of healthcare 4.0, which refers to
the transformation of the healthcare industry via Information and Communi-
cation Technologies (ICTs). De facto, the adoption of new technologies could
help governments achieve the UN’s “good health and well-being” goal.
Given the various emerging technologies being implemented today, we fo-
cus in this chapter on the three main systems that we expect to be most
useful for the healthcare sector: Cloud Computing [1], the Internet of Things
(IoT) [2], and 5G communication [3]. The healthcare sector would greatly
benefit from adopting these technologies. For instance, unsustainable health-
care systems could become sustainable by means of emerging technologies. In
addition, cloud computing can allow healthcare workers to access patient data
stored in the hospital’s cloud, providing faster diagnoses and solutions. More-
over, IoT devices can keep track of health indicators such as heart rates, blood
pressure, and oxygen levels. During 2020 we have witnessed the importance of
e-health, as the COVID-19 virus has restricted our movements. Patients are
unable to visit their doctor unless it is an emergency. IoT devices can thus
allow doctors to check on patients and track their oxygen levels for exam-
ple, and identify if they are experiencing any COVID-19-related symptoms.
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Additionally, in order to keep these devices continuously connected, the use
of 5G networks is advised given its various capabilities.

Nevertheless, these new technologies involve patient data. Given that pa-
tient data is extremely critical, it is vital to guarantee its integrity, confiden-
tiality, and anonymity, hence keeping them safe and secure is crucial. Cloud
computing, IoT and 5G communication engender threats to stored data, in-
cluding its security, confidentiality, and privacy. National, regional, and inter-
national policies for the development and regulation of the healthcare sector
are, therefore, becoming highly relevant and increasingly important. In order
to achieve the UN SDG, policies should be implemented in both developed
and developing countries which guarantee the security of all patient data re-
gardless of the country’s level of wealth.

This chapter will thus begin by presenting the three emerging technologies
discussed above, and discuss their potential benefits and risks for the health-
care sector. The second section will highlight the policy challenges affecting
the deployment of healthcare 4.0 in the places where it is needed the most,
such as rural areas and poorer countries. The chapter is then concluded.

1.2 Technology and e-Health
1.2.1 e-Health through Cloud Computing

Cloud computing gained momentum and popularity over the past decade and
has been widely defined in the academic literature. The most commonly-
used definition was presented by the US National Institute of Standards and
Technology (NIST), that describes cloud computing as “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of com-
puting resources (e.g., networks, servers, storage, applications, services, etc.)
that can be rapidly provisioned with minimal management effort” [4]. Simply,
cloud computing represents outsourced shared-resource computing accessed
by clients from a large external data center via the Internet.

Cloud services have gained popularity for many reasons. For example, they
allow users to automatically rent computing capabilities as needed without any
human interaction while providing broad network access and enabling organi-
zations to respond quickly to changes in demand [4]. Various cloud computing
models are described in the literature; however, the three most commonly
adopted ones refer to a layer of services. These encompass the Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS) approaches. We will mostly focus on the SaaS service model, as it is
the most used when addressing the healthcare sector since SaaS represents the
application layer of the cloud environment. SaaS users thus store their data in
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the underlying cloud infrastructure, and use a client interface such as a web
browser or mobile application to access it.

As mentioned in a number of studies (e.g., [5], [6], [7]), SaaS applications
offer users a wide range of advantages, including economic, scalability, perfor-
mance, innovation, agility, usage, and ubiquity benefits. Nevertheless, all new
technology comes with some risks. The main threats associated with SaaS ser-
vices relate to data privacy, security, integrity, confidentiality, management,
and compliance. SaaS for healthcare is designed to handle the many chang-
ing demands of doctors and patients [8]. As healthcare digitization is at its
peak [9], it is critical to address these threats since patient data is highly
valuable.

The adoption of SaaS applications in the healthcare field has given rise to
major privacy concerns due to the sensitivity and importance of patient data
[10]. These concerns constitute major threats to the stability and integrity of
the healthcare environment [9]. According to Chauhan and Kumar (2013) [8],
the two main challenges met when implementing SaaS applications in the
healthcare sector included data security and the non-acceptance of technology
by doctors. The authors [8] found that many doctors were not enthusiastic or
even open to the idea of allowing technology, specifically SaaS applications,
to manage their various operations and other practices. They also affirm that
data security and privacy are the main concerns for the healthcare industry,
since the chances of error increase as data becomes distributed [8].

Data management is also cited as a major threat for SaaS implementation
in the healthcare sector [11], [12], [13]. Patient data needs to be stored and
processed carefully, avoiding any breaches. Rahman et al. (2015) [11] explain
that medical data, including medical reports, digital images, and diagnos-
tic videos, must be managed very carefully. If implemented on a cloud-based
infrastructure, proper data management is key for preserving privacy. Fur-
thermore, the integrity of patient medical information must be protected in
order to avoid any potential harm. Even a small change to a patient’s pre-
scription (e.g., increasing or decreasing a dosage) has the potential to cause
significant harm [12] [13], [14]. Strong data integrity procedures reassure pa-
tients that their medical data is safe and will not be accidentally modified [15].
Additionally, data confidentiality and anonymity, patients need to be guaran-
teed that no unauthorized personnel is able to access their data [16]. Other
authors mention that novel cryptography and encryption concepts could be
implemented [15], [17].

1.2.2 e-Health through Internet of Things

The Internet of Things (IoT) describes physical objects equipped with micro-
controllers, sensors, and receivers that users can communicate and interact
with via the Internet [18]. IoT is widely considered to be an ideal new tech-
nology, emerging to influence Information and Communication Technologies
(ICTs). IoT is anticipated to be an interactive network grouping billions of
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people, machines, and objects via sensors and actuators [19]. Simply, the IoT
connects “living” and “non-living” things through any device connected to
the Internet, anytime and anywhere [20]. Humans have become demanding;
they expect new devices to simplify their daily lives and desire to live in
a smart, highly connected world [21], which increases the popularity of this
emerging technology. The IoT captures important data and shares it with
users through a secure connection. For instance, it has gained rapid accep-
tance in the business and research worlds as “smart” objects use sensors and
actuators, enabling them to perceive their context, collect required data and
communicate with users through the Internet [21], [22].

A myriad of IoT applications have been developed in recent years, in-
cluding connected shoes, scales, pens, cars, thermometers, shirts, and many
other devices. In the healthcare sector, the long list of IoT devices includes
wearable health bands, fitness shoes, smart meters, smart watches, and smart
video cameras. Dependency on the IoT is increasing daily in order to reduce
care costs while improving care access and quality. An underlying principle
in the healthcare sector is the importance of giving people the right care at
the right time. When following this principle through implementing effective
IoT, the healthcare sector will improve patient satisfaction while minimizing
costs [18], [21]. Moreover, findings by the US Institute of Medicine highlight
that human error results in around 400,000 deaths annually, including missed
or delayed diagnoses, failure to order appropriate tests, inability to access
patient medical records and history, and prescription of the wrong medicine
(Institute of Medicine 2003). Implementing automation in the healthcare sec-
tor could help reduce such human error.

The IoT is able to collect real-time data for an unlimited number of pa-
tients and over long periods of time. It helps doctors and patients monitor,
track and record vital medical information via connected systems, devices, and
applications. Smart sensors allow doctors to accurately analyze many health
status indicators, such as blood glucose and oxygen levels, blood pressure,
heart rates. New research has demonstrated that the smart sensors used in
IoT can even be incorporated into pills, and after connection to a network
can monitor the daily dosage levels of medication [22]. Another advantage
of implementing IoT is that it can solve the transparency issue affecting the
healthcare sector. Researchers claim that some physicians are not as trans-
parent as they should be with their patients in terms of money and care [18].
When implementing the IoT, patient history is tracked, providing the most
pertinent and safe treatment. Moreover, the IoT plays a critical role in offering
simplicity and ease to doctors as well as patients.

Even though IoT appears to be an appealing new technology with many
benefits for the healthcare sector, it also generates many potential threats. A
number of researchers have predicted the healthcare sector will be the next
target for cyber-attackers in the near future [23]. If an attacker gains unautho-
rized access to patient data by taking advantage of a hospital’s weak authen-
tication, for example, then patient lives could be put at risk. Attackers could
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easily manipulate a patient’s medical records or even modify their medication.
This could lead to devastating results, including loss of life. Researchers hence
highlight the importance of keeping IoT devices secure and safe [24] as patient
data is sacred, making data breaches highly dangerous. When credit card in-
formation is stolen, clients can simply call the bank to report the incident
and block their card. However, if patient data is exposed, they cannot simply
report it. Healthcare cyber-attacks can threaten patient safety if their medical
history is modified or completely exposed. Moreover, one main issue is the fact
that existing IT security practices might not be appropriate or effective when
dealing with the security issues generated by the IoT. As many researchers
have highlighted, the IoT requires interaction between patients and different
devices throughout the implemented healthcare process [24]. The decentral-
ized approach of IoT might thus constitute an uncontrollable source of threat
for doctors as well as patients [25]. As risks in IoT-based healthcare systems
are increasing, I'T workers must ensure the security, resilience, and robust-
ness of such systems. Other examples of threats that might be caused by the
implementation of the IoT in the healthcare sector including eavesdropping
and identity theft. With these threats come new challenges, such as ensuring
secure management and control of patient data. Some researchers have pro-
posed a framework for safe patient data collection, ensuring their privacy [26].
Through secure signatures and encryption schemes, the authors guarantee
data authenticity and confidentiality enabling the appropriate and efficient
implementation of IoT technologies [26].

1.2.3 e-Health through 5G

5G represents the fifth generation of mobile networks and is the next gen-
eration following the current 4G communication networks. The promises of
5G include higher speeds, larger capacities, and improved network scalability.
The International Telecommunication Union (ITU) emphasized 5G possesses
the following capabilities: Supporting low latency (i.e., 1ms), achieving a data
rate of 10-20 Gbps, enabling massive machine-type communication, and ac-
complishing high network mobility (up to 500 km/h) [3], [27].

An increasing and more effective collection of data is needed today, as
stated by the World Health Organization (WHO) [28]. In 2020, the volume
of available data relating to the healthcare sector has increased to 2,314 ex-
abytes! [29]. In order to take full advantage and satisfy the requirements
of the new IoT services in the healthcare sector, there is an urgent need
for the IoT industry to adopt the 5G network and benefit from its capa-
bilities. Both the professional and academic literature have highlighted the
rich contribution of the medical IoT to patient comfort and healthcare system
efficiency [30], [31], [32]. For instance, “smart” devices implemented in the
healthcare sector are successful if connectivity is provided to every device in

11 exabyte = 1 billion gigabytes
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TABLE 1.1
Comparison between 4G and 5G [32]
. . Performance enhancement
Characteristics ic e
Data rate 0.01-1 Gbps 0.1-20 Gbps
Latency (Control plane) 100 ms 50 ms
Latency (User plane) 10 ms 1 ms
Mobility Up to 350 km/h Up to 500 km/h
Spectral efficiency 1.5 4.5
Energy efficiency 0.1 mJ per 100 bits | 0.1 pJ per 100 bits
Device density 100 k/km” 1000 k/km?

the network. So far, IoT devices have used various communication networks,
including Bluetooth, Wi-Fi, and LTE (i.e., 4G). Nevertheless, it is critical to
have reliable connectivity when dealing with healthcare IoT devices. This re-
liability is promised by the emerging 5G as it ensures effective connectivity to
a large number of devices in a wide range network. In addition, 5G guarantees
a reliable connection to high-speed ambulances, for example, enabling safer
patient mobility and guaranteed access to their medical records. Given that
5G communication presents more benefits than its antecedent, researchers
stress its necessity for the healthcare sector and recommend its implemen-
tation [3], [27]. Table 1.1 lists the ways the 5G network improves on 4G as
presented by Ahad et al. [32].

Nonetheless, adopting 5G communication in the healthcare sector raises
some challenges that need to be addressed carefully. First, it is critical to
guarantee that IoT devices from different domains will be able to interact.
When adopting 5G communication, healthcare systems should thus present
assurances that IoT devices can communicate in extremely dense networks.
Second, given that many IoT devices use batteries, it is important to extend
their battery lives by implementing low-power and low-cost communication
methods [32]. Third, researchers claim that a great deal of data must be
collected in the healthcare sector in order to ensure effective treatments and
analyses [28]. While useful tools to process this abundant data [29] are still
lacking, research has yet to improve the performance of the 5G network. Last,
security remains a challenging issue with 5G communication, as it is critical
to ensure a secure, attack-proof environment to safely implement IoT devices
and maintain patient data confidentiality, anonymity, and integrity [3].

1.3 Policy Challenges

The World Development Report 1993 “Investing in Health” [33] was one
of the first widely-known policy documents focusing on global health. It
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demonstrated that well-chosen public investment in healthcare is not an eco-
nomic drain, but rather an investment in infrastructure for economic pros-
perity and individual welfare [34]. Due to the macro-economic feasibility of
national [35] and cross-border investments [36] in healthcare and e-health,
national, regional, and international policies for e-health development, de-
ployment, and regulation are becoming very relevant and important all over
the world. Low-income and middle-income countries benefit the most from
such policies since the effects of improved health include improved labor pro-
ductivity, education, investment, access to natural resources, and the ratio of
workers to dependents [34].

The main bottleneck inhibiting service expansion is the scarcity of hu-
man resources and well-equipped facilities. Too few physicians are available
to provide medical services, and they are not adequately distributed in rural
areas [37]. Clinics and other facilities in rural areas are under-equipped, and
thus lack the requirements needed to offer an adequate service [38]. Training
sufficient professionals, maintaining a sustainable income for those profession-
als and investing in high-quality medical equipment is not an appropriate so-
lution for satisfying the needs of rural areas since it exceeds government capa-
bilities, especially on operating costs. Insufficient operating budgets will leave
equipment without essential maintenance or upgrades and cause qualified pro-
fessionals to seek alternative work options in other urban areas. Technology-
enabled healthcare provides an adequate solution for providing local health-
care services, with very fast deployment and at a fraction of the operating cost
employing a human would require. Policy-makers are aware of e-health’s vital
importance for the sustainability of rural areas, economies and individual wel-
fare, but there are many challenges inhibiting e-health’s emergence and mass
acceptance.

1.3.1 Trust and Data Privacy

The first challenge is lack of patient trust in the way their personal data
is handled [39]. Policy-makers should impose legally-backed frameworks that
ensure patients keep control over their personal information and have full
visibility over where and why it may be requested [39]. 1.1. Vedder et al. [40]
studied the legal obligation of confidentiality of intermediary parties who have
access to patient data. They argued that a legally-enforceable obligation of
confidentiality extending to all people and institutions involved in e-health
leads to inherent trust in e-health itself.

The EU’s General Data Protection Directive (DPD) for the processing
of personal data specifies that the processing of sensitive data is prohibited
unless the data’s subject has given their consent. Exceptionally for health
data, health professionals have the right to access and process data under the
obligation of professional secrecy [41].

The European General Data Protection Regulation (GDPR) [42] is the
newer version of the DPD which considers, among other topics, issues of trust
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and privacy in relation to personal data. The GDPR’s goes beyond the DPD
in the characterization of an individual’s health status, context, and condi-
tions according to the 5Ps of medicine (personalized, preventive, predictive,
participative, and precision) [43]. The GDPR also requires policies to be for-
mally represented using terminologies and ontologies understandable by the
public and machine-processable [43]. The GDPR relies on the standards ISO
23903 [44], ISO 22600 [45], and ISO 21298 [46] to address the security and
privacy of personal data. Additional technology-specific security and privacy
studies are carried, such as cloud e-health solutions [47].

Trust requires various qualities and dimensions of the trustor, trustee, and
their mutual relationship [40]. Among trustees, reputation, and good past
performance are among the most important factors in traditional healthcare
services. E-health lacks any kind of reputation or past performance history
for many patients, which creates a barrier to entry. Additionally, new factors
are introduced by e-health to the components of trust, such as the technology
used. In other words, the patient needs to trust the service provider and the
technology in addition to their original trust in the physician and the laws
governing their relationship. This makes patients reluctant to move to new
healthcare methods.
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1.3.2 Incentives for Using e-Health

The second challenge is that patients need additional incentives to replace
their accustomed traditional healthcare methods with an e-health approach
[40]. They should be persuaded by e-health’s more advanced efficacy, efficiency,
safety, and ease of use ratios [40]. Additionally, emphasizing trust in e-health as
shown in Section 1.3.1 contributes to incentivizing the use of e-health methods.
Law and policy play a role in incentivizing patients to use e-health through
the following options [40]:

e Impose the use of specific e-health platforms via the command-and-control
function of law.

e Offer specific public and/or private healthcare services solely through elec-
tronic platforms.

e Enforcing relevant obligations that foster trust between patients and
healthcare providers to a degree that makes this mutual agreement risk-
tolerable. Organizing, applying, and enforcing e-health contracts to a de-
gree that ensures e-health methods will be adopted voluntarily.

1.3.3 Responsibility and Evidence

The third challenge is the lack of trust in a machine’s legal responsibility. Pa-
tients usually prefer human-to-human interaction with a trustworthy physician
who will try his best to maintain his reputation and be safe from legal perse-
cution. Machines, on the other hand, are not legally liable for any damaging
incident and the legal responsibility can be very difficult to identify. Neither
the EU nor the US has a legal framework regarding medical malpractice, both
leaving governance in this area to national or state authorities [40].

Care providers have a number of legal obligations towards their patients
whereby the care provider must behave in the same way as any care profes-
sional in the same circumstances [48]. Demonstrating causation between med-
ical fault and injury is complicated, and sometimes ambiguous in traditional
cases of medical malpractice [49]. E-health introduces new players and fac-
tors where treatments involve participation and monitoring from the patients
themselves, multiple physicians, and multiple service providers [40]. E-health
makes assessing causation much more complex and can lead to uncertainty of
causation [50].

Policy-makers and legislators should collaborate to develop a legal frame-
work and make clear where legal responsibility lies in e-health applications.
Researchers have expressed concern that a muddled or ambiguous legal frame-
work can drastically discourage players from implementing and investing in
e-health. Overly-harsh obligations on physicians and e-health providers can
discourage investment and involvement from their side, while weak or unclear
obligations can create distrust from the patient side.
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1.3.4 Spectrum Licensing and Regulation

E-health services are expected to constitute more than 50% of the 5G market
size by 2025 [51]. Although rural regions are most in need of e-health services,
these areas will gain the least benefit from these services. Mwangama et al. [52]
demonstrated that a lack of coherence amongst national regulations is one of
the major obstacles affecting the deployment of 5G-enabled healthcare systems
in Africa. 5G frequencies, for example, span a wide variety of bands and
this poses challenges for the interoperability and adoption of generic e-health
technologies [3].

Poor rural broadband infrastructure is another major challenge making
investment in 5G commercially unsustainable. 5G has been tested during the
COVID-19 pandemic and has played a useful role, providing large-scale e-
health services such as contact tracing. However, even within this pandemic,
manufacturers, service companies and insurers have expressed concerns about
potential legal issues resulting from the use of unregulated services [30]. This
has definitely deterred many from benefiting from services that would have
been available if a legal platform was in place.

5G is designed to serve “crowded urban population centers, campuses,
and factories, requiring high-speed broadband IP data” [51]. Its performance
in rural regions will thus suffer, making 5G investment in rural areas infea-
sible. Additionally, 5G has higher upfront investment costs (mainly CAPEX
investment) compared to other generations of mobile technologies such as 4G
(LTE) [51].

1.4 Conclusion

Healthcare 4.0 is more than just a suite of technologies advancing healthcare
services. It is a tool for promoting social justice, sustainable development and
fairness among all humans. It is also a tool used by governments and inter-
national agencies to counter rural-urban migration. We have demonstrated
in this chapter that healthcare 4.0 offers a range of promising services, and
discussed its benefits in the rural areas and poor countries where it is needed
the most. We then introduced the policy challenges affecting healthcare 4.0’s
adoption and deployment, which included trust and data privacy, incentives
for using e-health, responsibility and evidence, and spectrum licensing and
regulation.
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2.1 Introduction

The fast evolution in microchips and medical sensors allowed the development
of a new Wireless Sensor Network (WSN) area called Body Sensor Network
(BSN) or Wireless Body Sensor Network (WBSN), which enables monitoring
of a single person’s health status to take appropriate action when necessary.
In addition, the management of applications where the surveillance of several
persons is needed, like assessing the status of employees working in hostile
environments or monitoring the performance of sports teams [1], has helped
expanding the BSN scope and the generation of another WSN field named
Collaborative BSN (CBSN).

Both BSNs and CBSNs have recently acquired considerable attention in re-
search due to their wide applications. This chapter presents a general overview
of these two networks. It is divided into two sections: Section 2.2 in which the
general architecture of BSN and its various applications are introduced, along
with the different sensors’ types, characteristics and communication technolo-
gies. Section 2.3 introduces CBSN’s concept and architecture. The differences
between CBSN and other types of sensor networks are also highlighted. In
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addition to discussing its different applications and challenges, this chapter
lists some of the main open research issues in this field.

2.2 BSN Architecture and Technologies
2.2.1 General Architecture

BSNs are formed of small smart sensors that can be placed on or implanted
in the human body. These sensors capture the physiological parameters from
the body and its surroundings, and send them wirelessly through a Personal
Digital Assistant (PDA) or smartphone, known as a coordinator node, to
healthcare providers or medical personnel, to assess the status of the person
and take proper actions [2].

The general architecture of BSN is presented in Figure 2.1.
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FIGURE 2.1
BSN general architecture

2.2.2 BSN Applications

BSNs enclose a wide range of applications in many areas such as healthcare,
sports, military, and entertainment [3]. As shown in Figure 2.2, these applica-
tions are generally divided into two categories: medical and non-medical.

2.2.2.1 Medical Applications

In medical applications, the sensor collect physical characteristics such as
blood pressure, movement, and temperature from the human body to identify
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BSN applications

any malfunction as early as possible and take proper measures before it is too
late. Such applications are generally sub-categorized as implants, wearable or
remotely operated BSNs.

e Implant BSNs: Sensors may be inserted in the human body, either under
the skin or in the bloodstream, to diagnose and control medical conditions
such as tumors, respiratory disorders, and diabetes. For example, several
instruments have been installed in the human body such as insulin pumps,
heart defibrillators, pacemakers, and neuro-stimulators.

e Wearable BSNs: Medical sensors can be placed on different parts of the
human body to be used for different purposes such as:

— Assistance of disabled people: Helping blinds avoid obstacles.

— Performance assessment and status monitoring: In a military envi-
ronment to evaluate the status of a soldier in a battle, or in sports
applications to assess the condition of an athlete during training.

— Detection of anomalies: related to heart beat problems or asthma.

¢ Remotely controlled BSNs: They can be used in different applications
such as:

— Providing Ambient Assisted Living (AAL): BSNs enable self-care
with the help of modern technologies. AAL is mainly suitable for
elderly and disabled people. It can, therefore, be found in hospitals
and smart homes for long-term care.
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— Telemedicine: Health consultation, reminders, and intervention are
some of the services that can be provided through remote healthcare
services.

— Patient monitoring: Keep track of the physical activities of a person
for health status assessment.

2.2.2.2 Non-Medical Applications

We next provide some examples of non-medical applications of BSNs.

e Emotion detection: Analyzing the human emotions through studying
visual and voice evidence. More precisely, wearable sensors are capable of
monitoring body-induced signals. For instance, the respiration and heart
rate increase with fear. Thus, breathing or heart rate sensors may be used
in this case to detect the emotional condition of the individual.

e Secure authentication: Using fingerprints, voice, iris recognition, or any
other physiological biometrics to deliver secured services such as locking
and unlocking smartphones or ensuring safe banking operations.

e Entertainment applications: Sensors may be triggered depending on
the action or attitude of the user, such as turning on an exciting music
while exercising, and a calm music when resting.

e Non-medical emergencies: Warning people in case of a catastrophe,
such as fire or flood risk through gathering data from the environment.

2.2.3 Sensors Types, Properties, and Challenges

Different types of sensors are given in Table 2.1, together with their properties.
We next list the main types of sensors, before indicating the main challenges
that face researchers in this field [4].

2.2.3.1 Sensors Types

e Wearable sensors such as the respiration and the Electroencephalogram
sensors allow to measure the expansion and contraction of the chest, and
to detect anomalies in the brain, respectively.

e Implanted sensors retrieve data from within the body, as it is the case
with a gastrointestinal sensor that helps us identify infections.

e Visual sensors can be placed in the surrounding to measure an area or
return a location.
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TABLE 2.1
Different body sensors types
Sensors Type Description Position
Gastrointestinal . Helps identify gastrointestinal infec- | Implanted
sensor (camera pill) | .
tions.
élr(;s;friﬁzlacicc)lc)hlea Allows hearing by simulating aural | Implanted
nerves. Works by sending the voice
signal to electrodes implanted in the
ears.
é;zf:llz:ig(;tma Captures images, transforms them | Implanted
into electric pulse and send them to
the optic nerves.
Accelerometer Works in a three-dimensional space | Wearable
to measure the acceleration on the
spatial axis.
Blood-pressure Finds the minimum diastolic and | Wearable
the maximum systolic pressures.
Carbon dioxide Measures the level of carbon dioxide | Wearable
ECG/EEG/EMG | Measures the voltage difference be- | Wearable
tween two electrodes placed on the
skin.
Humidity Measures humidity by detecting | Wearable
variations in capacitance and resis-
tivity.
Blood oxygen Measures blood oxygen saturation | Wearable
by analyzing the light that passes
through a part of the human body.
Respiration Captures the expansion and con- | Wearable
traction of the abdomen or chest to
measure the respiration.
Temperature Detects the temperature by analyz- | Wearable
ing the variations in the physical
properties of materials.
Visual Assessing different parameters like | Wearable/
length, area, and location. Surrounding
Pressure Measures the pressure by using | Wearable/
piezoelectric effect of dielectric | Surrounding
medium.
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2.2.3.2 BSN Challenges

e Finding new means to reduce the energy consumption of the sensors and
extend their lifetime, given the fact that a sensor’s battery is very small
since its size does not usually exceed 1 em?.

e Being heterogeneous, they require different energy resources and band-
width. Looking at Table 2.2, we notice an important variation in the data
rate of the sensors [4, 5].

e Try to increase the transmission range of the sensors while avoiding inter-
ference with other nodes of the network.

e They must be self organized. Once a node is attached to the human body,
it should automatically connect to the network.

TABLE 2.2
Sensors data rates requirements
Sensor Type Data Rate
Glucose level 1.6 Kbps
Blood saturation 16 bps
Motion 35 Kbps
EEG 43.2 Kbps
ECG 71 Kbps
Voice 50-100 Kbps
Temperature 120 bps
ECG 288 Kbps
EMG 320 Kbps
Artificial retina 50-700 Kbps
Audio 1 Mbps
Endoscope Capsule 2 Mbps

2.2.4 Sensors’ Wireless Communication Technologies

The sensors’ wireless communication form three different types of networks [6—
8:

e In-body network communication: They transfer data from the im-
planted or wearable sensors to the receiver located outside the body.

e On-body network communication: They transfer data from wearable
sensors (or sink device that gathers data) to a local processing unit.
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e External Network communication: They transfer data remotely from
the coordinator to a back-end server.

We summarize in Table 2.3 the standards used for long and short range
communications between coordinator devices, sensors, and a remote back-
end server. On one hand we can clearly see that short-range radio standards
are used to implement on-body and in-body communication network such as
Wireless Medical Telemetry Service, Bluetooth, and Radio-Frequency Identi-
fication. On the other hand, medium and long-range radio standards are used
to implement external network communication such as Satellite technologies
and WiFi.

TABLE 2.3
Radio communication standards

Communication | In-Body On-Body External Net-

Type work
Description Between differ- | Between coordi- | Between an
ent sensors nator and sensor | external server
nodes and coordinator
Communication Short Short range Medium to long

range range
Radio communi- | Low frequency | Bluetooth, Cellular Net-
cation standard inductive cou- | WLAN, RFID, | works (satellite,
pling, ISM, | Zigbee WiFi, GPRS/
MICS UMTS/ EDGE)
Data format Raw signal Raw signal JSON, XML,

CSV

|

2.3 From BSN to CBSN
2.3.1 Introduction

Technological advancements in low power electronics and the need to monitor
simultaneously several individuals led to the creation of the Collaborative
Body Sensor Networks (CBSNs) field, in which data is collected and analyzed
from several entities. Most of the existing work is related to single BSNs,
and little has been done to cover CBSNs. The underlying architecture and
techniques of CBSNs are still in their early phases. A lot of work is still to be
done in this new field. This section provides a taxonomy of CBSN and a clear
definition of its architecture, concept, and applications. It outlines the open
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problems in this area and underlines the different challenges facing this type
of networks. One of the purposes of this section is to emphasize the unique
features of CBSN and help focusing research efforts towards developing new
algorithms and protocols for solving problems related to this technology.

2.3.2 CBSN Concept and Architecture

Several BSNs nodes can cooperate and exchange data among each other to
reach a common goal, forming a CBSN network. This collaboration leads to
the development of a wide variety of applications such as monitoring the per-
formance of a sports team, supervising the operations of a rescue team, or
keeping track of the health conditions of several individuals. These achieve-
ments would not have been possible without the cooperation between multiple
BSNs [9, 10]. Note that CBSN is part of wireless sensor networks. In partic-
ular, it is viewed as a subset of Mobile WSN. This is because different BSNs
components can freely evolve in the network [11].
Figure 2.3 describes the basic architecture of CBSNs [10].

CBSN BSNi

@ encnane
BN

BSN;j BSNk

. Body Control Unit orSink  <———> BSN intra-communication

B Wireless Sensor «-=3 BSNinter-communication

FIGURE 2.3
CBSN general architecture

A CBSN can be viewed as a graph, where each node is a BSN. We say that a
BSN follows a Multiple Body-Multiple Base Station (MB-MBS) architecture.
On one hand, data from the human body are collected by the wireless sensors
and sent through BSN intra-communication Over-The-Air (OTA) protocol
to the BSN’s own Control Unit (CU). On the other hand, Control Units
communicate among each other via BSN inter-communication OTA protocol
to transfer data to the central Base Station.
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Intra-BSN involves communication within the same BSN, whereas inter-

BSN communication involves sending data between different BSNs.

We mainly distinguish three different types of collaboration in CBSN [12,

13]:

Cooperation-based collaboration: Nodes cooperate among each other
according to the level of contribution to the objective, as it is the case in
collaborative sensing.

Competition-based collaboration: Depending on the nature of the
environment, nodes take part in a competing process, such as scheduling
resources.

Self-organization collaboration: In some special conditions, the coop-
eration process is influenced by on the spot sensing.

2.3.3 CBSN Applications

Broadly speaking, the applications of CBSN can be classified into two cate-
gories [12]:

Collaboration-based WSN: The aim here is to find solutions to WSN
problems, such as enhancing area coverage or minimizing energy consump-
tion.

WSN-based collaboration: In this category, WSN networks cooperate
to monitor specific targets for example, or to locate mobile objects.

We next provide some examples that take advantage of the ability of CB-

SNs to monitor more than one body in order to reach an objective [9]:

Emergency: Keep track of the status of rescue teams in dangerous envi-
ronments, like earthquakes and landslides.

Industry: Keep track of the status of employees working in high-risk
environments, like nuclear plants.

Sports: Keep track of the status of an individual member to assess a
team’s performance, like basketball and water polo players.

Social interaction: Analyze the behavior and interaction between several
people by observing their emotions and reactions.

Entertainment: Develop real-time interactive games that involve several
individuals.

Healthcare: Monitor the health status of several individuals simultane-
ously, like elderly people and patients in emergency rooms.

Military: Monitor the status of a group of soldiers on a battlefield, and
provide them with information to reduce casualties.
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2.3.4 Comparison between BSN and CBSN

Table 2.4 summarizes the main differences and similarities between CBSN
and BSN [7, 14]. It takes into account several criteria such as the architecture
and size of the network, scalability, battery lifetime, latency, and the net-
work topology. We can clearly notice that CBSN is similar to BSN regarding
network heterogeneity, the energy constraints, and the types of the sensors;
although it possesses some unique features such as system architecture (MB-
MBS) and a dynamic topology resulting from the mobility of several people.
Hence the need to investigate further this field to design and implement new
algorithms in order to address the problems raised by CBSN [15].

2.3.5 Major Challenges in CBSN

CBSNs face many more challenges than BSNs. We list below some of the major
problems CBSNs must address to deliver data with high QoS measures:

e High mobility: CBSN is required to monitor multiple bodies that con-
stantly evolve in different directions, leading to an unpredictable network
topology and changing mobility patterns [11]. Therefore, data must be
sent with the lowest possible delay, while reducing energy consumption.

e High scalability requirements: A dynamically changing CBSN may
be composed of thousands of nodes [16, 17]. Therefore, the QoS measures
must cope with a high number of nodes joining the network.

e Coverage and connectivity issues: Many CBSNs applications are de-
ployed in hostile and extreme environments, like underwater, after an
earthquake, or in war zones [18, 19]. Such environments have an adverse
impact on the connectivity between the nodes. A signal might be defused
and weakened before reaching its destination. Different protocols, sensing
methods, and routing algorithms must be proposed to guarantee that data
are properly transmitted and received without important delays.

e Complex security requirements: Security is a fundamental aspect of
QoS metrics in CBSN. It must deal with data protection and privacy to
protect the integrity of the data and keep the information confidential.
Complex security algorithms must be designed and deployed to achieve
these aims.

2.3.6 Open Research Issues in CBSN

The challenges we discussed in Section 2.3.5 open the door to many research
areas. The following presents a summary of the major research issues to
achieve efficient, robust and reliable CBSN.
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TABLE 2.4
Comparison between BSN and CBSN
Requirements BSN CBSN
Latency 10ms Similar to BSN
Data rates Varies from sub Kbps to | Similar to BSN
10 Mbps

Lifetime/battery Months or years Similar to BSN
life

Sensor type

Wearable, implantable,
and mechanical sensors

Similar to BSN

Nodes and battery
replacement
Node size

Challenging, especially
for implanted nodes
Must be light and small

Similar to BSN

Similar to BSN

Network topology

Dynamic due to a single
body movement

Highly dynamic due to
multiple bodies move-
ments

Received Data ac-
curacy

Via node accuracy, ro-
bustness, and QoS sys-
tems

Via node accuracy, ro-
bustness, and complex
QoS systems

Scale/operating
range

Few centimeters to 5 me-
ters

Meters or kilometers

Network size/node
number

Up to 100 devices per
network

Could be several thou-
sands devices per net-
work

Mobility

The nodes follow the
same pattern

Different nodes at-
tached to bodies move
in different directions.

Architecture

SB-SBS architecture:
Sensor, actuator, and
central unit communi-
cate via PDA

MB-MBS architecture:
The BS communi-
cates with its WSs
through an intra-BSN
OTA protocol and
with the BSs of other
BSNs through a set
of inter-BSN OTA
protocols

Scalability

Simple: a limited number
of nodes can be added to
a single body

Complex: Similar to
BSN, but multiple
bodies can join the
network

Environment
conditions

Stable

Dynamic and possibly
hostile environment

29
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2.3.6.1 Sensor Nodes

Some of the research issues concerning sensors in CBSN are listed below [4]:

e Energy control schemes: Reducing the energy consumption of BSNs is
a must. This can be achieved by designing low-power processors, low-power
transceivers, and also by developing efficient energy harvesting methods.

e Fault diagnosis methods: Care must be taken to identify and isolate
any node failure that may negatively impact the QoS of the network. This
can be done by developing efficient fault detection algorithms.

e Node placement schemes: New network topologies could be proposed
to optimize the distribution of nodes in a CBSN; thus reducing their num-
bers and the cost to deploy such networks.

e Wearability improvement designs: Reducing the size of the sensors
as well as preventing any harm to the human body that may result of
long-time use.

e Improved measurement methods: Reduce the noise of the received
data by studying the factors that may affect the wireless transmission,
such as the person’s weight and the position of the sensor on the body.

e Sensor antennas designs: Designing long-range antennas made of bio-
logically compatible materials.

2.3.6.2 Data Fusion

Designing architectures that allow gathering and analyzing raw or prepro-
cessed data transmitted from multiple BSNs is essential to speed up the de-
livery of joint services between multiple BSNs [9]. It is important to develop
new collaborative data fusion schemes to allow processing collaborative data
between BSNs in real-time. Increasing the computational capabilities of the
sensors could be helpful in order to allow them to perform more complex com-
putations [20]. It is also important to reduce the load of the processors [4] by
developing other data gathering schemes, especially that CBSNs cover large
areas and may be deployed in extreme environmental conditions.

2.3.6.3 MAC Protocols

Designing MAC protocols that meet QoS requirements in CBSN. These pro-
tocols must be [21]:

e Highly scalable, with high computational requirements.
e Offer low delay, and have a minimum collision probability.

e Require low energy consumption and be able to minimize delays, over-
hearing, and over-emitting.
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e Highly reliable in large CBSNs environments, so as to meet the QoS stan-
dards.

e Highly flexible when it comes to adding more BSNs to the system.

e Simple to implement, yet meeting the challenges of synchronization re-
quirements in large CBSNs.
2.3.6.4 Routing

In large-scale networks, a node has only a local view of the surrounding nodes.
Furthermore, due to energy constraints, it can only perform small tasks. Thus
the need to develop QoS aware routing protocols to deliver data efficiently
and reliably across the network [22, 23]. We next list some of the major re-
quirements routing algorithms in CBSN must have.

e Possess high routing reliability and adaptability to dynamically changing
networks.

e Possess low congestion probability, and low path latency/delay.
e Possess low energy consumption and minimum cost forwarding.
e Possess noise and collisions reduction/cancellation.

e Be adaptable to network failures when the coverage area of a CBSN is
extended.

e Guarantee temperature and heat control.

e Avoid having a single point of failure by implementing load balancing of
the network.

e Select the appropriate network topology to meet the best QoS for a CBSN.
For instance, make the right choice between a single hop or multi hop; flat,
cluster based, or location based networks.

2.3.6.5 Inter-BSN Communication

Highly adaptive inter-communication models should be designed and imple-
mented to cope with an evolving environment, where nodes are not static and
have to communicate with new neighbors.

2.3.6.6 Coverage and Connectivity

Future research should focus on providing a better coverage for large CBSNs,
a more reliable connectivity between the nodes of a CBSN, as well as deter-
mining the maximum practical network capacity.
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2.3.6.7 Localization and Tracking

Designing and implementing collaborative localization and tracking algo-
rithms is crucial in extreme environments. Locating the exact positions of
injured persons for instance may be difficult due to scattered or diffracted
signals in large and dynamic CBSNs [24]. A possible solution to this problem
consists in developing cooperative and distributed localization schemes [12].

2.3.6.8 Power Supply and Energy Concern

The main concerns related to the energy requirements for CBSNs can be
divided into two parts:

e Collaborative harvesting — Design new schemes where different nodes co-
operate to exchange and balance the harvested energy.

e FEnergy-Aware QoS — Design new algorithms, protocols, and architectures
to help minimize the energy consumption of CBSNs.

2.3.6.9 Security

Securing large and dynamic CBSNs is a daunting task [25]. Reliable security
algorithms must be designed to protect against all types of network attacks to
preserve the integrity and confidentiality of the exchanged data. Cooperative
security investigates method to address these problems. One idea consists in
sending different parts of a message along different paths, then reconstruct
the original message at the destination node. Collaborative security schemes
allow data protection while maintaining low energy cost [22].

2.4 Conclusion

Body Sensor Network is a fast growing research area with many potential
applications in the medical field, as well as in other fields such as computer
security and social sciences. This chapter started with a brief description of
the architecture of BSNs before listing its main applications. Different types
of sensors were also given, together with their characteristics. Due to the need
of monitoring several individuals simultaneously and thanks to the techno-
logical advancements in low power electronics, a new research field emerged.
The second part of this chapter was dedicated to Collaborative Body Sensor
Networks. A comparison between CBSN and BSN showed that on the one
hand they share several features like heterogeneity and sensor types; and on
the other hand CBSNs have unique characteristics such as the system’s archi-
tecture and a dynamic topology. This part emphasized the major challenges
CBSNs are facing. For example, QoS measures strive to cope with a dynamic
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topology that involves thousands of mobile nodes. We concluded this chapter
with a listing of the major open research issues in CBSN that still need to be
explored, from the design of network protocols and architecture, to securing
large-scale and dynamic networks.
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3.1 Introduction

The healthcare sector has entered the era of the Internet of Things, a sector for
which ToT is proving to be of crucial significance. Health wearables supporting
a large variety of sensors able to collect and transmit health metrics [1, 2]
enabling to effectively monitor the patients’ physical health. Such an effective
tele-health service addresses growing healthcare shortages due to a global
aging population, especially in Europe [3], an increase in chronic diseases and
lately a worldwide virus pandemic. The sustainability and equity of health
and social care systems are at risk, unless innovative digitalized solutions are
found, which minimize the need for human-based services and increase the
acceptability of remote and adaptive management health solutions. A cost-
efficient and dense IoT based healthcare system can surrogate the continuous
presence of healthcare professionals, especially in remote areas.

An IoT-based healthcare system comprises mainly three components: the
data collection, the data transmission, and the data analytics. After
surveying main work relative to IoT e-health applications, this chapter will
focus on the middle component, namely the data transmission as many ex-
isting systems are based on the use of relatively costly communication links
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such as 4G/5G or even NB-TIoT [4], the 3GPP LPWAN (Low Power Wide
Area Network) solution. Such networks infrastructure can by oversized and
expensive for typical health metrics, like glucose, blood pressure, and temper-
ature of a person, which can fit in small payloads and be sent at a very small
sampling rate to healthcare centers. Thus, a good candidate to offer low-cost
and low-power communications is LoRaWAN [5]. Patented by Cycleo and ac-
quired by Semtech in 2012, Long-Range (LoRa) is a physical layer that uses
chirp spread spectrum techniques (CSS) to spread a narrow-band signal over 6
orthogonal spreading factors (SF). This astute technique increases the range
of the transmitted signals while reducing power consumption, enabling the
connectivity of thousands of devices with a possible battery lifespan of sev-
eral years. Indeed, a providing sustainable operational lifetime for a wireless
health monitoring infrastructure is paramount and necessitates the inclusion
of energy sources [6]. This is unnecessary in LoRa that maintains patients’
comfort as the technology is battery friendly and can last many years on a sin-
gle charge. Another property of LoRaWAN is the use of the ISM (industrial,
scientific, and medical) band. To ensure fair access within such licence-free
band, LoRaWAN transmissions are restricted to a 1% duty cycle, which is in
line with predominantly uplink and episodic transmissions of health metrics.
Hence, IoT products relying on LoRa-based sensors and gateways (GW) are
particularly pertinent to monitor the increasing number of high-risk patients
in aging societies. Moreover, LoRaWAN is the most efficient means of trans-
porting small amounts of data at distances up to 30km in rural areas and
10km in cities in dense urban and deep indoor environments [7]. Hence, it
can play a pivotal role in providing smart health monitoring and relieving the
elderly from the burden of long trips to visit healthcare facilities.

The rest of this chapter is structured as follows. Section 3.2 summarizes
some related works from the state-of-the-art. In Section 3.3, the system model
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is introduced for an efficient data transmission component through an in-
novative selection of available spreading factors. In Section 3.4, the optimal
formulation for SF selection is sketched. A game theoretic based algorithm
for SF selection is explained in Section 3.5 and a distributed learning-based
approach is sketched in Section 3.6. Simulations and results are presented in
Section 3.7. The chapter is concluded in Section 3.8.

3.2 Related Works

An increasing number of e-health applications are being deployed to send
healthcarers notifications based on resident’s health metrics or even specific
movements if a change from typical behavior patterns is detected [8]. As such,
LoRa-based sensors and gateways are proving to be particularly efficient in
monitoring high-risk patients, and ensuring that health and medical safety are
given adequate priority. In [9-12], the viability of a LoRaWAN infrastructure
to provide reliable health monitoring was attested. Several other works have
used LoRaWAN to provide e-health applications. For instance, LoRaWAN
was used to monitor health indicators such as heart rate, respiration, blood,
and fluid level in [13]. Authors of the study in [9] used LoRaWAN to monitor
patients in locations distant from health centers. The health of athletes was
monitored in [14] via several body sensors.

The efficiency of LoRaWAN in providing healthcare monitoring originates
from its ability to support thousands of IoT devices that efficiently send health
metrics to a central system. Paradoxically, supporting dense deployments can
hinder this success due to frequent collisions and unexpected packet loss.
Therefore, special care must be devoted to the data transmission component
of a LoRaWAN healthcare solution to efficiently exploit the third component,
namely the data analytics. Machine learning-based algorithms that deliver
advanced analytics and insights can raise an alarm if a person is showing se-
rious health-related signs (progressive cognitive decline, fall, virus symptoms,
etc.). Accordingly, several works had recourse to machine learning (ML) to
exploit the data collected by LoRa devices. The work in [15] surveys sensor-
based activity recognition and healthcare through ML. However, missing data
due to frequent packet losses will greatly reduce the reconstruction accuracy
of ML algorithms and capsize the LoRaWAN e-health solution as highlighted
in [16]. Hence, enhancing the data transmission component of a LoRaWAN
healthcare solution is vital.

The attractive features of LoRaWAN also constitute its downsides. The
free ISM band is heavily utilized and different technologies could easily be
co-located with a LoRa network [17]. Further, although LoRaWAN is ex-
pected to support dense deployments comprising hundreds to thousands of
devices within a large area, it suffers from a scalability problem. Transmission
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is possible on one of several channels depending on the country frequency
plans and with one of the 6 available Spreading Factors (SF). A collision will
only occur when two or more devices select, at the same time, the same chan-
nel and the same SF [18]. It becomes inevitable due to random access when
experiencing a shortage of radio resources in dense networks. As a result, an
increase in the number of devices would lead to an exponential increase in
the number of collisions. Devices further away from the GWs would suffer the
most, a significant inconvenience since long ranges are one of LoRa’s strong
points, especially for the e-health context. Legacy LoRaWAN supports an
adaptive data rate (ADR) scheme where each node increases its SF to reach a
GW. Thus, in its default state, each device would be transmitting using the SF
which yields its highest data rate while maintaining connectivity. As a result,
in an expected massive deployment of LoRa devices, neighboring devices will
use the same SF and induce collisions among each other. Hence, smart resource
management is paramount to increase the capacity of LoRaWAN. Nonethe-
less, only resource allocation schemes that reduce drastically signaling with
the access network to offer ultra-long battery lifetimes to LoRa devices are
feasible. Thus, each device must be able to select adequate SF autonomously
with minimal interaction with a central entity (the GW or the central server).
This is paramount as LoRa devices are constrained in terms of calculation,
memory, and battery.

3.2.1 SF Allocation in LoRaWAN

Many research works in the state-of-the-art propose SF selection algorithms
that go beyond the legacy LoRaWAN approach. The authors in [19] pro-
pose to assign SF in a manner that decreases the harmful impact of inter-
ference and the time-on-air per device. With the aim of improving the data
delivery in LoRaWAN, the authors in [20, 21] highlight the shortcomings of
legacy SF assignment techniques and propose algorithms to address them.
The work in [20] proposes to increase the scalability of LoRaWAN at the ex-
pense of a small increase in LoRa devices’ power consumption. In [21], an
SE allocation that stems from an optimization problem aiming to maximize
the probability of delivery is formulated and proved to ameliorate the Packet
Reception Ratio (PRR) in dense LoRaWAN deployments. In [22], the authors
build on the classic ADR strategy by equally distributing the SFs among de-
vices subject to their radio conditions. They show that their proposal, deemed
ExpLoRa-SF, outperforms the legacy SF selection. In [23], the authors pro-
pose a lightweight scheduling algorithm deemed RS-LoRa for SF selection and
transmit power assignment. Their devised algorithm is distributed as devices
choose autonomously their spreading factors based on probabilities depend-
ing on the rate obtained by using a given SF. Also, a few works have recourse
to machine learning to increase the capacity of LoRaWAN, yet in a central
fashion. In [24], the authors use support vector machines and decision tree
algorithms to optimize the SF assignment. They show via simulations that



Related Works 43

their proposal improves the LoRaWAN PRR. The authors in [25] devise an
SF assignment based on equalizing the traffic load on the SFs. They also pro-
pose another algorithm based on ML which uses K-means clustering to relieve
critical transmissions suffering from a significant number of collisions.

3.2.2 Contribution

Few studies in the state of the art consider lightweight and distributed re-
source allocation for LoRaWAN based on machine learning. Recent work on
a distributed selection of radio resources in LoRaWAN had recourse to the
Multi-Armed Bandit (MAB) problem [26, 27]. Each end-device is considered
as an intelligent agent that selects a given SF and/or channel to minimize
its cumulative regret in comparison with the best fixed allocation that ren-
ders the highest reward. There are two types of MAB models: stochastic and
non-stochastic [28]. For the stochastic MAB, the reward of each strategy is
drawn according to a given probability density function. Conversely, for non-
stochastic MAB, no statistical assumptions are made about the generation
of rewards. In particular, adversarial MAB is a non-stochastic MAB where
rewards are chosen by an adversary. This formulation can model any form of
non-stationarity and is hence adequate for autonomous SF selection among
competing devices leading to collisions and packet loss, which in turn, will
shift the expected outcome of the algorithm. In [26], the authors only used
the MAB algorithm to determine the channel selection. The work in [27] has
explored adversarial MAB for resource allocation (power SF, and coding rate)
in an IoT network. However, real physical characteristics of LoRaWAN radios
are overlooked, namely, the capture effect and interference among different
SF's, not rigorously orthogonal in practice. The latter phenomenon will be
coined inter-SF in this chapter. Further, only uniform device distribution is
assumed, which is unrealistic. In this work, non-uniform device distribution
are assumed, where increasing collisions hinder seriously LoRaWAN perfor-
mance.

Part of the results presented in this chapter was published in [29] where
the SF selection by uncoordinated devices is modeled by a well-known adver-
sarial MAB algorithm, the EXP3 (Exponential Weights for Exploration and
Exploitation) algorithm [30]. A novel SF selection algorithm based on non-
cooperative game theory is added to this chapter and deemed SF Selection
game. The EXP3 scheme is shown to be much more efficient in minimizing
the number of collisions, as well as improving the throughput of LoRa net-
works, in comparison with the SF Selection game and the legacy mechanism of
LoRaWAN. Moreover, the learning-based SF selection shows little discrepancy
with the optimal solutions of the centralized SF allocation problem. However,
the SF selection game has the advantage of converging much faster. Finally,
when devices can lower their transmission power, variants are introduced and
demonstrate how energy gains can be realized while maintaining packet re-
ception rates comparable to the case of maximum power transmissions.
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3.3 System Model and Specifications

We consider a LoRaWAN-type network composed of one gateway (GW) lo-
cated at the center of a disc-shaped network of radius R, and N LoRa devices.
To ease the performance assessment and the analysis of packet collision, LoRa
devices have the same packet generation rate of A packets per hour and all
packets have the same length of [ bytes. Let T be the time needed to transmit
a packet using spreading factor SF's. Ty is dependent on the packet size.

LoRa supports SFs ranging from 7 to 12. SF7 produces the highest data
rate but offers the shortest distance, and each of the SF8 to SF12 is trading de-
creased data rate for increased coverage. A collision occurs when two or more
devices select the same channel and spreading factor, simultaneously. However,
perfect orthogonality is not guaranteed, and interference among communica-
tions using different SF, called inter-SF collision, must be accounted for [31].
Furthermore, if there are several signals transmitted with the same SF and on
the same channel simultaneously, the GW is still able to successfully receive
the strongest signal if its SINR is higher than a threshold of 6 dB. This phe-
nomenon is known as the capture effect (CE) [5]. Therefore, when considering
collisions due to selecting the same SF and channel, the impact of the inter-
SF collision and CE are taken into account for their relevance to LoRaWAN
performances. In addition to the selection of an SF and a channel, each LoRa
device chooses a transmission power between 2 dBm and 14 dBm.

LoRa utilizes forward error correction to detect and correct transmission
errors with the coding rate set to 4/(C + 4) where C € {1,2,3,4}. Table 3.1
summarizes the expected data rate, sensitivity, and SNR thresholds depending
on the SFs selected in the 868 MHz band (coding rate C' = 1).

TABLE 3.1
LoRa rates, receiver sensitivity, and SNR thresholds as a function of the SF's

SF Data Rate [kbps] Sensitivity [dBm] SNR [dB]

7 5.458 123 [-7.5,00]

8 3.125 -126 [-10,-7.5]
9 1.757 -129 [-12.5,-10]
10 0.976 -132 [15,-12.5]
11 0.537 -134.5 [17.5,-15]
12 0.293 -137 [-20,-17.5]

As LoRaWAN uses pure ALOHA as a channel access scheme. The duty
cycle in the LoRa band is limited to d=1%. As such, the packet generation
rate must verify AT <d. LoRaWAN supports multiple frequency bands within
the unlicensed bands of 433, 868, and 915 MHz. In Europe, the 868 MHz band
is used with the 125, 250, and 500 kHz bandwidth channels.

For simulations, the propagation model in [31] is adopted to generate a
small scale network where the signal range attains 4.5 Km. This model suits
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this work purpose in obtaining a high device density akin to that of LoRaWAN
while using a relatively small number of devices (N = 100).

3.4 Optimization Problem for SF Selection

In this section, we provide a mathematical formulation of the problem of
selecting SFs that maximize the throughput under some fairness conditions.
The total normalized channel traffic load per spreading factor SF's is:

Gs=(A-ps - N+ A)T; (3.1)

where N is the number of covered devices and p; is the proportion of devices
using SF s. External traffic (e.g. from devices belonging to a different operator)
of intensity AS packets/s is also assumed to exist on the SF s.

The normalized ALOHA throughput on each SF can be expressed as
Gy exp(—2G,), and as such the total normalized throughput in the network
becomes T = 25:1 Gs exp(—2Gs).

The problem of finding the optimal SF selection ratios p; is formulated as:

S
Maximize Z log(Gs exp(—2Gy)) (3.2a)
Ps —
S
Subject to Zps <1, (3.2b)
s=1
s s N
o<y Wk Vs=1,..,5. (3.2¢)
k=1 k=1

The logarithmic function in the objective in (3.2a) enforces proportional fair-
ness in the throughput among the different spreading factors. The constraint
in (3.2b) ensures that the total amount of devices spread on different SFs does
not exceed their number. The constraint in (3.2¢) indicates that the percent-
age of devices utilizing a given SF's does not exceed Ny = N - p,, which is the
number of devices capable of using SF's and higher. Note that s = 1 represent
SE7 and so on.

3.5 Spreading Factor Selection Game in LoRaWAN

Each LoRa device is considered as an intelligent agent that needs to choose an
adequate spreading factor SF's or equivalently a strategy s = {SF's}. Let S =
{SF7,...,SF12} be the set of spreading factors and S = |S|. Non-cooperative
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game theory models the interactions between players competing for a common

resource. Hence, it is well adapted to SF selection by independent end-devices.

A multi-player game G is defined between the N LoRa devices. The latter are

assumed to make their decisions without knowing the decisions of each other.
We present the framework of game G = (N, ,U) described as follows:

e The set N is the set of the N LoRa devices, hence the set of players.

e The strategy of device ¢ is denoted by the vector p;, whose components are
Di,s, is the probability for device i of choosing SF's. Hence, p = (pi)ien €
is a strategy profile, and =; X...xy is the space of all profiles, where

i =1{pi = (pl,i .- ~ps’i) c Rs,such as me <land0<p,, <1,VseS}
SES

e A set of utility functions {U;, Us, ..., Ux } quantifies the players’ preferences
over the possible outcomes of the game.

Utility function: Recall that Ny, = N X p, is the expectation of the
number of devices that can select SF's and above. Accordingly, the number of
such devices at time ¢ can be written as Ny(t) = Zf;l L {device i uses SFs at t}-
Hence, the instantaneous G4(t) in (3.1) becomes:

N
G (t) = ()‘ ' Z ]l{device i uses SFs at t} =+ Ai (t)) - T (33)

i=1
The instantaneous normalized throughput per device is defined as follows:

GS,i(t) = (>‘ : Il-{device i uses SFs at t}+
N

A Z II-{device i’ uses SF's at t} + )‘2 (t)) T (34)
i'=1,i"#i

Hence, the mean normalized throughput per device is derived as:

Geoi =E[Goi(t)] = (A pei+ A+ D> peir + AT (3.5)
i'=1,i'#i

where psi = Pldevice i uses sFs } and E[AS(t)] = AS as the system is supposed
to be in a stationary regime. Consequently, the utility per device is as follows:

U = ng Gy exp(—2Gs,)) (3.6)

Each device will seek selfishly to maximize its own utility function U; by
choosing an adequate strategy (i.e, distribution probability p; = (p;s,s € S)
on available SFs).
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The Nash Equilibrium: In a non-cooperative game, an efficient solution
is obtained when all players adhere to a Nash Equilibrium (NE). A NE is a
profile of strategies in which no player will profit from deviating its strategy
unilaterally. In the devised game G, for every device ¢, U; is concave w.r.t. ps;
and continuous w.r.t. p,;,Vj # i € N, Vs € S. Hence, a Nash equilibrium
exists [32]. Furthermore, U; is strictly concave w.r.t. p,;,Vs € S, hence the
method of best response dynamics converges to NE. Thus we propose an im-
plementation of best response dynamics where, at each iteration ¢, device 4
strives to find the following optimal SF distribution as a response to p_;(t—1),
that represents the choices of other devices:

p; (t) = argmax U;(ps, p—;), subject to p; €; (3.7)
Pi

which amounts to the following optimization problem:

Maximize U;(p;, p—;) (3.8a)
pi
subject toZps,i <1, (3.8b)
s€S
0<ps; <1, VseS. (3.8¢)

The problem in (3.8) is convex as the objective function is concave in p; ;, Vs €
S and the constraints are linear.

SF probability distribution at equilibrium The optimum p; of the
convex problem (3.8) must satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions, i.e., there exists a unique Lagrange multiplier 5 > 0 such that:

L BV, (fip) =0, Vs €5, (3.90)
Bfi(pi) =0, (3.9b)
0<ps;i<1,VseS, (3.9¢)

where fi(p;) = 1 =, gps,i- Thus, according to (3.9a), the probability of
selecting SF's is p,; = Erww:h Vs € §. Note that all probabilities are equal for
a given LoRa device i at equilibrium. Finally, according to (3.9b): if 3 > 0,
Y scsPsi = 1 at optimality and hence, as all probabilities are the same,
the following result is obtained: ps; = 1/5,Vs € S. Otherwise, if 5 = 0,
Ps;i = 1/2),Vs € S. Further, as ) | s psi < 1, the following inequality S < 2\
needs to be met, which is unrealistic. Hence, the SF selection game amounts
to a choice of spreading factors through an uniform distribution.
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3.6 Distributed Learning for SF Selection in LoRaWAN

A fully distributed learning-based algorithm suitable for LoRaWAN is de-
scribed briefly. More details are found in [29]. Each LoRa device is consid-
ered as an intelligent agent that needs to choose an adequate spreading fac-
tor SFi or equivalently a strategy s = {SFi}. S is again the cardinal of
S = {SF7,...,SF12}. Two settings are considered, one where devices are
unaware of their position and channel conditions, and thus ignore their mini-
mal SF, and another where they know their position and hence the exact set
of feasible strategies (deemed position-aware). Accordingly, the strategy space
of any device is S in the first case, and &’ C S for the second case. At each
iteration ¢ (at packet arrival), device i selects a strategy s(t) governed by some
distribution g ;(t) over S or &', which yields a reward rs ;(t) € {0,1}.

wi(t+1) n

, — (st
walt+1) =0 7)zf:lwg(zur1) S

where the weights are ws ;(t + 1) = ws;(t) exp ( e (tt))) o Z _ 1 ws,i(t),

Y = min {1, 1/ %(ST)} and T is time horizon for the algorithm.
Successful packet transmission (detected thanks to acknowledgments of

the GW) yields r4(t) = 1. In case of packet loss, rs(t) = 0. Such kind of
learning can be applied through MAB method(s) [28] that only makes use
of local information available at the LoRaWAN end-device level (received
ACK). The output of the application of the devised algorithm in each device
will be a set of SFs that experience the least collisions. To reduce the resource
occupation of neighboring devices, each device follows a set of rules to strike
a good balance between (i) Exploiting the cumulated knowledge by choosing
the most appropriate SF's to transmit on, and (ii) Exploring other SFs that
could turn out to be interesting to exploit. As the distributed selection of
the best radio resources by competing uncoordinated devices is appropriately
modeled by adversarial MAB, the EXP3 algorithm [33] is employed.

3.7 Experimental Evaluation

A discrete-event simulator in Python called LoRa-MAB simulator [29] is de-
veloped to investigate the performances of LoRaWAN enhanced with our dis-
tributed learning-based solution for resource allocation. The LoRa-MAB sim-
ulator is a flexible simulation tool that captures specific LoRa link behavior for
multiple network settings with the impact of capture effect (CE) and inter-SF
collision. A simple setup is adopted where N = 100 devices transmit packets
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to one GW. For each experiment, the time horizon for simulation is 7" = 107.
The 1% LoRaWAN duty cycle limitation [5] is respected by setting the packet
generation rate of each device to A = 15 packets/hour and the packet length
[ = 50 bytes. Packets are generated through an exponential distribution. LoRa
devices are located in a disk with radius r = 4.5 km with either uniform or
non-uniform distributions. In simulations, the log-distance path loss model is
considered with flat fading, where the reference distance is dy = 40m, the
path loss at distance dy is PLy = 107.41 dB, and the path loss exponent is
v = 2.08. Other simulation parameters are presented in Table 3.2.

TABLE 3.2

Parameters for performance analysis
Parameters Values
Packet length 50 bytes
Bandwidth (BW) 125 kHz
Code rate 4/5
Frequency set 868100 Hz

Capture Effect Threshold 6 dB
Transmission Power levels [11, 12, 13, 14] dBm

Performances are evaluated, focusing on comparison of the reinforcement
learning based algorithm, the SF Selection game, the optimal SF selection, and
LoRaWAN legacy mechanism. The performance indicators are the Packet Re-
ception Rate PRR, the total normalized throughput 7 and the average energy
consumption per successfully transmitted packet per device. As for the scenar-
ios, two sets of results are displayed: uniform and non-uniform distribution of
LoRa devices as can be seen respectively in Figures 3.2(a) and 3.2(b). For the
non-uniform distribution of LoRa devices, a region is selected to be crowded
at random (in simulation results, the selected region is that of minimal SF
SF10) while keeping the total number of devices set to N = 100.

3.7.1 SF Selection Game vs. EXP3

In this subsection, the rate of successfully received packets, and the total
normalized throughput 7 are evaluated. In order to gain more insight on the
impact of intelligent devices with learning SF capabilities on the performance
of LoRaWAN, three scenarios are considered with three different ratios of
intelligent devices where 0%, 50%, and 100% of devices use EXP3 for their SF
selection. The devices that do not apply, adopt either the SF Selection game
or a RANDOM strategy for initial SF selection then apply legacy ADR.
Figures 3.3(a) and 3.3(b) show the packet reception rate PRR for the net-
work in presence of capture effect and inter-SF collision, respectively with a
uniform and non-uniform distribution of devices. Note that the system PRR
with distributed learning is significantly increased compared to the SF Se-
lection game and the legacy scheme. In addition, the larger the number of
intelligent devices using distributed learning, the higher the packet reception
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Network configuration (left: uniform distribution of LoRa devices, right: non-
uniform distribution of LoRa devices)

rate. Note that taking into account CE is essential for the legacy ADR and
the SF selection game with non-uniform device distribution as it shields the
network from increased collisions. Finally, note that the SF selection game
performs better than ADR.

Figures 3.4(a) and 3.4(b) display the average normalized total throughput
of LoRaWAN, with uniform and non-uniform device distributions, obtained
with the solution of the optimization problem in Section 3.4, the SF selection
game and the learning-based EXP3 algorithm. Note that the EXP3 algorithm
shows small discrepancy with the optimal solution when all devices are in-
telligent. Further, in the non-uniform device distribution, the performance
enhancement is increased by taking into account the inter-SF collision. The
SF selection game is not as efficient as the EXP3 with a loss of around 14% in
comparison with the optimal problem. However, it has an undeniable advan-
tage in terms of speed of convergence in comparison with the smart EXP3.

3.7.2 Energy Efficiency in LoRaWAN

In this subsection, devices are given the possibility to reduce their power
consumption by transmitting at 4 power levels {11,12,13,14} dBm. This is
paramount in an e-health LoRaWAN system that should be battery friendly.
A simple random uniform distribution is used for the power selection and is
coined “RANDOM” when devices have no information regarding their position
and hence their feasible power and SF, and “POSITION AWARE” when LoRa
devices have information about their distance to the GW, and hence know
their feasible transmission power and SF sets. Furthermore, in figures, we
denote by “100nodes_” the scenario where all N = 100 devices use the EXP3
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algorithm for the SF selection, in comparison with the scenario where all
devices use the SF selection game. Finally, “l1power” means devices transmit
at one power level (maximum power level 14dBm), and “4powers” means
devices have at their disposal 4 power levels. The PRR with uniform and
non-uniform device distributions, is represented in Figures 3.5(a) and 3.5(b).

The system packet reception rate with distributed learning algorithm for
selecting radio resources is much higher than other schemes as expected. Fur-
ther, the system packet reception rate of the EXP3 algorithm at full power
is close to the case where devices can transmit at lower transmission power
levels. Note that the PRR is higher in the non-uniform device distribution
except for the legacy approach that is oblivious to increased collisions due
to the cluster of devices. Finally, note that reducing the set of strategies by
removing inefficient strategies is very beneficial to the SF selection game.

The energy consumption is addressed by Figures 3.6(a) and 3.6(b), where
the average energy consumption per successfully transmitted packet per device
in Joule is displayed. As seen in the numerical results, the average amount of
energy consumed with the distributed learning algorithm is much lower than
the other schemes. Moreover, as expected, when 4 transmission power levels
are available, the energy consumed is lower than the case with only maximum
transmission power.
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3.8 Conclusion

In this chapter, the relevance of LoRaWAN as a data transmission technology
for e-health monitoring services is investigated. The state-of-the-art in that
scope was overviewed and emphasis was put on work that leveraged machine
learning to increase the reliability of LoRaWAN. Our work was presented: a
distributed and lightweight learning was used to improve resource allocation
in realistic network settings that account for the capture effect, interference
among different spreading factors, and non-uniform LoRa devices distribution.
In such realistic settings, the ability of intelligent learning-based algorithms
to increase packet reception rate is evidenced, alongside their capability to
reducing energy consumption, which is essential for battery constrained e-
health applications.

|
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4.1 Introduction

Natural disasters are various and involve natural elements such as earthquakes,
volcanoes and floods. The latter require efficient estimation and management
and have gained enormous attention by the hydrologists, water resources en-
gineers and the research community. Floods highly impact life of civilians in
which people risk to drown in water without any ability of communicating
with the outside world. In this context, the role of flood managers is highly
important to rescue people who are trapped in the water without risking their
lives. This can be done with rapid detection and efficient assessment of the
disaster happening in real-time.

Upon detection of an accident, flood managers should have precise knowl-
edge of hydrological factors related to floods before taking any decision in
launching and managing rescue operations. The risk management team abso-
lutely needs to recognize the precise state of the environment in question as
well as the different hydrological characteristics of floods in order to put in
place the safest and most efficient intervention plan. For this manner, real-
time automatic detection and location of people trapped in flooded areas is
essential. Moreover, the recognition of the environment situation and health
assessment is mandatory before launching the rescue plan. All-time transmis-
sions should be supported in a very efficient manner regardless of weather
conditions. Numerous statistical models, such as random forest and neural
networks, exist to estimate the hydrological characteristics of water flows from
particle images. Similarly, algorithms for automatic detection based on radio-
metric criteria, color, textures are used to localize trapped people in rural
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areas. However, each one of the cited algorithms is applied under specific
and unrealistic conditions and justify the need for developing a specific al-
gorithm to dynamically manage health assessment in water environments by
professionally analyzing images taken by amateurs like the one extracted from
youtube videos.

To be able to guarantee efficient risk assessment in maritime conditions,
any application should be joint with transmissions supporting long range
connectivity with central base stations on the land. Satellites are generally
adopted for this kind of communications to ensure transmission and cover-
age over high seas. Nevertheless, this solution has many drawbacks in terms
of cost and power consumption. Therefore, Low Power-Wide Area Network
(LPWAN) technologies has gained momentum due to its ability to cover large
transmission distances while minimizing end-node’s power consumption. This
position LPWAN technology as one potential option to perform specific wire-
less transmission tasks such as telemetry, boat tracking and data collection
from water monitoring systems.

In this chapter, we explore the importance of adopting LPWAN technology
in water environments to enable dynamic health assessment. Section 5.3 firstly
presents an overview of water environments application domains. In Section
5.4, we review real-time monitoring systems suitable to detect events such as
navigation discovery and assessment of survivors health conditions. In Section
5.5, we discuss the advantages that LPWAN technologies bring to IoT in water
environments. The performance of each technology is evaluated and compared
in Section 5.6 using simulations depicted over a realistic water-based scenario.
Finally, Section 4.6 concludes the paper.

4.2 Application Domains in Water Environments

Floods are regular disasters that cause for the enormous damage and the great-
est economic losses around the globe. Flood disaster monitoring is composed
on many sections. Due to this event, first part of monitoring system involves a
precise representation of the environment and damage estimates. Second and
most important in the flood system monitoring is victims from flood disas-
ter monitoring. This part consists of identifying and locating victims in flood
disaster. Hence, we need to identify the geographical location of the detected
human body and find optimal access to them. This is mainly based on an
algorithm or route optimizing tools. To be effective, all information given by
the system have to be transmitted in real time to a mobile terminal (smart-
phone or tablet) in order to make search and rescue more efficient, reduce
costs and save lives. In this section, we review water-based systems involved
in managing first aid and water monitoring operations.
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4.2.1 First Aid Operations

When a flood disaster happens, the first task that should be done is to rapidly
try to save the lives of those trapped in the affected areas. The key of each
successful rescue mission is the time spent to detect the victims in the flooded
affected areas. In this context, collecting data of humans body using medical
sensors [7] can be widely useful to collect their psychological and forward to
the coordinator acting as a gateway in body sensor networks (BSNs) [16].
Moreover, search and rescue (SAR) models represent an additional applica-
tion that depends on a map continuously updated in which the location of the
victim is dynamically estimated. One example is Wilderness search (WiSAR)
which can create detailed probability maps [15]. In this context, several proba-
bility maps are compared [16] for many historical WiSAR incidents. The larger
the search area, the longer it takes to complete the scanning phase. There-
fore, limiting the search area improves the time of search and increases the
chance of rescue. However, estimation of parameters (water speed, water level,
etc.) may often be impossible due to the lack of search and rescue databases
for a given area. Therefore, Machine Learning techniques can be useful when
studying and estimating parameters of events like Ljubljana Moor floods in
September, 2010 [30] using satellite images, digital terrain model (DTM) and
hydrological network. Flooded areas were obtained from a spectral analyses
of Rapid optical image with spatial resolution 6,5 meters. However, there was
a limit linked to the quality of the satellite image caused by cloud cover. Dif-
ferent data were combined in order to train models by machine learning on
Weka [25] and Clus [22] softwares. Furthermore, first aid operations were also
evaluated in others use cases such a fire launch for example. The localization
of such event can be realized over unmanned aerial vehicles (UAVs) [6]. To
improve the detection mechanism, probabilistic model based on the tempera-
ture proved to be efficient in dynamically localizing the forest fire. One final
application is the STERRA (Surveillance for Intelligent Emergency Response
Robotic Aircraft system) for fighting wildfires [10]. In the latter, a UAV sys-
tem is deployed that gathers real-time data for fire-fighting and enables the
opportunity for the user to fix the departure point of research.

4.2.2 Monitoring Floods

In various countries, monitoring floods present a major challenge for the local
authorities. In this context, traditional techniques are generally in direct con-
tact with water using floater devices and submerged ultrasound sensors. This
is why those techniques do not operate satisfactorily due the high risk of being
taken away during floods. To overcome this challenge, applied particle image
velocimetry (PIV) can be adopted to estimate surface flow velocities [1]. The
latter values are used as input for a hydraulic model using kinematic princi-
ples to estimate three dimensional flow for discharge estimation [3]. Moreover,
LS-PIV [18] is an extension of PIV method for large scale PIV which can be
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applied to natural-scale flow images that are larger than those simulated in
the laboratory. One utilization of LSPIV method is to calculate discharges
by using water surface and averaged depth velocities [20]. The advantage of
choosing LSPIV is the ability to calculate surface velocities and flow discharge.
However, it requires strict conditions to ensure good performance results. Ad-
ditionally, LSPIV can be used to analyze flood video recorded under non-ideal
conditions [9]. The latter is characterized by movements (translation and ro-
tation) of the camera during recording. Furthermore, the calculation process
of surface velocity and discharge need to precise the coordinates of 6 ground
reference points (GRP) at minimum, in both object/real landmark (X, Y,
Z) and image landmark (x,y) coordinate system. This assume that the back-
ground of the images is not variable, and it is supposed to be the same for
all images sequence. In addition, GRP points must be adequately distributed
around the area of interest, which is the area of watercourses. PIV and LS-
PIV are two variants of the optical flow method. Unlike optical flow, PIV and
LS-PIV depend on tracers for target tracking. This is not adapted with home
video applications because of its dependence on data that must be measured
carefully in situ and image quality. The conditions cited above are not always
respected especially in the case of recorded videos of an inundation event. A
testimonial video of a flood event can bring useful information such as water
velocity that can be exploited for watercourses parameters calculation. Based
on these parameters, one can build an efficient system to optimize devices
positioning and recommend a safe trajectory to be taken when executing a
life saving operation.

4.3 Real-time Monitoring Systems in Water Environ-
ments

Monitoring water conditions in real-time is a critical mission to observe and
analyse maritime environments. In this section, we firstly focus on maritime
environment analysis and objects detection. Next, a particular scenario is
tackled in which a person is detected in a danger flooded area.

4.3.1 Discovering Navigation Environment

Search and rescue mission at sea are characterized by distress alert genera-
tion, organizing and planning, maritime search, maritime rescue and evacua-
tion task. The cartography of the flooded area should be efficiently scanned
to detect and recognize obstacles and routes from images. To deal with this
problem, an algorithm is developed [28] for mapping in urban flood disas-
ter scenarios using drones (Unmanned Aerial Vehicle) or boats (Unmanned
Surface Vehicle). However, many limitations of urban navigation exist during
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flood especially if surface robots are navigating in shallow waters. In fact,
a flooded urban environment have a variable depth of water from point to
other because of the deformation of the infrastructure which makes the cir-
culation extremely difficult [26]. In maritime area, the main axes of AutoSOS
project [31] are presented based on an autonomous multi-robot search and
rescue assistance platform. This latter includes drone and rescue vessel that
are working mutually. The drone firstly finds the potential objects and sends
the data to vessel for processing. The advantage of this system in difficult
conditions is that spatial distribution of drone are autonomously reconfigured
if the network connection with the vessel is suddenly lost.

Georges et al. [?] proposed a method for detecting and locating people iso-
lated in certain areas due to natural disasters, including floods. They use real
time video streaming transmitted by a quadricopter. Detection and tracking
method are based on image processing on a Raspberry Pi (RPi) environment.
Queralta et al. [?] presented a review of the existing approaches of multi-robot
of search and rescue (SAR) support. They analysed these algorithms with het-
erogeneous SAR robots in different contexts and constraints and in different
environments including maritime, urban, wilderness or other post-disaster sce-
narios. Robots presented in this review include ground robots, aerial robots
and maritime SAR that includes surface and underwater robots as well as sup-
port UAVs. The main limitation of multi-Robot Systems, especially in water
environment is the limited sensing and communication ranges, both on the
surface and underwater. These are accumulated to maritime weather that is
characterized by winds, high level waves that are complicating the navigation
of robots and limit their control ability.

4.3.2 Survivors Identification and Assessment of Their
Health Conditions

In the field of disaster relief operations, human detection task supports the
process of searching for survivors and rescuing them. Water identification us-
ing images captured by the drones is gaining momentum due to its ability
to cover areas where its hard for a normal human to reach specially in ur-
gency cases like inundation of a city. UAV systems provide accurate results in
restricted environment and conditions. Nonetheless, the latter are not capa-
ble of providing a fully automatic water and human detection solution which
can be sometimes limited by the network topology adopted in the monitor-
ing system. Various network topologies exist that can fits the required need
of identifying survivors in water systems. The first one is a ring architecture
illustrated in Figure 4.1(a), that passes a packet from a sensor to its closest
neighbor. One example is a monitoring system [35] proposed for managing
computers in which all address and data signals are transferred over the sys-
tem bus. This topology is not strong enough to support the changes in water
environments that can impact the usability of IoT devices. If one sensor goes
down, the whole monitoring system will shut down due to the leakage in the
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transmission chain. In addition, drones usage proved its efficiency for search
and rescue operations by detecting humans in a water zone with a thermal
camera characterized with an average accuracy of 70% in quasi-real time [4].
However, the drones network mainly follow centralized star architecture, il-
lustrated in Figure 4.1(b) below, that is limited in terms of scalability. This
challenge can be tackled by transforming this network into a decentralized
network, in Figure 4.1(c). This approach proved its efficiency by integrating
blockchain technology and proposing a decentralized monitoring platform to
control drones in their rescue operations in a large agriculture field [14]. Still,
network topology is not the only factor that impacts the efficiency of mon-
itoring systems. One should also consider packet transmission efficiency by
choosing wisely the wireless technology that fits best the use case in question.
In this context, we present in the next section some of the wireless technologies
that are capable of covering large areas with low energy consumption.

(c) Linear architecture

FIGURE 4.1
Network architectures adopted by health monitoring systems
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4.4 Wireless Communication in Water Networks

Wireless communication technologies are widely accepted, influencing many
aspects of our daily life [29]. It will spawn new industries and applications
to address healthcare challenges in the coming years. LTE-M, NB-IoT, and
LoRA, are one of the best technologies that can fit water environment due to
their long range and battery lifetime. Table 4.1 summarizes the main techni-
cal differences between LTE-M, NB-IoT, and LoRa in terms of modulation,
bandwidth and theoretical data rate [38]. In this section, we will evaluate next
these technologies in a realistic water environment in terms of reliability, end
to end delay and throughput.

TABLE 4.1
Comparisons of LPWAN technologies
Technology LTE-M NB-IoT LoRa
Standard LTE (Release 12)|LTE (Release 13) LoRaWAN
Roaming yes yes yes
Air upgrade yes yes yes
Data rate Up to 1000 kbps| Up to 100 kbps 0.3-38.4 kbps
MAC SC-FDMA SC-FDMA  [Unslotted ALOHA
Modulation BPSK, QPSK, m/2 -BPSK, | LoRa modulation
16QAM, 64QAM| =/4-QPSK GFSK
Fully bi-directional yes yes yes
Minimum bandwidth 180 KHz 3.75 KHz 125 KHz
Frequency band Licensed Licensed Sub-GHz ISM
Receiver sensitivity -132 dBm —137 dBm -137 dBm

4.4.1 LTE-M Communication

LTE-M is a 3rd Generation Partnership Project (3GPP) standard technol-
ogy that works over the licensed LTE spectrum. It operates within the LTE
networks infrastructure and powers communications for machine to machine
(M2M) traffic. Additionally, it provides the migration path from legacy 2G to
3G networks. Compared with the LTE networks, LTE-M provides expanded
coverage, easy deployment, interoperability, large coverage for M2M applica-
tions similar to 5G networks, and offers a seamless path towards 5G M2M
solution [21]. However, LTE-M focuses on supporting real-time and unreal-
time applications, as well as low latency and deferred traffic applications, and
providing variable data rates. It is characterized by low power consumption
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and can support applications with low bandwidth range to high bandwidth
range of 1 Mbps. Meanwhile, devices with a wide array of message sizes will
be supported also. It can accommodate up to 100,000 devices per base sta-
tion where these device require low data rate [32]. As it is derived from LTE
as a base, mobility is supported, as part of standard LTE functionality, in
legacy coverage scenarios. Although, LTE-M denoted as the software upgrad-
able from LTE, in which new software is required to be uploaded onto existing
base stations without any costs for new infrastructure [23].

4.4.2 NB-IoT Communication

Motivated by the IoT’s connectivity massive growth challenge, 3GPP finally
(2015) started standardization work recognized as Narrow-Band IoT (NB-
IoT) to provide a new air interface specifically tailored for low-power massive
IoT [19]. NB-IoT is capable of operating with LTE and Global System for
Mobile communications (GSM) in the licensed band frequency of 700 MHz,
800 MHz, and 900 MHz. It supports bi-directional communication where the
orthogonal frequency division multiple access OFDMA and SC-FDMA are
adopted for downlink and uplink transmissions respectively. NB-IoT uses a
small bandwidth which enables the opportunity to support up to 50K devices
per cell with a bandwidth requirement of 180 kHz at least in order to establish
communication and is an excellent candidate for water environments. Several
systems were deployed using NB-IoT technology such as a remote monitoring
mechanism for the water level in a storage tank [37]. Here, collected com-
munications data are enabled through the NB-IoT communication technol-
ogy employment. The choice motivated by the fact that NB-IoT technology
consists of several advantages in terms of optimized data rate and enlarged
coverage area. In rural Malaysia areas, NB-IoT based network supported a
water monitoring system solution [34]. This system is dedicated to hydrologi-
cal monitor in which the rural lake is marked as UNESCO biosphere. NB-IoT
proved also its worthiness in reducing the mortality of reared animals [39] by
supporting a fully automatic and intelligent monitoring system for dissolved
oxygen in aquaculture waters. NB-IoT technology modules are used, along
with optical and polar sensors, and controllers to maintain the oxygen level
of the aquaculture water.

4.4.3 LoRa Communication

LoRa technology is a physical layer patented by Semtech [5]. It operates in un-
licensed sub-GHz Industrial, Scientific, and Medical (ISM) band and is based
on the chirped spread spectrum (CSS) technique. However, CSS is broadband
linear frequency modulation in which carrier frequency varies with time which
makes LoRa technology immune to interference. As summarized in Table 4.1,
LoRa MAC uses two modes to split airtime between end devices for han-
dling collisions. In LoRa technology, the transmission power (TP), channel
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bandwidth, and spreading factor (SF) are the parameters that can directly
impact channel transmissions. However, by adjusting theses parameters many
transmission qualities will be provided. The latter are the most important
parameters based on which quality of service can be guaranteed in a network
slicing concept [36]. LoRa alliance has developed LoRaWAN, which includes
network and upper layer functionalities and is arguably one of the best candi-
dates for long distance and low power transmissions [17] and has been widely
employed in the water environment area. Another smart approach is to build
a system for water grid management [12] that involves different sensors which
are deployed in various locations in order to measure the water quality exploit-
ing the gathered real time data. These sensors are linked to the LoRa module
that provide communication with the cloud via LoRa gateway. This system
provides an alert triggering mechanism in which various alerts can be gener-
ated to alarm the authorities in the event of changes in water quality and flow.
This project was implemented in Mori village situated in the south-eastern
deltaof Andhra Pradesh, India. LoRa network support such sailing monitoring
systems [24] and capable of covering a large lake area. In this context, sensors
are installed on board with antennas placed at 1.5 meters above the water
level while one of the gateway was installed at 4 meters above the water level.
On a different level, to power the underground fresh water system, a microbial
fuel cell is needed [13]. The goal for such systems is to monitor the water level
in the groundwater zone, artesian wells and reservoirs. The latter includes a
low cost phreatimeter sensor, a low power microcontroller and a low power
LoRa wireless protocol. However, the amount of microbial energy extraction
from the 296 uW fuel cells is not sufficient to directly power the LoRa wireless
protocol and the microcontroller when in active mode. Therefore, DC-to-DC
amplification is used to raise the small input voltages from 130 mV to 4.5
V. Moreover, the pond water level can also be monitored using WSN that
deploys LoRa and LoRaWAN as a physical layer and communications proto-
col [2]. The latter system is specifically designed for herders to monitor their
ubiquitous spread using their personal devices. Outdoor test results showed
that the location of the end devices has a serious impact on performance.
The closer the terminals are to the ground, the lower the transmission qual-
ity. They also showed that increasing the number of end devices up to 100
reduces the packet delivery ratio (PDR) by 17%.

4.5 Proposed LoRa-based Monitoring System

The main objective in all missions of emergency relief to people is the de-
tection, location and identification of person in danger situation. To develop
an assistance tool exploitable in water environment for detection, localiza-
tion and identification of person in danger situations, LPWAN technologies
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should be wisely chosen due to its massive importance in delivering packets
in a reliable and efficient manner. Hence, in this section, LPWAN technolo-
gies performance are evaluated in a realistic water environment scenario over
NS3 simulator. In an inundation event illustrated in Figure 4.2, a public video
published in YouTube by Farry Vibes ! is transmitted to the central base sta-
tion containing testimony images showing the inundation of june 26", 2020
in Cote d’Ivoire-Abidjan. During the first 23 seconds, video showed a flooded
street following by images showing a person who’s trying to get access to a
car, in the middle of the flooded street, where two other persons are stucked.
In this context, we evaluate a system randomly sending this information, i.e.
detection of a person trapped in a flooding zone, in five different ways:

Priority area

o
Central base station

o _Youtube streaming

FIGURE 4.2
Detection of a human in an inundation region

1. By transmitting the full video directly to the base station.

2. By sending the compressed version of the whole video with bounding boxes
drawn on top of each detected object.

3. By sending a portion of the captured video sequence of the person de-
tected in the flooding environment using Y olov3 algorithm for object de-
tection [33]. The latter is a system that uses pretrained model based on
neural network system, displays images and predicts classes for each hu-
man detected.

4. By sending only captured images of the person detected with the Yolov3
algorithm as well.

5. By sending only signaling data that contains information about the dimen-
sion of the captured image, the time of detection, the number of detected
persons in the flooded area.

Thttps://www.youtube.com/watch?v=wQc-9r70Qpg&ab_channel=FarryVibes


https://www.youtube.com

Proposed LoRa-based Monitoring System 67

For the above use cases, the performance of each wireless technology, illus-
trated in Figure 4.3 below, is evaluated in terms of reliability, throughput and
delay using the LENA LTE and LoRa modules (ns-3.32 Release) of the open
source NS3 network simulator [27]. NS3 provides a callback tracing system
based on multiple trace sources associated by a specific object and identi-
fied by a name. The programmer has the ability to follow specific simulation
events by creating his own tracing functions in C4++. NS3 also offer the op-
portunity to store multiple layers outputs events in a text file and to trace
packet transmit/receive events via packet capture (PCAP) files. However in
our work, all network performance results are inspected using FlowMonitor,
which is a network monitoring framework for NS3, offering an easier way to
analyze flow metrics such as throughput, delay, jitter and packet loss ratio.
For a detailed description of this monitoring framework we refer the reader
to [11] and references within.
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FIGURE 4.3
LoRa vs LTE-M Performance Evaluation

When fixing the number of IoT sensors to 300 and increasing the flooding
area, we can see that both technologies are capable of reaching the base station
for large areas in order of 40 K M?2. LTE-M provided better throughput and
smaller end-to-end delay due to its larger channel bandwidth. However, due to
its modulation a fewer number of devices can be supported with LTE-M which
explains the packet loss rate when compared to the same system supported
with LoRa. The latter, due to its channel bandwidth of 125 KHz, had scored a
lower throughput and higher delay. However, LoRa is characterized with better
reliability performance and is capable of serving a higher number of IoT device
in a very efficient manner due to its CSS modulation over unlicensed frequency
bands. Thus, LoRa appears to be a better fit for this water environment system
with a large room for improvement when smartly tuning the spreading factor
and transmission power of IoT devices.
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4.6 Conclusion

In this chapter, we present a survey of research works that tackled health
assessment challenges in various domains adopting water monitoring systems.
The latter requires LPWAN technologies to be able to guarantee rapid inter-
vention in water environment operations by covering a large number of IoT
devices with minimum energy consumption. Thereafter, we detailed LTE-M,
LoRa and NB-IoT wireless technologies, studied the effectiveness of each one
of them over a realistic water scenario performed over NS3 simulator. LoRa
appears more suitable for water use cases in which devices mostly require bet-
ter reliability despite having higher delay and lower throughput performances.

I
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5.1 Introduction

Remote patient monitoring, pre-hospital emergency care, tele-medicine, and
tele-surgery [1] are being under the limelight recently. Specially, in-ambulance
tele-medicine is considered as a promising approach for improving health re-
lated emergency care [2]. This emerging approach requires continuous mon-
itoring of ambulance location and patient status during the critical hour of
patient transportation.

A centralized monitoring system is required to understand the physical and
physiological condition of the patient. Hence, this urges the need for estab-
lishing communication between the staff of the ambulance and a monitoring
station located in the hospital, in order to exchange high-definition ultrasound
images of patients, reliable real time audio-video communication and texts for
control commands and medical care advices.

The communication between the ambulance and monitoring station is
achieved through a vehicular network, and requires low latency, stringent
connectivity criteria and high reliability, that can be fulfilled by the Fifth
Generation (5G) promising potential. In fact, 5G can provide high data rates,
massive connectivity, ultra-reliability, high spectral efficiency and very low
latencies. 5G presents an innovative solution called network slicing [3]. The
latter will enable network operators to provide highly secure dedicated virtual
networks, to specific vertical customers over the same physical infrastructure.

The first part of this chapter focuses on provisioning of high level of Quality
of Service (QoS) guarantees for in-ambulance tele-medicine communications.
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To this end, authors of this chapter design a specific 5G network slice, ded-
icated to monitoring connected ambulance, in order to achieve reliable real
time communication between high-speed moving ambulance and monitoring
station.

The proposed design of 5G slice for monitoring connected ambulance, is
based on a vehicular network that allows users to roam across heterogeneous
technologies (mainly IEEE 802.11p [4] and LTE-V [5]). In this divergent envi-
ronment, with the high mobility of moving ambulance, exchanged data should
be delivered within a tight time window and with a reduced packet loss ratio.

The second part of the chapter is dedicated to present a handover manage-
ment scheme tailored for ambulance monitoring slice. First, the proposed so-
lution is based on a handover algorithm that differentiates between two main
types of handover: intra-slice handover and inter-slice handover. Second, a
slice selection algorithm is presented based on a sigmoid utility function. The
performance assessment of the proposed solution is evaluated through simu-
lations. Obtained results show the efficiency of the proposed scheme in terms
of QoS guarantees.

The present chapter is structured as follows. Section 5.2 presents an
overview about network slicing concept and defines the tele-medicine network
slice architecture. Section 5.3 describes the proposed mobility management
solution in a network slicing environment. Section 5.4 sheds the light on the
slice selection function. Performance evaluation is conducted in Section 5.5.
Finally, Section 5.6 concludes the chapter.

5.2 Tele-medicine 5G Network Slice

Mobile healthcare, which involves in-ambulance treatment by remote doctors
and tele-medicine, presents stringent connectivity requirements that can be
fulfilled by 5G promising potential. 5G can provide high data rates, massive
connectivity, ultra-reliability, high spectral efficiency and very low latencies.
Moreover, network slicing is considered as a prominent solution proposed by
5G that can manage network resource utilization efficiently and provide de-
ployment flexibility to 5G vehicular networks. In this section, first the network
slicing concept is highlighted and then a 5G network slice dedicated for tele-
medicine is presented.

5.2.1 Network Slicing

Network slicing concept has captured an important attention within research
communities, such as the Next Generation Mobile Network (NGMN) Al-
liance [6], Third Generation Partnership Project (3GPP) and Open Network-
ing Foundation (ONF) [7].
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NGMN defines network slicing [6] as a concept for running multiple logical
networks as independent business operations on a common physical infras-
tructure. ONF [7] considers that its provided Software Defined Networking
(SDN) architecture consists of control plane that dynamically configures and
abstracts the underlying data plane resources so as to deliver tailored services
to clients located in the application plane; forming thus network slices.

3GPP defines network slicing [8] as a key mechanism for 5G networks to
serve vertical industries with widely different service needs, in terms of latency,
reliability and capacity. This can be achieved by exposing isolated partitions
of network resources and services. A network slice is defined within a Public
Land Mobile Network (PLMN) and includes core network control and user
planes network functions as well as the 5G access network.

In summary, network slicing is defined as a concept of running multiple log-
ical end-to-end networks as independent and isolated networks on a common
physical infrastructure.

5.2.2 5G Reference Slices

The Fifth Generation Public Private Partnership (5G-PPP) defines three ref-
erence slices (figure 5.1): enhanced Mobile BroadBand slice, massive Machine-
type Communications slice and Ultra-Reliable Low Latency Communications
slice. These slices are described as follows:

e The enhanced Mobile BroadBand (eMBB) slice: requires very high data
rates to fulfill requirements of multimedia content, like ultra-high defini-
tion video streaming.

e The massive Machine-type Communications (mMTC) slice: this slice
should sustain the massive traffic load of connected devices, transmitting
non-delay sensitive information, e.g., sensor networks deployed in smart
cities.

e The Ultra-Reliable Low Latency Communications (URLLC) slice: this
slice should provide services that are extremely sensitive to latency, such
as autonomous driving, tactile internet and augmented reality. It requires
reliability, low latency, and security.

5.2.3 Tele-Medicine Network Slice Architecture

Telemedicine is an integration of wired and wireless transmission of medical
data. This new concept can decrease the pressure on healthcare personnel
and compensate the physical distance between patients and caretakers [9].
In case of in-ambulance tele-medicine, the communication between the am-
bulance and monitoring station requires low latency, stringent connectivity
criteria and high reliability. This can be fulfilled by a vehicular network that
includes the network slicing 5G concept.
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5G Network slices

There have been several works that have considered the 5G technol-
ogy in tele-medecine concept. In [2], a complete framework for a 5G en-
abled connected ambulance is presented. The paper focuses on two-way data
communication including audio-visual multimedia flow between ambulances
and hospitals. Authors in [10] present a novel SliceNet framework, based
on network slicing to address highlighted challenges in migrating eHealth
telemedicine services to 5G networks. The paper describes a set of innovative
enablers in order to provide end-to-end QoS-aware network slicing capabili-
ties, required by this demanding use case. In [11], the research work aims at
demonstrating Proof-of-Concept (PoC) approaches for 5G network slicing in
mission-critical use cases. The paper shows that QoS-aware network slicing,
edge computing and hardware acceleration, could assess and provide optimal
clinical treatment pathways for potential stroke patients.

In [12], an architecture based on network slicing is proposed in order to
provide reliability for s-health applications and services. The architecture re-
lies on fingerprinting healthcare applications to quickly customize resources
and meet the level of reliability required for each s-health application. Au-
thors of [13], highlight the characteristics of robotic telesurgical system, and
the limiting factors, the possible telesurgery services and the communication
QoS requirements of the multi-modal sensory data.

The before mentioned papers consider a network slicing architecture that
enables QoS enhancement for tele-medicine use cases. However, none of these
papers have tackled an architecture that takes into account the mobility con-
straints. The latter have an important impact on the QoS of the telesurgical
system. This section sheds the light on the design of a 5G network slicing
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model (figure 5.2) dedicated to tele-medicine requirements, and that consid-
ers mobility issues.
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FIGURE 5.2
Network slicing architecture

Inspired by 5G NORMA [14] project, authors propose the following slicing
architecture depicted in figure 5.2. The latter consists of three planes: the
infrastructure plane, the control plane and the service plane. In addition,
orchestration capabilities for MANagement and Orchestration (MANO) are
added on the top of this architecture.

More specifically, the adopted architecture planes are detailed as follows:

The infrastructure plane

The infrastructure plane consists of all physical network infrastructure span-
ning from the Radio Access Network (RAN) to core network. It encompasses
the following elements: RAN nodes and devices, transport network, storage
and computing nodes.

The control plane

The control plane encapsulates logical network behaviors that control a slice.
The control plane consists of two main SDN based control entities: Dedicated
SDN controller (D-SDNC) and Shared SDN controller (S-SDNC). Despite the
heterogeneity of 5G services and applications, a common set of functionalities
can be shared and provided by 5G slices. Thus, some shared network functions
reside on the top of S-SDNC. These functions, implemented as SDN applica-
tions more precisely Slice Selection function, are explained and elaborated in
Section 5.4.2.
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Moreover, different behaviors can be flexibly configured to meet the specific
performance requirements of a given 5G service category. Each slice presents
some dedicated functions implemented as applications over the D-SDNC.

The service plane

The service plane includes services and use cases of each vertical market for
which slices are designed.

The Management and Orchestration (MANO) plane

The MANO plane is responsible of the slice description, instantiation and
life-cycle management. MANO plane consists mainly of a SDN controller,
named Software Defined Orchestrator (SDO). The latter enables brokering of
resources among multiple slices. Moreover, SDO exchanges information with
peer entities of other mobile network operators or administrative domains to
enable seamless inter-slice handover.

Physical architecture

Our work relies on a physical slicing architecture, depicted in figure 5.3, that
consists of the following elements:

e This architecture considers administrative zones separated geographically.

e In each zone, LTE-V eNodeBs Points of Access (PoAs) are deployed. More-
over, Road Side Units (RSUs) that provide IEEE 802.11p connectivity
coexist with the deployed LTE eNodeBs.

e In each domain, slices of the same type, belonging to PoAs of the same
technology are connected to the same D-SDNC.

e All available slices in one administrative domain are controlled by the same
S-SDNC.

e An orchestrator resides on the top of each domain in order to communicate
with adjacent domains orchestrator.

5.3 Mobility Management Solution Overview

In the proposed design of 5G slice for monitoring connected ambulance, with
the high mobility of moving ambulance, exchanged messages should be de-
livered within a tight time window and a reduced packet loss ratio. To this
end, this section is dedicated to present a mobility management scheme for
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the tele-medicine network slice. We proceed first by explaining the slice at-
tachment procedure. Next, authors tackle the slice handover that refers to a
process where a user served by a current slice, should connect, due to mobility,
to a target slice. In this case, an efficient slice handover management scheme
should be designed. To this end, two types of slice handover are considered:
intra and inter slice handover. For the intra-slice handover, mobility man-
agement consists of an admission control algorithm coupled with a resource
management scheme [15]. For inter-slice handover, a slice selection function
is implemented in order to map users ongoing sessions to the corresponding
slice that provides the requested QoS levels.

5.3.1 Slice Attachment

The identification of a network slice is achieved through Single Network Slice
Selection Assistance Information (S-NSSAI). The latter, signaled by the UE
to the network, assists the network in selecting a particular network slice
instance. The slice attachment procedure [16] is briefly described as follows.
A user, wishing to attach to a slice, provides the S-NSSAI to the the S-SDNC.
On receiving a request, S-SDNC performs the slice selection procedure by
leveraging additional information and informs D-SDNC about the imminent
connection. Once the user is authenticated, the slice attachment procedure is
performed and on demand tele-medicine services can be accessed.
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5.3.2 Slice Handover Solution
Slice handover definition

Slice handover is defined as a process where a vehicle connected to a current
slice should change its PoA. Slice Handover falls into two categories: intra-slice
handover and inter- slice handover.

e Intra-slice handover that occurs when the user changes its PoA to a target
PoA in the same administrative domain. In other words, the user stays
controlled by the same D-SDNC, and connected to the same technology
and slice type.

e Inter-slice handover that refers to the change of the entire end-to-end slice.
This handover type occurs whenever the target PoA is in another admin-
istrative domain. In some other cases, inter-slice handover occurs in the
same domain, when the vehicle should change the operator or technology.

Slice handover operations

The current section is dedicated to present the proposed mobility manage-
ment solution. When a vehicle enters an administrative domain and requests
a connection for the first time, a slice attachment procedure is achieved. The
vehicle will be connected to the requested slice type if the latter is available;
otherwise, a slice selection is performed. It is noteworthy that in case of the
availability of the requested slice type, the vehicle will be connected to LTE-V
slice. This vehicle, moving with a certain speed, is supposed to send its des-
tination to a location server, such as a GPS navigator, in order to download
the route from its current location to its destination. The location server pe-
riodically forwards the calculated route information to the D-SDNC that can
determine a set of target PoAs according to the vehicle direction. When a sig-
nal degradation is detected, the vehicle sends a Signal Going Down Message
to the D-SDNC; D-SDNC can then determine the target PoA.

The main goal of the slice handover management scheme is to maintain
the best QoS level for the in-ambulance tele-medicine operations, while main-
taining an intra technology handover for the maximal possible time in order to
reduce signaling overhead caused by inter-slice handover. The slice handover
algorithm proceeds as follows:

1. When the handover occurs in the same administrative domain, D-SDNC
performs admission control.

e If the admission control accepts the request, the vehicle can connect
to the target PoA.

e Otherwise, S-SDNC executes a resource borrowing procedure. This
is achieved with the help of SDO that is responsible of resources bro-
kering among slices. The resource borrowing algorithm are detailed
in [15].
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e In case there are no available resources to borrow, switching to an-
other technology should be devised performing thus an inter-slice
handover.

2. Whenever a change of administrative domain is imminent, D-SDNC sends
a request to the S-SDNC which transfers the request to the MANO plane
SDO. In this case:

e Whenever the target domain has the same slice type than the current
slice, D-SDNC of the corresponding slice performs admission control
in order to check the resources availability:

— If the request is accepted, target slice D-SDNC prepares and
configures path to the handover request in the new slice.

— Otherwise, a resource management should be achieved as men-
tioned earlier.

e Whenever the target domain does not have the same slice type (re-
quested slice type), a slice selection algorithm is triggered in order to
connect the user to an appropriate slice that can offer the requested
QoS. This is explained in the next section.

5.4 Slice Selection Function

This section sheds the light on the slice selection procedure. Whenever an
inter-slice handover is about to occur between two domains, there is no guar-
antee that the user can attach to the same slice type in the new location.
Accordingly, this stems the need to derive a slice selection algorithm.

5.4.1 Related works

There have been several papers that tackled the slice selection problem. In [17],
a mobility driven network slicing (MDNS) is proposed to support on demand
mobility management. MDNS introduces a mobility profile detection as a part
of the network slice selection function. Thus, when the mobile is accessing the
network, this function will determine the user mobility requirements and se-
lect a suitable network slice accordingly.

In [18], authors propose a new mobility management scheme called Con-
text Enhanced mobility management (CEMOB). The proposed scheme takes
advantage of contextual information of the vehicular communications in order
to improve the mobility management. This information can help in predicting
the target PoA and selecting the target slice.

Authors in [18] investigate the implementation of a new slice selection
mechanism allowing the UE to connect to multiple slices based on service
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type. In [19], authors propose a session connection and network slicing selec-
tion process based on the service type of the user.

Authors in [20] implement a framework for enabling negotiation, selection
and assignment of network slices in 5G networks.

The majority of research papers tackle network slice selection without tak-
ing into account service requirements and resource allocation on an end-to-end
basis. In fact, when selecting a slice, available slice service capabilities and re-
sources should be considered. Moreover, slice selection algorithms proposed in
literature works do not consider user mobility and inter-slice handover occur-
rence.

In the following, a slice selection function is derived based on service re-
quirements and network constraints. More specifically, authors implement a
Slice Selection Function (SSF) as a SDN application on top of the S-SDNC.
SSF combines user utility calculated using a sigmoid function and the load of
the end-to-end slice in order to identify the target slice.

5.4.2 Slice Selection Algorithm

On the top of each operator S-SDNC, a SSF is implemented and performs the
slice selection according to the following steps:

1. We assume that M ongoing sessions referred as flows of the user cannot
be matched with the same type slices.

2. SSF specifies a set of N target PoAs according to the direction of the
vehicle.

3. The set of N candidates PoAs present K candidates slices. SSF calculates
the following values:

e The load utility of end-to-end slice in terms of: 1) the load of PoA j
on slice k, 2) the number of active flows in the slice k.

e The QoS utility of each flow i € M obtained by the PoA j through
slice k in terms of latency and data rate.

The computation of utility values and target slice selection is elaborated as
follows.

5.4.3 End-to-End Slice Load Utility Calculation

The transmission performance of an end-to-end slice £ depends on its total
capacity, thus it is primordial to calculate the utility of each slice according
to the load metric.

To this end, the load utility d)é? of the slice k on PoA j is defined as follows:

L]? FLk
o= (- )« (1

k Tk
thh Fth

) (5.1)
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Where L;’? is the current load of PoA j on slice k£ and L;’?th is the maximal load
specified for this PoA on slice k. FL* is the current flows load (number of
active flows) in the slice k and F} is the maximal number of flows supported
in this slice.

5.4.4 Candidates PoA QoS Utility Calculation

In this work, the sigmoid utility function is used [21] to measure the user sat-
isfaction level corresponding to a set of characteristics offered by a network
slice on a candidate PoA. We assume that the selection of PoA j on slice k
is based on 2 different criteria: delay and data rate. A criterion x has a lower
bound z, and an upper bound x3. In addition, each criterion adopts a value
T that corresponds to the threshold between the satisfied and unsatisfied
areas of a specific parameter.

Our framework proposes to input each criterion into the sigmoid utility
function u given as follows:

0 if =<z,

Gt $ oz <ao<ua

B " SES

1——m— if oz, <z<uzp
()

1 if x> rg

Suitability of the sigmoid function

The sigmoid function [22] satisfies the following requirements which justifies
its suitability for the network selection: The utility function u(z) is twice
differentiable on interval [z, 25]. This reflects the fact that utility level should
not change drastically for a slight variation of a criterion value.

The utility function is a non-decreasing function of x. Additional received
data rate results in a higher utility value. The improvement of the utility fades
when the offered data rate reaches a certain threshold where high level of user
satisfaction is obtained. This implies the concavity of u(z) for x greater than
a given value. Similarly, whenever x goes below a certain threshold and the
utility becomes close to zero, the user behavior is indifferent to the decrease
of x. In other words, the improvement of utility is negligible according to the
increase of the offered data rate if the latter is still less than the minimum
required amount. This implies the convexity of u(x) for x less than a given
value.

Global utility calculation

The utility of a flow i € M is calculated among a set of N candidate PoA
on K candidate slices. Each PoA j € {1,2,3.., N} on slice k € {1,2,3.., K}



84 Quality of Service Provisioning for Ambulance Tele-medicine

presents 2 attributes x;, I € {1,2}: 21 for delay and z5 for data rate. We note
uk.(z;) the calculated utility for attribute x; of flow i from PoA j on slice .
Global utility [23] should be calculated as follows:

Ul = T [l (o) (5:2)

l

Where w; (> w; = 1) is a weighting factor for each criterion parameter x;. w;
is used in order to be able to specify the importance of a given metric among
others. Ui’j- the global utility for flow ¢ from PoA j on slice k.

5.4.5 Target Slice Selection

The performance of the PoA and slice pair may significantly affect the access
performance of users. The final slice selection should be based on a combina-
tion between the load and QoS utility values. Thus, for each flow i, PoA j on
slice k is selected according to the following equation.

argmazx(U5)* * (¢5)17%) (5.3)

Where a € [0,1] is a weighting factor used to differentiate between the QoS
utility and the load utility in terms of their importance.

Each flow of the user is assigned to the corresponding selection, and redirected
to the target end-to-end slice.

5.5 Performance Evaluation

This section evaluates the proposed mobility management scheme in a tele-
medicine slicing environment.

In order to evaluate the functional aspects of the overall handover proce-
dure in tele-medicine slicing environment, a set of simulation batches is con-
ducted, with the scenario described hereafter. We implement network elements
using mininet-wifi [24] and controllers using Ryu controller program [25]:

e Ambulance vehicles are emulated as multi-interface wireless hosts capable
of connecting to both eNodeBs and RSUs.

e We consider a two directions highway with 3 lanes, covered by 8 LTE-V
eNodeBs and 30 RSUs distributed equally into two administrative do-
mains. The radio transmission range of each eNodeB is 1km respectively
to 300 m for each RSU.

e LTE technology is modeled as indicated in [26].
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e Each slice is connected to a specific controller.
e Fach domain is managed by a S-SDNC.

e The separation of control domains is achieved by the use of docker con-
tainers.

e We use SUMO to capture the authentic mobility of vehicles on roads.
Moreover, authors use as Sumo car-following model: Krauss Model.

e Slice selection algorithm is triggered in case of inter-slice handover, where
the target PoA is not connected to the same slice type. Thus, in order
to evaluate this algorithm, the simulation scenario considers that each
domain deploys 4 end-to-end slices with different types from one domain
to another. Maximum speed of vehicles is limited to 100 km/h.

e We consider a@ = 0.6, the weighting factor for the delay is wy = 0.6, the
weighting factor for the data rate is wy = 0.4.

This simulation study evaluates the following parameters: the average user
utility in terms of delay, flow distribution among available slices and number
of accepted handover requests. We validate the advantages of the proposed al-
gorithm by comparing it with the following network slice selection algorithms:

e Method 1: The slice selection consists of choosing the PoA with the highest
Received Signal Strength Indicator (RSSI), then choosing the slice on this
PoA that gives the highest data rate.

e Method 2: The slice selection consists of choosing among available PoAs,
the end-to- end slice that gives the highest utility value.

User utility

The delay parameter is very critical for tele-medicine applications. Therefore,
it is essential to check if the user is convinced by the delay value of the chosen
network. To this end, the user utility is measured in terms of delay. Results
are illustrated in figure 5.4

One can see that the user utility increases first and starts decreasing with
higher number of flows due to network congestion. However, SSF gives utility
values higher than with methods 1 and 2. In fact, method 2 does not consider
the load of the end-to-end slice, which results in a network congestion and
a user satisfaction degradation. Moreover, method 1 gives lower user utility
value than SSF, since the selection follows a traditional RSSI-based algorithm
that omits some available slices resulting in congestion and QoS degradation.

Flows distribution among available slices

In this scenario, the flows distribution among available slices is measured.
Results are illustrated in figure 5.5. One can notice that method 1 incurs
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a high number of flows in slices 2 and 3. In fact, slice selection in method
1 is based on RSSI which neglects some PoAs that present lower RSSI with
adequate QoS parameters. While with method 2, 90% of the flows are assigned
to slice 1. This is due to the fact that the selection in method 2 is only based
on user utility and does not consider the end-to-end slice load. However with
SSF, flows are distributed between all available slices, leading to an efficient
resource utilization and load balancing provisioning.

Number of accepted handover requests

When available resources in a slice reach a threshold value, a handover request
may be blocked. Thus, it is primordial to measure the number of accepted
handover requests (figure 5.6).

We can see that the number of accepted requests in SSF is higher than that of
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method 1 and 2. This is due to the fact that SSF can select slices adequately
taking into account the service utility along with the end-to-end slice load.
In addition, for a low number of requests, method 2 results in a high number
of admitted requests than method 1. However, when the number of handover
requests increases, method 1 provides better performance. This is explained as
follows: selection in method 1 is RSSI based, while in method 2 the selection
is based on the service utility. Thus, for a small number of requests, method
2 can guarantee the best slices for all users. Nevertheless, with the higher
number of requests, the probability of blocking a request will increase with
method 2 since it does not take into account the load distribution. While with
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method 1, the algorithm chooses the PoA with the best channel condition and
thus flows will be distributed among several slices.

5.6 Conclusion

Pursuing improvements in the healthcare system is mandatory for its effi-
ciency and cost reduction. For tele-healthcare, reliability plays an essential
role, given the sensitivity of exchanged data and services.

In this chapter, authors developed an architecture based on network slic-
ing that can provide service requirements for tele-medicine use cases. This
architecture considers the QoS guarantees for in-ambulance communications.
More precisely, a mobility management scheme was proposed to solve the slice
handover problem. In particular, the proposed solution sheds the light on a
slice selection function that enables the mapping between tele-medicine ser-
vices and the suitable network slices. This is achieved using the sigmoid utility
function.

Performance analysis showed that the proposed approach results in high
user utility in terms of communication delays requirements and better distri-
bution of users among available slices. Moreover, this approach reduces the
number of blocked handover requests.
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6.1 Introduction

Several challenges face the designing of efficient Body Sensor Network (BSN)
[10] and Collaborative Body Sensor Network (CBSN) [12] routing protocols
such as the timeliness of the exchanged data between different BSN nodes,
external conditions (e.g. wildfire, earthquake) and the physical environment of
a CBSN (e.g. underwater [15], in a war zone). These challenges may affect data
transmission and thus deserve to be considered when designing a constrained
routing protocol. CBSN is formed of a dynamic topology partially viewed by
energy-limited and task-specific nodes. For this reason, CBSNs are in need of
robust routing schemes that guarantee a reliable and efficient data delivery.
Cluster based routing models have the widest coverage range, they are the
most scalable models, and utilize channel bandwidth better than the others.
They are in general simpler, induce less communication overhead, and have
higher level of integrity than flat routing models. In return, cluster-based
models require global and local synchronization and present medium level of
integrity, simplicity, and reliability.

BSNs, as nodes, can route their data to the Base Station (BS) either in a
single-hop manner (direct topology) [21], as shown in Figure 6.1, or relying on
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an intermediary node in a multi-hop manner (indirect topology) [9], as shown
in Figure 6.2. Multi-hop routing topologies can be further divided into two
models which are:

e Flat topology: all the nodes operate as peers and forward the data from
one peer to another (hop by hop) until reaching the BS or vice versa.

e Cluster-based topology : the nodes are grouped into several groups of
clusters and each node can either operate as a Cluster Head (CH) [31],
responsible for transmitting the data to its destination, or as a normal
node, transmitting its data to the CH.

Sink #. BSN
& :

FIGURE 6.1
Single-hop topology

In this chapter we will compare the performance of different categories of
routing protocols namely direct, flat, and cluster-based routing protocols with
respect to energy consumption and end-to-end delay. We will also investigate
the routing protocols suitable for CBSN. We consider a scenario where each
BSN is a rescue team member, medical personnel working in a hospital, or an
employee working in a company. Each person is equipped with medical sen-
sors and a coordinator node. The role of the former is to capture physiological
data from the individual and send it to the latter. Then the coordinator node
sends the data to the BS.

The remainder of this chapter is organized as follows. We discuss in Sec-
tion 6.2 some of the relevant routing protocols applicable for CBSN. We discuss
in Section 6.4 a recent cluster-based routing model and then, in Section 6.5,
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FIGURE 6.2
Flat routing and cluster-based routing topologies

we compare its performance against LEACH-ME, LEACH-MEEC and ECBR-
MWSN protocols. Finally, we conclude this chapter in Section 6.6.

6.2 Related Work

The literature covers multiple routing algorithms for Wireless Sensor Net-
works (WSNs) [20] and Mobile Wireless Sensor Networks (MWSNs) [2], but
little to none can be found covering routing in CBSN. One of the covered
scenarios includes static nodes (referring to patients’ bedsides or designated
areas of the hospital) interacting together in a CBSN model [40-42]. Another
scenario includes patients moving in designated areas inside the hospital [6].
This monitoring system relies on relay nodes, in fixed positions, responsible
for routing the traffic to the BS. This routing algorithm requires a smart en-
vironment for it to operate as intended and thus may not be applicable to all
mediums.

Relevant routing protocols differ among each other with respect to the CH
election, cluster formation, and packet routing. LEACH, for example, starts
with random CH election and then cluster formation [23]. The main draw-
back is that some of the nodes will not be able to join a cluster since all CHs
are beyond the communication range. Additionally, cluster sizes are usually
unbalanced, and this drains the batteries of the large clusters’ CHs. Addi-
tionally, node-CH or CH-BS distances may be too large to be energy effi-
cient [11, 13, 17].
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A LEACH variant called LEACH-ME addressed some of the above drawbacks
by giving the node with the lowest mobility probability a higher probability
to be selected as the CH node [28]. Another protocol, Mobility-Based Clus-
tering (MBC) [19], give a higher probability to be selected as the CH node
the nodes with lowest speed and highest remaining energy. Another LEACH
variant, LEACH-MEEC [3], chooses the CH based on its connectivity with
respect to its surrounding nodes (i.e. density of its neighbors within a circle
of radius R). An artificial intelligence inspired protocol using GAROUTE, a
genetic algorithm, chooses a CH according to its speed, energy, and location
with respect to other nodes of the CBSN [39]. All the listed protocols share
the same shortcoming, which is ignoring the distance between the node and
the sink as a factor for selecting the CH. Additionally, they consider direct
transmission which may impact the routing efficiency [11].

Enhanced Cluster-Based Routing Protocol for Mobile WSN (ECBR-MWSN)
[7] is consisted of five main phases:

1. Initialization

2. Cluster formation: uses the Density Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm, that randomly selects a node
that has not been previously visited.

3. CHs election: selects the CH with the lowest mobility, closest distance
to the BS, and remaining energy.

4. Data transmission: uses a single-hop method for intra-cluster commu-
nication, and a multi-hop operation for inter-cluster communication.

5. Re-clustering and re-routing

Another LEACH variant uses Multi-hop Cluster Routing algorithm combined
Minimum Transmission Energy protocols [8]. Similar to LEACH, it selects
the CHs randomly by rotation but sends the data in multi-hop using short-
est path algorithm. Another LEACH variant, called LEACH-TLCH, selects
two CHs per cluster, primary and secondary [22]. In case the primary CH
experiences a drop in its energy, the secondary replaces it without the need
for performing the election procedure. One main drawback of this approach
is that this scheme does not take into consideration the distance between the
primary and secondary CHs. If it gets large or if the connectivity between
them becomes limited, then the energy of the secondary CH will be consumed
quickly.

Younis et al. proposed HEED [43], Hybrid, Energy-Efficient, Distributed
clustering algorithm. It uses two parameters to elect a CH which are the node
residual energy and the intra-cluster communication cost. HEED operates
similar to Algorithm with Energy Restriction (ACAER) [24] which selects the
CH based on its coverage rate and residual energy. HEED and ACAER suffer
from the same shortcomings which are the neglecting the distance from the
BS and the CH’s mobility.
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6.3 Comparison of Different Routing Models

In this section, we use the metrics provided in Table 6.1 to qualitatively com-
pare the direct, flat, and cluster-based routing algorithms. Each algorithm is
evaluated with respect to all the metrics. The performance values range from
1 (highest value) to 3 (lowest value).

TABLE 6.1
Comparison between different routing algorithms.
Criteria Direct | Flat | Cluster-based
Reliability 3 1 2
Ability to use centralized algorithms 1 3 2
Scalability 3 2 1
Integrity degree 1 3 2
Efficient use of medium 3 2 1
Coverage 3 2 1
Synchronization 1 2 3
Communication overhead 1 3 2
Simplicity 1 3 2

Each routing algorithm has its advantages and drawbacks [4, 32, 33, 44].
For instance, cluster-based models are highly scalable, have the best coverage
capabilities, and make the best usage of channel bandwidth capabilities. They
have medium level of reliability, simplicity, and integrity. As opposed to the
other models, timing is more complex to manage since they require local and
global synchronization.

Transmitting data with minimum energy consumption and delay in CB-
SNs is of utmost importance. This is because the batteries have limited power
and critical physiological data may require immediate action [16]. We used
the MATLAB R2014b simulator to compare the efficiency of the routing algo-
rithms with respect to energy consumption and delay. More specifically, to as-
sess the flat routing model, we used the iMproved Stable Increased-throughput
Multi-hop link efficient routing Protocol for Link Efficiency (iM-SIMPLE) as
described in [25].The cluster based model was evaluated using the Low-Energy
Adaptive Clustering Hierarchy - Mobile Enhanced (LEACH-ME) as described
in [28].

We performed the benchmark on different number of nodes (ranging from
10 to 100) that evolve in a closed area of 400 m2. For many researchers [30, 36,
38, 40, 41], the preferred first order energy model is represented in Figure 6.3.

We used it for the CBSN comparison, where the receiver and transmitter
energy are given below:

ET7x(L, d) = ETw—elec . L + Gmp . L . dn (61)
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Energy-ratio model
ERX(L) = ER:E—elec .L (62)

Erg—ctec; ERz—eclec, and €p,p are the values of the energy consumed by
the electronic circuits of the transmitter, the receiver, and by the transmit
amplifier [38], respectively.

The Nordic nRF24L01 2.4 GHz transceivers was used in the simulation, as
it was the case in BSNs [25, 36, 40]. The value of the Path Loss exponent in
indoor locations ranges between 1.4 and 6. Its average value of 3.5 emulates
an indoor environment [35, 37]. Table 6.2 summarizes the parameters used in
the experiment.

TABLE 6.2

Parameters used in the simulation.
Parameter Value
Indoor Area 400 m?
Number of nodes From 10 to 100
Packet size 4000 bits
Path Loss exponent 3.5
Nodes status mobile
Ery_ciee 16.7 nJ /bit
Ere—ciee 36.9 nJ/bit
Emp 1.97 nJ/bit

After simulating the direct, flat, and cluster-based routing, we represent
the energy consumed in Figure 6.4 and the delay of transmitting data in
Figure 6.5.

We quickly notice that the cluster-based algorithm outperforms the direct
and flat routing algorithms, since it consumes less energy and has a lower delay
while transmitting data. This is true for all the different scenarios where the
number of total nodes varies from 10 to 100.

Regarding energy consumption, a direct model requires that each node
sends its data to the BS. The nodes that are farther from the BS will consume
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Delay performance of the different routing algorithms

more energy to accomplish their task, since the energy consumption is propor-
tional to the n'* order of the distance. Moreover, and due to some obstacles
between a node and the BS, the former may be forced to consume more en-
ergy to re-transmit the data that didn’t reach the BS. As for the flat routing
model, all the nodes are required to process and transmit data to the BS.
The advantage of a cluster-based model is that only CH nodes are responsible
for transmitting data over the network, which reduces the energy required by
each node to communicate directly with the BS.



98 Routing Protocol Algorithms

Similarly, the cluster-based algorithm transmits data faster than the direct

and flat modes. In the direct model, and as we already explained, larger delays
are induced by the need to re-transmit packets over longer distances (due to
obstacles). In a flat model, all the nodes communicate directly to the BS,
which leads to higher delays.
We conclude this section by stating that the cluster-based routing algorithm
is the most efficient one to be used for CBSNs, especially that in real-life
applications, the size of the network may increase over time (w.r.t the covered
area and to the number of BSNs joining or leaving the network).

6.4 An Efficient Cluster-based Routing Model

We describe in this section one of the newest and most efficient routing al-
gorithms for BSNs and CBSNs proposed by Bou Dargham et al. [14]. In the
proposed model, the BS is located at the center of an indoor area where
each node can determine its current location in relation to the BS using an
Indoor Positioning Systems (IPSs). The maximum distance for transmission
between two communicating nodes is 10m and this is to ensure reliable trans-
mission [26].

In the following subsections we describe cluster formation, cluster head
election, and the inter-cluster and intra-cluster routing.

6.4.1 Cluster Formation

The cluster formation algorithm is run at the BS dividing the sensing area
into a fixed number of clusters based on the optimal number of clusters for-
mula presented in Equation (6.4). This formula computed in [5, 29] is chosen
since it evaluates the best number of clusters that minimizes the total energy
consumption in the network, which is our main concern.

N,
N, = — 6.3
Kop (6.3)
Where N is the total number of nodes in the area, and K, is given by:
Ns.efs.A
K, = 6.4
) \/%(emp.dzzgs ~ - o

€rs: Energy of amplifier in free space computed for n=2.

A: Sensing area.

€mp: Energy of amplifier in multi-path fading.

dy pg: Average distance from transmitting nodes to the BS.
ERy—ciec: Average PL exponent of the entire network [34].
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Nodes are organized into clusters having one CH. If all pair of nodes, within
a cluster, have a distance less than 10 meters the algorithm is considered to
have satisfied the first requirement. If a node X exceeds the data transmission
range, then it is reassigned to another cluster that contains another node
closer to X with a distance less than 10 meters. If none of the clusters is 20%
larger than the average size of all the clusters then the second requirement is
satisfied, and the algorithm is considered to have reached a desirable state.
If in the worst-case scenario all neighboring clusters are full, the algorithm
picks a random node from one of these full clusters, and re-assigns it to a
different one containing nodes within its communication range, to allow the
cluster to accept joining requests. In this scheme, re-clustering does not occur
very often, which reduces the computation’s overhead.

6.4.2 Cluster Head Election

Each cluster’s head is selected based on the following criteria:
e Distance between the nodes and the BS.
e Nodes’ mobility and energy.

e Node’s Transmission Scope (TS) (denoted by T'Sx). The TS depends on
several network parameters, such as the reflection, the refraction loss, the
medium of propagation (air or liquid), and environment type (indoor or
outdoor).

Every node is eligible to become a CH and thus the Selection Score (SS) for
each node should be calculated as follows:
E, TS,

SSy = ——— 6.5
X7 diops-Mx (6.5)

where we have:

SSx : Selection Score of node X to become a CH.

FEx : Residual energy of node X.

TSx : Transmission Scope of node X.

dtops : Distance from the transmitting node to the BS.
Mx : Mobility factor of node x.

A node’s mobility factor Mx [27] is computed according to its relative di-
rection against other nodes. Nodes moving closer to each other have positive
mobility factor, while those moving far from each other have a negative one.

6.4.3 Routing Operation

The routing protocol uses multi-hop flat model for both cases since it re-
duces the network’s overall energy consumption [18]. The protocol is further
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explained in Figure 6.7, protocol’s operation represented in a flowchart, and
Figure 6.6, representing the protocol’s covered area.

@ Base Station (BS) @ Cluster Head [CH) + Mobile Node [single BSN)
—— Intra-Cluster Routing —— Inter-Cluster Routing

FIGURE 6.6
Cluster-based representation of the area

The Cost Function (CF) of a node in intra-cluster routing is given by:

dto
CFy = —ttoCH

" Ex.TSx (6.6)

where we have:
dioc i : Distance between node X of a cluster and the CH of that cluster.
Ex: Residual energy.
T'Sx: Transmission Scope of node X.

Selecting the node with the lowest CF as the forwarder node optimizes
routing in CBSN. In other words, the node with lowest CF is the node that
has the shortest distance to the CH of the cluster, and has the highest residual
energy and TS. In inter-cluster routing, each CH is considered in addition to
its CF. The CH with the lowest CF is selected as the next hop for relaying
the traffic.
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Flow chart

6.5 Implementation and Results

In this section we implement the studied protocol in addition to other routing
algorithms surveyed in Section 6.2 which are:

e The LEACH-ME protocol [28].
e The LEACH-MEEC protocol [3].
e The ECBR-MWSN protocol [7].

The implementation was developed using MATLAB R2014b with configu-
ration shown in Table 6.3. The implementation metrics include delay, energy
consumption and the percentage of the packets dropped.
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TABLE 6.3

Simulation parameters.
Parameter Value
Indoor Area 400 m?
Number of nodes 50
Packet size 4000 bits
Path Loss exponent 14-6
Nodes status mobile
Energy model First order model
Mobility model Random way point
Ere_clec 16.7 nJ/bit
ERac—elec 36.1 nJ/bit
€fs 10.9 nJ/bit
Emp 1.97 nJ/bit

To calculate the optimal number of clusters, using Equation 6.4, the av-
erage PL exponent is set to 3.5 and €, is computed using the actual power
consumption of the Nordic transceiver as indicated in [1]. The simulation con-
sidered an indoor scenario by choosing the range 1.4-6 to compute the value
of the PL exponent, as suggested in [37].

The simulation results are as follows:

e Metric 1 (Delay): the induced delays of the simulated protocols are
shown in Figure 6.8. It can be easily seen that LEACH-ME performs
the poorest among the simulated protocols and this is due to its relying
on one parameter, mobility factor, for electing the Cluster Heads. Ac-
cordingly, inaccurate selection of CHs negatively impacts the protocol’s
routing delays. LEACH-MEEC, on the other side, performs better than
LEACH-ME since it relies on two parameters, namely residual energy level
and connectivity status, to elect the CHs. LEACH-MEEC, with its two-
parameter election model, performs better than LEACH-ME, but worse
than the protocol proposed by [14] since it does not take into account
other important parameters (e.g., the distance to the BS). ECBR-MWSN
is the best performant among all the protocols, except the protocol pro-
posed by [14], thanks to its multi-hop inter-cluster routing operation and
taking three parameters for CH election namely node’s mobility, distance
to the BS and its residual energy. ECBR-MWSN performs the second best
among the simulated protocols due to the delay resulting from its direct
intra-cluster communication delays.

e Metric 2 (Energy Consumption): the energy consumed by the simu-
lated protocols are shown in Figure 6.9. It can be seen in that the proposed
protocol [14] consumes the least energy among the simulated protocols and
thus considered the best. LEACH-ME protocol performed the worst and
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this due to the same reasons mentioned for metric 1. Additionally, LEACH-
ME allows the creation of large clusters which increases listening times,
relay burden and collision rate thus leading to higher energy consumption.

e Metric 3 (Percentage of the dropped packets): the percentage of
packets dropped from each of the simulated protocols are shown in Fig-
ure 6.10. It can be seen that the proposed routing algorithm by [14] pro-
vides the most reliable transmission in CBSN in comparison with all the
simulated protocols as it yields the lowest percentage of dropped packets.

12 ; ' : : :
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—+— LEACH-ME : :

10 -1 —4— ECBR-MWSN R e T v
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FIGURE 6.8
Delay of the routing protocols

6.6 Conclusion

In this chapter several routing algorithms for CBSN have been compared,
namely LEACH-ME, the LEACH-MEEC, the ECBR-MWSN schemes, and
a recent routing algorithm [14]. Following the proposed simulation scenario
and based on the simulation results, we deduced that the latter method out-
performs the other ones on induced delay, energy consumption and packet
dropping. Its success is due to efficiently addressing three main components
related to routing protocols for CBSN namely CH election (selecting the CH
following multiple parameters), cluster formation (dividing the network into
an optimal number of clusters and having equal cluster sizes), and data trans-
mission data (using multi-hop routing operation between clusters and between
the nodes of a cluster).
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Being able to do so, the computation overhead reduces and each cluster
benefits from decrease in delay and energy consumption and enhancement in
transmission reliability.
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7.1 Introduction

In the past decade, Wireless Body Sensor Networks (WBSNs) emerged as a
low-cost solution allowing the continuous monitoring of physical and physio-
logical parameters of the human body. A lot of research has been made and
is still being made in the design of medical accurate invasive and non invasive
sensors and the design of comfortable wearable health monitoring systems.
Having health related data being continuously collected leads to a palette of
body sensor network (BSN) applications. A particular focus is given to health-
care applications. All types of population can benefit from BSN healthcare ap-
plications, starting from toddlers to elderly, depending on the monitoring phe-
nomenon of interest. Furthermore, diverse monitoring tasks can be achieved
such as event detection, event prediction, medical diagnosis as well as many
other tasks. They can be depicted as a function of three different dimensions:
the type of user, the type of processing and the monitoring location. These
healthcare applications should meet a set of requirements in order to achieve
user satisfaction, perform as desired, have an impact on people’s life and en-
sure continuity. Especially that, WBSNs have limited resources, are subject
to interference and faulty measurements and deal with sensitive medical data.
Therefore, energy management is one of the most challenging issues of WB-
SNs especially that healthcare applications are supposed to run autonomously
for long periods of time. Thus, designing long-lasting WBSNSs is of paramount
importance. Indeed, the batteries of the resource-constrained biosensor nodes
are rapidly depleted with the continuous sensing, processing and transmission
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tasks and their frequent replacement is not favoured especially that we want
to encourage the acceptance of this technology by people. Transmission is con-
sidered to be the most power-hungry task. However, it has been shown that
continuous sensing may consume a greater amount of energy [16]. Whereas,
locally processing raw data is often possible by adopting lightweight algo-
rithms in order to manage the energy consumption of the node. Hence, several
energy-efficient data collection mechanisms have been proposed in the litera-
ture so far.

At another level, developing intelligent algorithms for a variety of tasks
in healthcare applications has been also, currently, attracting the research
community. Hence, the treatment and processing of the collected data is an
important aspect in WBSNs. For instance, data fusion in WBSNs allows the
combination, the correlation and the association of physiological data and
medical information coming from one or multiple biosensor nodes in order to
achieve accurate situation assessments about the monitored person. Particu-
larly, multi-sensor fusion has been gaining an ever-increasing interest driven
by its potential in ensuring a unified picture about the health condition of
the patient. However, several challenges exist in WBSNs, especially that the
collected data is subject to noise, interference and faulty measurements, thus
leading to the fusion of imperfect and inconsistent data. Furthermore, real-
time fusion and good accuracy, which are two important aspects in healthcare
applications, should be satisfied by multi-sensor fusion approaches. Therefore,
the choice of high-level fusion techniques such as machine learning, fuzzy logic,
case-based reasoning, etc. is very essential and is application-specific.

In this chapter, we will go over the recent advances in WBSNs by cover-
ing healthcare applications, data collection and fusion. The remainder of this
chapter is structured as follows. In Section 7.2, the architecture of WBSNs as
well as the types of biosensors are firstly presented. Then, in Section 7.3, a
classification of healthcare applications is given. The list of requirements that
they should satisfy to get people’s acceptance and have a good performance are
presented in Section 7.4. In Section 7.5, a classification of the energy-efficient
mechanisms found in literature is provided. In Section 7.6, multi-sensor data
fusion is covered, a discussion about the challenging aspects is given in Sec-
tion 7.7 and the different types of fusion are discussed in Section 7.8. Finally,
Section 7.9 provides some guidelines and future work axes before concluding
the chapter in Section 7.10.

7.2 WDBSN: Architecture and Biosensor Nodes

A WBSN is composed of biosensor nodes and a coordinator (see Figure 7.1).
Biosensor nodes are miniature, lightweight, low power, limited-resources and
intelligent sensor nodes that sense at a given frequency, process and transmit
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human physiological parameters such as physiological signals (ECG, EEG,
PPG, etc.), vital signs (heart rate, respiration rate, temperature, blood pres-
sure, etc.) and/or body movement. They can be invasive (or implantable) or
non-invasive (or wearable) such as accessory (watch, bracelet, glasses, ring,
etc.), clothes (smart shirts, gloves, shoes) or patches [6]. Each biosensor node
is composed of three units powered by a battery: the sensing, processing and
transmission units. All three need power to perform their tasks. Yet, trans-
mission is considered to be the most power-hungry task. The acquired data is
periodically and wirelessly transmitted to the coordinator of the network. The
latter can be any portable device close to the person’s body such as his/her
smartphone or PDA. Its role is to manage the network and perform the fu-
sion of the collected data. Thus, emergencies, abnormal events as well as the
continuous follow-up of the person’s health condition can be ensured by the
coordinator. Moreover, it can provide the person advice, reminders and take
action in emergency situations such as call the doctor. The collected data as
well as the results of the fusion process are sent by the coordinator to the
medical center (healthcare experts, doctors) where further processing can be
made.
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FIGURE 7.1
Wireless Body Sensor Networks: Architecture and biosensor nodes

7.3 Healthcare Applications

BSN applications are diverse and can be regrouped under two categories: and
non-medical applications. Non-medical applications are found in the entertain-
ment field and in consumer electronics. They allow more realism in the user
experience such as in video games, virtual reality applications and movies.
Whereas healthcare applications concern all health monitoring applications
whether they are employed in critical or non-critical monitoring scenarios. All
healthcare applications that aim to provide a continuous monitoring of phys-
iological parameters in order to capture life-threatening events and enable
early interventions fall within the category of critical monitoring scenarios.
Other types of healthcare applications concern non-critical scenarios which
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are not related to patient monitoring such as fitness, sports and ambient as-
sisted living. Therefore, different populations are targeted given the diversity
of BSN applications. Based on the monitoring scenario and application needs,
healthcare applications mainly target elderly, chronically-ill patients, acutely-
ill patients, wheelchair users, athletes, and people in general seeking for per-
vasive assistance and desiring to continuously monitor their health. Figure
7.2 provides an overview of the main healthcare monitoring tasks applications
which are dominantly studied in the literature. Three dimensions are used to
represent the different aspects which are tackled: the monitoring setting, the
type of subject concerned and how data is processed. Five aspects are iden-
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FIGURE 7.2
Targeted monitoring tasks in healthcare applications based on Wireless body
sensor networks (inspired from [3])

tified: event detection, health/situation assessment, decision-support, event
prediction and diagnosis.

e Health/situation assessment: It refers to the continuous assessment of
an event of interest using scoring systems, a scale/grade metric to provide
the patient and doctors with an overview of the patient’s situation over
time.

e Event detection: It refers to the identification of unusual patterns, out-
liers and critical conditions which do not conform to normality such as fall
detection and emergency detection based on vital signs monitoring.

e Decision-support: It refers to monitoring systems that aim to provide
patients with local and fast decisions based on the identified emergency or
health related event.
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e Event prediction: It allows the identification of events which have not
yet occurred such as blood glucose level, mortality, and heart disease status
predictions [14],

e Diagnosis: It is often based on the retrieval of knowledge from vital signs
and other medical information such as electronic health records and meta-
data. Thus, it needs more robust information rather than only physiolog-
ical parameters collected by WBSNs [9].

7.4 Healthcare Application Requirements

From a user point of view, any healthcare application, regardless of the tar-
geted population and the specific monitoring task that it performs (c.f. Section
7.3), should respect the following technical requirements in order to achieve
good monitoring and ensure users and medical community satisfaction.

e Acceptable delay: Ensuring an acceptable delay between data collection
and their analysis is crucial, especially in critical monitoring. Therefore,
data acquisition, processing and transmission at the level of sensor nodes
should not be time consuming and complex. Furthermore, the algorithms
that process the collected data at the coordinator level for fusion and
analysis should run in real-time and respect delay in order not to miss any
important events and to provide alarms in critical monitoring.

e Quality of Service (QoS): Huge amounts of physiological data are col-
lected continuously in WBSNs. Furthermore, not all the data contain crit-
ical or emergency information. Thus, ensuring quality of service is very
important in BSN healthcare applications in order to give priority to crit-
ical data rather than normal data.

e Mobility: BSN healthcare applications should take into consideration the
mobility of the user. Thus, the wearable systems should not be bulky and
should be comfortable. Furthermore, interference due to body movement
makes pre-processing of data an important step. Mobility in BSN is of dif-
ferent kinds. Even when the user does not move from one point to another,
they can simply move their arms or knees, etc. This mobility greatly affects
the quality of links between the wearable sensors and different studies have
shown that multi-hop communications even over very short distances are
more robust to this kind of mobility [4]. In addition, when several WBSNs
are in contact, efficient multihop routing, intra and between the different
WBNSs, could bring more robustness in data collection, providing a mean
to retrieve data which might have been out of range instead.
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e Accuracy: Health monitoring requires by nature good accuracy due to
possible life-threatening events. Thus, the algorithms proposed for data
collection and fusion should ensure a good accuracy through the detection
of all critical events and the inference of correct knowledge compatible
with the reality.

¢ Robustness: WBSNs can be subject to malfunctioning sensor nodes, en-
ergy depleted sensor nodes or bad attachment of sensor nodes. This leads
to erroneous measurements and missing information. Thus, BSN health-
care applications which rely on multi-sensor fusion ensures robustness as
well as data availability and authenticity. Data collection from the differ-
ent sensors should also be very robust, especially to a node or link failure,
providing dynamic path selection.

e Security: Dealing with medical data demands establishing secure sys-
tems. Security is of major importance in BSN healthcare applications. It
is ensured by integrating security protocols in order to ensure safe data
collection and fusion.

e Confidentiality and Privacy: Similarly medical data requires confi-
dentiality and privacy. Thus, BSN healthcare applications should inte-
grate privacy mechanisms among the user acceptance. Privacy preserva-
tion should appear at all levels, from the data itself to its processing in
the application going through its collection. A way to secure and preserve
privacy in BSN data collection is to rely on a blockchain as suggested
in [7].

7.5 Energy-Efficient Mechanisms

Inspired from [16], can be classified as a function of the energy-consuming task
that they target: sensing, communicating and processing (c.f. Figure 7.3).

1. Energy-efficient sensing: It focuses on reducing the sensing time of
sensor nodes in order to preserve their energy budget. Consequently, the
sensor nodes’ unit(s) including the radio, CPU and sensor(s) are turned
off to reduce the energy consumed to perform their tasks.

Two different strategies are identified: (1) sensor set selection and (2)
context-based pull. The former aims at achieving a good trade-off between
the number of activated sensors and the classification accuracy. Their ul-
timate goal is to maximize the lifetime of the WBSN while keeping a good
detection performance. The sensor set selection could be made prior to
deployment or in real-time. The context based pull approaches exploit
the correlation between contexts to reduce the energy consumption due
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FIGURE 7.3
Classification of energy-efficient data collection techniques

to data acquisition [13]. They are mainly based on activity recognition.
Instead of adopting the current paradigm where the data is continuously
streamed from the sensor nodes to the coordinator, a pull-based asyn-
chronous model is employed. Therefore, the coordinator requests relevant
data from the sensor nodes depending on the identified user context.

2. Energy-efficient communication: It focuses on reducing the amount
of transmitted data and power transmission, reducing idle states, reducing
re-transmissions due to packet loss or by adequately selecting the commu-
nication technology and its range. Four different strategies are identified:
data reduction, radio optimization, routing protocols and sleep/wakeup
schemes. Data reduction based approaches aim to reduce the amount of
data to be transmitted to the coordinator. Several techniques exist namely:
on node-processing, adaptive sampling and compression specifically com-
pressive sensing. Compressive sensing and adaptive sampling limit the
amount of unneeded samples, thus ensuring efficient sensing and trans-
mission. Whereas, the logic behind on-node processing is that processing
consumes less energy than data transmission. Therefore, a sensor node
performs signal processing and feature extraction and only transmits the
extracted features instead of the raw data [17]. Radio optimization aims
at optimizing parameters such as power transmission, antenna direction,
modulation schemes and coding in order to reduce the energy consumption
of wireless transmission. Energy-efficient routing protocols aim at optimiz-
ing the energy consumption in the network by adopting energy-aware data
forwarding strategies, reducing the transmission power of such nodes when
only short links are needed [15]. Sleep/wakeup schemes aim at reducing
the idle listening time because it dominantly wastes energy [5, 13].

3. Energy-efficient processing: It aims at reducing the energy consump-
tion due to processing. Two different strategies are identified: feature
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selection and adaptive classifier selection. Feature selection aims at en-
suring a trade-off between between delay and accuracy. On the one hand,
using a lot of features enhances the accuracy but consumes a great deal
of energy and requires a lot of computation. On the other hand, using a
reduced number of features reduces computation and energy consumption
at the cost of a lower accuracy. Adaptive classifier selection aims at adapt-
ing the classifier choice to the monitored person’s context, battery level of
the sensor nodes, available resources such as CPU load, available memory
and the application’s requirements.

7.6 Multi-sensor Data Fusion

Joint Directors of Laboratories (JDL) [18] define the term data fusion as
a Multi-level process dealing with the association, correlation, combination of
data and information from single and multiple sources to achieve refined posi-
tion, identity estimates and complete timely assessments of situations, threats
and their significance. In particular, multi-sensor fusion, a specific sub-field
of data fusion, enables a unified picture and a global view of the system by
combining information from several sources.

Much research has focused on comparing the use of a single sensor with
the use of multiple sensors to monitor a specific health related phenomenon
such as activity recognition, health assessment, stress detection, disease pre-
diction, etc. The multiple sensors at use can be of the same type or can be
of different types. An example of the former case is the use of multiple ac-
celerometers placed at different locations on the human body to monitor the
physical activity of a person. Whereas an example of the latter case is the
deployment of different physiological sensors (such as ECG, heart rate, blood
pressure, temperature, etc.) which could also be combined with motion sen-
sors. Multi-sensor fusion improves detection and decision-making by providing
a complete understanding of the situation of interest. It enhances data authen-
ticity and availability and ensures a higher level of confidence and reliability
and decreases uncertainty [8]. Given the inconsistency and imperfection of
sensor measurements, using redundant or complementary data allow to infer
from these measurements high quality information [2, 8]. Particularly, health
monitoring applications focus on the use of multiple vital signs in order to
perform health assessment, thus achieving robustness. Whereas, the use of a
single sensor is limited to the applications that study and analyze a specific
physiological parameter such as the ECG [10]. According to [8], approaches
can be categorized based on :

1. Relationship among data sources: First, biosensor nodes can collect
all the same information : in that case we talk about competitive fu-
sion. It is mainly used to provide redundancy and self-calibration. This
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type of fusion is not very common in WBSNs because any wearable sys-
tem should be comfortable to wear and should have a limited number of
biosensor nodes. Second, biosensor nodes can capture different aspects of
the monitored phenomenon: in that case we talk about complementary
fusion. It is used to refine the accuracy and reliability of the applica-
tion. For instance, in activity recognition, the motion data sensed by an
accelerometer and a gyroscope capture two different aspects of physical
activities. Their joint analysis enables to obtain a high-level information
and improves accuracy and reliability. Finally, biosensor nodes can col-
lect different parameters (such as multiple physiological and/or physical
parameters) that are all required to obtain information that could not be
achieved by analyzing any of these parameters independently. In that case,
we talk about cooperative fusion. For instance, the health assessment of
acute patients requires the simultaneous monitoring of several vital signs
in order to detect emergencies and to have information about the severity
of the patient’s health condition. This type of fusion is the most common
in WBSNs.

2. Processing architecture: Data can be processed in the WBSN either
in a centralized, distributed or hybrid fashion. Centralized fusion de-
pends on a fusion center where all the processing is performed. In dis-
tributed fusion, the sensor nodes perform independent processing on data
and transmit the results to a fusion node. In this case, the fusion node ex-
ecutes a global analysis based on the results sent by all the sensor nodes.
Finally, hybrid fusion concerns approaches where the sensor nodes only
perform low-level fusion by doing partial lightweight computation on the
collected data in a distributed fashion while a central node fuses the gath-
ered data and performs high-level fusion.

3. Data processing level: Data can be fused at different levels. Three cat-
egories can be identified: data-level, feature-level and decision-level.
Data-level fusion is the combination of multiple homogeneous sources of
raw sensory data in order to improve the accuracy and the inferred infor-
mation. For example, data can come from different channels of the same
sensor (ex: 3-axis accelerometer, ECG leads, etc.). Feature-level fusion in-
volves the combination of several feature sets extracted from different sen-
sor nodes to create a new high-dimension feature vector [19]. Generally,
the latter constitutes the input of the classification/pattern recognition
step. The features could be in the time domain (such as mean, standard
deviation, variance, etc.) and/or frequency domain (such as low/high fre-
quency, spectral energy, etc.) and/or other type of features (such as drift
from normality, rule-based features, etc.). In decision-level fusion, a unique
decision is obtained based on local or weaker decisions of multiple sensor
nodes [11]. For instance, it allows to enhance robustness and accuracy,
and is mainly used to detect anomalies or to enforce the detection of the
phenomenon of interest.
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7.7 Challenging Aspects in Data

The collected data in WBSNs present many challenging aspects given that (1)
sensor nodes are deployed in a noisy environment, thus the sensed signals are
affected and may be corrupted, (2) the collected data is subject to data loss due
to interference, (3) the collected data can present inconsistency due to poorly
attached or uncalibrated or low battery level sensors, and (4) sensor nodes
capture physiological signals that are medically interpreted following a human-
reasoning logic, thus characterizing the collected data by imprecision. Data
is characterized by: imperfection, correlation, inconsistency and disparateness
[12]. It is notable that no single algorithm can solve all these challenges and
that the quality of the data has a impact on fusion and decision-making. Thus,
real-time multi-sensor data fusion algorithms targeting the detection, filtering
and enhancement of the noisy data are very essential. One of the most tackled
data-related fusion aspects in WBSNs are uncertainty, imprecision and outlier

(c.f. Figure 7.4).
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Challenging aspects in data

7.8 High-Level Fusion: Data-Driven vs Knowledge-
Driven Approaches

Currently, high-level fusion is gaining more attention especially that low-
level fusion has attained maturity. Low-level fusion concerns data-level fu-
sion tasks which mainly address the data-related challenges that were dis-
cussed in Section 7.7. However, feature-level and decision-level fusions are
adopted in order to infer high-level information. In this category, multiple ap-
proaches are exploited, especially supervised machine learning techniques such
as Decision trees, Bayesian Networks, Naive Bayes, Support Vector Machine,
Neural Networks and unsupervised machine learning such as clustering algo-
rithms. Furthermore, other reasoning approaches are used such as rule-based
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algorithms, fuzzy inference systems and case-base reasoning. As it is noticed,
the approaches are divided between data-driven approaches and knowledge-
driven approaches. Obviously, data-driven approaches are considered to be
self-contained because they rely on the observations and their assumed model:
no external input is required. They are mainly used when the interactions be-
tween data is not understood. In the context of WBSNs, these approaches are
extensively used in activity recognition applications and are also used for pre-
diction and diagnosis healthcare applications. However, they require a training
phase and an extensive amount of data to be validated. The former requires
data collection for a long period of time which consumes the energy resources
of sensor nodes in a real deployment scenario, and an enough number of partic-
ipants (greater than 40) in order to build an application-specific model rather
than a patient-specific model. The latter is an important factor to consider
when a real implementation and test of the application are not feasible. In that
particular case, procuring enough datasets concerning a specific application
such as stress monitoring, health assessment through vital sign monitoring,
emergency detection and disease prevention is only achievable with the col-
laboration of hospitals and healthcare experts. Knowledge-based approaches
make use of prior knowledge such as rules, knowledge databases, solved cases
and known medical facts put by healthcare experts. They have the advantage
of being semantically clear and understandable by humans. However, they are
weak in handling uncertainty and temporal information and could be viewed
as static or incomplete.

7.9 Discussion

In this section, we go farther by covering some of the most promising concepts
for energy-efficiency and highlighting the challenges that exist in the validation
of multi-sensor fusion approaches.

e Cross-Layer approaches and combining different energy-efficient
mechanisms: A lot of research has been conducted to tackle energy con-
sumption at multiple layers, especially at the network, MAC and phys-
ical layers. Energy-efficiency and versatility with changing environments
can be significantly improved by an integrated cross-layer design. Indeed,
the requirements that a healthcare application should meet are closely
linked and related to each other. Cross-layer solutions allow the study of
such an interdependence.Moreover, much research have jointly exploited
different energy-efficient mechanisms, thus addressing the energy con-
sumption at the different data collection steps to optimize the power-
aware management. For instance, the major drawback of energy-efficient
sensing is having undetected fluctuations/status changes or even critical
events. Whereas, energy-efficient processing has an impact on accuracy
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and energy-efficient transmission increases information incompleteness and
even its loss. Thus, the advantage of combining techniques that target dif-
ferent sensor nodes tasks.

e Combining energy harvesting and energy-efficient mechanisms:
Using energy harvesting techniques in WBSNs alone is not sufficient to
make the network self-sustainable, especially that most healthcare appli-
cations require continuous monitoring and limited amount of energy can
be harvested over time based on available sources. Therefore, the energy
provision technique should be complemented by an energy-efficient mech-
anism. As a consequence, energy harvesting needs are reduced and the
sensor nodes are able to perform their tasks more frequently with the
scavenged energy [15, 20]. Furthermore, given that some energy harvest-
ing sources are dependent of the user context (body movement, health
condition, etc.) and others are dependant of the surrounding ambient en-
vironment (solar, heat, light, etc.), a combination of different energy har-
vesting techniques should be combined in order to exploit different energy
sources based on their availability.

e Challenges in multi-sensor fusion: Based on the healthcare appli-
cation in hand, a subset of data-related challenges is addressed. Indeed,
there is not a single algorithm that could solve all the issues discussed
in Section 7.7. Researchers combine different techniques at low-level fu-
sion as well as high-level fusion in order to solve different data-related
challenges [1]. However, any multi-sensor fusion approach should be ca-
pable of ensuring real-time monitoring, should take into consideration the
memory, processing and energy constraints existing in WBSNs namely at
both the sensor nodes and the coordinator levels, and should be evaluated
in terms of accuracy. The requirement for real-time monitoring applica-
tion guide the selection of the high-level fusion algorithm. For example
frequency analysis and neural networks are not efficient due to computa-
tional complexity while rule-based, decision trees, temporal analysis and
statistical techniques are capable of satisfying the online data processing
requirements. The evaluation of a fusion algorithm is not only affected by
its efficiency but also by the quality of the input data. There is no standard
or a well established evaluation framework enabling the assessment of the
performance of data fusion algorithms. In fact, it is hard to predict the per-
formance of algorithms in real-life applications because most of the work
is done in a simulated environment with idealized assumptions. However,
most of the multi-sensor fusion approaches in the literature are validated
in terms of accuracy especially when it employs machine learning. Vali-
dation is made either by computing the classification accuracy based on
provided datasets and/or simulated testing or is made by collaborating
with healthcare experts.
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7.10 Conclusion

In this chapter, we have covered healthcare applications by presenting a three
dimensional classification based on: monitoring setting, type of subject and
how data is processed. Acceptable delay, QoS, mobility, accuracy, robustness,
security, confidentiality and privacy are all requirements that healthcare appli-
cations should meet in order to be accepted by potential users and the med-
ical community. WBSNs based healthcare applications are supposed to run
autonomously for long periods of time. However, biosensor nodes are battery-
powered and WBSNs have then limited energy resources. Therefore, energy-
efficient mechanisms were covered by going through the main techniques that
are found in literature and that aim to reduce the energy consumption due
to sensing, processing and transmitting the data. Finally, multi-sensor data
fusion, an attractive aspect of WBSNs, which constitutes the heart of WBSNs
based healthcare applications, was covered. The collected data can be homo-
geneous v.s. heterogeneous, can come from single v.s. multi-sources, can be
fused on different data levels and following multiple processing architectures,
thus multi-sensor fusion approaches can be categorized based on the relation-
ship among data sources, the processing architecture or the data processing
level. Furthermore, the collected data is characterized by its imperfection,
their correlation, its inconsistency and its desperateness, thus its quality has
a consequent impact on the fusion process. Last, a special focus was given to
high-level fusion by discussing the advantages and the limits of both data-
driven and knowledge-driven approaches. A discussion has followed bringing
up the real-life challenges that exist in multi-sensor fusion when coming to
model deployment and validation as well as the potential of cross-layer ap-
proaches and energy harvesting in energy-aware WBSNs.
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8.1 Introduction

Nowadays, the data quality management field is involved in many application
areas and research topics, such as e-government, e-health, web data, etc. [1],
as shown in Figure 8.1. Wireless Body Sensor Networks (WBSNs) provide
promising applications in healthcare systems. Initially, medical staff in hospi-
tals used to use fixed telemetry devices connected to the patient using wires.
With such wired systems, the patient is tethered to a specific location and is
observed only under abnormal circumstances. With recent advancements in
Wireless Sensor Networks (WSNs) and embedded technologies, portable and
implantable pervasive health monitoring devices started to be worn by patients
outside hospitals. These devices aim to collect physiological data of patients
having chronic medical conditions (i.e. heart rate sensors for cardiac patients),
athletic people who want to follow up their health and performance, people
looking to lose weight or quit smoking, etc., and to provide them continuous
monitoring and analysis. The collected data can be shared with physicians,
insurance companies for coverage, coaches, adult children of elderly parents,
etc., through mobile phones, wireless networks, Internet, etc., as shown in
Figure 8.2.

The conclusions resulting from the analysis process depend mainly on the
quality of the analyzed data. Since the conclusions and decisions made dur-
ing the analysis phase are based on the data, this leads to erroneous and
faulty conclusions if the data is of poor quality. To assure reliable diagnosis,
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Data quality research issues and application domains

healthcare systems must assure high-quality data. Failing to assure a good
level of data correctness, precision, and trustworthiness will lead to incorrect
diagnosis conclusions and medical decisions. For instance, in the medical field,
a drug may be withdrawn from the market because of inaccurate side effects
pointed out by customers. A misplaced decimal point in prescription resulted
in the death of a pediatric child [2]. The healthcare organization states it pays
approximately 4 million $ each year due to complaints from patients who have
been disqualified due to medical malpractice [3].

The remaining of this chapter is organized as follows. We discuss in Sec-
tion 8.2 the data quality and its dimensions. We present in Section 8.3 existing
works that concern data quality in healthcare systems. We end the chapter
with a conclusion and open research challenges.

8.2 Data Quality Basic Concepts

“Data quality is the capability of data to be used effectively,
economically and rapidly to inform and evaluate decisions.”

Alan Karr et al. [4]
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Pervasive healthcare monitoring systems require high-quality data from
medical sensing devices. Decision-making systems use data to make decisions,
hence the interest in data quality. The decisions and their consequences can
be disastrous if the data is of bad quality. Therefore, to ensure the quality,
accuracy, and correctness of decisions, the quality of the data must also be
guaranteed. Traditionally, data quality has been expressed in terms of accu-
racy. Nowadays, data quality extends to many other criteria and attempts to
ensure the completeness, objectivity, timeliness, representation, authenticity,
security, etc. of the data [5].

There are no standard methods for assessing data quality. This latter is
defined as “fitness for use” [6]. Data quality dimensions and their evaluation,
as well as their improvement methods, depend on the requirements and the
needs of the users and applications. The data that may be considered good
in one case may not be in another case. Therefore, the quality of the data
depends on the context relating the use of the data rather than the data
themselves. Data quality can be defined as “fitness for use” [6]. Today, there
is no standard strategy for evaluating data quality dimensions [7]. The process
of defining, evaluating, and improving these dimensions is closely tied to user
and application requirements and the context in which the data is used, rather
than the data itself. Data deemed to be good in one case may not be in another.

Given the business need for a data quality management system, various
software-based methods to assess and enhance data quality have been pro-
posed in the literature. These methods are as follows [8]:
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e Rule-based methods: These methods rely on some knowledge about the
variables that sensors are measuring to determine thresholds with which
the sensors must comply.

e Estimation methods: A sensor measurement is considered valid if it
matches its expected value. The latter is calculated by considering the
temporal and spatial correlation between the sensors.

e Learning-based methods: these techniques define the normal and faulty
behaviors for normal and faulty sensors data respectively based on some
historical sensors data.

e Using the spatial correlation: In a multi-sensor situation where multiple
sensors are measuring the same variables, the quality of the sensed data
is judged by considering redundant or correlated data obtained from the
different sensors.

8.2.1 Data Quality Dimensions

The first step in managing data quality is the identification and definition of
the dimensions on which the quality will be assessed. Although data quality
is defined according to the context of its use, it is very difficult to measure it
without referring to a specific set of attributes or dimensions. The identifica-
tion of the quality dimensions to be assessed and improved depends on the
needs of the customers [9], while the assessment and improvement methods
depend on the nature and characteristics of the data.

The data quality management process begins with identifying and defining
the criteria against which data quality will be judged. Even though data qual-
ity is related to the context of use, it cannot be measured without referring to
a specific set of dimensions. As for the identification of dimensions, it depends
on the needs of the clients [9], while the methods of evaluation and improve-
ment are closely related to the characteristics of the data. The researchers
defined the data quality dimensions using three different approaches: theoret-
ical, empirical, and intuitive [1]. In what follows, the empirical approach will
be discussed.

Strong el al. [10] and Wang et al. [9] defined a set of quality metrics by
interviewing data consumers. The authors identified four categories of dimen-
sions: intrinsic, contextual, representational, and accessibility. As shown in
Figure 8.3, each of these categories refers to several dimensions.

The purpose of intrinsic dimensions is to evaluate the quality of the data
value itself. Data believability and reputation measure the extent to which
the data is considered trustworthy and reliable by the user. Estimating this
confidence level requires verifying the source of the data and the changes they
have undergone. For example, Wikipedia’s information has a bad reputation
compared to that of the ACM database. In terms of accuracy, it measures
the difference between the actual value (sensed by the sensor or stored in the
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Data quality dimensions as defined by the empirical approach

warehouse) and the real value that the data is intended to represent. Finally,
the objectivity of the data illustrates the level to which the data is fair and
unbiased.

The contextual dimensions take into account the context in which the data
is used. The relevancy dimension, also called helpfulness, represents the degree
to which a user’s needs are satisfied. The timeliness dimension, also called
freshness, depicts the lifetime of the data and can be leveraged in different
ways. According to [11, 12], data timeliness represents the speed with which
data is updated in a database. Wand et al. and Liu et al. [11, 13] defined
timeliness as the capability of data to meet application requirements and
needs in a timely and up-to-date manner. Naumann et al. [14] defined the
timeliness as the data average age stored in the warehouse. Here, the age of
the data represents the age of the last update, rather than the data antiquity.
Jarke et al. [15] defined timeliness as the volatility of data: the frequency with
which data changes over time. For example, weather conditions are considered
very volatile because they change frequently. The completeness dimension
quantifies the size of the data. It is calculated according to the number of
values to be measured and stored in the warehouse and the actual number of
measured and stored values.
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The representational category measures the data representation quality.
The interpretability dimension describes how clear and appropriate the data
is for the user. It also deals with the availability of the documentation neces-
sary for the interpretation of the data. The ease of understanding dimension
represents the extent to which the semantic relationships between data are
clear and understandable by the users. The representational consistency di-
mension, also called homogeneity, illustrates the degree of compatibility of
current data with previous ones. Finally, the concise representation dimen-
sion also called structural consistency and format accuracy shows how well
the data structure fits the data itself.

The last category of data quality is accessibility. It concerns the accessi-
bility and security of the data. The accessibility dimension, also called avail-
ability, measures the probability that a user’s request will be satisfactorily
answered within a specific time interval. The access security dimension, also
called confidentiality and privacy, deals with various security aspects of the
data, such as data encryption/decryption, user log in and anonymization, and
data source authentication.

8.2.2 Data Quality Factors

A data quality assessment involves an understanding of the various factors
that can affect data quality. Data quality factors in BSNs can be categorized
into three categories: human factors, sensor factors, and network factors.

8.2.2.1 Sensor level

e Sensor precision: The data captured by a sensor can be influenced by
random noise, causing them to deviate slightly from the true values. The
precision is a measure of random noise [16]. It shows how close the data
values are to each other. Noisy data is usually caused by fluctuations
and interferences in the environment, low sensor battery, sensor hardware
failure, sensor improper calibration, etc. [17]. Noises often exist in data
and are difficult to control. Because of the noise, the data will be scattered
around the true values. Random noise impacts the variability of the data
without affecting their average. However, analyzing noisy data could have a
negative impact on the data analysis results. Thus, it is necessary to detect
and remove them to extract the relevant information from the data [18, 19].

e Sensor accuracy: It describes how close are the sensed physiological data
to the real ones by measuring the difference between the sensed values and
the true ones that the sensor aims to represent. Because of the instrumental
and physical limitations, and the miscalibration of the sensor, sensed data
can deviate from the true physiological values. However, deviated data may
be due to medical diseases (also called events) which must be exploited, or
faulty sensors (called errors). The separation between faulty data and real



Data Quality Basic Concepts 135

data representing medical diseases as well as the removal of faulty data is
mandatory to ensure the data accuracy.

e Sensor believability: It represents the degree to which the sensed data are
considered credible. The data collected by the sensor is considered believ-
able if it meets the objective of interest. For instance, a body temperature
sensor should provide temperature values in the range of 30-45 Celcius.

e Sensor manufacture: Quality of manufacture reflects the trust in the sensor
manufacturer and its manufacturing process; confidence may be based on
past interaction or reputation.

e Completeness: All data required to perform a diagnosis for a patient must
be collected by the sensors. The loss of data leads to a reduction of informa-
tion, and will, therefore, have serious consequences for the decision-making
system since the data analysis results will be erroneous and distorted. For
example, in the case of heart disease management, the sensors must collect
measurements of heart rate, blood pressure. Lack of any of this information
will lead to misdiagnosis and treatment.

e Sensor calibration: Sensor accuracy degrades with time, requiring periodic
recalibration. Confidence in the sensor’s calibration depends on the time
since the last calibration, rate of drift away from calibration, and the
reliability of the calibration authority.

e Sensor application: To obtain accurate data, it is imperative to use and
apply medical sensors correctly. For example, to measure body tempera-
ture, the thermometer should be applied directly to bare skin. To measure
the amount of oxygen that the blood is saturated with, the pulse oxime-
ter must be applied to a specific part of the body. Thus, the accuracy of
the measured data depends on the ability and reliability of the patient or
caregiver in the application of the sensor.

e Sensor integrity: As for the data completeness, data loss could have serious
consequences for the healthcare system and leads to reduced defective data
analysis results. The sensor integrity mainly derives from tamper-resistant
hardware.

8.2.2.2 Human level

A healthcare monitoring system involves human participants: patients and
caregivers. Confidence in the sensor data depends primarily on the confidence
level of these participants. The health monitoring system should ensure good
behavior for both patients and caregivers, and assess the behavior of these
participants. Trusting a participant implies trust in its identity, responsibil-
ity to perform the role when needed, and skills to perform the role correctly.
These trust issues ultimately affect the quality of the data generated from
the patient’s sensor. When a patient is the only participant monitoring his
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health, the following trust issues will be raised: (1) is the system sensing the
right patient? (2) does the patient regularly and correctly apply the sensor?
(3) does the patient have incentives to cheat? For example, how can the system
ensure that the sensor is applied to the right patient, or that the sensed data
is tagged with the correct identity when transmitted? How can the system
determine if the sensed data is from the desired patient? Trusting a patient
can be achieved by assessing the confidence in the patient based on a priori
information, such as the patient’s prior history of capability with sensor de-
vices, using some physiological information as a biometric identifier. On the
other hand, when the caregivers are involved in the health monitoring of a
patient, they will be responsible for the configuration of the sensor as well as
the periodic application and/or adjustment of it. Therefore, the data quality
will be affected by the trust in the caregiver who configures and provides the
sensor to the patient.

8.2.2.3 Network level

A remote healthcare system can be seen as three-tier architecture where the
patient data is collected, stored, and transmitted to the healthcare provider
[20]. To ensure the timely and secure delivery of the data, and thus ensure the
data quality, the healthcare system architecture must be robust. The follow-
ing factors affect the system’s robustness: (1) Network: from the patient to
the caregiver, the sensor data can circulate on many networks (the patient’s
home network, public networks, or private networks). The data must reach
the healthcare provider intact and without delay. Therefore, the system must
not have weak links that leak transmitted data, the availability of network
links must be ensured, and the robustness of the network against faulty links,
network latency, adversaries, and malicious attacks must be guarantee. (2) In
addition, if some devices other than the sensors, such as the patient’s mobile
phone, are involved in analyzing and storing the sensed data, the quality of
the data may be affected by the robustness and integrity of the device hard-
ware and software platforms. (3) Finally, the quality of the sensed data also
relies on the aggregation algorithm used to combine multiple sensor values
into a new statistical value and the fusion algorithm used to combine data
from multiple sensors.

8.3 Data Quality Remedies
8.3.1 Data Cleaning Approaches in WSNs

Jeffery et al. [21] developed a data cleaning framework to clean the sensed data
using a set of predefined rules. The cleaning process aims to detect erroneous
data, predict missing data, and eliminate redundant data. Erroneous data are
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detected by comparing the measurements to expected values defined by the
user and to the ones recorded by other sensors. Missing data are predicted
using interpolation.

Zhuang et al. [22] proposed two data cleaning strategies that aim to de-
tect, remove, and replace erroneous data. To detect erroneous data, the first
strategy uses wavelets, while the second strategy uses a similarity comparison
based on the neighboring dynamic time warping.

Bettencourt et al. [23] developed a new statistical method to detect er-
roneous data in a WSN deployed at Sevilleta National Wildlife Refuge. The
proposed method assumes that there is a strong spatio-temporal correlation
between the sensors.

Lim et al. [24] presented a new framework that assesses the sensor and data
confidence levels based on the source of the data. Data are filtered according
to a predefined confidence interval set by the user. Two similarity measures
are used to compute the confidence level: (1) the value similarity and (2) the
provenance similarity.

Hermans et al. [25, 26] developed a new data fusion framework based on
data quality. The framework uses a set of rules to evaluate the accuracy, pre-
cision, completeness, and timeliness quality dimensions of the data. Ramirez
et al. [27] proposed a data cleaning framework for sensors data generated
from the Jornada Experimental Range WSN. The framework applies different
machine learning techniques to evaluate the accuracy dimension of the data.

Gutierrez et al. and Rodriguez et al. [28, 29] implemented an environmental
monitoring system for the analysis of volcanic data. The system consists of
three management layers. The data is captured in the acquisition layer, then,
processed and analyzed, filtered, reduced, or aggregated in the processing
layer. Finally, the discovery layer exploits the data. Data quality dimensions
are given by the user via a graphical interface. The quality dimensions are the
accuracy, completeness, and time-related aspect.

Li et al. [30] defined three new data quality dimensions: currency, avail-
ability, and validity. The currency dimension illustrates the usefulness of data
in relation to their time. The availability dimension represents the percentage
of time that data is available and up to date. Data is considered available as
long as it is not out of date and can meet user requests. The validity dimen-
sion measures the accuracy of the data and is assessed using a set of rules.
This dimension largely depends on the application domain and the scenario
envisaged.

Islam et al. [31] evaluated the impact of missing and inaccurate data on the
data classification results and proposed an approach to improve the data qual-
ity according to two dimensions: completeness and accuracy. The proposed ap-
proach identifies and removes erroneous data using the Co-appearance based
Analysis for Incorrect Records and Attribute-values Detection method [32]
and then predict deleted and missing data.

Lei et al. [33] suggested cleaning sensors data to enhance the reliability
dimension of the data and minimize the energy consumption of sensors. The
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cleaning process consists of removing abnormal data and classifying them
as errors and phenomena. At first, a linear regression model is applied to
predict the measurements and comparing them with the sensed one. A mea-
surement is judged abnormal if the difference between it and the predicted
one exceeds a predefined threshold. Then, the classification of abnormal data
as errors/phenomena is done based on the Euclidean distance between the
measurement and the value sensed by the nearest neighbor.

Tasnim et al. [34] presented a new cleaning strategy that assesses and
improves the credibility of sensor data. The credibility dimension measures
the number of times a sensor captured the value correctly compared to the
total number of values captured by the sensor.

Cheng et al. [35] proposed to evaluate sensor data quality according to four
dimensions: data volume, accuracy, completeness, and timeliness. Based on
the correlation degree between these four dimensions, different data cleaning
strategies were executed.

8.3.2 Data Cleaning Approaches in Healthcare Industry

In many countries, public health provides direct clinical and community ser-
vices. These require the presence of data collection systems to be able to
provide accurate and understandable information to health authorities and
healthcare providers. Health authorities are responsible for diagnosing and
preventing disease, as well as educating patients to take care of themselves.
Thus, it is quite important that the health information collected is accurate,
precise, and reliable. If the data collected is not accurate, complete, or even
available when needed, the consequences could be devastating for the commu-
nity.

Wang et al. [36] developed a framework to organize, share, and use data
quality rules among facilities. The framework consists of three main compo-
nents: rule templates, knowledge tables for rules, and rule results tables. Rule
templates and knowledge tables aim to store and manage the rules, and rule
results tables are used to store the outputs of the system.

Carlson et al. [37] developed a rules-based approach to enhance the data
quality in clinical decision support systems. The proposed approach consists
of a set of business and integrity rules and aims to identify incomplete data,
invalid and inconsistent values, as well as inconsistent relationships among
data from multiple facilities. Invalid measurements were removed from the
database and replaced with other values.

Brown et al. [38] described a data quality methodology based on data
quality probes (business rules). The goal of the proposed methodology is to
find data quality problems in healthcare systems and improve handle them.
The proposed approach assumes that errors in data will take place at every
step during the encounter between the patient and the clinician. In their work,
the authors evaluated the defined business rules in clinical information systems
to find the inconsistency between the data.
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Mohamed et al. [39] developed an E-Clean data cleaning framework for
healthcare data. The system is based on the Extract, Transform, and Load
(ETL) process to clean the recorded data, detect erroneous data, and ulti-
mately, improve data quality. A set of integrity rules were used to detect
redundant data and erroneous ones.

Kahn et al. [40] proposed the “fit-for-use” model to assess the quality of
Electronic Health Records (EHRs). The model includes five key concepts: (1)
attribute domain constraints which focus on data value anomalies for individ-
ual variables, (2) relational integrity rules which compare data from one table
to related data in another table, (3) historical data rules which use temporal
relationships and trend visualizations to identify data gaps, unusual patterns,
etc., (4) state-dependent objects rules which extend temporal data assessment
to include logical consistency, and (5) attribute dependency rules which check
conditional dependencies based on knowledge of a clinical scenario.

Hart et al. [41] described the deployment of a data warehouse-based system
at Island Health of Canada to measure and report the quality of healthcare
data. The quality of the healthcare data was assessed against a set of rule-
based discrepancy identification, including integrity rules and business rules.
The records that failed the validation are reported for correction. Once cor-
rected, the quality of the data was re-assessed again. The authors reported a
decrease of more than 50% in rejected registrations in six months.

Hall et al. [42] defined the guidelines of good pharmacoepidemiologic prac-
tice for database selection and use and included several recommendations for
single-site and multi-site studies. The authors provided suggestions for data
checking to assess the completeness and accuracy of the data, external validity
checking, logic and plausibility checking, and trending assessments.

Zhan et al. [43] presented a rules-based data quality assessment frame-
work for healthcare systems. The framework consists of 6000 rules and 22 rule
templates. To define additional rules and rule templates relevant to anesthe-
sia systems, the authors reviewed thirty-three EHR anesthesia screens and
analyzed the relationships between items appearing on the screens.

Maglogiannis et al. [44] developed a Bayesian network model based on
the CCTA Risk Analysis and Management Methodology to perform a risk
analysis of health information systems. The model identifies the threats and
vulnerabilities of the information system based on their probability of occur-
rence. Borsotto et al. [45] developed a Bayesian network to evaluate the health
status of soldiers and to assess the confidence level in the diagnosis based on
the clinical uncertainty, sensors information patterns, and hardware reliability
diagnostics.

Peter et al. [46] proposed a new wearable system for measuring emotion-
related physiological parameters and demonstrated the application of their
sensor validation approach [47] to the proposed system. The validation ap-
proach consists of checking the sensor data against previously historical data
and stored information about the measured variable.
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Tatbul et al. [48] presented a new data-confidence model-driven approach
for physiological sensor data acquisition. The approach derives a confidence
level for the data based on other measurements such as data collected from
multiple sensors. Carvalho et al. [49] developed a 3-level data fusion architec-
ture based on redundant sensors to deal with the data quality problems. The
proposed solution was applied to a healthcare system to provide reliable heart
rate measurements.

O’Donoghue et al. [50] presented a sensor-data validation model for a home
healthcare system that estimates the sensor reliability. The model is based on
the correlation between data using known boundary values, values from other
sensors, and patient information. Kovatchev et al. [51] proposed a mathemat-
ical model to assess the accuracy of glucose sensor data. The assessment is
based on sensor calibration, physiology of glucose dynamics, and sensor engi-
neering. Thiemjarus et al. [52] discussed the importance of combining physio-
logical activity with sensed data to obtain reliable cardiac episode detection.

8.4 Conclusion

In this chapter, we presented the concepts of data quality management in
healthcare systems and discussed existing works for data quality assessment
and enhancement. Ensuring data quality is very critical for pervasive health
systems. These systems rely on data to make timely decisions and deliver
better health services. Thus, guaranteeing and improving the data quality
leads to improving the quality of health decisions. On the contrary, poor data
quality can be misleading and lead to faulty results and diagnoses, ineffi-
cient health decision-making, and even loss of life. In healthcare systems, data
quality mainly attempts to ensure that the patient data is reliable, accurate,
complete, timely, and meets the organization’s requirements.
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9.1 Introduction

Healthcare is an important sector of industries and increasingly adopting the
newest technologies in development. Internet of Things (IoT) is expected
to be a promising solution for a lot of problematic issues and is defined
as “an infrastructure of interconnected objects, people, systems and infor-
mation resources together with intelligent services to allow them to process
information of the physical and the virtual world and react.” The Internet
of Medical Things (IoMT'), on the other hand, is a merger of medical ma-
chines and applications that connect to healthcare data technology systems
using networking technologies. Moreover, wireless technology represents the
heart core of the progression of JToMT making human society smarter in all
aspects especially in the healthcare domain. This technology facilitates de-
vices to communicate without the need for physical connections. Technologi-
cal developments that boost the remarkable development of IoT and IoMT,
include the speed and bandwidth of the networks, devices battery life ex-
tension, wider protocol capacities of wireless communication and increased
management security.
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9.2 Historical view and trends of IoMT in medical
applications

IoT Internet of things and for medical (IoMT) is expected to make a tremen-
dous transformation from intermittent treatments of illness to preventive care
and well-being solutions to attain a healthier life period and social care for
the human being. Furthermore, it can be used in almost three regions.

e Healthcare and hospitalized patients requiring tight and continuous mon-
itoring.

e Social care and home care systems to assist in daily activities, permitting
remote monitoring and improving assistance.

e Well-being and preventive healthcare.

Chen et al. [1] suggest a PC-based system to monitor patients’ statistics re-
motely; for instance, data from electrocardiogram FCG and accelerometers are
employed to recommend advice to clinical staff regarding intervals of raised
heart rate and filter expected critical event. IoMT was exploited in several
categories of the healthcare domain.

9.2.1 Physiological Analysis

Many trends concentrate on the advancement of protective systems target-
ing physiological factors in health statistics to evaluate critical circumstances
resulting in serious catastrophes.

e Magania Espinoza et al. [2] introduced wireless body sensor network
(WBSN) to observe heart and motion rates of individuals within their
living places.

e Other contributions store physiological data using Bluemix cloud to be
viewed by the medical staff to visualize and analyze health data.

9.2.2 Rehabilitation Systems

e Mathur et al. [3] suggest a solution based upon monitoring the tempera-
ture and walking manner of the residual limb in lower limb amputees to
investigate the health status.

e Dubey et al. [4] utilize a fog design to implement a speech examining model
for the remote treatment of patients with Parkinson’s illness.
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9.2.3 Nutritional Evaluation and Skin Pathologies

Dai et al. [5] work proposed a skin cancer detection that is based on a pre-
trained convolutional neural network model operating using a mobile applica-
tion.

9.2.4 Epidemic Infections and Diseases Spot Localization

Real-time fast actions, mobility, localization and smart sensors data fusion are
vitally important features of IoMT. The following applications are stated as
well in this manner.

e Sood and Mahajan [6] presented an interesting diagnostic and outbreak
avoidance solution regarding the Chikungunya-virus.

e Sareen et al. [7] likewise suggest a system regarding the so-called Zika virus
disease to avoid or at least control the spread process.

e An urgent need for rapid detection and scanning devices has been raised
recently due to the COVID-19 pandemic.

9.2.5 Diabetes Treatment

Many solutions of IoMT are participating in diabetes treatment using wear-
ables and moveable tools such as glucose checkers, insulin injection devices,
real-time glucose supervision and artificial pancreas which provide wireless
communication capability to smartphones.

9.3 Advantages of IloMT

Several positive impacts from the medical point of view are to be mentioned
here.

a. Real-Time Healthcare System: Enabling doctors to control patients’ data
efficiently.

b. Healthcare Costs Minimization: IoMT health solutions bring tremendous
cost reduction.

c. Healthcare Analytics: IoMT offers a considerable volume of information
sharing from various connected devices where doctors utilize these data to
examine the health.

d. Increased Patients’ Interests: The initiation of medical applications made
the patients more careful and precise about their health follow-up.
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e. Health Warnings: With the presence of IoMT, patients will receive ideal
healthcare alerts.

f. Chronic Disease Management: The patients experiencing chronic diseases
are now able to take benefit from remote health check-ups.

g. Physically Challenged People Support: Including examples such as IToMT-
enabled wheelchairs, hearing gadgets, eyeglasses and so many other tools
and devices.

h. Digestible Sensors: These are more vital sensors due to the presence of
ToMT technology.

i. Medicines Management: IoMT devices play a vital role in providing
patients with health data where such data can help them to manage
medicines and drugs well.

j- Errors Reduction: Precise and accurate data is provided resulting in re-
duced risks.

k. Smart Contact Lenses: Google’s lens can quantify glucose levels from the
tears.

1. Blood Clot Monitoring: Using bluetooth connectivity, patients will obtain
data regarding their blood clot measurement directly to their smartphones.

m. Anti-Depression App: It analyses the patients’ current mood and provides
data which in turn helps doctors to deliver essential care to patients.

9.4 Wireless Technology for Healthcare

Wireless communication is the sending of information without the aid of wires
or electrical conductors and the distance of transmission varies from very
short distances to thousands of kilometers. Wireless communication plays an
important role in healthcare. However, the technology is growing, and it is
expected to have enormous attention to retrieve, share, store and transmit
data to various devices format could vary across the healthcare system [8, 9].
Reliability and capacity of transmission, as well as coverage, need to be
taken into consideration when implementing wireless communication for a
healthcare system wireless devices such as laptops, tablets, smartphones and
smart clothes, or any smart wearable sensor that report blood pressure of heart
rate, etc. [8]. Utilizing wirelessly connected devices, Healthcare professionals
can modify and monitor patient’s patient data by cell phones, laptops, etc., a
variety of wireless devices such as radios, smartphones, computers, telephones
and IoMT connect patients and healthcare professionals’ wireless network.
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Wireless medical devices are primarily used to help healthcare professionals
with assessments and monitor patient data. Now, wireless communications
are used to connect facilities and organizations to allow greater access and
management for swifter analysis and sharing of information with healthcare
professionals. The largest market opportunity for wireless technology-based
healthcare is north America because of huge funds in recent years for better
patient care in this region.

Whereas in the Asia-Pacific region, healthcare systems are being improved
by deploying wireless communication-based systems. Regarding the European
region, the spending in healthcare on the rise as adopting wireless technology
to coordinate activities, reduce errors, decrease costs and better-quality ser-
vice. Some of the leaders in the healthcare industry based on wireless technol-
ogy are Allscripts Healthcare Solutions, Inc., Extreme Networks Inc., Cerner
Corporation, Cisco Systems, Inc. and GE Healthcare [10]. Furthermore, there
are a variety of wireless communication technologies for healthcare systems
where medical devices can be connected. Those technologies are:

e WikFi

e VoIP (Voice over Internet Protocol)

e Bluetooth

e RFID (Radio Frequency Identification) RFID
e WWAN (Wireless Wide Area Networks)

e Mobile Internet

e UWB (Ultra-Wide Band). Healthcare systems can be significantly im-
proved with low energy, lower cost and better quality of services.

Those above technologies are employed in medical area networks to help
caregivers and patients with the disturbance risk from electromagnetic which
may affect the precision medical equipment. To overcome this issue, visible
light communication (VLC) technology is proposed [8]. The VLC-based medi-
cal healthcare system can be used in radio frequency restricted hospital areas.
Visible light-emitting diodes (LED) to be the main lighting source which is
promising due to its energy-efficient characteristic [8]. The IoMT still has
many challenges, for instance, finding kits of IoMT that properly monitor a
patient’s activity and track certain medical symptoms such as presence sen-
sors, a camera with automatic detection of human activity. The IoMT still
has many challenges, for instance, finding kits of IoMT that properly moni-
tor a patient’s activity and track certain medical symptoms such as presence
sensors, a camera with automatic detection of human activity.
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9.5 Mobile Communications for Healthcare

Fifth-generation (5G) undergoes fast development of mobile communications.
IoT and IoMT have been projected to offer suitable services for healthcare.
The 5G fulfills the requirement of big data, fast transmission and highly re-
liable with low latency transmission. These requirements with its fast capa-
bilities and supports IoMT for the healthcare system [11]. 5G networks are
moving to act effectively in enabling widespread adoption of IoMT in which
smart healthcare is one of the most vital applications. Mobile 5G-based smart
healthcare network general architecture and its main entities is shown in Fig-
ure 9.1. In mobile-based network communication, smart antennas share a key
role by utilizing many key advances to enhance 5G coverage and capacity [12].
A healthcare system can be combined with cloud computing as proposed in
[13]. The medical records of patients accessed by authorized people are gen-
erated and monitored promptly and alert when the patient’s health in the
healthcare system security danger.

The physiological records of patients are sensitive. Consequently, security
is an important necessity of the healthcare system, particularly privacy. Some
diseases are embarrassing if disclosed. On the other hand, traditional security
solutions cannot be applied to the wireless sensor network (WSN). The wire-
less sensor network is resource-constrained. Numerous researches are going on
addressing this issue, and new and modified security protocols are suggested.
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Mobile 5G-based smart healthcare network.
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Current protocols require high computation, which is a key constraint of this
WSN [10].

9.5.1 Security Threats

These threats include the following security issues.

a. Monitoring and Eavesdropping on Patient Vital Signs

If the adversary has a strong receiver, then he can pick up the messages
can easily. And then can decode the message which contains private data
like the location.

b. Threats to Information When in Transit

Data may be attacked and modified while sending the sensor’s data. For
instance, an attacker may modify physiological data from the wireless
channels, which endanger the patient.

c. Denial-of-Service (DoS) Threats

Wood-Stankovic [14] stated that “a denial-of-service attack is an event
that diminishes or eliminates a network’s capacity to perform its expected
function.” DoS threat can be troublesome in the healthcare system. The
healthcare network needs to be on all the time otherwise it will put the
patient lives in danger.

9.5.2 Wireless Communication and HIPAA Compliance

American Health Insurance Portability and Accountability Act of 1996
(HIPAA rules applied on stored data wired or wireless network. Wireless
communication-based healthcare must maintain the patient records privacy,
security and safety of patient’s information electronic form is known as ePHI
(Electronic Protected Health Information). ePHI involves privacy and high
levels of security. The requirements are strong authentication, data encryp-
tion, forensic capabilities, user logs, comprehensive reporting, restricted access
points; healthcare wireless communications providers should understand the
HIPAA rules and regulations and will be able to provide compliant technology
and certification of the HIPAA.

9.5.3 Considerations of Wireless Technology in the Health-
care System

The following parameters control the application of wireless communication
technology in the healthcare domain.

e Quality-of-services (QoS)
e Energy-efficiency
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e Healthcare architectures design

e Healthcare policy definition

e Healthcare emergency and response
e Security and privacy

Healthcare systems are expected to provide high-quality services with
low costs based on wireless and information technologies. Wireless-equipped
healthcare systems remotely and continuously monitor patients’ health where
patients feel more comfortable. Patient emergencies can be detected faster
via wireless communications and help to respond promptly [9, 15]. In the
healthcare domain, evolving procedures, treatments and expertise are contin-
uously being modernized. However, costs management and increase produc-
tivity need.

9.6 IoT-based Healthcare Applications

Each day a new application involving wireless communications in the health-
care domain is appearing and proposing a new methodology to improve human
healthcare monitoring and treatment. Some of the common areas are listed.

e Homecare and Telemedicine

Inventory Control

Remote Surgery

e Pharmaceutical Sales

Patient Monitoring

Medical and Diagnostic Laboratory

One of the driving points and a primary factor that triggered IoMT is the
increasing number of aging people who need continuous health monitoring. A
network of intelligent wireless medical sensors can be used for the examination
of the human body. Those sensors are attached to the body or implanted in
the body. This enables caregivers to diagnose and predict emergency events
in advance.

Figure 9.2 is an example of using WiFi for healthcare. It shows the archi-
tecture of the stress system. The stress of a person can be found by a machine
learning approach. The system is connected to the cloud using a WiFi module,
and the data is uploaded to each specific interval.
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FIGURE 9.2
Example of using WiFi for healthcare.

The development of the wireless communication technologies market is
hampered by compatibility and interoperability issues among different health-
care equipment operates on various technologies [14]. Figure 9.3 shows an
example of IoMT for different healthcare applications by using wireless tech-
nology. It sends data from patients to a central system which is easier to
monitor, especially for elderly people.

Many studies performed over the years on smart healthcare have con-
tributed to the increasing rise in the use of IoT. IoT technology gives prospects
for major advances in developments in controlling COVID-19. The diagnosis,
monitoring, tracking and control of this crisis are performed in real-time,
which comprises daily new infections of COVID. In this section, some of these
proposed healthcare systems for different applications will be introduced.

9.6.1 IoMT-based Health Monitoring

An IoMT-based healthcare monitoring system is applied to serve both groups
and individuals while they are moving freely [18]. The proposed architecture
is planned to allow to monitor the health status of disaster rescuers, doctors
and porters. The community health monitoring system, based on IoMT, is an
improved version of the individual health monitoring system that facilitates
interpersonal communications. To be specific, the data of other individuals can
be forwarded by people in the community health monitoring system. Multi-
ple people thus form a multi-hop network [18]. The group health monitoring
system is analogous to the opportunistic network that can be organized in a
centralized, distributed and clustered way if one views the ties on each person
as a whole. The coordinator on a given person is the core of all other individu-
als in a centralized system and takes care of their data collection and transfer.
In a distributed system, all individuals interact through their coordinator with
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FIGURE 9.3
Use of WSN for health monitoring.

others in a self-organized manner. Several people enter a cluster in the clus-
tered system and pick an individual as the head of the cluster. Consequently,
the head individual coordinator is responsible for communicating with the
other clusters. The community health monitoring framework has tremendous
potential to be implemented in future healthcare, considering the rapid growth
of the IoMT and the Internet of Human (IoH). The recommended architecture
of the group health monitoring system deploying IoMT, considering the dis-
tributed cluster as a topology, is demonstrated in Figure 9.4. All individuals
may use the multi-hop transmission to transfer their information gathered us-
ing different sensors positioned on their body to the access point. The access
point is responsible for transmission to remote nodes, such as hospital control
terminals.
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FIGURE 9.4
The IoMT architecture for group health monitoring system.

To facilitate the recommended system, it is essential to use some vital
technologies such as cooperative communication techniques [19]. Cooperation
is a valuable tool for realizing the efficiency of the network. Cooperative com-
munication, in particular, is a common approach that is often used to reduce
wireless network interference. Channel interference would degrade the effi-
ciency and usefulness of the IoMT in a crowded setting with numerous people
[19].

When facing emergencies such as disasters, communication between res-
cuers is, as all know, tremendously significant. The control center shall supply
the rescue team with important information such as weather conditions, infor-
mation about the disaster, navigation maps and safety associated information
such as safety zones. The control center then coordinates and transmits the
response from the rescue teams. Sustaining communication is, therefore, the
basis for a successful rescue. In realistic emergency rescue cases, searchers,
surgeons and porters are the three common categories of rescuers who are po-
tentially tailored to wearable sensors. Therefore, an IoMT was established to
continuously monitor the health condition of rescuers themselves in real-time
and send the collected data via a self-organized multi-hop technique to en-
sure the safety of rescuers. The design of the IoMT catastrophe rescuer health
monitoring system is demonstrated in Figure 9.5. In the suggested system,
the neighboring individuals will enter the same cluster, and one of them will
be chosen as the cluster head responsible for inter-cluster correspondence. All
data obtained from individuals should be transmitted to the control center
via a 4G/5G, WiFi or satellite network [18].

In the recommended system, rescuers move in different ways to complete
various tasks. Searchers, for example, have access to random sites to check for
suspects and only alert medical staff when they locate anyone. Physicians will
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FIGURE 9.5

The system architecture to monitor the health of disaster rescuers deploying
IoMT.

collect information about the location and head there. The porters, in turn,
track the path of the searchers and the doctors to reach the victims and carry
them to the designated safe location [18].

9.6.2 Application of COVID-19 Fighting Using Cognitive In-
ternet of Medical Things

The incorporation of sensory input, automated processing and network com-
munication are allowed by cognitive IoMT (CIoMT). CIoMT can be interested
in different key areas to resolve COVID-19, as shown in Figure 9.6. Regarding
COVID-19 disaster management, the use of IoMT is comprehensive in the
provision of online emergency facilities for patients, in the provision of ade-
quate healthcare and in the home/quarantine center. Additionally, a medical
network can be set up to handle databases that are valuable for government
and healthcare, as seen in Figure 9.7 [19].

Real-time tracking using CIoMT technology includes the worldwide daily
real-time update of COVID-19 infections, such as the number of patients
cured, the number of active infections and deaths at different places. Con-
sequently, with the use of artificial intelligence, a model of COVID-19 can
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CIoMT deployment for remote monitoring in fighting COVID-19 [19].

be established for improved decision-making and readiness for monitoring by
health authorities and policymakers [19].

As the COVID-19 pandemic is extremely infectious, physicians and health
staff are susceptible to this epidemic during their times of employment. CIoMT
helps physicians to remotely monitor patients’ health status with real-time in-
dividual’s medical data such as heart rate level, electroencephalogram (EEG),
glucose level, electrocardiogram (ECG), blood pressure, electromyography
(EMG), pulse rate, temperature, breathing rate, etc., using IoMT sensors
as depicted in Figure 9.8. Sensor data is collected via Zigbee, bluetooth, cog-
nitive radio network (CRN), or other wireless technologies in the data hub.
The data related to a patient is transmitted via the router over the internet
to the medical network. Data are maintained for the estimation of magnitude
and statistical analysis and are stored in clouds. Finally, input from medi-
cal testing is submitted for successful treatment. As all departments of the
COVID-19 hospitals are connected via the internet, it is possible to exchange
medical data in real-time saving time and effort [18].

Migrants’ individuals are quarantined even when they do not show any
health signs, so rapid diagnosis for such people is important. Contact tracing
of reported patients is necessary to monitor the dissemination of the pandemic.
When the history of the COVID infected cases within the database under
the healthcare authority control is already accessible, the workload can be
minimized significantly. The government can monitor these details and warn
for health checks in the regions with a high number of infected individuals via
the artificial intelligence (AI) framework. Area clustering allows public bodies
to enforce different locking and social distancing laws and regulations. The
clustering of geographical regions further limits the transmission of disease.
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The use of CIoMT furtherly reducing the workload of the medical industry
[19].

9.6.3 Early Identification and Monitoring of COVID-19
Individuals Deploying IoMT-based Framework

Otoom et al. proposed a real-time framework capable of monitoring and de-
tecting corona infected persons deploying IoMT environment. The system is
useful to predict the treatment response of infected individuals that is impor-
tant to understand COVID-19 nature. The proposed IoMT system structure is
depicted in Figure 9.9 [20]. The purpose of the first section, the symptom data
collection and uploading section, is to collect data on symptoms in real-time
using a series of wearable sensors positioned on the consumer body. According
to a true dataset of COVID-19 infected persons, the most important symptoms
of COVID-19 such as fever, cough, exhaustion, shortness of breath and sore
throat were established with the aid of suitable biosensors. For example, for the
detection of fever, temperature-based sensors can be used. Using audio-based
sensors with acoustic and aerodynamic models, cough and its classifications
for various ages can be identified. For fatigue detection, motion-based and
heart-rate sensors can be used. An image-based classification can be used to
detect sore throat. Finally, it is possible to use oxygen-based sensors to detect
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breath shortness of. Additional related data, such as travel and contact his-
tory over the past thirty to forty, can be obtained by mobile apps in an ad hoc
manner [20]. On the other hand, the section of the quarantine/isolation center
gathers data records from quarantined individuals in the healthcare centers or
isolated. Each data record comprises time-series data of the abovementioned
symptoms for their health data in addition to travel and contact history over
the past 3-4 weeks, chronic diseases, gender and age [20].

Data processing and machine learning algorithms are hosted by the data
center and are used to construct a model for COVID-19 using the data col-
lected and uploaded in real-time via wireless communication links from dif-
ferent users. The constructed model could then be used to rapidly classify
or forecast possible COVID-19 events and predict the treatment response of
the patient. The disease models built from these data can, over time, provide
valuable information on the nature of the disease [20]. Physicians will track
suspected individuals with symptom data uploaded in real-time suggests a
potential infection by the proposed identification/prediction model based on
machine learning. With further clinical examination required to validate the
infected case, the physicians would then be able to respond rapidly to these
suspicious cases. This makes it possible to isolate confirmed cases and provide
adequate healthcare [20]. The last section is the cloud infrastructure intercon-
nected via the internet, which allows each user to upload real-time symptom
data, keep personal health records and store data. Consequently, the connec-
tion through the internet using suitable wireless communication techniques
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Sore Throat, and Shortness of Breath. In addition

to user information such as Travel and Contact.
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enable prediction results and getting doctors’ advice [20]. Figure 9.10 intro-
duces the workflow used by the system, as explained previously.

9.7 Conclusion

The chapter introduced the essential terminologies, technologies and appli-
cations of IoMT in the healthcare domain and exposed the main advantages
and challenges behind employing such innovative technologies in saving hu-
man life and rising healthcare services levels. The IoMT advancement is ex-
pected to show high valuable services using other improved technologies such
as 5G mobile technology. This added great significance to the IoMT in the re-
cent COVID-19 epidemic in providing tele-healthcare and remote monitoring
systems.
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10.1 Introduction

Internet of Things (IoT) is a network of embedded technologies that includes
wired and wireless communications, sensors and Internet-connected physical
objects. A lot of research has been done in healthcare space with the IoT to
date, and the effects of IoT for healthcare are considerable. One of the dif-
ferent healthcare applications is pervasive sensing. Pervasive sensors such as
wearable, implantable and ambient sensors capture raw data for health moni-
toring applications. These data can be collected using a Wireless Body Sensor
Network (WBSN), ambient sensors, and wearable technologies that are worn
on the body or implanted, such as motion sensors, Electrocardiogram (ECG)
sensors, and smart watches. IoT produces massive, varied, and incomplete
data, which needs to be processed and analyzed to make decisions on it. The
cloud has become an integral part of the process. However, a huge amount of
data needs to be processed by the cloud which has deployed centrally on a
global scale. Furthermore, as the physical distance between the cloud and the
IoT devices increases, thus transmission latency and energy consumption in-
crease. The edge computing platform allows to perform some of the processing
on edge devices. This enabled the workload to be discharged from the cloud
at a location closer to the user for processing while accelerating applications
requiring low latency response.

Figure 10.1 shows a healthcare model based on IoT, which can consist
of three communication tiers. In Tier-1, wearable sensor nodes that collect
physiological data are spread throughout the body in a centralized network
architecture. The respective transmission ranges in such network from about
1 to 2 meters. The central node receives data from the wearable sensors,
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processes the data and transmits it to a Tier-2 access point. Within Tier-
1, the communication may be called Intra-WBAN communication. Note that
the intelligence can be brought down into the central node using deep learning
frameworks for edge computing.

Artificial Intelligence Enabled Edge Artificial Intelligence Enabled Cloud
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Wireless Body Area Network (WBAN) communication communication

FIGURE 10.1
IoT healthcare communication architecture

Tier-2 communication is between the central node and one or more access
points. The access points may be viewed as part of the network, or even strate-
gically located in a dynamic setting to manage emergency situations. Tier-2
communication aims at interconnecting WBANSs with different networks that
can be easily accessed in everyday life, as well as cellular networks and the
Internet [11].

Tier-3, or the cloud layer, includes the medical server which contains the
users’ medical history and profiles. This layer analyzes the medical data so
that actionable findings can be identified. Various tasks such as event pro-
cessing, data mining, and deep learning can be applied on historical data for
meaningful information extraction, anomaly detection, signals enhancement
and classification.

Different forms of data can be obtained from ubiquitous sensors, such as
wearables, ambient sensors, and implantable. Data related to food intake, calo-
ries calculation, and physical activity can improve health, control diet-related
health problems, and handle diseases [28]. Image data obtained from video
sensor networks and assistive devices can be used for generic object recogni-
tion and scene classification. Different applications for healthcare have been
developed for assistive devices such as visually impaired perception systems
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in outdoors [7], autonomous obstacle detection and classification systems [14],
and real-time hand posture and sign language recognition systems [12].

This chapter will go over the major deep learning applications for physio-
logical signals in IoT-Healthcare systems by covering the most important sig-
nals collected from biosensors, deep learning algorithms, and applications in
healthcare pervasive sensing. The remainder of this chapter is structured as fol-
lows. In Section 10.2, the mostly used physiological signals in IoT-Healthcare
are presented. Then, in Section 10.3, a brief definition of deep learning and is
given in addition to a presentation of a variety of models belonging to deep
learning. The major applications of deep learning for physiological signals,
namely, classification, anomaly detection, and enhancement, are presented in
Section 10.4. Section 10.5 concludes the chapter.

10.2 Physiological Signals

The electrical activity of a particular body part is represented by physio-
logical signals. As such, knowledge about the physiological state is given by
electrical activity. This knowledge will typically be used for decision making
by medical practitioners [17]. Continuous health management services track
and send medical prescriptions dynamically in existing wireless remote moni-
toring systems. To do so, the physiological time series are collected from dif-
ferent distributed smart sensors exhibited in unobtrusive manners by smart
wearable objects that provide health status information [25, 38, 46]. There
is a wide variety of potential signals that can be obtained from the human
body in an IoT-healthcare system by monitoring the features of the eye, face,
brain, muscles, skin, pulse, and even the movement of the body as a whole.
Many companies specialized in wearable medical sensors designed to collect
and provide data from the human body exist today. Table 10.1 presents some
well-known companies that provide sensors and wearables for IoT-healthcare
research and applications.

10.2.1 Electrocardiogram

An electrocardiogram (ECG) tracks the heart’s electrical activity using elec-
trodes placed upon the body. Typically the ECG signal is periodic, consisting
of three parts: P wave, QRS complex, and T wave. It is one of the most used
signals in healthcare research as it explicitly represents heart activity, which
is clearly influenced by changes in the autonomic nervous system. The most
typical and useful features computed with an ECG are heart rate variabil-
ity and inter-beat intervals. ECG applications are various, such as biological
parameters monitoring, and the detection of potential damage to the heart’s
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muscle cells or conduction system, drowsiness and energy, heart failure, and
the effects of heart drugs [32].

10.2.2 Photoplethysmogram

Photoplethysmography (PPG) is a non-invasive optical technique to track vi-
tal signs, including heart rate, heart rate variability, and blood oxygenation.
The PPG waveform reveals blood volume variations and includes important
features useful for studies such as cycle period, baseline, and amplitude. Fortu-
nately, wearable health monitoring devices, including smartwatches and fitness
trackers, can now collect PPG signals and track cardiac activity by deriving
the heart rate variability features from PPG the same as the electrocardiogram
(ECG) [43]. One of the main fields using PPG today is affective computing,
where this signal was used for tasks such as stress detection [30].

10.2.3 Electromyogram

An electromyogram (EMG) tracks the electrical potential produced by skeletal
muscle cells using electrodes positioned above the muscle of interest, such as
an arm, leg, or shoulder. EMG could be used to track muscle responses to any
form of stimulus material to capture even simple activation patterns associated
with hand/finger motions that are consciously controlled. EMG has been used
for many applications, such as stress detection and chronic headaches, where
many EMG signal features vary significantly between different situations.

10.2.4 Electrodermal Activity

The blood vessels in the skin and sweat glands are linked to the sympathetic
nervous system. Sweat secretion proportionally increases the skin’s conduc-
tance, so its conductivity measures electrodermal activity (EDA). Sweat secre-
tion from the skin is tracked with lightweight and mobile sensors, making data
acquisition very simple. Increased sweating contributes to greater conductiv-
ity of the skin. When exposed to emotional stimuli, one sweats, especially on
the forehead, hands, and feet. Skin behavior is subconsciously regulated, much
like pupil dilation, thereby providing tremendous insights into an individual’s
unbiased emotional arousal.

10.2.5 Electroencephalography

An electroencephalogram measures the electrical activity of the brain. The
electrical fluctuations are recorded by putting sensors (electrodes) and ampli-
fier systems on the subject’s scalp. This signal helps study the brain’s activity
correlated with vision, memory, and emotion. EEG has recently been used to
track a person’s global emotional state, which can not be actively controlled,
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to gain insight into emotional expression changes and differences in emotional
states over a longer period of time.

TABLE 10.1
An overview of different wearables and biosensors used in physiological signals
research and application

ECG | PPG | EMG | EDA | EEG

Shimmer Sensing [38] X X X X

Biopac [18] X X X X b'e
Empatica [46] X X
Equivital [31] X X X
VitalConnect [34] X

Somaxis [45] X X X
Apple Watch Series 4 [3] X

Neurosky [10] X X

10.3 Deep Learning

In recent years, unprecedented outcomes have been achieved using algorithms
in speech recognition, face recognition, natural language processing, and ob-
ject detection [20]. The breakthroughs in healthcare have been almost in tan-
dem; from cancer diagnosis on pathology sequences and radiology scans to
predicting mortality, results are seen time and time again that match (and in
some cases exceed) specialist doctors’ committees. Humans are a good source
of physiological signals: brain activity (EEG), heart activity (ECG/PPG), and
muscle tension (EMG), wearable data such as pulse, accelerometer-based ac-
tivity, sleep, indices of stress. Today, all these essential signals are becoming
very common, and they must be examined and processed.

People developed mathematical models and methods for the study of time
series and physiological signals prior to deep learning. Below is a summary of
the most relevant of them:

e Time/Frequency domain analysis: The time-domain study explores
how time series develop over time by observing the time steps’ width and
heights, statistical features, and other visual aspects. Frequency domain
analysis represents signals with what amplitudes they have in them and
how they change. The most used methods for physiological signal process-
ing are Fourier analysis and wavelets [2, 21].

e Nearest neighbors analysis: Distance-based approaches for time series
and signals were used for comparison and classification. These distance
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measures are almost evaluated with one nearest neighbor (1-NN) classifier.
Euclidean distance and dynamic time warping are the standard benchmark
distance measures [6].

e Autoregression and ARIMA models: Classical mathematical ap-
proaches based on linear self-dependence within time series (autocorre-
lation) have been used to understand future changes [22]. Autoregression
is a model that uses previous time phase observations as input to a re-
gression equation to estimate the value at the next point of time. The
AutoRegressive Integrated Moving Average (ARIMA) is a class of model
that captures, in time series data, a suite of different standard temporal
structures.

e Machine Learning: The mathematics behind some popular machine
learning algorithms resemble much of physicians’ logic in their everyday
practice. Machine learning techniques allow computer systems to improve
with experience and data. In the processing of biological data, such as
electrocardiography (ECG), electroencephalography (EEG), surface elec-
tromyography (EMG), and photoplethysmography (PPG), machine learn-
ing algorithms such as the support vector machine, k-nearest neighbor, de-
cision tree, and random forests have shown paramount progress [9]. While
machine learning continues to solve many healthcare problems today, it’s
still a technology that has many limitations, such as the necessity of human
oversight and manual feature extraction.

Deep learning methods automatically extract important features after se-
lecting the most significant features for processing, unlike classic machine
learning algorithms, in which features need to be provided manually. Deep
learning has been described as an approach to artificial intelligence in which,
through the expression and combination of simpler, low-level representations,
high-level understanding is achieved. Today, the use of the term deep learning
to describe an algorithm generally means: (1) An artificial neural network that
takes a weighted sum of input and then applies a nonlinear transformation to
that sum. (2) There are several layers of neurons in the deep neural network,
with an input layer at the beginning of the model, an output layer at the end
of the model, and at least one hidden layer between the layers of input and
output. Until the output layer is reached, the output of one layer is fed into
the next layer. (3) Deep learning implies a high number of training instances.
The larger and complex the network, the more examples of training we need.
(4) Deep learning uses the algorithm for backpropagation that depends on
calculus and linear algebra to train the weights properly.

Deep learning approaches can be divided into three main categories to
analyze physiological signals : generative, hybrid, and discriminative models.
It is possible to separate the three groups into sub-groups further. A simple
illustration of such a grouping is Figure 10.2.
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FIGURE 10.2
An overview of the mostly used deep learning approaches for physiological
signals analysis

10.3.1 Generative Models

Unlabeled data is used for unsupervised learning or the so-called generative
model. Unsupervised learning or pre-training is the primary principle of ap-
plying generative models to physiological signals. It is important to learn each
lower layer in a layer-by-layer approach without depending on the upper layers
from limited physiological training data. By calculating the joint probability
given the input and choosing the class label with the highest probability,
generative models also learn the data’s joint statistical distributions. Several
methods are classified as unsupervised learning and used for IoT-Healthcare
applications based on physiological signals such as Restricted Boltzmann Ma-
chine and Auto Encoder.

10.3.1.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a neural model proposed by
Smolensky in [41]. A RBM is composed of a layer of (visible) input neurons
and a layer of (latent) hidden neurons. If many layers of RBM are stacked,
one gets a layer-by-layer scheme called Deep Belief Network (DBN). A RBM
is a generative probabilistic model that can learn a process of data genera-
tion described by the units observed but utilizes latent variables to model all
internal relationships. The learning of the joint probability distribution over
the observable nodes through the hidden nodes makes the RBM suitable for
capturing the high-order dependencies in physiological signals. For instance,
the authors in [39] used the RBM to capture relations between EEG signals
and peripheral physiological signals for a better feature representation. The
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RBM model is also suitable for mining massive unlabelled physiological data.
The authors in [47] used the RBM to process and classify a large scale of
unlabeled ECG data.

10.3.1.2 Autoencoder

An autoencoder is a model divided into two different parts, called an Encoder
and a Decoder, but not fully autonomous. The encoder’s task is to turn an
input sample into an encoded feature vector. The decoder’s task is to recon-
struct the original sample into an output vector using the feature vector as
the input. There are different types of autoencoders such as denoising au-
toencoder, sparse autoencoder, and deep autoencoder. By adding some noise,
denoizing autoencoders produce a corrupted copy of the input. This helps pre-
vent copying the input to the output through autoencoders without learning
data features. During training to recover the original unaltered data, these
autoencoders take a partly corrupted input. In Sparse autoencoders, there
are hidden nodes greater than input nodes. They can still discover significant
features from the data. There is a sparsity penalty for Sparse Autoencoders, a
value close to zero. In addition to the reconstruction error, the sparsity penalty
is applied to the hidden layer to avoid overfitting. A Deep Autoencoder con-
sists of two similar deep belief networks, one network for encoding and the
other for decoding. Deep autoencoders usually have 3-5 layers for encoding
and decoding. Autoencoders could be used for unsupervised pre-training to
learn initial representation in physiological signals. As will be addressed in
the next segment, they may also be used for anomaly detection and signal
enhancement.

10.3.2 Hybrid Models

The most famous hybrid model is Generative Adversarial Network (GAN)
proposed by Goodfellow in [19]. A GAN could be defined informally as an
iterative game played between a detective and a fraudster. The detective aims
to decrease its loss by recognizing real data as real and fake data as fake. The
fraudster’s goal is to decrease its loss by learning to deceive the detective by
turning random noise into fake data. GANs have shown impressive success
as a training model framework to generate realistic data. When it comes to
physiological signals, the significance of GANs is to generate realistic, real-
valued multi-dimensional medical time series. The authors in [15] trained and
evaluated a recurrent GAN architecture for generating real-valued sequential
data. The developed model could generate synthetic datasets consisting of
real-valued time-series data with associated labels.
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10.3.3 Discriminative Models

Discriminative deep learning models directly learn the mapping between raw
input signals or their extracted features and output a probability distribution
over the class variables. The most used discriminative models for physiologi-
cal signals are Multi-Layer Perceptron (MLP), Convolutional Neural Network
(CNN), and Long Short-Term Memory (LSTM).

10.3.3.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) contains many neurons, organized in lay-
ers: one input layer, one or more hidden layers, and one layer of output.
Each neuron in a layer is connected to all the preceding layer neurons, but
not all the connections are the same since they have different weights. The
weights of these connections encode network information. Data enters the in-
puts and crosses the network layer by layer before the outputs are reached.
These network types are called feed-forward neural networks. The backprop-
agation algorithm is designed to minimize the error between the current and
desired output. In the feed-forward step, the activation flow proceeds forward
from the input units to the output units. The gradient of the cost function
is backpropagated through the modification of weights. To use the MLP for
physiological signals, a feature engineering phase should be performed to feed
the model with the extracted features. Another approach consists of using an
autoencoder for unsupervised pre-training to learn initial signal representa-
tion, and the salient features are then fed to the MLP model.

10.3.3.2 Convolutional Neural Network

A special form of a neural network are Convolutional Neural Networks
(CNNs), and they have been used with great success in image classification
problems. Instead of domain-specific or handcrafted features derived from raw
data, CNN works directly on raw data, such as raw pixel values. The model
then learns how to automatically extract features that are specifically useful
for the issue being addressed from the raw data. This is called representa-
tion learning, and CNN does this so that the characteristics are extracted
regardless of how they appear in the data. It is possible to apply the capa-
bility of CNNs to learn and automatically extract features from raw input
physiological signals to solve different problems. CNN models treat a series of
observations like a one-dimensional picture that can be read and distilled into
the most salient elements. CNN models have shown great success in solving
different problems related to EEG signals, such as the diagnosis of epilepsy
and seizures [1, 42].

10.3.3.3 Long Short-Term Memory

A type of recurrent neural network that has shown great success in time se-
ries processing is the Long Short-Term Memory or LSTM. LSTM networks



176 Deep Learning for IoT-Healthcare Based on Physiological Signals

are free from the issue of vanishing gradients and provide outstanding per-
formance and results. LSTM networks are appropriate for classifying time
sequences and replacing several traditional deep learning approaches. There
are LSTM cells in LSTM networks that receive an input vector and gener-
ate an output vector. The LSTM cell is complex and consists of numerous
“gates” that control the cell’s output, known as input gates, output gates and
forget gates. In turn, the gates are partly controlled by the input at the pre-
vious phase in time. LSTMs showed great results in handwriting recognition,
speech recognition, language translation, and image captioning [20]. To pre-
dict in-hospital mortality, unplanned readmission, extended duration of stay,
and final discharge diagnosis, a recent study by Google used deep learning
architectures, including an LSTM architecture, and achieved state-of-the-art
results [36].

10.4 Deep Learning-based Physiological Signals Analysis

Deep Learning, an effective approach to discriminative and generative tasks,
has clearly revealed its excellent ability to analyze 2D medical imaging; how-
ever, physiological signals in the form of 1D signals have not yet been fully ex-
ploited. Recent surveys were published to address this subject and present the
different works addressing physiological signals’ challenges using deep learning
approaches. Faust et al. [16] presented 53 research papers published from 2008
to 2017 on physiological signal analysis using deep learning techniques. Deep
learning models such as autoencoder, deep belief network, restricted Boltz-
mann machine, generative adversarial network, and recurrent neural network
were presented in this survey. In a survey published in 2020, Rim et al. [37]
presented an overview of deep learning methods and their applications in 1D
physiological signals analysis over the last two years. 147 papers were found us-
ing deep learning techniques in EMG signal analysis, ECG signal analysis, and
EEG signal analysis. This section will present one of the major applications
of deep learning to physiological signals analysis: time series classification,
biosignals cleaning, and anomaly detection.

10.4.1 Time Series Classification

Many of the data obtained from IoT-Healthcare applications have been col-
lected over time, consisting of time series. Various neural network architectures
for multivariate time series classification were proposed in recent years. We
will present the most effective architectures based on the conclusions obtained



Deep Learning-based Physiological Signals Analysis 177

from detailed articles on this field [24, 44]!, and the results obtained on the fa-
mous benchmarks, namely the UCR/UEA archive [5] and the MTS archive [8].

For segmentation tasks [29], the Fully Convolutional Networks (FCNs)
were originally proposed and proved to be successful in extracting features
from input data. The FCN is formed by stacking three blocks, each consisting
of a convolutional layer with filters, followed by a batch normalization layer
and a layer of ReLU activation as shown in Figure 10.3-a. Then, after the
first three convolutional blocks, a global average pooling layer is applied to
the features to reduce the number of weights.

A deep architecture used for time series classification is the Residual Net-
work (ResNet). There are various versions. The popular architecture used for
time series classification consists of 9 convolutional layers followed by global
average pooling and a softmax layer (Figure 10.3-b). This architecture utilizes
shortcut connections for training between successive convolutional layers and
adds linear shortcuts to link a residual block’s output to its input, resulting
in easier training.

The authors in [26] proposed the Multivariate LSTM Fully Convolutional
Network (MLSTM-FCN). The MLSTM-FCN? model is composed of a fully
convolutional block and an LSTM block. The multivariate time series input is
passed into an LSTM block with an attention mechanism followed by dropout.
The LSTM layer output is concatenated with the output of the global pooling
layer of the FCN block (Figure 10.3-c).

In [23], The Densely Connected Convolutional Network (DenseNet) was
proposed. By adding a connection from one layer to all its consequent layers
in a feed-forward manner, the proposed architecture aims to solve the van-
ishing gradient problem. The authors in [4] proposed the MLSTM-DenseNet?
classification model that replaces the Fully Convolutional Network (FCN) with
a DenseNet in the MLSTM-FCN architecture (Figure 10.3-d), demonstrating
that DenseNet can yield promising results.

10.4.2 Physiological Signals Cleaning

To predict dangerous health states, avoid certain diseases, or even alert the
ambulance in case of a stroke, deep learning algorithms may use physiological
signals from embedded sensors. One of the main problems of working with
biomedical sensors is low signal quality. The signal can be seriously distorted
by movement, external electromagnetic fields, or poor sensor placement, mak-
ing it difficult to study. This results in unreliable measurements and poor user
experience for IoT-Healthcare applications. Therefore, noise filtering of the

IThe companion code of the paper titled “Deep learning for time series classification: a
review” is available at https://github.com/hfawaz/dl-4-tsc

2The code of the MLSTM-FCN model is available at https://github.com/houshd/
MLSTM-FCN

3The codes and weights of some MLSTM-DenseNet models are available at https://
github.com/josephazar/MLSTM-DenseNet
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signals is as important as prediction and recognition tasks. Signals’ denois-
ing with neural networks’ help could be done using Denoising Autoencoders
(DAE) trained on a large set of pairs of noisy and clean signals. The trained
model can then filter out noise from a new set of signals.

(a) FCN (b) ResNet (¢) MLSTM-FCN
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FIGURE 10.3

The network structure of FCN, ResNet, MLSTM-FCN, and MLSTM-
DenseNet. Note that ReLLU stands for Rectified Linear Unit and BN for Batch
Normalization

The authors in [13] proposed a DAE using the fully convolutional network
(FCN) for ECG denoising. The encoder contains a series of layers, where each
layer is composed of a convolutional layer, and the objective is to encode the
signal into low dimensional features. The decoder part is inversely symmetric
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to the encoder, where the deconvolutional layers proceed to up-sample the
feature maps and recover structural details. Note that the input of the model
consists of generated noisy ECG signals. To evaluate their approach, the au-
thors compared the output of the model with the original signals. This could
be considered the typical approach used to denoise or enhance physiological
signals. The architectures of the autoencoders may change, but the principle
is quite the same.

On the other hand, Generative Adversarial Networks (GANs) allow over-
coming the problem of pairs preparation. The idea is to use a generator (the
filtering network) and a discriminator. The filtering network receives a noisy
signal and filters it. The discriminator network then receives randomly fil-
tered signals (fake signals) and original (clean) signals and tries to distinguish
between fake and real signals. After training the model, the generator will
generate good enough filtered samples to fool the discriminator network. In a
recent paper [40], a convolutional neural network (CNN) based GAN model is
proposed for ECG noise filtering. The authors performed an end-to-end GAN
model training using clean and noisy ECG signals. The GAN performance
opens the door for further exploration in the research topic of 1D medical
signals filtering and enhancement.

10.4.3 Artifacts Removal

Physiological signals are captured as time series and now becoming easier to
acquire. In particular, with the emergence of smart devices that can capture
various types of signals, the challenge is to develop novel methods that al-
low these signals to be effectively monitored and anomalies to be efficiently
detected. However, as much of the data produced remains unlabelled, the
task of detecting anomalies is still quite difficult. Unsupervised representation
learning was used to learn expressive feature representations of sequences that
can make different tasks easier to perform and more precise, such as anomaly
detection and artifacts filtering.

For anomaly detection problems, the deep autoencoder can learn the pat-
tern of a normal process. A given physiological signal that does not follow
the learned pattern is then defined as an anomaly as the model would find
it different from what it has learned during the training. The reconstruction
error is the metric used to assess a given input. An input vector can be la-
beled as an anomaly by specifying a threshold if the difference between that
input’s values and the output exceeds the threshold. For processing various
types of physiological signals, autoencoder-based anomaly detection can be
used. Convolution layers (CNN autoencoder), long short-term memory layers
(LSTM autoencoder), or a combination of both may also be used (CNN-LSTM
autoencoder).

Several recent works have been proposed to tackle anomaly detection and
waveform distortions using autoencoders in physiological signals such as the
ECG. The authors in [27] proposed a stacked autoencoder architecture for the
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identification and correction of outliers of ECG heartbeats. For unsupervised
representation learning and anomaly detection in ECG sequences, the authors
in [35] proposed a variational autoencoder parameterized by Bidirectional
LSTMs. In [33], for multi-sensor anomaly detection, an LSTM-autoencoder
was proposed.To detect irregularities in time series, the authors used the re-
construction model trained with the original physiological time series.

10.5 Conclusion

In this chapter, we have covered deep learning for physiological signals gen-
erated from IoT-Healthcare applications. The mostly used deep learning ar-
chitectures for times series processing have been introduced, and a particular
focus has been given to the tasks of time series classification, biosignals fil-
tering, and artifacts detection. Deep learning for physiological signals showed
impressive results in the classification task with outstanding accuracy and in
filtering or enhancing corrupted signals.

The potential applications of deep learning for medical signals and the re-
search tracks that could be tackled are numerous and cannot be covered in a
single chapter. An interesting subject worth tackling is the interpretation of
the results obtained by the deep learning models. When it comes to healthcare
applications, the transparency of the decisions taken is of great importance.
Given that deep learning models are similar to a black box, this creates many
limitations in applying deep learning in real healthcare applications. A poten-
tial approach that provides interpretable feedback that highlights the reason
for a certain decision taken by a model is the class activation map. Other
interesting applications for deep learning in lIoT-Healthcare are physiological
signals augmentation/generation and edge deep learning.

Finally, with the aim to improve healthcare throughout the world, and
particularly the analysis of physiological signals, this chapter introduced the
major types of raw signals collected from biosensors and highlighted the po-
tentiality of deep learning methods to solve different challenging tasks related
to these signals.
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