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Debugging Model
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How to select ML model

o Is it enough to know / understand how different machine learning algorithms work?

o How can we gain insight on whether selected model will perform adequately on unseen
data i.e. generalization capabilities?

o What if model training error was within predefined bounds, but it makes
unacceptably large error on unseen data?
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How to select ML model

What if model training error was within predefined bounds, but it makes una
large error on unseen data?

@ Get more training examples

@ Try smaller sets of features <curse of dimensionality>

@ Try getting additional features <blessing of dimensionality>
@ Try adding polynomial features
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How to select ML model

What if model training error was within predefined bounds, but it makes unacceptably
large error on unseen data?

o
o
(3]
(%]
(5]

Get more training examples

Try smaller sets of features <curse of dimensionality>

Try getting additional features <blessing of dimensionality>
Try adding polynomial features

Try hyper-parameter tuning (tree depth, k in k — NN, degree of polynomial in
regression, ¢ in SVM etc.)
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How to select ML model

ithin predefined bounds, but it r

Get more training examples

Try smaller sets of features <curse of dimensionality>

(1)
(2]
@ Try getting additional features <blessing of dimensionality>
@ Try adding polynomial features

(5]

Try hyper-parameter tuning (tree depth, k in k — NN, degree of polynomial in
regression, ¢ in SVM etc.)

How to evaluate hypothesis

o Usually ML practitioners select any of a/m items randomly (gut feeling) to improve
performance of ML algorithm, which most of the time do not give desired results.

o In this module we will tackle this aspect in scientific manner.
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Hypothesi aluation

Hypothesis Evaluation

Consider example of “Regression”, where we are trying to fits a linear or nonlinear
relationship between independent variable x and the dependent variable y.

ataset ataset ue points create y
Q@ Dataset D bl ints * db
o drawing sample from Sinusoidal curve (adding

some noise)

o
o
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Hypothesi aluation

Hypothesis Evaluation

Consider example of “Regression”, where we are trying to fits a linear or nonlinear
relationship between independent variable x and the dependent variable y.

@ Dataset Dataset (blue points ) created by
I fo) x k=0 1 drawing sample from Sinusoidal curve (adding

some noise)
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output values), not a good fit. Under-fitting)
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Hypothesi aluation

Hypothesis Evaluation

Consider example of “Regression”, where we are trying to fits a linear or nonlinear
relationship between independent variable x and the dependent variable y.

@ Dataset Dataset (blue points ) created by
drawing sample from Sinusoidal curve (adding
some noise)

© k = 0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)

Q k=1 Straight Line (Linear regression, not a
- good fit. Under-fitting)
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Hypothesi aluation

Hypothesis Evaluation

Consider example of “Regression”, where we are trying to fits a linear or nonlinear
relationship between independent variable x and the dependent variable y.

@ Dataset Dataset (blue points ) created by
drawing sample from Sinusoidal curve (adding
some noise)

© k = 0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)

Q k=1 Straight Line (Linear regression, not a
- good fit. Under-fitting)

“Images from Bishop’s book

Under-fitting

Linear regression is under-fitting the data (high-bias).

Dr. Rizwan Ahmed Kk



Debugging Model
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Hypot Evaluation

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.

1Beware, its different from multi-variate regression. Its not dimension of feature vector.
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Hypoth Evaluation
Polynomial Regr

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 6y + 61«

can be transformed to h = 0y + 012 + 622%(z — squared) *!

1Beware, its different from multi-variate regresmon Its not dimension of feature vector.
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- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
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o k = 2 Parabola

@ k = 3 Cubic (3" degree Polynomial function,
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Hypoth Evaluation
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- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 0y + 61

can be transformed to h = 0y + 012 + O22%(z — squared) *!

o k = 2 Parabola

@ k = 3 Cubic (3" degree Polynomial function,
fits nicely)

Q@ k=9 o degree polynomial
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Hypoth Evaluation
Polynomial Regr

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 0y + 61

can be transformed to h = 0y + 012 + O22%(z — squared) *!

o k = 2 Parabola

@ k = 3 Cubic (3" degree Polynomial function,
fits nicely)

Q@ k=9 o degree polynomial

General form for Polynomial Regression:

h(0) = Op + 013 + 03 _a® +05 2> +- -+ Opa” (1)

1Beware, its different from multi-variate regression. Its not dimension of feature vector.
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Hypothesi valuation

Polynomial Regress

- 9t degree polynomial fitted curve (shown in red)
goes to all the datapoints but otherwise its off by large
margin in between points. Ideally fitted curve shape
should look like curve shown in green.
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Hypoth Evaluation

Polynomial Regr

En.w
=
L

—&— Training
—6— Test

—0—0——H-

- 9t degree polynomial fitted curve (shown in red)
goes to all the datapoints but otherwise its off by large
margin in between points. Ideally fitted curve shape
should look like curve shown in green.

- It’s not surprise to see test error increase
exponentially for 9*" degree polynomial curve. It
shows that despite very low train error, it’s
generalization capability is very low. It’s a perfect
example of over-fitting.

zwanl7/



Debugging Model
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Hypoth Evaluation

Polynomial Regression

- 9t degree polynomial fitted curve (shown in red)
: o Trai nli ng goes to all the datapoints but otherwise its off by large
—o— Tost margin in between points. Ideally fitted curve shape
should look like curve shown in green.

g

= 05

&

4 . . .
- It’s not 'surprlse tt(})L see test error 1nc.rease
exponentially for 9" degree polynomial curve. It
shows that despite very low train error, it’s
0

0 3 6 9 generalization capability is very low. It’s a perfect
example of over-fitting.

9" degree polynomial fitted curve is over-fitting the data (high-variance).
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Section Contents

e Expected Error of A

© Generalization Error
o Expected Label
o Learned Hypothesis
o Expected Test Error
o Expected Classifier
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Generalization Error

oeo

Generalization Error

o Is it enough to know / understand how different machine learning algorithms work?

e How can we gain insight on whether selected model / hypothesis will perform
adequately on unseen data i.e. generalization capabilities?

e What if model training error was within predefined bounds, but it makes
unacceptably large error on unseen data?

@ In this module we will analyze generalization error and decompose it to understand
where it comes from.

o Understanding generalization error will give insight to select robust algorithm for a
given problem.
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Generalization Error
ooe

Formalizing Generalization Error

o Given dataset D = {(X1,y1),...,(Xn,¥n)}

e D drawn from some distribution P(X,Y") in i.i.d (independent and identically
distributed) manner , same supposition for all machine learning algorithms.

o Assume regression setting y; € R (regression setting is easier for derivation)

o Given input x there might not exist a unique label y i.e. if X describes features of a
house (e.g. no. of bedrooms, square footage, - - -) and the label y its price, imagine
two houses with identical description selling for different prices.
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zation Error

Expected Label
Expected Label : given % € R?

Given X € R

§(%) = Eyx [Y / y Pr(y]x)d (2)

- The expected label denotes the label expected to obtain, given a feature vector X
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Expected Label

Expected Label : given % € R?

Given X € R

§(%) = Eyx [Y / y Pr(y]x)d (2)

- The expected label denotes the label expected to obtain, given a feature vector X

- Pr(y|x) : Probability of y given X
- There could be same feature vector X (attributes of a house) but different respective label
y (price of a house).
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Generalization Error
o

Expected Label

Expected Label : given % € R?

Given X € R

§(%) = Eyx [Y / y Pr(y]x)d (2)

- The expected label denotes the label expected to obtain, given a feature vector X

- Pr(y|x) : Probability of y given X
- There could be same feature vector X (attributes of a house) but different respective label
y (price of a house).

- Equation 2 : expected label is average value of infinite many drawn samples (houses) or
integrate over all possible y and weight by probability of observing that y given =

(Pr(y[x)).
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Generalization Error
o

Learned Hypothe;

Hypothesis on dataset D

- We draw our training set D, consisting of n inputs, i.i.d. from the distribution P.

- Then call some machine learning algorithm A on this dataset to learn a hypothesis (aka
classifier).

- Formally, we denote this process as:

Where A is machine learning algorithm i.e. Perceptron, DT or SVM etc., D training
dataset and hp is learned hypothesis (a function that takes input X and outputs v).
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Generalization Error
(]

Expected Test Error
Expected Test Error : given hp

- For a given hp (learned / specific classifier), learned on data set D with algorithm A, we
need to compute expected generalization error (error on unseen data points).
- Using sum of squared errors (generally used in regression setting)

Bisegyr | (hp(x) = 1)° (4)

where Iy ) p is theoretical test error calculated using test point (x,y) drawn from
distribution P
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Generalization Error
[ ]
Expected Test Error

Expected Test Error : given hp

- For a given hp (learned / specific classifier), learned on data set D with algorithm A, we
need to compute expected generalization error (error on unseen data points).
- Using sum of squared errors (generally used in regression setting)

Bisegyr | (hp(x) = 1)° (4)

where Iy ) p is theoretical test error calculated using test point (x,y) drawn from
distribution P

Exyy~p [(hp(x) / (hp(x )2 Pr(x, y)dydx (5)
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Generalization Error
L ]
Expected Cla

Expected Classifier : given A

- Equation 5 is true for a given training set D. However, remember that D itself is drawn
from P™ (n samples drawn from P), and is therefore a random variable. Further, hp is a
function of D, and is therefore also a random variable.

- Draw different distribution of D, then you will get slightly different h.

- Expected Classifier (given A):

h = Ep.pn [A(D)] = /hD Pr(D)dD (6)
D

Ahmed K
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L ]
Expected Cle er

Expected sifier : given A

- Equation 5 is true for a given training set D. However, remember that D itself is drawn
from P™ (n samples drawn from P), and is therefore a random variable. Further, hp is a
function of D, and is therefore also a random variable.

- Draw different distribution of D, then you will get slightly different h.

- Expected Classifier (given A):

h = Ep.pn [A(D)] = /hD Pr(D)dD (6)
D

How to estimate h?

Make different D (many (infinite many) training sets) by drawing P" every time and
calculate hp, then average all of them to get i (weak law of large numbers).
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Generalization Error
( ]o}

Expected Error of A

Expected Test Error : given A

- Earlier we computed expected test error of h (refer Equation 5) or specifically /. This
is not generalizing well as it only gives expected error for one particular output, but we
need to compute how well algorithm do generally.

2
Bxy)~p {(hD(X) - ) } (7)
Do pn
- This is same as Equation 4 but now we integrate over all possible dataset as well.

Explanation

o First draw dataset D from P, then train algorithm to get /), then take test point
(x,y) drawn from distribution P and compute the error.

e Do it many times (thousands of time, thousand different hp and test points (x,y) ) to
calculate average generalization error of an algorithm A.
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Generalization Error
( ]o}

Expected Error of A

Expected Test Error : given A

- Earlier we computed expected test error of h (refer Equation 5) or specifically /. This
is not generalizing well as it only gives expected error for one particular output, but we
need to compute how well algorithm do generally.

2
Bxy)~p {(hD(X) - ) } (7)
Do pn
- This is same as Equation 4 but now we integrate over all possible dataset as well.

Explanation

o First draw dataset D from P, then train algorithm to get /), then take test point
(x,y) drawn from distribution P and compute the error.

e Do it many times (thousands of time, thousand different hp and test points (x,y) ) to
calculate average generalization error of an algorithm A.

Biseyyp | (hp(x) = 1)°] = /D /x / (hp(x) —y)* Pr(x,y)Pr(D)dxdydD  (8)

D~ P™ y
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Generalization Error
oe

Expected Error of A

Expected Test Error : given A

- We are interested in exactly this expression, because it evaluates the quality of a machine
learning algorithm .4 with respect to a data distribution P(X,Y).

- We will pick the algorithm with lowest such error.

Ber [0 =0)°] = [ [ [ (o) =) Plx.)P(D)ox0y0D

D~P™

- Note: x,y are test point drawn from distribution P, and is independent of dataset D.
Although D is also dawn from P.
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Generalization Error
o] ]
Expected Error of A

Expected Test Error : given A

- We are interested in exactly this expression, because it evaluates the quality of a machine
learning algorithm .4 with respect to a data distribution P(X,Y).

- We will pick the algorithm with lowest such error.

Ber [0 =0)°] = [ [ [ (o) =) Plx.)P(D)ox0y0D

D~P™

- Note: x,y are test point drawn from distribution P, and is independent of dataset D.
Although D is also dawn from P.

- Next, we will decompose this expression to see from where error creeps in to the system.
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Test Error Decomposition
[ ]

Section Contents

© Test Error Decomposition
@ Decomposition of Expected Test Error
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Test Error Decomposition
00000

Decomposition of Expected Test Error

Expected Test Error of Algorit

- Decomposing this equation, refer Equation 7:

E(x,y)NP [(hD(x) - y)2
D P

- Trick 1: Add and subtract /(x)
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- Decomposing this equation, refer Equation 7:

Fixyyp [(h0(x) =9)°]

- Trick 1: Add and subtract /(x)

Ex.p [1hp(0) = o] = Exy.p [[(hp(x) = () + ((x) — )] (9)
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Test Error Decomposition
00000

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Decomposing this equation, refer Equation 7:

Etxyp |(ho(x) = y)°]
D~P"
- Trick 1: Add and subtract /(x)
Exp [[h(x) = 4] = Bxyop [[(hp () = h(x)) + (hx) —)]°] (9)

- Tts (a+b)* = a% + 2ab + b2, expand it to analyze each term:
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- Decomposing this equation, refer Equation 7:

Fixyyp [(h0(x) =9)°]

- Trick 1: Add and subtract /(x)
Exop |[h0(0) =9I | = Bxyp [ [(An(x) = hix)) + (h(x) — y)]°] (9)

- Tts (a+b)* = a% + 2ab + b2, expand it to analyze each term:

By [(hp(%) = h(x))?] +2 By [(hn () = 560) (5(x) = 9)] + Fuy [(hG0) — 9)*] (10)
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Test Error Decomposition
(o] lelele]e)

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

Refer Equation 10:

By [(hp(x) = h(x))?] +2 By [(hp(x) — h(x)) ((x) )] + Exy [ (h() ~ 0)”]
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Refer Equation 10:

By [(hp(x) = h(x))?] +2 By [(hp(x) — h(x)) ((x) )] + Exy [ (h() ~ 0)”]

- Middle term (2ab) is zero?
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Test
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f Expected Test Error

est Error of Algorithm A

Refer Equation 10:

By [(hp(x) = h(x))?] +2 By [(hp(x) — h(x)) ((x) )] + Exy [ (h() ~ 0)”]

- Middle term (2ab) is zero?

Exy.p [(hp(x) — h(x)) (h(x) = y)]

= Exy [Ep [hp(x) — h(x)] (h(x) - y)]

> Ex,y [(ED [hD(X)} - B(X)) (}_L(X) - y)] (11)
=FEy, [(E(x) — h(x)) (ﬁ(x) — y)]

= Exy (0]

=0
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Expected Test E1101 of Aloouthm A

Refer Equation 10:

B [(hp(3) = B30)2] +2 Exyo [(hp(3) = () () = )] + By [(R3) 3)°]
- Middle term (2ab) is zero?

Exy.p [(hp(x) — h(x)) (h(x) = y)]

= Exy [Ep [hp(x) — h(x)] (h(x) - y)]

> Ex,y [(ED [hD(X)} - B(X)) (}_L(X) - y)] (11)
=FEy, [(E(x) — h(x)) (ﬁ(x) — y)]

= Exy (0]

=0

- Expected value (over D) of hp(x) is exactly equal to h(x)
- This is trlck 2 ie. makmg term 2ab = 0.
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Test Error Decomposition
00@000

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Returning to the earlier expression (refer Equation 10), we’re left with just two terms
corresponding to a? and b%. We just showed expected test of an algorithm A consists of
these two terms (note: point z and dataset D are independent):

B |(hp(x) = 9)*| = B [(ho(x) = h(0)°| + Bey [(B) = 9)°]  (12)
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Test Error Decomposition
00@000

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Returning to the earlier expression (refer Equation 10), we’re left with just two terms
corresponding to a? and b%. We just showed expected test of an algorithm A consists of
these two terms (note: point z and dataset D are independent):

B |(hp(x) = 9)*| = B [(ho(x) = h(0)°| + Bey [(B) = 9)°]  (12)

- What is this term highlighted in red?
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Test Error Decomposition
00@000

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Returning to the earlier expression (refer Equation 10), we’re left with just two terms
corresponding to a? and b%. We just showed expected test of an algorithm A consists of
these two terms (note: point = and dataset D are independent):

B |(hp(x) = 9)*| = B [(ho(x) = h(0)°| + Bey [(B) = 9)°]  (12)

- What is this term highlighted in red?

Variance

This is variance and it measures how far a set of numbers is spread out from their mean
value (deviation of random variable from mean). h(x) is mean function value and hp(x) is
a one of the classifier and when we squared their difference we get variance. So it’s
variance of prediction / classifier.
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Test Error Decomposition
[e]e]e] lele)

Decomposition of Expected Test Error

Expected Test Error of Algorit

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Exy,p [(hn(x) - y)ﬂ = Exp [(hp(x) % h(x)ﬂ o [(i}(x) . yﬂ
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Test Error Decomposition
[e]e]e] lele)

Decomposition of Expected Test Error

Expected Test Error of Algorit

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Exy,p [(hn(x) - y)ﬂ = Exp [(hp(x) % h(x)ﬂ o [(i}(x) . yﬂ

- Now do the same trick again i.e. add and subtract the mean y and make term 2ab = 0.
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Decomposi

Expected Test E1101 of A

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Ex.y.p [(hD(X) - 9)2} =Exp [(hD(X) ¥ h(X))Q} + Exy [(

(x) — yﬂ

- Now do the same trick again i.e. add and subtract the mean y and make term 2ab = 0.

(13)
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Test Error Decomposition
[e]e]e] lele)

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Exy,p [(hn(x) - y)ﬂ = Exp [(hp(x) % h(x)ﬂ o [(i}(x) . yﬂ

- Now do the same trick again i.e. add and subtract the mean y and make term 2ab = 0.

(13)

= By | (h(x) = 5)) + (5(x) — )]

- Its (a + b)2 = a® + 2ab + b?, expand it to analyze each term:

Dr. Rizwan Ahmed Khan, https://sites le.com/site/drkhanrizwanl7/ Bias-Variance Trade Off
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- Tts (a + b)2 = a® + 2ab + b?, expand it to analyze each term:

Eey [(00) )] = By [(hx) — 9)) + (0) — )]

3 ) (14)
= By [(50x) = 9)°] + B [ (h(x) = 5x))°| + 2 By [(hlx) = 5(x)) (5(x) — )]

- Before analyzing terms highlighted in red and green, it is argued that last term
corresponding to 2ab = 0 (i.e. expected value of y is g, thus making the term 0).
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Test Error Decomposition
[e]e]e]e] o]

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Its (a + b)2 = a® + 2ab + b?, expand it to analyze each term:

By [(h) ~9)°] = By [(h) — 59) + (3(x) — )°]

= By |00) = 1)*| + B | (h(x) = 5(x))°] + 2 By [(A(x) = 5(x)) (5(x) — v)]

- Before analyzing terms highlighted in red and green, it is argued that last term
corresponding to 2ab = 0 (i.e. expected value of y is g, thus making the term 0).

There is a data point with label y but expected label is y, it means there is a data point
with different label than expected label. Classifier can’t do better than y(x). So it’s a
noise. For example, same feature vector but with different labels (noisy data). In
regression, same house attributes but one cost 10k$ and the other 1M§$.

Dr. Rizwan Ahmed Khan, https://sites le.com/site/drkhanrizwanl7/ Bias-Variance Trade Off



Test Error Decomposition
[e]e]e]e] o]

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Tts (a+b)* = a% + 2ab + b2, expand it to analyze each term:

By [(6) ~9)*] = Bxy [ () — 5()) + (5(x) ~)’]

(14)
_ : = 2 = _ _

= By [(50x) = )°] + B [ (h(x) = 5x))° | + 2 By [(hlx) = 5(x)) (5(x) — )]
- Before analyzing terms highlighted in red and green, it is argued that last term
corresponding to 2ab = 0 (i.e. expected value of y is g, thus making the term 0).

How much error will T get from average classifier (trained from infinite many datasets) and
expected label. Here noise is not a issue. This term captures how biased is classifier
towards some explanation which is not present in the data. For example data is non linear
but I am fitting a line to it. No matter how big is the data, classifier will always make
mistakes due to the reason that classifier is biased towards some specific solution. More
data will not help. It is bias of the model.

Dr. Rizwan Ahmed Khan, https://sites le.com/site/drkhanrizwanl7/ Bias-Variance Trade Off



Test Error Decomposition
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Plugging back values from Equation 14 to Equation 12 , we get:

Exop [(hp(%) = )] = B [(hp(x) = h(x)) "] + By (000 = )] + B [ (h(x) = ()]

Expected Test Error Variance Noise Bias?

- In Summary ? :

2Credits: Prof. Kilian, Cornell, USA
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Test Error Decomposition
[e]e]e]e]e] )

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Plugging back values from Equation 14 to Equation 12 | we get:

B |(hp(x) = 9)*| = B | (hn(x) = h(0)°| + By [(5(00) = 9)°] + B | (h(0) = 5(x))]

Expected Test Error Variance Noise Bias?

- In Summary 2 :

Variance

Captures how much classifier changes if trained on a different training set. How
“over-specialized” is classifier to a particular training set (overfitting)?

2Credits: Prof. Kilian, Cornell, USA
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Test Error Decomposition
[e]e]e]e]e] )

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Plugging back values from Equation 14 to Equation 12 | we get:

B |(hn(x) = 9)*| = Bxp | (hn(x) = h(0)°| + By [(5(00) = )°] + B | (h(0) = 5(x))]

Expected Test Error Variance Noise Bias?

- In Summary 2 :

What is the inherent error of the classifier is, even with infinite training data? This is due

to your classifier being “biased” to a particular kind of solution (e.g. linear classifier). In
other words, bias is inherent to model.

2Credits: Prof. Kilian, Cornell, USA
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Test Error Decomposition
[e]e]e]e]e] )

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Plugging back values from Equation 14 to Equation 12 | we get:

B [(hp(x) = 9)°] = Bxp [ (hn(x) = hx))"| + By 060 = 9)°] + B | (Alx) = 50)) ]

Expected Test Error Variance Noise Bias?

- In Summary ? :

How big is the data-intrinsic noise? This error measures ambiguity due to data
distribution and feature representation.

2Credits: Prof. Kilian, Cornell, USA

Dr. Rizwan Ahmed Khan, http e.com/site/drkhanrizwanl?7/
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@ Model Selection
e Understanding error
@ Optimum model complexity
@ Dealing with error
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Model Selection
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rror

ance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Br |(hp(%) =) ] = Bx | (hp () = hx))"| + Bxy [(5(0) = )°] + B | (hlx) — 5x))”]

Expected Test Error Variance Noise Bias?
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Model Selection
[ JoJele]e}

ing error

Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Er.p [(hn(x) = 9)*| = B [(hn(x) = h(0)°] + By [(500) = )] + B [ (h0) = 7))

Expected Test Error Variance Noise Bias?

riance (error from sensitivity to small fluctuations in training d:

Captures how much classifier changes if trained on a different training set. How
“over-specialized” is classifier to a particular training set (over-fitting)?

rizwanl?7/



Model Selection
[ JoJele]e}

tanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

B [(hp(x) = 9)°| = Exp | (hn(x) = h(x))"| + By | (060 = 9)°] + B | (hlx) — 50)) ]

Expected Test Error Variance Noise Bias?

Bias (error from wrong model assumptions)

What is the inherent error of the classifier is, even with infinite training data? This is due
to your classifier being “biased” to a particular kind of solution (e.g. linear classifier). In
other words, bias is inherent to model and relates to (under-fitting)

Dr. Rizwan Ahmed Khan, htt /sit rk rizwanl?7/



Model Selection
[ JoJele]e}

rror

ance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Eryo |(hp(x) = 9)*] = B [ (hp () = hx))”| + Exy [(5(0) = )°] + B [ (hlx) = 5x))”]

Expected Test Error Variance Noise Bias?

(16)

How big is the data-intrinsic noise? This error measures ambiguity due to data
distribution and feature representation.
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Understanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Ex.p [(hn(x) = 9)*| = B [(hn(x) = h(0)°] + By [(500) = )] + B [ (h0) = 5(x))]

Expected Test Error Variance Noise Bias?

Insight

By knowing whether its a bias or variance error or both, will significantly help in
improving performance of ML algorithm. The beauty is that terms contributing in the
error are quadratic (power of 2) and most probably one term dominants the others. So it
is possible to reduce that dominating term without exploding other terms.

Dr. Rizwan Ahmed Khan, http i >.com/site/drkhanrizwanl7/ ias-Variance Trade Off
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high bias “just right” high variance

4glide from Andrew Ng
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T — |4
high bias “just right” high variance

How high bias and high variance looks like?
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o As model gets complex, training error
, reduces (it corresponds to overfitting).

| @ When model is simple, it corresponds to
| underfitting.

Error

\ Validation Error

Y

Model Complexity

Demo available




Model Selection
[e]o]e] o}

rror

ection

o As model gets complex, training error
, reduces (it corresponds to overfitting).

| @ When model is simple, it corresponds to
| underfitting.

Error

Generalization error is high

\ Validation Error

Is it a bias problem or a variance problem?

Y

Model Complexity

Demo available
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Model Selection
[e]o]e] o}
rror

ection

High Varience @ As model gets complex, training error

! : reduces (it corresponds to overfitting).

; @ When model is simple, it corresponds to
'-I 5 : underfitting.

Error

Generalization error is high

Validation Error

\ . | Is it a bias problem or a variance problem?

Is it a bias problem or a variance problem

m— e High bias (under-fit): When training error
and validation error, both are high.

e High variance (over-fit): When training error
is low, while validation error is very high.

Model Complexity

Demo available

Dr. Rizwan Ahmed Kk
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Model Selection
[e]o]e] o}

rror

Error type detection

o As model gets complex, training error

2 o TtEr reduces (it corresponds to overfitting).
s @ When model is simple, it corresponds to
457 underfitting.
E] 3 V
E L e Generalization error is high
& 5: o méquwuﬂﬂ Is it a bias problem or a variance problem?
0.2 1 :ﬂﬂ'_ﬂﬂﬁﬁﬁﬁﬂns;:%maﬁ e :
'. Is it a bias problem or a variance problem
oo o * e High bias (under-fit): When training error
0 i 20 B a0 s0 and validation error, both are high.

Madel Complexity —->

e High variance (over-fit): When training error
is low, while validation error is very high.

Demo available
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ro

ype detection : Finding the balance

Total Error

o Understanding the illustration:

@ At its root, dealing with bias and
variance is really about dealing
with over- and under-fitting.

Varlance © Bias is reduced and variance is
increased in relation to model
complexity.

© As more and more parameters are
added to a model, the complexity
of the model rises and variance
becomes our primary concern
while bias steadily falls.

Underfitting
Zonea

Overfitting
Zone

Cpstimum Model Complexily

Error

&

v

Model Complexity

Bias and variance contributing to total error
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Optimum model complexity

Model Evaluation

To find that optimum complexity, we can use:
@ Data Partitioning / splitting

@ Early stopping (Stop optimization after M (>= 0) number of gradient steps, even if
optimization has not converged yet.)

Dr. Rizwan Ahmed Kk
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Optimum model complexity

Model Evaluation : Data Partitioning

o How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.




Model Selection
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Optimum model complexity

Model Evaluation : Data Partitioning

o How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.

@ The above issue can be handled by evaluating the performance (generalization
capability) of a trained model model on unseen data, separated from available dataset.
Following are few dataset partitioning techniques:

e Hold out

e k — fold Cross validation

e Bootstrap

e Leave-one-out (:r()ss—validation
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Optimum model complexity

Model Evaluation : Data Partitioning

o How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.

@ The above issue can be handled by evaluating the performance (generalization
capability) of a trained model model on unseen data, separated from available dataset.
Following are few dataset partitioning techniques:

e Hold out

e k — fold Cross validation

e Bootstrap

e Leave-one-out (lI‘()SS—V}lhd‘dti()H

o More training data gives better generalization.
o More test data gives better estimate for the classification error probability.

o Never evaluate performance on training data. The conclusion would be biased.

Dr. Rizwan Ahmed Khan, htt
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Optimum model complexity

Model Evaluation: Hold out - Data Split

Hold out cross validation:

Dataset: - The goal of cross-validation is to define a dataset to
Experience (Yrs) | Salary test the model, in order to limit problems like

1 30k overfitting, give an insight on how the model will
1.3 33k generalize to an independent dataset.

1.8 36k | DATASET |

2 45k Training Dataset Testing Dataset
3.3 65k J A

2.2 46k { ” )

4 66k | TRAIN TEST

5 70k J |
6.5 72k e P
6.2 72k - Randomly divide data into two: Training and Test

set i.e. a hold-out set (30%).
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Optimum model complexity

Model Evaluation

o Learn parameter ¢ from training data (minimizing training error J(0)).
o Compute test-set error:

For Regression:
1 Ntest

S (i - 11)? (7)

=1

J(0) = 5

For Classification:

1alf Yi 7é gi

err(i) =
(@) 0, otherwsie

1 Ntest
Erroripig = —— Z err(i) (18)
Ntest i—i

Where 9j; = predicted value on test sample, y; is actual value and nseq is total number of
test samples.
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Optimum model complexity

Model Evaluation: Hold out - Data Split

Drawback of test / train split: Error found in the test dataset can highly depend on the
observations included in the train and test dataset. Actually, we are fitting learned
parameters from train data to test data, by choosing hypothesis that gives best result on
test-set. Thus, its an optimistic estimate of generalization error. This method is also not
effective for comparing multiple models and tuning hyper-parameters.
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Optimum model complexity

Model Evaluation: Hold out - Data Split

Drawback of test / train split: Error found in the test dataset can highly depend on the
observations included in the train and test dataset. Actually, we are fitting learned
parameters from train data to test data, by choosing hypothesis that gives best result on
test-set. Thus, its an optimistic estimate of generalization error. This method is also not
effective for comparing multiple models and tuning hyper-parameters.

| DATASET
Improvement: Splitting of dataset into three separate M""Tmm """MT S '““"‘1""“"
sets i.e. train, (cross) validation & test. Model / [ \ \f
hypothesis is selected that has minimum validation [ mmam | vauparion Y
error. Estimate of generalization error is then \ \
calculated using test-set. T R Wosels  Valdate Wocels Evalite sl
Ja Logsiic Regression Tune Hypar paramatars and Falty .|..,-.m:|;;m s
Dacision Trees, KN Bkt the Bast Modal ieg Corfuzian % 1o evaluate the fnal
ie.0. Logistic Regreasion] parfarmancs of tha sakctad Logistic

b Esalon Medsl

rizwanl?7/
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Optimum model complexity

Model Evaluation: Hold out - Data Split

@ Train Data: it is used to initially machine learning model train and make predictions.
Model will run on this set of data exhaustively (mostly iteratively). It’s the largest
part of your overall dataset, comprising around 60-70% of total data used in the
project.
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Optimum model complexity

Model Evaluation: Hold out - Data Split

@ Train Data: it is used to initially machine learning model train and make predictions.
Model will run on this set of data exhaustively (mostly iteratively). It’s the largest
part of your overall dataset, comprising around 60-70% of total data used in the
project.

@ Validation Data: Trained model uses this data to see whether it can correctly identify
relevant new examples. So, used to discover new values that are impacting the process
/ hyper-parameter tuning. Another common problem often identified during
validation is overfitting. Often, after validation, data scientists will often go back to
the training data and run through it again, tweaking values and hyper-parameters to
make the model more accurate.

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl7/ i ance Trade Off
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Optimum model complexity

Model Evaluation: Hold out - Data Split

@ Train Data: it is used to initially machine learning model train and make predictions.
Model will run on this set of data exhaustively (mostly iteratively). It’s the largest
part of your overall dataset, comprising around 60-70% of total data used in the
project.

@ Validation Data: Trained model uses this data to see whether it can correctly identify
relevant new examples. So, used to discover new values that are impacting the process
/ hyper-parameter tuning. Another common problem often identified during
validation is overfitting. Often, after validation, data scientists will often go back to
the training data and run through it again, tweaking values and hyper-parameters to
make the model more accurate.

@ Test Data: comes into play after a lot of improvement and validation. This data is
used by the model to make predictions to test whether it will work in the real world.

Dr. Rizwan Ahmed Khan, https://si om /site/drkhanrizwanl7/ ias-Variance Trade Off
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Optimum model comples

Model Evaluation: k — ) validation - Data Split

In k-fold cross validation, dataset is divided into k equal subsets. k-1 subsets are used for the training while a
single set is retained for testing. The process is repeated k times (k-folds), with each of the k subsets used exactly

once for testing. Then, the k estimations (accuracy) from k-folds are averaged to produce final estimated value.

H
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Optimum model complexity

Model Evaluation: Bootstrap - Data Split

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.

IProposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123-140.

zwanl7/



Model Selection
000000080

Optimum model complexity

Model Evaluation: Bootstrap - Data Split

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.

@ Given: the training set T' consisting of n entries.

IProposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123-140.

ogle
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Optimum model complexity

Model Evaluation: Bootstrap - Data Split

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.
@ Given: the training set T' consisting of n entries.

@ Bootstrap generates m new datasets T; each of size n’ < n by sampling T uniformly with replacement. The
consequence is that some entries can be repeated in Tj.

IProposed in: Breiman, Leo (1996). Baggmg predictors. Machine Learning 24 (2): 123-140.
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Optimum model complexity

Model Evaluation: Bootstrap - Data Split

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.
@ Given: the training set T' consisting of n entries.

@ Bootstrap generates m new datasets T; each of size n’ < n by sampling T uniformly with replacement. The
consequence is that some entries can be repeated in Tj.

@ The m statistical models (e.g., classifiers, regressors) are learned using the above m bootstrap samples.

Sampling with
replacement

/
5N

Cat
Horse Cow lII
\ Rat /
- \
Original Training Data of size 5

Bootstrap Samples of size 3
IProposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123-140.

—————= ML Algorithm

ML Algorithm

ML Algorithm
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Optimum model complexity

Model Evaluation: LOOCYV - Data Split

o Leave-One-Out Cross-Validation (LOOCYV)
@ Do N experiments. In each experiment, use N — 1 samples for training, and leave only 1
sample for testing.

\nrizwanl7/
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Optimum model complexity

Model Evaluation: LOOCYV - Data Split

o Leave-One-Out Cross-Validation (LOOCYV)
@ Do N experiments. In each experiment, use N — 1 samples for training, and leave only 1
sample for testing.
© Compute the testing error F;,i =1,2,...,N .
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Optimum model complexity

o Leave-One-Out Cross-Validation (LOOCYV)
@ Do N experiments. In each experiment, use N — 1 samples for training, and leave only 1
sample for testing.
© Compute the testing error F;,i =1,2,...,N .
@ After N experiments, compute the overall estimated error:

—— > Performance |

I > Performance

— Performance
I Performance

— Performance

Trade Off 40 / 44
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with Variance and Bias errors

Start training
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training
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No
~High™_
Cross- =

~ - validation

Dr.
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Done

Rizwan Ahmed
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Yes
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Train longer

Train a more complex modal
Obtain more features
Decreass regularization
New model architecture

o

Obtain more data

Decreasa number of features
Increase reguiarization

New model archileciure

Model Selection

o Keep iterating (image on the left) till
low bias and low variance is achieved.

e Bias-Variance Tradeoff : Tool for one
can hurt other metric (probably this is
not valid for DL). For example training
complex model can reduce bias but can
increase variance.




ith error

with Variance and Bias errors

Start training

2 " High "~ Yes

e _emor?

- validation -~ 4 High Vananoe i

training

No
~High™_
Cross- =2

Yes
“error 7

Done

Ensemble Learning

High Bias |

A L A

Train longer

Train a more complex modal
Obtain more features
Decreass regularization
New model architecture

o

Obtain more data

Decreasa number of features
Increase reguiarization

New model archileciure

Model Selection

o Keep iterating (image on the left) till
low bias and low variance is achieved.

e Bias-Variance Tradeoff : Tool for one
can hurt other metric (probably this is
not valid for DL). For example training
complex model can reduce bias but can
increase variance.

Bagging and Boosting are widely used techniques for dealing with high variance and high
bias problems respectively.

Dr.
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Model Selection

Dealing with error

Dealing with Variance and Bias errors

Machine Learning
is not about
finding best
parameters to get
Zero error on the

~ train dataset,

balance between
complexity of the
learned model and
the ability to see
outcome beyond
trained dataset.
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Further Reading

@ Weak law of large numbers.

@ Effect of regularization on bias and variance.
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Machine Learning
Unsupervised Learning
Clustering

Dr. Rizwan Ahmed Khan
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. o Initialization

@ Introduction @ Choosing number of K
@ Reference Books e Example - Python
° Taxo.non?y e Toy example
o Applications e Image Compression

© K-Means Clustering @ Hierarchical Clustering
o Introduction @ Introduction
o Algorithm o Agglomerative Hierarchical clustering
e Objective Function © Conclusion

Dr. Rizwan Ahmed Khan, htt /sit rk rizwanl?7/



Introduction
L]

Section Contents

© Introduction
o Reference Books
o Taxonomy
o Applications
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Reference books for this Module:

o Chapter 9: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.




Introduction

1ce Books

Reference books for this Module:

o Chapter 9: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.

o Chapter 14: Principles of Data Mining, Max Bramer, Springer Books.
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Introduction

ence Books

Reference Books

Reference books for this Module:

o Chapter 9: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.

o Chapter 14: Principles of Data Mining, Max Bramer, Springer Books.

e Chapter 8: Introduction to Data Mining Kumar et al., 2"¢ Edition, Pearson
Education.
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xonomy of Machine learning

Learning using labeled data

Some examples

- Classifcation
- Regression
- Ranking
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Some axamples

Some examples

- Clustenng
- Dimansionality Reduction
- Unsupervisad Density

Estimation

- Classifcation
- Regression
- Ranking

RL doesn't use “labeled” or
“unlabeled" data in the tradiional
sense! In RL, an agent leams via
its Interactions with an envirenment
{feedback-dnven “policy” learming)
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Learning using unlabeled da

Learning using labeled data (usually considered harder)

Some axamples

Some examples

- Clustenng
- Dimansionality Reduction
- Unsupervisad Density

Estimation

- Classifcation
- Regression
- Ranking

many other specialized flavors of ML also exist,
some of which include

- Semi-superased Learning

- Active Leaming

- Transfer Learming

- Multitask Learning

- Imitabion Learming (somewhat related to RL)
- Zero-Shot Learning

- Few-Shot Learning

RL doesn't use “labeled” or
“unlabeled" data in the tradiional
sense! In RL, an agent leams via
its Interactions with an envirenment
{feedback-dnven “policy” learming)
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Taxonomy

Supervised Learning: Function approximation

Supervised learning is about function approximation
Problem Setting:

@ Set of possible instances X

o Unknown target function f: X — Y

e Set of function hypotheses H = {h|h: X — Y}
Input:

e training examples {< z;,y; >}. For example x is an email and y is either Spam or No
Spam.

@ We have labeled data in supervised learning.
Output:
o Hypothesis i € H that best approximates target function f. OR

@ a classification “rule” that can determine the class of any object from its attributes
values.

Dr. Rizwan Ahmed Khan, http i >.com/site/drkhanrizwanl7/ Clustering
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Taxonomy

Unsupervised Learning: Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised
learning).
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Taxonomy

Unsupervised Learning: Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised

learning).
7 T
x x
65 x % % ]
"
x s x i
6 i ! . x i
I w s ¥ - As data is unlabeled,
X o .
i % x aim to find structure /
- B .
| " pattern in the data.
x ol -
A4S x —
.
4 X 1 1
20 25 30 35
EMI
Input:
o Training examples {z1, 22, -, Ty }.

o Now, data is unlabeled.
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Taxonomy

Unsupervised Learning: Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised
learning).

- As data is unlabeled,
aim to find structure /
pattern in the data.

Input:
o Training examples {x1,za, -, T, }.

o Now, data is unlabeled.

Dr. Rizwan Ahmed Khan, htt com/site/dr
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Unsupervised Learning: Deductive Learning

e Unlabeled data / examples
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Taxonomy

Unsupervised Learning: Deductive Learning

e Unlabeled data / examples

o Derive structure from the data by exploring the relationship b/w input examples
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Unsupervised Learning: Deductive Learning

e Unlabeled data / examples

o Derive structure from the data by exploring the relationship b/w input examples
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Taxonomy

Unsupervised Learning: Deductive Learning

e Unlabeled data / examples

o Derive structure from the data by exploring the relationship b/w input examples
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Taxonomy

Unsupervised Learning

Unlabeled
Data

‘Feamre

£ E : Extraction

Note: Unsupervised Learning too can
have {(and often has) a “test” phase.
E.g., in this case, given a new cat/dog
image, predict which of the two
clusters it belengs to.

Can do it by assigning the image to the
cluster with closer centroid

Cluster 2




Introduction
O0000e

Taxonomy

Clustering

o Clustering is one of the most common exploratory data analysis technique.
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Clustering

o Clustering is one of the most common exploratory data analysis technique.

o It is used to get an intuition about the structure of the data. And used to:
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Clustering

o Clustering is one of the most common exploratory data analysis technique.

o It is used to get an intuition about the structure of the data. And used to:
e cluster data into meaningful and useful groups i.e. taxonomy of living things.
o Identify subgroups / clustering in the data. OR
o finding homogeneous subgroups / clusters (data points in each cluster are as similar as
possible) within the data.
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Clustering

o Clustering is one of the most common exploratory data analysis technique.

o It is used to get an intuition about the structure of the data. And used to:
e cluster data into meaningful and useful groups i.e. taxonomy of living things.

o Identify subgroups / clustering in the data. OR
o finding homogeneous subgroups / clusters (data points in each cluster are as similar as

possible) within the data.

o Types (main) of clustering:
@ Partitional clustering i.e. K - Means clustering.
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Clustering

o Clustering is one of the most common exploratory data analysis technique.

o It is used to get an intuition about the structure of the data. And used to:
e cluster data into meaningful and useful groups i.e. taxonomy of living things.

o Identify subgroups / clustering in the data. OR
o finding homogeneous subgroups / clusters (data points in each cluster are as similar as

possible) within the data.

o Types (main) of clustering:

@ Partitional clustering i.e. K - Means clustering.
@ Hierarchical clustering i.e. Agglomerative Hierarchical clustering.
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Taxonomy

Clustering

o Clustering is one of the most common exploratory data analysis technique.

o It is used to get an intuition about the structure of the data. And used to:
e cluster data into meaningful and useful groups i.e. taxonomy of living things.

o Identify subgroups / clustering in the data. OR
o finding homogeneous subgroups / clusters (data points in each cluster are as similar as

possible) within the data.

o Types (main) of clustering:

@ Partitional clustering i.e. K - Means clustering.
@ Hierarchical clustering i.e. Agglomerative Hierarchical clustering.

@ Fuzzy clustering i.e. Fuzzy K-Means.

10 / 56
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Clustering Applications

o Market segmentation

@ Social network analysis
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Original Compressed, with 8 colors.

50 o Market segmentation
@ Social network analysis
100 e Image compression /
segmentation
150
200




Introduction

o Market segmentation
e Social network analysis

e Image compression /
segmentation

e Organizing computer cluster /
data centers

Dr. Rizwan
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Clustering Applications

o Market segmentation
@ Social network analysis

e Image compression /
segmentation

e Organizing computer cluster /
data centers

o Astronomical data analysis

Dr. Rizwan Ahmed Khan, h e.com/site/drkhanr:
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Cluster of werd by fopie

D
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Chuster of document oy topic

7
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~

Market segmentation
Social network analysis

Image compression /
segmentation

Organizing computer cluster /
data centers

Astronomical data analysis

Document clustering

Dr. Rizwan od Khan, htt com/site/dr
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Section Contents

o Initialization
@ Choosing number of K

© K-Means Clustering
o Introduction
o Algorithm
@ Objective Function

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Introduction

Introduction

o K-means algorithm is by far the most popular / widely used clustering algorithm.

o K-means algorithm is an iterative algorithm. It tries to:

o partition the dataset into K pre-defined distinct / non-overlapping subgroups (clusters)
e each data point in a dataset is assigned to only one cluster.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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K-Means Pictorial Representation

20,01 .
17.5 A -

15.0 4

- . Input: Unlabeled Dataset
. output: Group the data into two
- . clusters (K=3)

10.09 «

5.0 A

2.5
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K-Means Pictorial Representation

Data with randomly initialized Cluster Centroids

20,0 .
*

17.5 1 - oy . . . . oy .
Initialization: Randomly initialize

15.0 three points (as K=3), called cluster
centroids (shown in green).

12.5 . *

i . I : K-means algorithm is an iterative
algorithm. It has two steps.

7.5 "

5.0 1 . @ Cluster assignment step

2.5 ' @ Move / Update centroid step

2 4 6 8 10

Dr. Rizwan Ahmed Khan, htt
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Introduction

K-Means Pictorial Representation

After Step 1: Cluster Assignment Step

20.0 .
*

175 .

15.0

125 1 e Cluster assignment(Step 1):

. « | Algorithm will iterate over all data

WL - . X points and depending on its distance

35 . to each cluster centroid, assign data
. 3 point to closest cluster centroid.

5.0 1 .

251 ’

2 4 6 3 10

Dr. Rizwan Ahmed Khan, htt
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K-Means Pictorial Representation

Dr.

After First Iteration

20.0 .
- %
175
15.0
Move centroid (Step 2):
Bl e . Calculate average of data points
] o . = assigned to specific cluster and
assign that value to cluster centroid
75 4 e ¥ (moving centroid to new
coordinates).
5.0 1
251
2 4 6 10

Rizwan Ahmed Khan, htt
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K-Means Pictorial Representation

After Second Iteration

20.0 4 .

<%k

17.5 .

. . ¢ After two iterations

1004 . 4 This shows result after completion
of two iterations.

7.5 * * i

5.0 1

254
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K-Means Pictorial Representation

After Second Iteration

20.0 4 .

<%k

17.5 .

2 v Convergence
T 2 If you keep iterating nothing will
change.

7.5 A * e i
5.0 4

254
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hm

K-Means Algorithm

Input:

- K (number of clusters). Its a parameter.
- Unlabeled training Set

{.131,3)2, e ,Qfm}

- where z; € R”
- m datapoints with n dimensions.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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K-Means Algorithm

Algorithm 1 K-Means Clustering Algorithm
Input: z1,22, - , 2.,

1: Randomly initialize K cluster centroids: pi, po, -+, ux € R™

Repeat until convergence! {

2: for : =1 to m do
¢; + index of closest cluster centroid to x;
4: end for

for k =1to K do
Wy <— average / mean of points assigned to cluster k
end for }

IR

Irun until cluster centroids don’t change

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Decoding K-Means Algorithm

- Steps shown in blue (in previous slide) belongs to cluster assignment step (step 1).

for i =1 to m do
¢; < index of closest cluster centroid to x;
end for

- This step is computing distance:

Ahmed K



K-Means Clustering
00®000

Decoding K-Means Algorithm

- Steps shown in blue (in previous slide) belongs to cluster assignment step (step 1).

for i =1 to m do
¢; < index of closest cluster centroid to x;
end for

- This step is computing distance:

Ci mkin zi — el [*

- Algorithm will iterate over all data points and depending on its distance to each cluster
centroid, assign data point to closest cluster centroid (find value of k that minimizes
distance).

Dr. Rizwan Ahmed Khan, htt
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Decoding K-Means Algorithm

- Steps shown in red (in previous slide) belongs to move centroid step (step 2).

for k=1to K do
1 < average / mean of points assigned to cluster k
end for

Dr. Rizwan Ahmed Khan, htt .c r rizwanl?7/
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Decoding K-Means Algorithm

- Steps shown in red (in previous slide) belongs to move centroid step (step 2).

for k=1to K do
1 < average / mean of points assigned to cluster k
end for

- Concrete Example:

IF 1, x5, z6, 210 are assigned to cluster 2, (from step 1) then
= 1 =2,c5 =2,c6 =2,c10=2

= p = §[@1 + 5 + 36 + T10) € R"

Dr. Rizwan Ahmed Khan, htt gle.com/site/drkhanri:
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Decoding K-Means Algorithm

- Steps shown in red (in previous slide) belongs to move centroid step (step 2).

for k=1 to K do

1 < average / mean of points assigned to cluster k
end for

- Concrete Example:

IF 1, x5, z6, 210 are assigned to cluster 2, (from step 1) then
= 1 =2,c5 =2,c6 =2,c10=2

= p = §[@1 + 5 + 36 + T10) € R"

What if cluster centroid has zero data points assigned to it?

Dr. Rizwan Ahmed Khan, htt
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bance Metrics

Distance metric uses distance function which provides a relationship metric between
elements in the dataset.
Minkowski Distance:

n

dist(a,b) = Z(ai —b;)P (1)

i=1

o=

Q if p = 1, Manhattan Distance

n

distz1(a.0) = 3 (lla; — bi]) (2)

i=1
Q if p = 2, Euclidean Distance

Dr. Rizwan Ahmed Khan, ht
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Algorithm
Manhattan or Euclidean Distance

Intuition of distances

(6,6)

distry(a,b) = Z(Hai —bil)
/ i=1

v distri(a,b) = (6 —0)+ (6 —0) =12 (4)

(0,0}

Dr. Rizwan Ahmed Khan, htt
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Algorithm
Manhattan or Euclidean Distance

Intuition of distances

(6,6)

distry(a,b) = Z(Hai —bil)

v distri(a,b) = (6 —0)+ (6 —0) =12 (4)

diStLQ (a b) =
(0,0}

distr(a,b) = \/62 62 =72~ 849 (5)

In Manhattan / taxicab geometry, the red, yellow, and blue paths all have the same shortest path length of 12. In
Euclidean geometry, the green line has length 61/2 ~ 8.49 and is the unique shortest path.

/

Dr. Rizwan Ahmed Khan, htt .com/site/drkh
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Objective Function

hy to learn cost function?

@ To better understand algorithm

Dr. Rizwan Ahmed Khan, htt
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Objective Function

Importance?

o learn cost function?

@ To better understand algorithm

@ It is important to know cost function / objective function to debug algorithm.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr



K-Means Clustering
@0000

Objective Function

Importance?

to learn cost function?

@ To better understand algorithm
@ It is important to know cost function / objective function to debug algorithm.

@ To fine tune parameters i.e. k in k-means clusters, and to avoid local minima in order
to get better results.

/

Dr. Rizwan Ahmed Khan, htt .com/site/drkh



Objective Function

Optimization Function

k-means algorithm optimization objective:

o ¢; = index of cluster (1,2, -+, K) to which example z; is currently assigned.

/
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Objective Function

Optimization Function

k-means algorithm optimization objective:

o ¢; = index of cluster (1,2, -+, K) to which example z; is currently assigned.
@ uy, = cluster centroid k (u, € R™), k={1,2,--- ,K}.

Dr. Rizwan Ahmed Khan, htt
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Objective Function

Optimization Function

k-means algorithm optimization objective:

o ¢; = index of cluster (1,2, -+, K) to which example z; is currently assigned.
@ uy, = cluster centroid k (u, € R™), k={1,2,--- ,K}.
@ (., = cluster centroid of cluster to which example x; has been assigned.

For example: If example z; is assigned to cluster 5, then
c; < b and ji., < ps

Ahmed



K-Means Clu

Objective Function

Optimization Function

k-means algorithm optimization objective:

o ¢; = index of cluster (1,2, -+, K) to which example z; is currently assigned.
@ uy, = cluster centroid k (u, € R™), k={1,2,--- ,K}.
@ (., = cluster centroid of cluster to which example x; has been assigned.

For example: If example z; is assigned to cluster 5, then
c; < b and ji., < ps

Optimization objective:

m

. 1
min J(ci, ea, 0y Cmi 1, 2,00 k) = EZH% — He;

C, L
o+ i=1

’ (6)

Dr. Rizwan Ahmed Khan, htt
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Objective Function

Optimization Function

k-means algorithm optimization objective

| 2

C1y s Cms 1y UK

: 1 ¢
min J(017627"' y Cms 1y 2y - - ’NK) = EZHZEZ = He;
1=1
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Objective Function

Optimization Function

k-means algorithm optimization objective

2

: 1 ¢
min J(017627"' y Cms 1y 2y - - ’NK) = EZH:EZ — He;
1=1

C1y s Cms 1y UK

o Cost function is trying to minimize distance between examples x; and associated
cluster centroids fi,.

Dr. Rizwan Ahmed Khan, htt
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Objective Function

Optimization Function

k-means algorithm optimization objective

2

: 1 ¢
min J(017627"' y Cms 1y 2y - - ’NK) = EZH:EZ — He;
1=1

C1y s Cms 1y UK

o Cost function is trying to minimize distance between examples x; and associated
cluster centroids fi,.

@ Or in other words, cost function is finding parameters p; and ¢; to minimize sum of
squared distance between example and cluster centroid to which example is assigned.

e This function is sometimes also called as Distortion or Distortion function of K-Means.

Dr. Rizwan Ahmed Khan, htt
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min
CLy s Com 1, K

sualization

1 m
J(ChCQa"' y Cms 1y 2, " aMK) = EZIH‘TZ — M,
=

20.04

17.5 4

15.01

1254

1004 «

754

5.0 4

2.5
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Objective Function

mization Function Visualization

| 2

C1y 3 Cms 1y UK

: RS
min J(er,e2, 0 s emipin, oy, B ) = EZH% — fhe;
1=1

20.04 .

17.5 4 .

1.0 Cluster Centroid Ji ._@
12.5 4 Example X; 4——@ -

1004 « * .

5.0 -

2.5
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Objective Function

mization Function Visualization

m
. 1 2
min J(Cla €2y Cmys [1y 2y - aMK) = — E ||xl = He; |
Clym s m
i=
20,04 .
.
1751 .
1.0 Cluster Centroid [i
125 4 Example X; B 3
1001 . Fer b Min. this distance
754 o =
5.0 4 ik
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Objective Function

Looking at K-Means Algorithm w.r.t J

6:

Input: z1,29, - , 2,
Randomly initialize K cluster centroids: Do you see any relation
i, po, e g € R™ between J and the two loops?

Repeat until convergence {

for i =1 tom do
¢; + index of closest cluster centroid to x;
end for

for k =1 to K do
Lk < average / mean of points assigned to cluster k
end for

}

Dr. Rizwan Ahmed
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Objective Function

Looking at K-Means Algorithm w.r.t J

6:

Input: z1,29, - , 2,
Randomly initialize K cluster centroids: Do you see any relation
i, po, e g € R™ between J and the two loops?

Repeat until convergence { @ Loop 1 (cluster assignment step)

is minimizing J w.r.t

for i =1 tom do
¢; + index of closest cluster centroid to x;
end for

ci,C2, -+ ,Ccmym while holding

H1, p2, e, pi fixed.

for k =1 to K do
Lk < average / mean of points assigned to cluster k
end for

}

Dr. Rizwan Ahmed Kk
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Objective Function

Looking at K-Means Algorithm w.r.t

Input: z1,29, - , 2,
1: Randomly initialize K cluster centroids: Do you see any relation
W1y oy, p € R between J and the two loops?

Repeat until convergence { @ Loop 1 (cluster assignment step)

is minimizing J w.r.t

2: for ¢ =1 to m do

c1,¢C2, - ,Cy while holding
¢; < index of closest cluster centroid to x; ftsims e fixed.
4: end for
© Loop 2 (move centroid step) is
5. for k =1 to K do minimizing J w.r.t
6: g < average / mean of points assigned to cluster k Wiy 2, LK
7: end for

}

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Initialization

Random Initialization

o Up till now we have discussed loops of K-Means algorithm. Any other detail missing?
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Initialization

Random Initialization

o Up till now we have discussed loops of K-Means algorithm. Any other detail missing?

o First step of K-Means algorithm is:
Randomly initialize K cluster centroids: p1, pa, -+, ux € R”
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Initialization

Random Initialization

o Up till now we have discussed loops of K-Means algorithm. Any other detail missing?

o First step of K-Means algorithm is:
Randomly initialize K cluster centroids: p1, pa, -+, ux € R”

@ This discussion on random initialization of centroid will also cover discussion on local
optima.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr



Initialization

Random Initialization

K-Means Clustering
O®00000

Data with Randomly Initialized Cluster Centroids

204 % .
L]
L]
15 -
. .
10 4 % i .
*
- ’ b
5_ L]
01 %
0 2 4 6 8 10

-K<m
- What will happen if K = or & m ?
- There are two strategies:

@ Randomly set coordinates of
[y 2, s K-

@ OR randomly pick K training
examples and set
W1, 2, -+, p equal to these K
examples.

Dr.

Rizwan Ahmed Khan, htt
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Initialization

Random Initialization

Data with Randomly Initialized Cluster Centroids

204 % .
15
i : . Random Initialization - Bad
= P Initialization
. y . - Stuck at local optima
5 1 L]
o4 W ’
0 2 4 6 8 10

Dr. Rizwan Ahmed Khan, htt
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Initialization

O®00000

Random Initialization

After Second Iteration

20.0 4

17 5

1001 »

7.5 A

5.0

2.5

0.0 4

. %

Random Initialization - Bad
Initialization
- Stuck at local optima




Initialization

Random Initialization

K-Means Clusterin,
O®00000

Data with Randomiy Initialized Cluster Centroids

20.0 4

17.5 1

10.0 A

7.5 A

5.0 1

25

* -

Random Initialization - Good
[nitialization
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Initialization

Random Initialization

After Second Iteration

20.0 4 .

<%k

17.5 .

B Random Initialization - Good
S B ’ [nitialization

7.5 A
5.0 1

254




K-Means Clustering
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Initialization

Random Initialization 1

- K-Means can converge on different solutions based on initialization of cluster centroids.

Data with randomly initialized Cluster Centroids

20.0 4 .

*

17.5 1 .

1001 »

7.5 A *

5.0 1




K-Means Clustering
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Initialization

Random Initialization 1

- K-Means can converge on different solutions based on initialization of cluster centroids.

After First Iteration

20.0 4 .

<%k

17.5 .

1001 » .

7.5 A e e =

5.0 1
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Initialization

Random Initialization 1

- K-Means can converge on different solutions based on initialization of cluster centroids.

After Second Iteration

20.0 4 .

<%k

17.5 .

1001 » .

7.5 4 * . i

5.0 1
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Initialization

Random Initialization 2

- K-Means can converge on different solutions based on initialization of cluster centroids.

Data with Randomily initialized Cluster Centroids
20.0 4 .

17.5 1 .

1001 » .

7.5 * . pra .

5.0

2.5




K-Means Clustering
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Initialization

Random Initialization 2

- K-Means can converge on different solutions based on initialization of cluster centroids.

After Iteration 1

20.0 4 .

17.5 A .

1001 e .

75 A * .

5.0
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Initialization

Random Initialization 2

- K-Means can converge on different solutions based on initialization of cluster centroids.

After Iteration 2

20.0 4 .

17.5 A .

10,01 » *. .

75 A .
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Initialization

Random Initialization: Local Optima

Data points
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Initialization

Random Initialization: Local Optima

.
L]
a®

Result after good initialization

Data points
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0000800

Initialization

Random Initialization: Local Optima

. "

Not so good initialization, stuck in local optima i.e.
K-means not doing a good job in minimizing

Data points . . . .
PO distortion function J : ming, ... ¢,y J

HHK
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0000800

Initialization

Random Initialization: Local Optima

L .x..

' Not so good initialization, stuck in local optima i.e.
Data points K-means not doing a good job in minimizing

distortion function J : mine, ... ey, ux J
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Initialization

Random Initialization - Avoiding Local Optima

Avoiding Local Optima

Algorithm 2 Random Initialization of K-Means Clustering Algorithm

for I =1 to 100 do

Randomly initialize K-Means.

Run K-Means. Get ¢1,¢a, ¢ and piq, po, - -+, fbxc -

Computer J (Cost function / distortion Function). Refer Equation 6.
end for

Dr. Rizwan Ahmed Khan, htt



s Clustering
O00000e

Initialization

Random Initialization - Avoiding Local Optima

for I =1 to 100 do

Randomly initialize K-Means.

Run K-Means. Get ¢1,¢a,++ , ¢ and g, po, -+, fbk-

Computer J (Cost function / distortion Function). Refer Equation 6.
end for
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Initialization

Random Initialization - Avoiding Local Optima

for I =1 to 100 do

Randomly initialize K-Means.

Run K-Means. Get ¢1,¢a,++ , ¢ and g, po, -+, fbk-

Computer J (Cost function / distortion Function). Refer Equation 6.
end for

- After running it 100 times, pick clustering that achieved lowest J (validation of clusters).

min J
C1yt s Cmi L5 K

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanr:
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Initialization

Random Initialization - Avoiding Local Optima

for I =1 to 100 do

Randomly initialize K-Means.

Run K-Means. Get ¢1,¢a,++ , ¢ and g, po, -+, fbk-

Computer J (Cost function / distortion Function). Refer Equation 6.
end for

- After running it 100 times, pick clustering that achieved lowest J (validation of clusters).

min J
C1yt s Cmi L5 K

For larger values of K, even this method might not work!

Dr. Rizwan Ahmed Khan, htt
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- How to choose value for K i.e. number of clusters?

o K can be chosen by visually inspecting the data, to find distinct clusters.
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s Clustering

Choosing number of

- How to choose value for K i.e. number of clusters?
o K can be chosen by visually inspecting the data, to find distinct clusters.

o But sometimes it is impossible!
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- Elbow method
The Elbow Method using Distortion

351
301
25

204 Number of K can be chosen
algorithmically by looking at
this graph.

Distortion

10 1

05

Values of K
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- Elbow method
The Elbow Method using Distortion

351

301

25

ol Elbow

Distortion

Values of K
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If we get this kind of graph,
then value of K can be chosen
where elbow is formed.
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- Elbow method
The Elbow Method using Distortion

351
301
25

204 Sometimes, elbow is not formed
when plotting distortion with
increasing K.

Distortion

10 1

05

Values of K
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K-Means Clus
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g number of K

Choosing number of K - Study Problem

w the problem

@ Number of K can be
chosen by knowing
problem in hand.

@ For example, if in this
problem, if we know
that reason for
running K-means is to
identify “Observe”,
“healthy” and “At
risk”, then its
reasonable to take

] n 35 K=3.
BMI
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Section Contents

© Example - Python
o Toy example
o Image Compression

Dr. Rizwan



Example - Python
900000000

Toy example

Dataset - Visualization

2 K-means, data taken from book "Principles of Data Mining":

Chapter 14
r X 3 Q@author: rizwan.khan
TE 90 TR
08 93 5 import numpy as np

1.2 11.6
28 0.6

¢ import matplotlib.pyplot as plt
7 #Create Training Set, 2D vector, Values from book example

i8 0.9

14 6.5 & x=np.array ([

s ] o [6.8, 12.61,[0.8, 9.8],
00 19.9 0 [1.2, 11.6]1,[2.8, 9.6],
6.2 15 11 [3.8, 9.91,[4.4, 6.5],
- 'l,‘ » [4.8, 1.11,[6, 19.91,
w0 T 13 [6.2, 18.51,[7.6, 17.4],
53 5 w4 [7.8, 12.21,[6.6, 7.71,
8.4 6.9 5 [8.2, 4.51,[8.4, 6.9],

6 [9, 3.41,[9.6, 11.111)

17 # create color dictionary for printing

s colors = {0:’r’, 1:°b’}

19 plt.figure (0)

20 plt.scatter(x[:, 0], x[:, 1], c=’r’, cmap=plt.cm. jet)

0.6 11.1

Dr. Rizwan Ahmed Khan, https://sit e.com/site/drkhanrizwanl7/
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Example - Python
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Toy example

Cluster Centroid - Visualization

1 # Euclidean Distance Calculator
2 def dist(x, y):
3 return np.sqrt(np.sum((x-y)**2))

5 # Number of clusters
c K =3

X coordinates of random 3 centroids
x = np.array([3.8, 7.8, 6.2]) # Book Example Value

# Y coordinates of random 3 centroids
12 C_y = np.array([9.9, 12.2, 18.5]1)# Book Example Value

14 C np.array (list(zip(C_x, C_y)), dtype=np.float32) # Merging x and y
15 print (C) # Cluster Centroids

17 # Plotting along with the Centroids

18 plt.figure (1)

19 plt.scatter(x[:, 0], x[:, 1], c=’#050505’, s=7) # s= size
20 plt.scatter(C_x, C_y, marker=’*’, s=200, c=’g’)

r. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl7/
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Toy example

Cluster Centroid - Visualization

Data with randomly initialized Cluster Centroids

20.0 4 .

17.5 1 .

1009 »

5.0 1

25
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ables initialization

1

N

# Cluster Lables (0, 1, 2)
clusters = np.zeros(len(x))

colors = [7g)’ ’c?, ’b’, 7y;, ‘r2

# Variables used inside main loop
distances = np.zeros(K)

cluster = np.zeros(len(x))

count =0

how_many_in_one_cluster = 0

C_new = np.zeros(C.shape)
iteration = 2

Example - Python
0000@0000

m’]
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Toy example

K —Means Main Loop

1 while (count < iteration): # or use difference in C and C_new to stop loop
2 #step 1: Cluster Assignment

3 for i in range(len(x)): # loop over points

4 for j in range(0, K, 1): # loop over K

5 distances[j] = dist(x[il, C[jl)

6 cluster[i] = np.argmin(distances)

s #step 2: Move / update cluster centroid (average values of X)

9 C_new = np.zeros(C.shape) # intialize

10

11 for k in range(K): # Loop over K - clusters

12 for i in range(len(x)): # Loop over all data points

13 if cluster[i] == k: # if points belongs to specific cluster k

14 C_newl[k] = C_mnewl[k] + x[i] # Finding cluster of point with
same label

15 how_many_in_one_cluster = how_many_in_one_cluster +1 # keeping

this values to take mean

17 C_new[k] = C_new[k]/ how_many_in_one_cluster # Average points to
find new cluster centroid
18 how_many_in_one_cluster = 0

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl7/
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Toy example

K —Means Visualization

1 # Plotting along with the Centroids
2 plt.figure (count+2)

4 for i in range(len(x)):
5 plt.scatter(x[i, 0], x[i, 1], c=colors[int(cluster[i])], s=10) # s=
size

7 #plt.scatter(C_x, C_y, marker=’*’, s=200, c=’r’)
s for j in range(K):
9 plt.scatter(C_new[j, 0], C_new[j, 1], marker=’%*’, s=200, c=colors[j])

11 print (° )
12 PT AT (2 sk ok o ok ok ok sk sk sk s o o o ok ok sk sk sk sk o o o ok ok sk sk sk sk o o o ok sk ok sk ok o o o kK K sk sk sk ok ok ok Rk 0 )
13 print (’Cluster Centroid After iteration : 7, count+1)

14 P AT (2 sk ko sk ok ok ook ok ok ok ok ok ok ok ook ok ok ok ok skok ok okok ok ok ok ok okok ok ok ok ok ok ok ok ok ok ok ko ok ok Rk kR ok k ok 0)
15 print (C_new)

16 C = C_new # update cluster centroid

17 count=count+1

. Rizwan
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Example
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leans Visualization

After Second Iteration

Example - Python
000000080

20.0 4

17.5

1001 »

7.5 A

5.0 1

254

<%k

S ¢

Dr. Rizwan A

Cluster Centroid After iteration
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Example - Python
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Toy example

K —Means Visualization

Data with randomly initialized Cluster Centroids

20.0 4 .

17.5 1 .

1009 »

5.0 1

25
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Toy example

K —Means

/isualization

After First Iteration

Example - Python
00000000
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Toy example

K —Means

/isualization

After Second Iteration

Example - Python
00000000

20.0 4
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plication on Image Compression

I |

Image with 10 colars (K=10)
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Section Contents

@ Hierarchical Clustering
@ Introduction
o Agglomerative Hierarchical clustering
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Introduction

Introduction : Hierarchical Clustering

Introduction:

@ Produces set of nested clusters,
organized as a Hierarchical Tree. For
example, all files and folders on our hard
disk are organized in a hierarchy or
looking at taxonomy of living things.
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Introduction

Introduction : Hierarchical Clustering

Introduction:

@ Produces set of nested clusters,
organized as a Hierarchical Tree. For
example, all files and folders on our hard
disk are organized in a hierarchy or
looking at taxonomy of living things.

o Can be visualized as a dendogram.
Dendogram is a tree like structure that
records sequence of merges / splits.
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Introduction

Introduction : Hierarchical Clustering

Introduction:

@ Produces set of nested clusters,
organized as a Hierarchical Tree. For
example, all files and folders on our hard
disk are organized in a hierarchy or
looking at taxonomy of living things.

o Can be visualized as a dendogram.
Dendogram is a tree like structure that
records sequence of merges / splits.

@ Dendograms can reveal more meaningful
il taxonomies / structure in the data.

Dr. Rizwan Ahmed Kk



\rchical Clustering

Introduction

Introduction : Hierarchical Clustering

o There are two types of hierarchical clustering:
Q@ Agglomerative:
o Agglomerative is a bottom-up clustering method.
o Assign each observation to its own cluster i.e. initially each data point is a cluster.
o Then, compute the similarity (e.g., distance) between each of the clusters and join the two
most similar clusters.
Proceed until there is only a single cluster left.

zwanl7/
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\rchical Clustering

Introduction : Hierarchical Clustering

o There are two types of hierarchical clustering:

Q@ Agglomerative:

Agglomerative is a bottom-up clustering method.

Assign each observation to its own cluster i.e. initially each data point is a cluster.

Then, compute the similarity (e.g., distance) between each of the clusters and join the two
most similar clusters.

Proceed until there is only a single cluster left.

© Divisive:

Divisive clustering is a top-down clustering method.

Assign all of the observations to a single cluster and then partition the cluster to two least
similar clusters.

Proceed recursively on each cluster until convergence / or there is one cluster for each
observation.

»m /site/drkhanrizwan17/
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glomerative Hierarchical clustering

Agglomerative Hierarchical clustering

Algorithm 3 Agglomerative Hierarchical Clustering Algorithm
Input: z1,29, -,z

: Each data point be a cluster.

: Repeat

Merge the two closest cluster.

Update distances matrix.

: Until only a single cluster remains.

Dr. Rizwan Ahmed Khan, htt
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r1ical clustering

Hierarchical clustering

o Key operation in Agglomerative Hierarchical
clustering algorithm is computation of distance
between clusters. Different distance definition of
distance leads to different algorithms. For Example:

@ Single Link Clustering (SLC)

o In single linkage hierarchical clustering, the distance
between two clusters is defined as the shortest
distance between two points in each cluster.

rizwanl?7/
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e hical cluster

Distances Matrix - Hierarchical clustering

o Key operation in Agglomerative Hierarchical
clustering algorithm is computation of distance
between clusters. Different distance definition of
distance leads to different algorithms. For Example:

@ Single Link Clustering (SLC)

o In single linkage hierarchical clustering, the distance
between two clusters is defined as the shortest
distance between two points in each cluster.

© Complete Link Clustering (CLC)

o In complete linkage hierarchical clustering, the
distance between two clusters is defined as the
‘{U‘-S} = IH{'X(D(-“?J- :“sj)) longest distance between two points in each cluster.

Dr. Rizwan Ahmed Khan, http m /site/drkhanrizwanl7/
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Distances Matrix - Hierarchical clustering

o Key operation in Agglomerative Hierarchical
clustering algorithm is computation of distance
between clusters. Different distance definition of
distance leads to different algorithms. For Example:

@ Single Link Clustering (SLC)

o In single linkage hierarchical clustering, the distance
between two clusters is defined as the shortest
distance between two points in each cluster.

© Complete Link Clustering (CLC)
W o In complete linkage hierarchical clustering, the

1 N distance between two clusters is defined as the
L{-I ? S) N ZZD('Y”"\&J longest distance between two points in each cluster.

@ Average Link Clustering (ALC)

o In average linkage hierarchical clustering, the
distance between two clusters is defined as the
average distance between each point in one cluster to
every point in the other cluster

I G =

Dr. Rizwan Ahmed Khan, http m /site/drkhanrizwanl7/
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Conclusion

oeo

Conclusion

o K-means clustering is one of the most popular clustering algorithms.

o K-means is usually the first algorithm practitioners apply when solving clustering
tasks as convergence is guaranteed.

o K-means doesn’t learn the number of clusters from the data and requires it to be
pre-defined, which sometimes is difficult.

o K-means can converge on different clusters based on initial values. It has
Computational complexity? O(n?).

o If there is overlapping between clusters, K-means doesn’t have an intrinsic measure
for uncertainty.

o Hierarchical clustering is a very useful way of segmentation.

o Hierarchical clustering has an advantage of not having to pre-define the number of
clusters.

e Hierarchical clustering doesn’t work well for large datasets. Computational complexity
O(n?).

n = number of datapoints

2
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Further Reading

o Can K-Means algorithm over-fit?

e Validity of clusters - Cohesion and Separation (internal measure).
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Further Reading

o Can K-Means algorithm over-fit?
e Validity of clusters - Cohesion and Separation (internal measure).

o Validity of clusters - Entropy, Purity etc (external measure).
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Conclusion

ooe

Further Reading

o Can K-Means algorithm over-fit?

e Validity of clusters - Cohesion and Separation (internal measure).

Validity of clusters - Entropy, Purity etc (external measure).
Is K-Means algorithm NP-hard?
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Further Reading

Further Reading

o Can K-Means algorithm over-fit?

e Validity of clusters - Cohesion and Separation (internal measure).
o Validity of clusters - Entropy, Purity etc (external measure).

o Is K-Means algorithm NP-hard?

o Different variants of K-Means algorithm:

o Fuzzy C-Means Clustering
o K-Means++
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Conclusion

ooe

Further Reading

Further Reading

o Can K-Means algorithm over-fit?

e Validity of clusters - Cohesion and Separation (internal measure).
o Validity of clusters - Entropy, Purity etc (external measure).

o Is K-Means algorithm NP-hard?

o Different variants of K-Means algorithm:

o Fuzzy C-Means Clustering
o K-Means++

o Affect of distance measure used? Is it dependent on type of data?
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© Introduction
@ Reference Books
o Problem Setting
Q Intuition
o Intuition
o Toy Example

@ Cost Function and Gradient Descent
@ Cost Function Intuition
o Cost function in 2D
@ Cost function in 3D
o Gradient Descent

@ LR with GD

o Linear Regression with GD
@ Linear Regression with Multiple
Variables

@ Issue with Gradient Descent

@ Variants of Gradient Descent

@ Bias
© Python

@ Linear Regression: Python
© Polynomial Regression

@ Polynomial Regression

@ Normal Equation method

@ Polynomial Regression Example
@ Tasks
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1ce Books

Reference books for this Module:

o Chapter 1 & 3: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.
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Introduction

1ce Books

Reference books for this Module:

o Chapter 1 & 3: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.

@ Chapter 8: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Problem Setting

Problem Formalization

Problem formalization

o Set of possible instances X i.e. {< Z;,y; >}
o Dataset D, given by D = {< Z;,y; >,..., < Tp,yn >} C X XY
Where:
7; is a feature vector (R9),
y; is a label / target variable,
X is space of all features and
Y is space of labels.
e Unknown target function f: X — Y
@ Set of function hypotheses H = {h|h : X — Y}

Output:
- Hypothesis h € H that best approximates target function f.
- Output consists of one or more continuous variables (instead of predefined concepts /

classes), the task is called ?

Dr. Rizwan Ahmed Khan, http i gle.com/site/drkhanrizwanl?7/
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Problem Setting

Problem Formalization

Problem formalization

o Set of possible instances X i.e. {< Z;,y; >}
o Dataset D, given by D = {< Z;,y; >,..., < Tp,yn >} C X XY
Where:
7; is a feature vector (R9),
y; is a label / target variable,
X is space of all features and
Y is space of labels.

e Unknown target function f: X — Y
@ Set of function hypotheses H = {h|h : X — Y}
Output:

- Hypothesis h € H that best approximates target function f.
- Output consists of one or more continuous variables (instead of predefined concepts /

classes), the task is called 7 REGRESSION.
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Intuition

REGRESSION is mapping of continuous inputs to continuous outputs.

Salary

b
”

Experience
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Intuition

What?

REGRESSION is mapping of continuous inputs to continuous outputs.

Salary
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REGRESSION is mapping of continuous inputs to continuous outputs.
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Intuition

N

Why “regression” is called “regression” in machine learning?

Ihttp://www.stat.ucla.edu/~nchristo/statistics100C/history_regression.pdf

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Intuition

y?

Why “regression” is called “regression” in machine learning?

As per dictionary

“Regression” means to return to a previous and less advanced or worse state

Ihttp://wuw.stat.ucla.edu/~ nchrlsto/statlstlcs1OOC/h1story regression.pdf

Dr. Rizwan Ahmed
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Intuition
(e]
Intuition

y?

Why “regression” is called “regression” in machine learning?

As per dictionary

“Regression” means to return to a previous and less advanced or worse state

Read Paper: Galton, Regression Towards Mediocrity in Hereditary Stature, 18861.

Ihttp://www.stat.ucla.edu/~ nchrlsto/statlstlcs1OOC/h1story regression.pdf
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Intuition
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- LT“__ temporary or long-term reversion of the ego to an
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71 M When Mid Fareats are taller shan mediocriy 3 {8 i) : 3 3
| 8 [ Ve e iy, & | | unacceptable impulses in a more adaptive way.
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o T pe : | o In machine learning the usage of word
| oA o . . . . ¢ m
o : A& CnTt “regression” is linked to article by “Galton”. In
P - A e I this article “Galton” showed that average height
) U, | of population regresses towards the mean.
&7 / | )
W - |
o G When Mid Parenss ave shomes then mediocriy, |
4 their Children tend to be taller than they. |
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Intuition

[ e °_'M,"E,IE:“W'T;RY STATURE. @ According to psychoanalyst Sigmund Freud,
HEIGHT T Dessos o th Gl uag o ] beviare regression is a defense mechanism leading to the
- [l temporary or long-term reversion of the ego to an
| & | earlier stage of development rather than handling
| 2 | ey # al]” unacceptable impulses in a more adaptive way.
4 ‘*j%\@") T | | o e In machine learning the usage of word
| w H ; | . “regression” is linked to article by “Galton”. In
P | < H L this article “Galton” showed that average height
I H o of population regresses towards the mean.
,\],T,:Jé% R — H - ! ° So., this r-ela.tionshir.) b/w height Sf garent and
5 | children is linear with m < 1 or ~ Z. From here
J this term is used in ML as tech. to find
1 T -¥

mathematical relationship b/w quantities.

Image from article: Galton, Regression Towards Mediocrity in Hereditary Stature, 18862.

2http://www.stat.ucla.edu/~nchristo/statistics100C/history_regression.pdf
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Toy Example

Toy Example

Dataset:
Experience (Yrs) Salary
1 30k
1.3 33k
1.8 36k
Salary 2 45k
4 3.3 65k
L ]
* + +
b i = + Problem Setting:
* i @ Set of real-valued instances X
§ - ™ &* @ Unknown target function f: X — Y
Input:
Ty P 3yr @ “n” training examples {< z;,y; >}. For example z is
Ex perience experience and y is salary of a person.

Output:
@ Function f: X — Y .

an Ahmed Khan, htt
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Toy Example

Toy Example

Dataset:
Experience (Yrs) Salary
1 30k
1.3 33k
1.8 36k
Salary 2 45k
4 3.3 65k
L ]
* + +
b i = + Problem Setting:
* i @ Set of real-valued instances X
§ - ™ &* @ Unknown target function f: X — Y
Input:
Ty P 3yr @ “n” training examples {< z;,y; >}. For example z is
Ex perience experience and y is salary of a person.

Output:
@ Function f: X — Y .

What would be the salary for a person with experience of 2.5 years?
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Toy Example

How

Satary @ Model relationship between inputs and
A outputs using linear function i.e.
Yy =mzx + c.

60k

@ For more complex problem this can be
Ll extended to non-linear function as well.

a5k

@ This example is of linear regression
with one variable or univariate linear
regression.

30k

How do we find best fit line? y = maz +¢
@ Calculus
© Random Search
© Brute force

>

3y
Experience

1yr 2yr
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Toy Example

How?

@ Model relationship between inputs and

Salary outputs using linear function i.e.

A Yy =mzx + c.
& @ For more complex problem this can be
L] extended to non-linear function as well.
i @ This example is of linear regression
E with one variable or univariate linear

regression.

% How do we find best fit line? y = mz +¢
m

@ Calculus
© Random Search
(5]

Brute force

>

lyr 2yr

3yr
Experience
Line with Least Squared Error Best line will be the one that minimizes the

error between line and the data points.




Intuition

Toy Example

Effect of Parameters

[e]e] lele]e]e]e)

Hypothesis = mz + ¢
Choices of parameters:

25 25 ] 1 + ] 25

2 2 1 2

15 15 . 15

1 1 1 1

05 05 . 05

0 05 1 15 2 25 a 05 1 15 2 25 a 05 1 15 2 5
ec=1.5 ec=0 ec=1

oem=20 om=0.5 oem=20.5
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Toy Example

Effect of Parameters

Hypothesis = mz + ¢
Choices of parameters:

25 ] 1 + ] 25
25
2 1 2
2
15 4 15
1 1 1
1 + 4
05 . 05
0.5
0 05 1 15 2 25 0 05 1 15 2 25
0| os 1 |:§ 2 25
ec=15
ec=0 ec=1
em=20
em=20.5 em=20.5
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Toy Example

Effect of Parameters

Hypothesis = mz + ¢
Choices of parameters:
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Toy Example

Effect of Parameters

Hypothesis = max + ¢

Choices of parameters:
2 54

0.5

ec=1.5

em=20
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Toy Example

Effect of Parameters

Hypothesis = mz + ¢
Choices of parameters:
2 54

0.5

ec=1.5
om = om =05 om =205
o f(r)=15 e f(r)=05z o f(z)=05z+1

n Ahmed Khan, htt
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(z) = c.
So its a constant line without any slope m, and that line gives same output for any input.
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Toy Example

Finding best constant function: Solution 1

Solution 1:

Trying to find: f(z) = c.

So its a constant line without any slope m, and that line gives same output for any input.
A

v
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Toy Example

Finding best constant function: Solution 1

Solution 1:

Trying to find: f(z) = c.

So its a constant line without any slope m, and that line gives same output for any input.
A

How to do it?

v
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(z) = c.
So its a constant line without any slope m, and that line gives same output for any input.
A
How to do it?
+ - Best line will be the one that minimizes the error
. between line and the data points.
+ - To find h € H that makes least errors on training
data, loss functions are used.

v

Dr. Rizwan Ahmed Khan, htt
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Toy Example
Finding best constant function: Solution 1

Solution 1:
Trying to find: f(z) =c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?

o Zero-One Lo
+ - 1 n
S - Lop(h) =~ > Onenues
’ 1 1f:llz( = o
> where 6,y 2y = { it h(x; Yi

Otherwise

)

/

Dr. Rizwan Ahmed Khan, htt .com/site/drkh
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(z) =c.
So its a constant line without any slope m, and that line gives same output for any input.

+ How to do it?

- Sum of squared Loss

v

r. Rizwan Ahmed Khan, htt e.com/site/dr
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(z) = c.
So its a constant line without any slope m, and that line gives same output for any input.

A ey
How to do it?

S Absolute L

v
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Toy Example
Finding best constant function: Solution 1

Solution 1:

Trying to find: f(z) = c.

So its a constant line without any slope m, and that line gives same output for any input.
How to do it?

Sum of squared Loss will be used

. ¢ B0 =Y (i ) @)

> where, y;, = actual target value, E=error, n = number
of samples and ¢ = constant.
Find ¢ that minimizes error.

Dr. Rizwan Ahmed Khan, htt
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Toy Example

Finding best constant function: Solution 1

Sum of squared error:

How to find ¢ that minimizes
error?

Dr. Rizwan Ahmed
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Toy Example

Finding best constant function: Solution 1

Sum of squared error:

How to find ¢ that minimizes
error?

Fermat’s Theorem

If f(x) has a local extremum at
x = a and f is differentiable at a,
then f/(a) = 0.

Dr. Rizwan Ahmed
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Toy Example

Finding best constant function: Solution 1

Sum of squared error:

How to find ¢ that minimizes
error?

s Theorem

If f(x) has a local extremum at
x = a and f is differentiable at a,
then f/(a) = 0.

Take derivative : w (How much

Error wiggles as a function /
changes in ¢).
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Toy Example

Finding best constant function: Solution 1

Sum of squared error:

" AE©) )
EO=Yw-o" ) a —ax® 9

i=1 =
How to find ¢ that minimizes = Zl 2(y; — ¢)(—1)(set to zero to find min.)
error? N
Fermat’s Theorem ~ Z 2(y; — ¢) = 0(Solve for ¢)
If f(x) has a local extremum at nlzl n n S ()
z = a and f is differentiable at a (y;) = _ ) _ 22i=1\Yi)

) Yi) ¢ = n.c (yi) = ¢
then f’(a) = 0. ; ; ; n
6

Take derivative : w (How much (6)

Error wiggles as a function /

changes in (:). Rem*: Z:L:l ¢ = n times summation of constant = n.c

Dr. Rizwan Ahmed Khan, https://sites com/site/drkhanrizwan17/
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Toy Example

n 1

Finding best constant function: Solutio

Sum of squared error:

" d(E() _ d ¢ 2
BO=Y-" ) o a2
i=1 =
How to find ¢ that minimizes = Zl 2(y; — ¢)(—1)(set to zero to find min.)
error? N
Fermat’s Theorem ~ Z 2(y; — ¢) = 0(Solve for ¢)
If f(x) has a local extremum at nlzl n n S ()
z = a and f is differentiable at a (i) = — . _ Zui=1Wi
) Yi) = c=nc=>» (y;) = c=
fen 11 =0, 2w=2 2 7
6
Take derivative : w (How much (6)
Error wiggles as a function /
Rem™: ¢ = n times summation of constant = n.c

changes in ¢).

So, its MEAN value.

Dr. Rizwan Ahmed Khan, https:

e.com/site/drkhanrizwanl7/
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Toy Example

Best line that passes through origin: Solution 2

Solution 2:

Trying to find: f(z) = ma.
So its a Linear Regression / best
line with Zero Intercept or a line
that passes through origin:

Dr. Rizwan Ahmed
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Toy Example

Best line that passes through origin: Solution 2

Solution 2:
Do it yourself!

Trying to find: f(z) = ma.
So its a Linear Regression / best
line with Zero Intercept or a line
that passes through origin:

Dr. Rizwan Ahmed
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Toy Example

Best line that passes through origin: Solution 2

Solution 2:

Trying to find: f(z) = ma.
So its a Linear Regression / best
line with Zero Intercept or a line
that passes through origin:

Do it yourself!

i=1
- En: 2(y; — ma;)(z;) = 0(Solve for m)

i=1
Z(%%) = meiz = Z(yﬂ?z) = mZIiZ
i=1 i=1 i=1 i=1

Dr. Rizwan Ahmed Khan, htt
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Toy Example

isualization

0000000e

30000

80000

70000

60000 4
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50000 -

40000 A
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Data points
e
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Toy Example

isualization

Manual calc. constant line / mean line

90000 { — y=62031 8
™
80000 - °
®
> 70000 A @
5
& ©
60000 - ®
e o
50000 - 2
e o
2 3 4 5 6 7

Experience
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Toy Example

isualization

Manual calc. line from arigin

100000 A
— y=14130.x

80000 4

60000 4

Sala

40000 -

20000




st Function and G ient Descent

Section Contents

@ Cost Function and Gradient Descent
@ Cost Function Intuition
o Cost function in 2D
@ Cost function in 3D
o Gradient Descent
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Cost Function and C ient Descent
o

Function Intuition

Cost function

Define cost function to find best line for the dataset.

Dataset: Salary
~
Experience (Yrs) | Salary

1 30k

1.3 33k

1.8 36k

2 45k

3.3 65k
Hypothesis = max + ¢ >
How to choose m and ¢, which are Experience
parameters of the model. Line with Least Squared Error

Dr. Rizwan Ahmed Khan, htt



Cost Function and C ient Descent

Function Intuition

Cost function

Salary

Experience

Line with Least Squared Error

Choose m and ¢ such that value of
hypothesis (h = maz + ¢) becomes as close as
possible to training data < x;,y; >.

Dr. Rizwan Ahmed Khan, htt 5 s r nrizwanl?7/
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(o] J

Function Intuition

function

let’s formalize this:

Salary N
1 argmin Z(y} —y;)? (8)
e =1

Where g; = predicted value, y; is actual value
and n is total number of training samples.

> J(m,c) = — argmmz —y)?  (9)
Experience

Line with Least Squared Error

where ¢; = mx; + ¢ and J(m,c) is cost / loss
Choose m and ¢ such that value of function.

hypothesis (h = maz + ¢) becomes as close as

possible to training data < x;,y; >

Dr. Rizwan Ahmed Khan, htt 5 sit rk rizwanl?7/
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Function Intuition

function

Salary

Experience

Line with Least Squared Error

Choose m and ¢ such that value of
hypothesis (h = maz + ¢) becomes as close as
possible to training data < x;,y; >

let’s formalize this:

argmin Z(y} —y;)? (8)
e =1

Where g; = predicted value, y; is actual value
and n is total number of training samples.

J(m,c) = — argmmz —u)?  (9)

where ¢; = mx; + ¢ and J(m,c) is cost / loss
function.
e Aim to find values of m,c that
minimizes cost function .J(m, ¢) (squared
error function).

Dr. Rizwan Ahmed Khan, htt .com/site/drkhanrizwanl?7/
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@000

function in 2D

sualize Cost function in

Hypothesis:
h, =mz+c
o To visualize cost function J in 2D (one

o Parameters:
m and ¢ parameter and predicted value), set
. c=0, so h, = mx. Thus goal becomes
e Cost function:
Lo argmin J(m)
~ m
J(m,c) = o Z(yz — i)
n 4 .
i=1 o By setting ¢ = 0 means we are only
o Goal: considering line from origin with some
slope m

argmin J(m, c)

m,c

Dr. Rizwan Ahmed Khan, htt
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function in 2D

sualize Cost function in

- Hypothesis function: h, = max
- Hypothesis is function of x, while cost function is a function of parameter m.

3 X
2 X
y
1 X
0+ + + {
0 1 2 3
X

Dr. Rizwan Ahmed Khan, htt



Function and G ient Descent
0@00

function in 2D

sualize Cost function in

- Hypothesis function: h, = max
- Hypothesis is function of x, while cost function is a function of parameter m.
3

Dr. Rizwan Ahmed Khan, htt



Function and G ient Descent
0@00

function in 2D

sualize Cost function in

- Hypothesis function: h, = max
- Hypothesis is function of x, while cost function is a function of parameter m.

3
2
y
1
0 < t 1 i
3
X
form=1
e Find j(m) when m =1
J = 5 Ai_z2
(m) 2n;(y Vi)

where: ¥; = mx;

Dr. Rizwan Ahmed Khan, htt
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[e]e] le]

Cost function in 2D

isualize Cost function in 2D

3
2
y
1
0+ t t i
0 2

where: y; = mx;

Dr. Rizwan
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[e]e] le]

Cost function in 2D

isualize Cost function in 2D

e when m=1;

3
2
y
1
0+ t t i
0 2

where: y; = mx;

Dr. Rizwan zwanl7/
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function in 2D

sualize Cost function in

e when m=1;

3
1
J1) = —(0%2+024+0%) =0
2 (1) = 5.-(0* 0 +0°)
y
1
0 4 } } i
0 2
X

where: y; = mx;

Dr. Rizwan Ahmed Khan, htt e.com/site/dr



ient Descent

Cost Function and C

[e]e] le]

function in 2D

sualize Cost function in

e when m=1;

X
1
J1) = —(0%2+024+0%) =0
(1) = 5-(0°+0° +0)

o when m =10.5;

3
X
Find j(m) when m =1
Tm) = =3 (0w
m)= m — Yi = Yi

where: y; = mxz;

e.com/site/dr

Rizwan Ahmed Khan, htt
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[e]e] le]

function in 2D

alize Cost function in 2D

e when m=1;

X
5 J(l):%(02+02+02)20
5 o when m =10.5;
t + i J(0.5) =
X
Find j(m) when m =1 1 s o )

) J(0.5) = (0.5 + 1% 4 1.5%) = 0.583

Tom) = 0 3205~

where: y; = mxz;

Dr. Rizwan Ahmed Khan, https le.com/site/drkhanrizwanl7/
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[e]e] le]

function in 2D

alize Cost function in 2D

e when m=1;

2 X J1) = =

271(02+02+02) =0
y

1 e e when m = 0.5 ;
0= t ¢ - J(0.5) =
0 1 3

X
Find j(m) when m =1

1
. J(0.5) = %(0.52 +12 +1.5%) = 0.583

e when m =0
where: ¥; = mx;

Dr. Rizwan Ahmed Khan, https://site:

gle.com /site/drkhanrizwan17/
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[e]e]e] )

Cost function in 2D

/isualize Cost function in 2D

J(m), its a function of parameter m.

Sum of squared error cost function
T T T T T T

-10°

25 T T T

J{m)

0 40 =20

(3]
A A0

Note 2
3Matlab code available

izwanl?7/




Cost Function and Gradient Descent
( 1o}

function in 3D

ualize Cost function in 3D

e Hypothesis: o Goal:
h, =mx+c

o Parameters: argmin J(m, c)
m and ¢ m.e

o It requires 3D plot to visualize cost

e Cost function:
function J with two parameters (m and

1 & ¢) and predicted value. By keeping both
- 2
J(m,c) = m Z(yz —Yi) the parameters m and c, we are
i=1 considering all set of solutions / lines,
where: whether or not they pass from origin
Ui =mx +c (unlike previously).

Dr. Rizwan Ahmed Khan, htt 5 sit rk rizwanl7/
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o
t function in 3D

isualize Cost function in 3D

200 —,

e - This is the visualization and
gwo_ intuition of cost function, now
= we need to have an algorithm

50 that automatically finds

hypothesis parameters m and

40

¢ that minimizes J(m, c).

0 e e
10 10

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local
minima / optimum, except for one global minima / optimum.
Note 4

4Matlab code available

Dr. Rizwan Ahmed Khan, h

zwanl7/
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ient Descent

lient Descent (GD) for Minimizing “J”

e Gradient descent is an optimization algorithm (not specific to linear regression) that
finds the optimal weights (wy , i.e. m and ¢) that reduces prediction error®
o It can optimize weights for any general cost function:

argming, ., J(wy, wa, ... wy)

5Matlab code available

Dr. Rizwan Ahmed Khan, htt
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0O@000000

Gradient Descent

Gradient Descent for Minimizing “J”

Algorithm 1 Gradient Descent Algorithm
Input:

J(wi,wj)

Output:
argmin J(w;, w;)
Wi, Wj

1: Initialize weights w, (w;, w;), with random values and calculate Error SSE.

2: Calculate gradient i.e. change in SSE when the weights w, are changed by a very small
value from their original randomly initialized value. This helps move the values of w
in the direction in which SSE is minimized.

3: Adjust weights w, with the gradients to reach the optimal values where SSE is minimized.

4: Use new weights w; for prediction and to calculate the new SSE.

5: Repeat steps 2 and 3 till further adjustments to ws doesn’t significantly reduce the Error
/ convergence.

Dr. Rizwan Ahmed Khan, https://sit e.com/site/drkhanrizwanl7/



Cost Function and Gradient Descent
0O0@00000

ient Descent

lient Descent in action

repeat until convergence {

W; ‘= w; —«

%J(wivwa‘)} (10)

e := is “assignment” operator

_ @ « (positive number) is learning

e T rate

; e run for w; & w; and update
weights simultaneously

(simultaneous update)
0 term®

Simultaneous update”

6This slide provides just an intuition of GD algorithm. I will explain this 0 term in couple of slides
"Explained on next slide

Dr. Rizwan Ahmed Khan, htt




Function and Gradient Descent
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ient Descent

lient Descent in action

repeat until convergence {

W; ‘= w; —«

%J(wivwa‘)} (10)

e := is “assignment” operator

_ o « (positive number) is learning
g = rate

e run for w; & w; and update
weights simultaneously

(simultaneous update)
0 term®

Simultaneous update”

6This slide provides just an intuition of GD algorithm. I will explain this 0 term in couple of slides
"Explained on next slide
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ient Descent

lient Descent in action

repeat until convergence {

W; ‘= w; —«

%J(wivwa‘)} (10)

e := is “assignment” operator

_ o « (positive number) is learning
g = rate

e run for w; & w; and update
weights simultaneously

(simultaneous update)
0 term®

Simultaneous update”

6This slide provides just an intuition of GD algorithm. I will explain this 0 term in couple of slides
"Explained on next slide
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ient Descent

lient Descent in action

repeat until convergence {

W; ‘= w; —«

%J(wivwa‘)} (10)

e := is “assignment” operator

_ o « (positive number) is learning
g = rate

e run for w; & w; and update
weights simultaneously

(simultaneous update)
0 term®

Simultaneous update”

6This slide provides just an intuition of GD algorithm. I will explain this 0 term in couple of slides
"Explained on next slide
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ient Descent

lient Descent in action

repeat until convergence {

W; ‘= w; —«

%J(wivwa‘)} (10)

e := is “assignment” operator

_ o « (positive number) is learning
g = rate

e run for w; & w; and update
weights simultaneously

(simultaneous update)
0 term®

Simultaneous update”

6This slide provides just an intuition of GD algorithm. I will explain this 0 term in couple of slides
"Explained on next slide
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lient Descent in action

repeat until convergence {

W; ‘= w; —«

%J(wivwa‘)} (10)

e := is “assignment” operator

_ o « (positive number) is learning
rate

— 4 e run for w; & w; and update
weights simultaneously

(simultaneous update)
0 term®

Simultaneous update”

6This slide provides just an intuition of GD algorithm. I will explain this 0 term in couple of slides
"Explained on next slide
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O00@0000

Gradient Descent

Simultaneous update

temp0 1= w; — a=——J(w;, w;)

8wi

0
templ 1= w; — aa—ij(wi,wj)

w; = temp0

wj = templ

- w; & w; to be updated together at the end of iteration, otherwise one weight will be

updated earlier and within same iteration updated weight will be used for the calculation
of other weight.
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Cost Function and Gradient Descent
O000e000

Gradient Descent
Gradient Descent with one parameter (intuition of 9 term)

repeat until convergence {
m'*m—aij(m)} (11)
o om

where « is learning rate.

Hm)

. Rizwan Ahmed Khan, htt




Cost Function and C ient Descent
[e]e]ee] }

ient Descent

Gladlent Descent with one parameter (intuition of 9 term)

repeat until convergence { e Suppose we initialize m with an

9 random point.
m::m—aa—J(m)} (11)

m

where « is learning rate.

Hm)
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Cost Function and C ient Descent
[e]e]ee] }

ient Descent

Gladlent Descent with one parameter (intuition of 9 term)

repeat until convergence { e Suppose we initialize m with an
random point.
0
mi=m — Q%J(m) } (11) @ We need to find derivative
G%J(m), which is a tangent at
whe_re « is learning rate. a given point and provides

value of its slope.

Hm)
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ient Descent

Gladlent Descent with one parameter (intuition of 9 term)

repeat until convergence { e Suppose we initialize m with an
random point.
0
mi=m — Q%J(m) } (11) @ We need to find derivative
G%J(m), which is a tangent at
whe_re « is learning rate. a given point and provides

value of its slope.

o As slope is 4ve,

m =m — a(+ve numb)

Hm)
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[e]e]ee] }

ient Descent

Gladlent Descent with one parameter (intuition of 9 term)

repeat until convergence {
o @ Suppose we initialize m with an
m:=m — aa—J(m) } (11) random point.
m
. . ° We need to find derivative
where « is learning rate. 2 9_ (), which is a tangent at
T T 1 a given point and provides

value of its slope.

o As slope is +ve,

i)

m =m — a(+ve numb)

e Finally, updated value of m will
be reduced and will move

Value of ‘m” will be . ..

reduced, to reach towards function minima.

function minima
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Gradient Descent
Gradient Descent with one parameter (intuition of 9 term)

repeat until convergence {

0
m::m—a%(](m)} (12)

where « is learning rate.

Hm)
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00000800

Gradient Descent
Gradient Descent with one parameter (intuition of 9 term)

repeat until convergence { ° Supdpose we initialize m with an
random point.

0
m::m—a%(](m)} (12)

where « is learning rate.

Hm)
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ient Descent

Gladlent Descent with one parameter (intuition of 9 term)

@ Suppose we initialize m with an

repeat until convergence { q -
random point.

mo—m — aij(m) } (12) ° V\afe need to ﬁnd .derivative
om 5.-J(m), which is a tangent at
a given point and provides

where « is learning rate. .
value of its slope.

Hm)
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Gladlent Descent with one parameter (intuition of 9 term)

@ Suppose we initialize m with an

repeat until convergence { q -
random point.

mo—m — aij(m) } (12) ° V\afe need to ﬁnd .derivative
om 5.-J(m), which is a tangent at
a given point and provides

where « is learning rate. .
value of its slope.

o As slope is —ve,

m =m — a(—ve numb)

Hm)
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Cost Function and C ient Descent
00000

ient Descent

Gladlent Descent with one parameter (intuition of 9 term)

repeat until convergence { e Suppose we initialize m with an

9 random point.

me=me Q%J(m) } (12) e We need to find derivative
%J(m)7 which is a tangent at
a given point and provides
value of its slope.

where « is learning rate.

o As slope is —ve,

Hm)

m =m — a(—ve numb)

e Finally, updated value of m,
m + a(numb) will be added

10 a0 5 0 ) [

i by = = . .
Value of v valll ba and will move towards function
increased, to reach ..

function minima minima.

Dr. Rizwan Ahmed Khan,
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Learning Rate «

w; = w; — am—J (w;)

8101‘

if a is too small, GD can be slow

ient Descent




Cost Function and C ient Descent

Gradient Descent

Learning Rate «

Wy 1= W; — a—awi J(w;) L
if a is too small, GD can be slow
if av is too large, GD can overshoot X
the minimum. It may fail to 3
converge.
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Cost Function and Gradient Descent

O000000e

Gradient Descent

Learning Rate «

loss

low learning rate

high learning rate

good learning rate

Note:

‘With low learning rates the improvements
will be linear (blue line). With high learning
rates they will start to look more
exponential. Higher learning rates will decay
the loss faster, but they get stuck at worse
values of loss (green line). This is because
there is too much “energy” in the
optimization and the parameters are
bouncing around chaotically, unable to settle

in a nice spot in the optimization landscape.

8Imauge from Stanford’s course on CNN http://cs231n.stanford.edu/
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Section Contents

o Linear Regression with GD

@ Linear Regression with Multiple
Variables

@ Issue with Gradient Descent

@ Variants of Gradient Descent

e Bias

@ LR with GD
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ion with GD
ssion with Gradient Descent

Putting together GD and cost function to perform regression.
Linear Regression Model:

@ hypothesis: h = mz + ¢
@ Cost function: .
i=1

where ¢; = max; + ¢ and J(m,¢) is cost / loss function.
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on with GD
on with Gradient Descent

Putting together GD and cost function to perform regression.
Linear Regression Model:

@ hypothesis: h = mz + ¢

e Cost function: .

i=1
where ¢; = max; + ¢ and J(m,¢) is cost / loss function.

Gradient Descent Algorithm:

repeat until convergence {

w; = w; — a—J(wy,ws) }

8’(1}1'
(for i=1 and i=2)

oogle.com /site/drkhanrizwanl7/



LR with GD
@00

on with GD
on with Gradient Descent

Putting together GD and cost function to perform regression.
Linear Regression Model:

@ hypothesis: h = mz + ¢

@ Cost function: .

m,e
4 i=1

where ¢; = max; + ¢ and J(m,¢) is cost / loss function.

Gradient Descent Algorithm:
repeat until convergence {

w; = w; — a—J(wy,ws) }

8’(1}1'

(for i=1 and i=2)

Linear Regression with GD

Apply gradient descent algorithm to minimize cost function J. argmin,, ..J(m,c)

rizwanl?7/
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ion with GD
ssion with Gradient Descent

Solving for: aiwij(wl, Wa) and (i=1 and i=2):

0 0 1 &, 2
Twi«](wivwg‘) =35 o ;(% —Yi)

_ ii Z((m.azi +c)—y)?

=1

(13)

There are two cases (in our scenario ¢ =1 :w; or c and i = 2 : we or m):
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on with GD
on with Gradient Descent

Solving for: aiwij(wl, Wa) and (i=1 and i=2):
9 0 1 ¢
—J(wi,wj) = 7—— Ji — vi)?
5 1. (13)
1 2
= 5w ;((m.azi +c)—yi)
There are two cases (in our scenario ¢ =1 :w; or c and i = 2 : we or m):
Q wy =c, £J(m,c):
0 1o, .
%J(m’ )= n Z(yi —Yi) (14)
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Linear

Regres:

Solving for: aiwij(wl, Wa) and (i=1 and i=2):

0 0 1 &, 2

= Bu, 20 2=
5 - (13)
1 2
= 5w ;((m.azi +c)—y;)
There are two cases (in our scenario ¢ =1 :w; or c and i = 2 : we or m):
Q wy =c, £J(m,c):
0 1<
—J = — Ai — Yi 14
507 (M) n;(y vi) (14)

Q wy =m, 5—J(m,c):

Dr. Rizwan / o com/site/drkhanrizwan17/
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LR with GD
ooe

Plug back equations 14 and 15

repeat until convergence {

repeat until convergence {

Dr.

Rizwan Ahmed Kk

into gradient descent algorithm

w; = w; — Q%J(wi,wj) }
— 1 S 7.
=c-a- Z;(yZ — i)
1 —, . (16)
mi=m—a- Z(y, — i) - X
i=1
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Dataset:
Experience (Yrs) Completed Projects MOOC Last Salary Salary

1 2 3 4
T T T T y
1 2 2 25k 32k
1.3 2 3 30k 33k
1.8 3 3 40k 43k
2 2 2 41k 49k
3.3 4 2 55k 68k

where

r? = feature at d*" dimension

x; = i" training example

2 = feature value at d'* dimension for i'" training example

Dr. Rizwan Ahmed
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Dataset:
Experience (Yrs) Completed Projects MOOC Last Salary Salary

1 2 3 4
T T T T y
1 2 2 25k 32k
1.3 2 3 30k 33k
1.8 3 3 40k 43k
2 2 2 41k 49k
3.3 4 2 55k 68k

where

r? = feature at d*" dimension

x; = i" training example

2 = feature value at d'* dimension for i'" training example

Previously: hypothesis: h = ¢+ mx or h = 0y + 02!
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Dataset:
Experience (Yrs) Completed Projects MOOC Last Salary Salary

1 2 3 4
T T T T y
1 2 2 25k 32k
1.3 2 3 30k 33k
1.8 3 3 40k 43k
2 2 2 41k 49k
3.3 4 2 55k 68k

where

r? = feature at d*" dimension

x; = i" training example

2 = feature value at d'* dimension for i'" training example
Previously: hypothesis: h = ¢+ mx or h = 0y + 02!

And Now ?
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on with Multiple Variables

on (multivariate / multi-variables) with Gradient Descent

Hypothesis for multi-variables:

h =0+ 6012 + 2% + G323 + - + Og? (17)

- Parameters of the model: 6g, 601, --,04
- Cost function:

J(0o,01,--- ,04) = 5~ argmin Z(!jz — )

Gradient Descent:

rizwanl?7/
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Linear bn with Multiple Variables

Reg

sion (multivariate / multi-variables) with Gradient Descent

Hypothesis for multi-variables:
h =0+ 6012 + 2% + G323 + - + Og? (17)

- Parameters of the model: 6g, 601, --,04
- Cost function:

J(0p,01, -+ ,04) = — argmin Z(!L — yi)2

Gradient Descent:
repeat until convergence {

0
9]' = 9]‘ —Q%J(Qo,ﬁl,--~ 7(9d)

} (simultaneously update for every j = 0,1,--- ,d)

Dr. Rizwan Ahmed Khan, http m /site/drkhanrizwanl7/
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on with Multiple Variables

(multivariate / multi-variables) with Gradient Descent

Previously when d = 1

repeat until convergence {

1o, .
0o =0 — a- ;(yz - Yi)
S ST
1-—V1 an pat Yi Yi Z;

»m /site/drkhanrizwan17/
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on with Multiple Variables

(multivariate / multi-variables) with Gradient Descent

Generally (GD algorithm) for any given d dimensional vector (d > 1)
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ion with Multiple Variables

ssion (multivariate / multi-variables) with Gradient Descent

Generally (GD algorithm) for any given d dimensional vector (d > 1)

Dr.

Rizwan Ahmed Kk

. 1 - 7
repeat until convergence { Oy =0y — aﬁ Zl(yz — i)
i=

1 n
01 =0, —a— Ui — i) - T
1= 0, n;( ) 18)

1N, 5
Oy = Qg—aﬁ Z(yl—yl)w‘i




LR with GD

Issue with Gradient Descent

Gradient Descent can stuck in

Gradient Descent algorithm can get stuck in local minima?.

. repeat until convergence {
1(6.0,)

e - w; = w; —aa—wiJ(wi,wj)}

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.

9slide from Andrew Ng
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dient Descent

Gradient Descent can stuck in

Gradient Descent algorithm can get stuck in local minima®.

. repeat until convergence {
1(6,,0,)

ey " w; = w; — a=—J(w;, w;) }

awi

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.

9slide from Andrew Ng
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dient Descent

Gradient Descent can stuck in

Gradient Descent algorithm can get stuck in local minima®.

. repeat until convergence {
1(6,,0,) +

ey " w; = w; — a=—J(w;, w;) }

awi

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.
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dient Descent

Gradient Descent can stuck in

Gradient Descent algorithm can get stuck in local minima®.

. " repeat until convergence {
*
1(8p,8,) P a
) + — .
W ~ - w; = w; — a—awiJ(wi,wj) }

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.

9slide from Andrew Ng
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dient Descent

Gradient Descent can stuck in

Gradient Descent algorithm can get stuck in local minima®.

. " repeat until convergence {
*
185,8,) » P 3
i 3 + y b
- N
— o memws g e))
t . 7

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.

9slide from Andrew Ng
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. repeat until convergence {
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w; = w; — ax—J(w;, w;) }

awi

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.
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Gradient Descent algorithm can get stuck in local minima®.

. repeat until convergence {
1(6,,0,)

w; = w; — ax—J(w;, w;) }

awi

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local
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Gradient Descent algorithm can get stuck in local minima?.

1(0,,0,)

'@ - repeat until convergence {
b %
# 5
*

w; = w; — a=—J(w;, w;) }

awi

s “an 0,
0, IR
Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local

minima / optimum, except for one global minima / optimum.

9slide from Andrew Ng
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Issue with Gradient De: 1t

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.
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Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

Skewed /elliptical shape (features are not scaled) of

contours

»m /site/drkhanrizwan17/



LR with GD
(] J

Issue with Gradient De: 1t

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

a9,

Skewed /elliptical shape (features are not scaled) of

contours

»m /site/drkhanrizwan17/



LR with GD
(] J

Issue with Gradient De: 1t

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

a9,

Skewed /elliptical shape (features are not scaled) of

contours

»m /site/drkhanrizwan17/



LR with GD
(] J

Issue with Gradient De: 1t

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

a9,

Skewed /elliptical shape (features are not scaled) of

contours

»m /site/drkhanrizwan17/



LR with GD
(] J

Issue with Gradient De: 1t

Gradient Descent(GD) : Feature Scaling
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Issue with Gradient De: 1t

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

9,

Skewed /elliptical shape (features are not scaled) of

contours
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ue with G ient nt

Gradient Der,cent( }D) : Feature Scaling

a,

Skewed /elliptical shape (features are not scaled) of

contours

- Better to scale features. You may use Mean Normalization or Standardization scaling method.

Dr. Rizwan Ahmed Kk
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Variants of Gradient Descent

Variants of GD

GD algorithm that we have just seen is called Batch Gradient Descent. Most common
used GD algorithms are breifly explained below:

@ Batch Gradient Descent is when we sum up over all examples on each iteration when
performing the updates to the parameters.

Advantages

@ Fixed learning rate during training.

@ It has straight trajectory towards the minimum and it is guaranteed to converge to global
optimum (for convex functions).

@ It has unbiased estimate of gradients.

@ It can benefit from the vectorization

Disadvantages

@ Slow (especially for large datasets), as it goes over all examples.

® Each step of learning happens after going over all examples (think of outliers in dataset).

Dr. Rizwan Ahmed Khan, https com/site/drkhanrizwanl7/



LR with GD

0e00
Variants of Gradient Descent

Variants of GD

@ Stochastic Gradient Descent (SGD): Instead of going through all examples, Stochastic
Gradient Descent (SGD) performs parameters update on each example < x;,y; >.
Therefore, learning happens on every example.

Advantages

@ It is easier to fit into memory (single training sample being processed at a time).
@ It is computationally fast (For larger datasets it can converge faster).

® Due to frequent updates, the steps taken towards the minima of the loss / cost function have
oscillations which can help getting out of local minimums of the loss function.

Disadvantages

@ Due to frequent updates, the steps taken towards the minima are very noisy. This can often
lead the gradient descent into sub-optimum directions.

® It loses the advantage of vectorized operations as it deals with only a single example at a
time.

Dr. Rizwan Ahmed Khan, https com/site/drkhanrizwanl7/ Y: o 46 / 65
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iants of Gradient Descent

Variants of Gradient Descent

@ Mini-Batch Gradient Descent: This is a mixture of both stochastic and batch gradient
descent. The training set is divided into multiple groups called batches. Each batch
has a number of training samples in it. For example, assume training set has 100
training examples which is divided into 5 batches with each batch containing 20
training examples.

Advantages

@ Easily fits in the memory.
@ It is computationally efficient.

® Benefit from vectorization.

Disadvantages

@ Due to the noise, the learning steps have more oscillations and requires adding learning-decay
to decrease the learning rate as we become closer to the minimum.

Dr. Rizwan Ahmed Khan, htt com/site/drkhanrizwanl7/
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ient Descent

ants of Gradient Descent: Visualization

— Batch gradient descent

— Mini-batch gradient Descent

— Stochastic gradient descent @ Batch Gradient Descent, slow
but unbiased estimate of
gradients.

@ Stochastic Gradient Descent
(SGD), fast but frequent
updates causes noisy steps.

@ Mini-Batch Gradient Descent,
computationally efficient but
due to the noise the learning
steps have more oscillations.

Dr. Rizwan Ahmed Khan, htt 2 m /site/drkhanrizwanl7/
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Bias
Inductive Bias of Linear Regression

The relationship between the attributes x and the output y is linear. The goal is to
minimize the sum of squared errors.

Dr. Rizwan Ahmed Kk
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© Python
@ Linear Regression: Python
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Linear Regression: Python

Salary prediction: Python

#Qauthor: rizwan.khan
import matplotlib.pyplot as plt
import pandas as pd

# Dataset import

dataset=pd.read_csv(’data.csv’)

X=dataset.iloc[:,:-1].values #data.iloc[:,-1] # last column of data frame
y=dataset.iloc[:,1].values

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 1/4)

# import linear regression and fitting it to test data
from sklearn.linear_model import LinearRegression
Regressor=LinearRegression ()

Regressor.fit (X_train,y_train)

# predicting trained model on test set
y_pred = Regressor.predict(X_test)

Dr. Rizwan Ahmed Khan, htt
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pledlctlon Python

# Visualizaing Train set

plt.
plt.
plt.
plt.
plt.
plt.

scatter (X_train,y_train, color = ’red’)

plot (X_train, Regressor.predict(X_train), color=’blue’)
title(’Training Set: Exp. Vs Salary’)

xlabel (’Experience’)

ylabel (’Salary’)

show

# Visualizaing Test set

plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure ()

scatter (X_test ,y_test, color = ’red’)

plot (X_train, Regressor.predict(X_train), color=’blue’)
title(’Test Set: Exp. Vs Salary’)

xlabel (’Experience’)

ylabel (’Salary’)

show

Dr. Rizwan Ahmed Khan, htt .com/site/drkh
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Linear Reg : Python
/isualization: Test Set

Training Set: Exp. Vs Salary
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Linear Re. : Python

/isualization: Train Set

Test Set: Exp. Vs Salary
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Section Contents

© Polynomial Regression
@ Polynomial Regression
@ Normal Equation method
@ Polynomial Regression Example
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Polynomial regression fits a nonlinear relationship between independent variable z and the
dependent variable y.

k=0 |

FaN

N

—

Dr.

Rizwan Ahmed Khan, htt

e.com/site/dr

@ k =0 Constant (Constant line (average of

nrizwanl?/

output values), not a good fit. Under-fitting)
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Polynomial regression fits a nonlinear relationship between independent variable z and the
dependent variable y.

@ k =0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)

Q k=1 Straight Line (Linear regression, not a
good fit. Under-fitting)

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl?7/
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Polynomial regression fits a nonlinear relationship between independent variable z and the
dependent variable y.

@ k =0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)

Q k=1 Straight Line (Linear regression, not a
good fit. Under-fitting)

Under-fitting

Linear regression is under-fitting the data (high-bias).

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl?7/
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Polynomial Regression

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.

zwanl7/



Polynomial Reg

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 0y + 61«

can be transformed to h = 0y + 612 + 622 (x — squared)

Dr. Rizwan Ahmed Khan, htt
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Polynomial Regression

Polynomial Regr

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 6y + 61«

can be transformed to h = 0y + 012 + 622%(z — squared)

o k = 2 Parabola

@ k = 3 Cubic (Polynomial function, fits nicely)
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Polynomial Regression

Polynomial Regr

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 6y + 61«

can be transformed to h = 0y + 012 + 622%(z — squared)

o k = 2 Parabola
@ k = 3 Cubic (Polynomial function, fits nicely)

Q@ k=9 o degree polynomial. Over-fitting
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Polynomial Regression

Polynomial Regr

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = 6y + 61«

can be transformed to h = 0y + 012 + 622%(z — squared)

o k = 2 Parabola
@ k = 3 Cubic (Polynomial function, fits nicely)

Q@ k=9 o degree polynomial. Over-fitting

General form for Polynomial Regression:

h(0) = 0o + 012 + Oo2® + - -+ + Opa® (19)

Dr. Rizwan Ahmed Khan, htt 5 sit rk rizwanl7/
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Normal Equation method

olving for Polynomial Regre

Find coefficients w, for cubic regression, number of samples = n
Equation: wg 4+ w1z 4+ wex? + wyz® =~ y

Dr. Rizwan Ahmed Khan, htt 5 s r nrizwanl?7/
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Normal Equation method

olving for Polynomial Regre

Find coefficients w, for cubic regression, number of samples = n
Equation: wg 4+ w1z 4+ wex? + wyz® =~ y
Write this in matrix format:

Dr. Rizwan Ahmed Khan, htt 5 s r nrizwanl?7/
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Normal Equation method

Solving for Polynomial Regre

Find coefficients w, for cubic regression, number of samples = n
Equation: wg 4+ w1z 4+ wex? + wyz® =~ y
Write this in matrix format:

1 x1 (21 (x1) n
1oz (z2)® (2)®| |Wo Y2
1wy (23)® (@3)*| |W1| & |ys
w2
w3
1z, (xn)Q (xn)B Yn

Dr. Rizwan Ahmed Khan, htt
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Normal Equation method

Solving for Polynomial Regression

Solve for W:

1 2 (z1)? (:1)? Y1
1 =z (22 z2)% | |Wo Y2
1 w3 (23)® (@3)®| |Wi| ~ |us
w2
2 w3
1z, (mn) (mn)?) Yn
XW=Y

XXTW =~ XTy
W~ (XTX)"1XTY (Closed-form solution)

Dr. Rizwan Ahmed Khan, htt .com/site/drkhanrizwanl?7/
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Polynomial Regression Example

Predicting Salary

@ Polynomial Degree 1

BO0O0O

70000 -

0000

Salary

50000 -

40000

30000 e®

T
1 2 3 4 5 1) 7
Years of Experience




Polynomial Reg
@000

ion Example

Polynomial Regression Example

Predicting Salary

@ Polynomial Degree 1

© Polynomial Degree 2
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Polynomial Regression Example

Predicting Salary

» @ Polynomial Degree 1
© Polynomial Degree 2
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i © Polynomial Degree 3
.
70000
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@
50000 A
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example

Polynomial Regression Example

Predicting Salary

50000 @ Polynomial Degree 1
:b © Polynomial Degree 2
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example

Polynomial Regression Example

Predicting Salary @ Polynomial Degree 1
Q00040 4
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80000 @ Polynomial Degree 4
@ Polynomial Degree 5
70000 A @ Polynomial Degree 6
@ Polynomial Degree 7
£ 60000 i
z @ Polynomial Degree 8
@ Polynomial Degree 9
50000 i
@ Polynomial Degree 10
40000 4
30000 4

Dr. Rizwan Ahmed Khan, htt



Polynomial Regr
@000

Polynomial Regression Example

Polynomial Regression Example

Predicting Salary @ Polynomial Degree 1
Q00040 4
© Polynomial Degree 2
© Polynomial Degree 3
90000 @ Polynomial Degree 4
@ Polynomial Degree 5
70000 @ Polynomial Degree 6
@ Polynomial Degree 7
£ 60000 ;
z @ Polynomial Degree 8
@ Polynomial Degree 9
50000 .
@ Polynomial Degree 10
@ Polynomial Degree 11
40000 4
30000 4

Dr. Rizwan Ahmed Khan, htt



Polynomial Regr
@000

Polynomial Regression Example

Polynomial Regression Example

Predicting Salary @ Polynomial Degree 1
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example

Predicting Salary
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Polynomial Regression Example
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Polynomial Regression Example

Polynomial Regression Example: RMSE

Evaluation of RMSE error as function of degree of polynomial
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Best Fit
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Polynomial Regression Example

Either to use Gradient Descent or Normal Equation Method?

Consider:

Gradient Descent

© 0060

r. Rizwan Ahmed Khan, http

Need to choose «
Needs many iterations
Needs feature scaling

Works well for high dimensional feature
vector

Reasonably efficient for a very large
number (millions) of features

Polynomial
oo0e

d dimensional feature vector and n training examples.

Analytical method

(2]
(3]
()

© 0

e.com/site/drkhanrizwanl7/

No need to choose «
No need to iterations
No Need for feature scaling

Slow for high dimensional feature vector.
As it need to compute (X7 X)~! which
has complexity of O(d?)

Issue of non-invertible or singular matrix

Doesn’t work well with complex
classifiers i.e. logistic regression etc.
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Exercise

Implement

@ Do implement GD (without using any library)

Further Reading

@ Cost functions

© Multivariate Regression
@ Surface plots / Contour plots
@ Variants of Gradient Descent (GD)

@ Regularization: Ridge Regression and LASSO (Least Absolute Shrinkage and
Selection Operator) Regression

Dr. Rizwan Ahmed Khan, https://si e.com/site/drkhanrizwanl7/
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Decision Tree
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Outline

@ Preface o Tree Construct%on: Sec-ond test / Node
@ Tree Construction: Third Node / Test
@ Trained Decision Tree

o Function Approximation

© Representation
o Expressiveness

© Intuition O Code

@ Tree learning intuition o Weka

o Example o Python
© Best Attribute @ Ocular Proof

o Algorithm @ Considerations

o Statistical measure e Splitting measure / Statistical test
© Learning o Inductive Bias

o Example Problem statement @ Problem of Overfitting

@ Tree Construction: Root Node @ Pruning

Dr. Rizwan Ahmed Khan, https://si om /site/drkhanrizwanl7/ Decision Tree
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Reference Books

o Chapter 3: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Reference Books

o Chapter 3: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.

o Chapter 9: Introduction to Machine Learning, Ethem ALPAYDIN, The MIT Press,
latest edition.

Dr. Rizwan Ahmed Khan, http ite: >.com/site/drkhanrizwanl7/
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Reference Books

o Chapter 3: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.

o Chapter 9: Introduction to Machine Learning, Ethem ALPAYDIN, The MIT Press,
latest edition.

o Microsoft Research Technical Report TR-2011-114: A. Criminisi et al. Decision
Forests for Classification, Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning. Microsoft Research 2011.

Dr. Rizwan Ahmed Khan, https:/ £ com/site/drkhanrizwanl7/ Decision Tree
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Problem Formalization / Function approximation

Problem formalization

o Set of possible instances X i.e. {< Z;,y; >}

e Dataset D, given by D = {< Z;,y; >, ..., < Tp,yn >} C X XY
Where:
7; is a feature vector (R%),
y; is a label / target variable,
X is space of all features and
Y is space of labels.

o Unknown target function f: X — Y
o Set of function hypotheses H = {h|h: X — Y}

Output:

- Hypothesis h € H that best approximates target function f. Or a classification “rule”
that can determine the class of any object from its attributes values.

- If training is done correctly h(Z;) ~ y;

Dr. Rizwan Ahmed Khan, https://si e.com/site/drkhanrizwanl?7/ Decision Tree
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Introduction

o It is a method of approximating discrete-valued functions, learned function is
represented by decision tree.
e There are some extensions that can handle real-valued functions.
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Introduction

o It is a method of approximating discrete-valued functions, learned function is
represented by decision tree.
e There are some extensions that can handle real-valued functions.

@ Learned trees can also be represented as sets of if-then rules (advantage as it is human
readable).
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Introduction

o It is a method of approximating discrete-valued functions, learned function is
represented by decision tree.
e There are some extensions that can handle real-valued functions.

@ Learned trees can also be represented as sets of if-then rules (advantage as it is human
readable).

o It is simple yet powerful learning algorithm.
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Introduction

o It is a method of approximating discrete-valued functions, learned function is
represented by decision tree.
e There are some extensions that can handle real-valued functions.

@ Learned trees can also be represented as sets of if-then rules (advantage as it is human
readable).

o It is simple yet powerful learning algorithm.

o In next Section, we will look how it represents data.

rizwanl?7/
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Section Contents

© Representation
o Expressiveness
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Decision tree representation

Colour = Red

Model > 2010 Colour = Yeliow

Mileage < 50000KM Make = Femari

No

Yes

Rizwan Ahmed K
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Decision tree represent

Model > 2010

fea

e Can you write if-then rules for
this tree?



Representation
0®000

Decision tree representation

Colour = Red

e Can you write if-then rules for

Na,

this tree?
e Each internal node tests an
attribute (discrete-valued).
W Na Mo

Model > 2010

Mileage < 50000KM

No

6
No

Yes
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Representation

O@000

Decision tree representation

Colour = Red

e Can you write if-then rules for
this tree?

o Each internal node tests an

attribute (discrete-valued).

Model > 2010

e Each branch corresponds to an
attribute value.

fea

Make = Ferrari

Yes

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Decision tree representation

Colour = Red

e Can you write if-then rules for
this tree?

o Each internal node tests an

attribute (discrete-valued).

Model > 2010

ol e e Each branch corresponds to an
: attribute value.
e Each leaf node assigns a
classification / label. Predict y
s O or P(y|x € leaf).

Dr. Rizwan Ahmed Khan, htt c sit rk >cision Tree
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Decision tree repre

Colour = Red

Model > 2010 Colour = Yeliow

There are different parts of it:

Mileage < 50000KM Make = Femari

.
=




Decision tree representation

Muocel = 2010

- These are nodes, in fact decision nodes.

Decision is based on “attribute /
feature” value.

Yes

Yes

n Ahmed Khan, htt
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Decision tree representation

N\

2
-l

Muocel = 2010

“Edges” represent path to follow

i considering decision node attribute
value. In summary, nodes represent
attributes and edges represent values.

Make = Ferrari

o

Dr. Rizwan Ahmed Khan, htt e.com/site/dr



Colour = Yellow

Mk = Farrari

“Circles” at the bottom of tree represent
decisions. Decision is reached after
answering / probing different attribute
values.
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Decision tree representation

- By asking series of questions, decisions / classification can be made. It’s not necessary
that all attributes take part in decision making process.

Colour = Red

Color Model Mileage Type Make Decision
Red 2011 40000 Suv BMW Buy
Red 2010 35000 Sports  BMW Buy
5 Red 2010 55000  Sedan Audi [JECHESUE
Yellow 2009 55000 Sedan Ferrari Buy
Yellow 2009 55000 Suv Audi
Blue 2009 35000 Sports  Audi
Make = Ferrar
Blue 2011 45000 Suv BMW

No.
Yes

n Ahmed Khan, htt le.com/site/drkh



Decision tree representation

- By asking series of questions, decisions / classification can be made. It’s not necessary
that all attributes take part in decision making process.

Colour = Red

: : ”, - What will be the output?
. Red 2013 60000 Sedan BMW ”
Mo

Dr. Rizwan Ahmed Khan, htt
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In fact, decision tree represents disjunction of conjunctions of constraints on the attribute values of instances /

examples. An example is classified by sorting it through the tree from the root to the leaf node.




Representation
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Decision tree represent

In fact, decision tree represents disjunction of conjunctions of constraints on the attribute values of instances /

examples. An example is classified by sorting it through the tree from the root to the leaf node.

Colour = Red

Disjunction of Conjunctions :

Model > 2010

Make = Fermar
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Decision tree represe

In fact, decision tree represents disjunction of conjunctions of constraints on the attribute values of instances /

examples. An example is classified by sorting it through the tree from the root to the leaf node.

Colour = Red

Disjunction of Conjunctions :

Disjunction of Conjunctions
o (Color=red A Model > 2010)
i V (Color=red A Model < 2010 A Mileage<50000)

Model > 2010

Make = Fermar

V (Color=yellow A Make=Ferrari)

r. Rizwan Ahmed Khan, htt
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Expressiveness of trees: Boolean function

A0 (X A y)
X M| XY
0 0|0
— - - What will be its decision tree?
1 00
T i 1
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Expressiveness of trees: Boolean function

- What will be its decision tree?

wo (xAY)
S Al el True alse
0 0|0
' L i )
1 0|0 True False
I T| 43

Dr. Rizwan Ahmed Khan, htt 5 4 rk zwanl7/
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ness

iveness of trees: Boolean function

- What will be its decision tree?

wo (xAY)
x vy |xy True alse
0 0|0
b )
True False
L. &0
T i 1

- How about swapping = and y?

Dr. Rizwan Ahmed Khan, htt
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ness

iveness of trees: Boolean function

- What will be its decision tree?
- How about swapping = and y?

A0 (X A y)
x ¥ |xy
6 6|0 True alse
0 1|0
o ©
True False
T i 1

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Expressiveness of trees: Boolean function

- What will be its decision tree?

M0 (X AY)
Xt o
0 0|0 True False
' L i )
Do) an
I T| 43

By choosing different attribute at the top of the
tree, algorithm may find better tree
representation (not true in this case), but
generally it matters.

Dr. Rizwan Ahmed Khan, httgp S om /site/drkhanrizwanl?7/
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Expressiveness of trees: Boolean function

R (xVy
x vy | x+y
i | b - What will be its decision tree?
o 1 1
1 7] z
1 1 1
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Expressiveness of trees: Boolean function

- What will be its decision tree?

R (xVy

Xy | x+y
0 of o
o 1 1
1 0 1
d E] I
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iveness of trees: Boolean function

- What will be its decision tree?

R (xVy
x vy | x+y
0 o] 0
0 1| 1
1 0| 1
1 1|1
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Expressiveness

Expressiveness of trees: Boolean function

R (xVy - What will be its decision tree?
Y - - How about swapping = and y?
R By choosing different attribute at the top of the
a 1] 1 tree, algorithm may find better tree
1 0l 1 representation (not true in this case), but
i 2l % generally it matters.
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Expressiveness of trees: Boolean function

- What will be its decision tree?

[4 o 0
0 1 1
¢ 0 1
1 1 0
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reness of trees: Boolean function

- What will be its decision tree?

o This tree is another representation of full truth table
(unlike previous slides, which was compact representation
as some branches were not required).

o This “compactness” will matter for inducing tree with
many attributes.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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reness

iveness of trees

- Consider this problem:

fi fo f3 . . fq Label

o How many decision trees to be looked at S R P
in order to find the right one? (how big 3 3 3 g
. y x{ x5 x3 . . TG -
is hypotheses space H?) 3 3 3 3
i Ty Ty . . oxy  +
e Dataset with d dimensional vector / ot ah ad -
attributes (Boolean). 2° 23 ad z -

@ Target function Y is also Boolean.

Dr. Rizwan Ahmed Khan, htt
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Expressiveness of trees

- Consider this problem:

Label
o How many decision trees to be looked at h J2 Js Ja ape
. . . T T T T +
in order to find the right one? (how big T T T Fo-
is hypotheses space H?) F T T T 4
e Dataset with d dimensional vector / T F T T -
attributes (Boolean). T T F T -

@ Target function Y is also Boolean.

r. Rizwan Ahmed Khan, httg S om /site/drkhanrizwanl?7/
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eness of trees

- Consider this problem:

fi f2 fs fa Label
o How many decision trees to be looked at T T T T +
in order to find the right one? (how big T T T -
is hypotheses space H?) F T T T +
e Dataset with d dimensional vector / r r T T -
T T F T -

attributes (Boolean).

@ Target function Y is also Boolean.
- How many row are there in the table?

Dr. Rizwan Ahmed Khan, https le.com/site/drkhanrizwanl7/
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eness of trees

- Consider this problem:

fi f2 fs fa_Label
o How many decision trees to be looked at g ; ; ? +
in order to find the right one? (how big r T T T )
is hypotheses space H?) T F T T +
o Dataset with d dimensional vector / T T F T -

attributes (Boolean).

o Target function Y is also Boolean. .
- How many row are there in the table?

- There are 2¢ possibilities.

r. Rizwan Ahmed Khan, https le.com/site/drkhanrizwanl7/
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Expressiveness of trees

- Consider this problem:

fi f2 fs fa_ Label
o How many decision trees to be looked at rr T T +
. . . T T T F -
in order to find the right one? (how big
is hypotheses space H?) LA T+
T F T T -
o Dataset with d dimensional vector / T T F T -

attributes (Boolean).

o Target function Y is also Boolean. ) . .
- How many functions or decision tree

possibilities are there in 2¢ rows?

r. Rizwan Ahmed Khan, httg S om /site/drkhanrizwanl?7/
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veness of trees

- Consider this problem:

i fo fs fa  Label
T T T T +
T T T -
F T T T +
o How many decision trees to be looked at T F T T -
in order to find the right one? (how big T T F T -
is hypotheses space H?)
° Datgset with d dimensional vector / - How many functions or decision tree
attributes (Boolean). possibilities are there in 2¢ rows?
o Target function Y is also Boolean. - As there are 27 rows, output for each row

also have two possibilities (either “true” or
“false”) . Thus, 92" possibilities. This is
double exponential and gives very big
number for very small value of d.

Decision Tree

Dr. Rizwan Ahmed Khan, http i gle.com/site/drkhanrizwanl?7/
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reness of trees

22 grows very fast.
@ On the other hand it shows that hypothesis
space H is very expressive and there are lots
and lots of functions (as we seen on previous
slide (“OR” & “AND” function)) that can be
represented by decision trees.

/

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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iveness of trees

0 22 grows very fast.

@ On the other hand it shows that hypothesis
space H is very expressive and there are lots
and lots of functions (as we seen on previous
slide (“OR” & “AND?” function)) that can be
represented by decision trees.

e This also points to the fact that algorithm
that selects tree should be robust enough to
find the best representation given such huge
number of choices.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Decision tree suitability

o Instances are represented by fix set of attributes e.g. attribute “colour” and its values
“red” and “yellow”.

Different extensions are proposed to basic algorithms which allows handling of real-valued
attributes as well.

Dr. Rizwan Ahmed Khan, htt



Representation

O00000e

Expressiveness

Decision tree suitability

o Instances are represented by fix set of attributes e.g. attribute “colour” and its values
“red” and “yellow”.

Different extensions are proposed to basic algorithms which allows handling of real-valued
attributes as well.
o The target function has discrete output values / classes.

Different extensions are proposed which allows handling of real-valued outputs as well but
it is less common.

ecision Tree
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Expressiveness

Decision tree suitability

o Instances are represented by fix set of attributes e.g. attribute “colour” and its values
“red” and “yellow”.

Different extensions are proposed to basic algorithms which allows handling of real-valued
attributes as well.
o The target function has discrete output values / classes.

Different extensions are proposed which allows handling of real-valued outputs as well but
it is less common.

@ Decision tree learning algorithms (ID3, C4.5) are robust to errors in classifications
labels and errors in attribute values.
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Expressiveness

Decision tree suitability

o Instances are represented by fix set of attributes e.g. attribute “colour” and its values
“red” and “yellow”.

Different extensions are proposed to basic algorithms which allows handling of real-valued
attributes as well.

o The target function has discrete output values / classes.
Different extensions are proposed which allows handling of real-valued outputs as well but
it is less common.

@ Decision tree learning algorithms (ID3, C4.5) are robust to errors in classifications
labels and errors in attribute values.

@ Decision tree learning algorithms are robust to missing attribute values in training
data.

/
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Tree learning intuition

ID3 Learning Algorithm

e ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan® used to
generate a decision tree from a dataset.

1Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn., pp 81-106

Dr. Rizwan Ahmed Khan, htt
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Tree learning intuition

ID3 Learning Algorithm

e ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan® used to
generate a decision tree from a dataset.

@ There are many extensions to it e.g C4.5, CART etc.

1Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn., pp 81-106

Dr. Rizwan Ahmed Khan, htt



Intuition
@00

Tree learning intuition

ID3 Learning Algorithm

e ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan® used to
generate a decision tree from a dataset.

@ There are many extensions to it e.g C4.5, CART etc.

o ID3 learns decision tree by constructing them top-down, “which attribute to be tested
at the top?”

Which attribute is most discriminative or provides most information to classify 77

1Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn., pp 81-106

Dr. Rizwan Ahmed Khan, http e.com/site/drkhanrizwanl?7/ >cision Tree
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Tree learning intuition

ID3 Learning Algorithm

e ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan® used to
generate a decision tree from a dataset.

@ There are many extensions to it e.g C4.5, CART etc.

o ID3 learns decision tree by constructing them top-down, “which attribute to be tested
at the top?”

Which attribute is most discriminative or provides most information to classify 77

o Attributes to be evaluated by Statistical test to determine how well specific attribute
classifies training data / examples.

1Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn., pp 81-106

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree
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Tree learning intuition

Search for the best hypothesis: 1D3

e ID3 performs search through space of
decision trees.

O

O

2Image from Tom’s book

Dr. Rizwan Ahmed Khan, htt 5 s r nrizwanl?7/



Intuition
(o] lo}

Tree learning intuition

Search for the best hypothesis: 1D3

e ID3 performs search through space of
decision trees.

@ Search to find “best” attributes to test at the
top.

O
@]

2Image from Tom’s book
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Tree learning intuition

Search for the best hypothesis: 1D3

e ID3 performs search through space of
decision trees.

@ Search to find “best” attributes to test at the
top.

o Based on tested attribute examples are
sorted, either side of the test attribute.

O

O

2Image from Tom’s book

Dr. Rizwan Ahmed Khan, http e.com/site/drkhanrizwanl?7/ Decision Tree
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Tree learning intuition

Search for the best hypothesis: 1D3

e ID3 performs search through space of
decision trees.

e Search to find “best” attributes to test at the
top.

@ Based on tested attribute examples are
sorted, either side of the test attribute.

e Feature space is thus recursively divided till
the “pure” leaf (uniformly +ve or uniformly
-ve) is obtained or “stopping criteria” is met.

O

O

2Image from Tom’s book

Dr. Rizwan Ahmed Khan, https e.com/site/drkhanrizwanl?7/ Decision Tree
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Tree learning intuition

Search for the best hypothesis: 1D3

o It is powerful representation. Every discrete
valued function can be represented by some
decision tree.
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Tree learning intuition

Search for the best hypothesis: 1D3

o It is powerful representation. Every discrete
valued function can be represented by some
decision tree.

e ID3 performs no backtracking. Once
attribute is selected at certain level of tree, it
never backtracks to reconsider choice (greedy
algorithm approach).

.com /site/drkh v cision Tree
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Tree learning intuition

Search for the best hypothesis: 1D3

o It is powerful representation. Every discrete
valued function can be represented by some
decision tree.

e ID3 performs no backtracking. Once
attribute is selected at certain level of tree, it
never backtracks to reconsider choice (greedy
algorithm approach).

e ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for
one that fits the training examples.

Dr. Rizwan Ahmed Khan, http e.com/site/drkhanrizwanl?7/ >cision Tree
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Tree learning intuition

Search for the best hypothesis: 1D3

o It is powerful representation. Every discrete
valued function can be represented by some
decision tree.

e ID3 performs no backtracking. Once
attribute is selected at certain level of tree, it
never backtracks to reconsider choice (greedy
algorithm approach).

e ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for
one that fits the training examples.

Bias

Which tree ID3 selects? Discussion on it later

Dr. Rizwan Ahmed Khan, https://sit le.com /site/drkhanrizwanl7/ Decision Tree
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Example: Tree learning algorithm

Consider below presented classification (binary) problem. Assume training data with each
instance / example having two attributes / features (attributes zq, x2):

@ =
® @
.| ® : ® e @ °
? © : ®
® @ b
_ @ ®
0 @ e
B
Ty © e e © °
® ° ® . e
' °
& ® o | ] ®
o o @ @ ®
/] 1 2 ‘3:};‘1 4 5 ]
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Example: Tree learning algorithm

The “expected” decision boundary given this training data.

® =3
® @
.| ® : ® e @ °
? © : ®
@ @ b
_ @ ®
0 @ e
®
To ©® e e © ®
® L @ « T
! )
e ® o & "
e e @ ® @
/] 1 2 3:]:'1 4 5 ]
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Example

Example: Tree learning algorithm

The “expected” decision boundary given this training data. Learn it!

® =3
® @
.| ® : ® e @ °
? © : ®
@ @ b
_ @ ®
0 @ e
®
To ©® e e © ®
® L @ . e
i . )
e ® o & "
e e @ ® @
/] 1 2 3:]:'1 4 5 ]
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Example: Tree learning algorithm (attribute selection intuition)

Is ;1 (feature 1) greater than 3 7

® =3
5 @
. ° e ©® ®
? © : ®
.0 @ _ =)
B
Ty © e e © °
® ° @ . e
' °
e o o @ "
o o o @ ®
/] 1 2 ‘3:};‘1 4 5 ]
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Example: Tree learning algorithm (attribute selection intuition)

Given z1 > 3, is feature 2 (x2) greater than 37

e [ ]
5 =)
.| ® : ® e @ °
! (] _ ®
.0 @ _ 2]
]
Ty | @ @ e © @
® ° @ . e
: ®
e ® o @ 8
e e @ ® @
o 1 2 ‘3:]:'1 4 5 &
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Example: Tree learning algorithm (attribute selection intuition)

Given z; < 3, is feature 2 (x2) greater than 17

e [ ]
5 =)
.| ® : ® e @ °
! (] _ ®
.0 @ _ 2]
]
Ty | @ @ e © @
® ° @ . e
: ®
e ©® o @ 8
e e @ ® @
o 1 2 ‘3:]:'1 4 5 &
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Example: Tree learning algorithm (attribute selection intuition)

Feature space, learned decision boundary

@ * ®
]
.| ® o ° o * o
o ® @
@ @ &
]

o e © @
® @ o Y o ®
‘e ® @ |@ e
e e ® o o |
o 1 2 sxl 4 5 L]

Exercise

Can you draw corresponding decision tree?

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl?7/
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Example solution: Tree learning algorithm

B - a
[ ] ® .0 ® o
. * [ ] ®
!, ° o
@ @ [ ]
®
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Example solution: Tree learning algorithm
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Example solution: Tree learning algorithm

B - e .
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Example
Example solution: Tree learning algorithm

s - e .
®
.« [ ® L ® $ [ ]
q . ®
. |® ° ®
@
T9 ® e ® o. @
] ® ® @ L
‘e @ e e e
e e @ e ®
Bpse iy 2 2 . : &
Z1

@ These rules perform recursive partitioning of training data into homogenous regions.
o Homogeneous — > outputs are same / similar for all inputs in that region

@ Given a new test input, we can use the DT to predict its label
@ A key benefit of DT: Prediction at test time is very fast (just testing a few
conditions)

>cision Tree

rizwanl?7/
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ID3 Tree Induction / Learning Algorithm

Algorithm 1 ID3 Learning Algorithm
Result: Learned Tree
1 initialization node = root
2 while TRUFE do
3 - A + the best attribute for the next node.
- Assign A as the decision attribute for the node.
- For each value of A, create new decedent of the node.
- Sort training examples to leaf nodes.

4 if training examples perfectly classified then
5 ‘ break

6 else

7 | Iterate over new leaf node (back to line 2)
8 end

9 end

Dr. Rizwan Ahmed Khan, http i >.com/site/drkhanrizwanl7/ Decision Tree
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Greedy search

- ID3 algorithm forms a greedy search for an acceptable decision tree, in which the
algorithm never backtracks to reconsider earlier choices.

- Greedy is an algorithmic paradigm that builds up a solution piece by piece, always
choosing the next piece that offers the most obvious and immediate benefit. So the
problems where choosing locally optimal also leads to global solution are best fit for
Greedy.

Greedy Algorithm

The greedy algorithm fails to solve above presented problem because it makes decisions
purely based on what the best answer at the time is: at each step it did choose the largest
number.

Dr. Rizwan Ahmed Khan, https://si om /site/drkhanrizwanl7/ Decision Tree
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Best Attribute: Quiz

- Which “attribute” is the best?
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Best Attribute: Quiz

- Which “attribute” is the best?

¢ O\

e oy

vl
&

- Prefer splits that makes data “less randomized” after the split.

com/site/dr



Best Attribute
[e]e]e] ]

ithm

B l;t Attribute

1

What is a good quantitative measure to evaluate effectiveness of an attribute for
classification task?
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Qu N

What is a good quantitative measure to evaluate effectiveness of an attribute for
classification task?

o Information gain measures how well a given attribute / feature separates the training
examples according to their target classification.
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Attribute

Qu N

What is a good quantitative measure to evaluate effectiveness of an attribute for
classification task?

o Information gain measures how well a given attribute / feature separates the training
examples according to their target classification.

o ID3 uses information gain (entropy) to measure to select among the candidate
attributes at each step while growing the tree.

o “Best attribute” is the one with lowest entropy or highest information gain.

Dr. Rizwan Ahmed Kk
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Given a collection S, containing positive and negative
examples of some target concept, the entropy of S relative
to this Boolean classification is:

Entropy(S) = —p® loga p® —p ® logs p® (1)

where:

- p® is the proportion of positive examples in S.

- p® is the proportion of negative examples in S.

- In all calculations involving entropy we define 0 logs 0 to
be 0.

- Entropy?® is measure of “randomness”.

3

Entropy(S)

1

0 01 02 b3 04 05 06 OF 08 00 1
Pronanilty f Proportion of positive examples in §

C. E. SHANNON. A Mathematical Theory of Communication. The Bell System Technical Journal, 1948.
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If the target attribute can take ¢ different
values (classes in our case): o
08
¢ 07
Entropy(S) = Z —pi loga p; (2) e
i=1 3
==}
e Entropy is 0 if all members of S belong e
to the same class. 0
o The difference in the entropy before and fe
after the split is called Information Gain o
(I1G). 2 ; e ]

o 01 02 03 04 05 0g 0T o8 og 1
Probahility / Proportion of positive examples in S

Dr. Rizwan Ahmed Khan, htt




Best Attribute
00@000000

e Entropy characterizes the (im)purity of

an arbitrary collection of examples. o8
Entropy is commonly used in 08
Information theory to measure 07
amount of information needed to 08
represent an event drawn from a Bes
probability distribution for a random Gy
variable. OR i
o Its a measure of “disorder” or 0z
“randomness”. Wi
o Thus, Entropy is 0 if all members e —
n) o1 02 03 0.4 05 oG o7 0 [r3:] ]
of S belong to the same class. Prabaility / Proportian of positive sxamples in

Dr. Rizwan Ahmed Kk
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tistical meas

tatistical measure: Entropy Calculation

Calculation:
c
Entropy(S) = E —pi loga pi
Colour Model Mileage Buy i=1
Red 2011 10000 Yes
Red 2010 10000 Yes
Red 2010 S0000 Mo
vellow 2011 40000 Yes
Green 2015 10000 No
Dataset=1

izwanl7/
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Statistical measure: Entropy Calculation

Calculation:
(&
Entropy(S) = E —pi logs pi

Colour Model Mileage Buy i=1
Red 2011 10000 Yes
Red 2010 10000 Yes
Red 2010 50000 No @ c¢=2, buy = Yes or No
vellow 2012 40000 Yes

+ + 9—
Green 2015 10000 No a [p P ]:> [3 72 ]

Dataset=1

anrizwanl? /
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btatlstlcal measure: Entropy Calculation

Calculation:
(&
Entropy(S) = E —pi logs pi

Colour Model Mileage Buy i=1
Red 2011 10000 Yes
Red 2010 10000 Yes
Red 2010 50000 No @ c¢=2, buy = Yes or No
vellow 2012 40000 Yes

+ + 9—
Green 2015 10000 No a [p P ]:> [3 72 ]

Dataset=1

3
Entmpy(S):—{glogz } { logs = }

Entropy(S) = 0.4422 + 0.5288 (3)
Entropy(S) = 0.9710

rizwanl?7/
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Statistical measure: Entropy Calculation

Best Attribute
0000@0000

Calculation:
C
Entropy(S) = E —p; logs p;
i=1
Colour Model Mileage Buy ¢
Red 2011 10000 Yes
Red 2010 10000 Yes
Red 2010 50000 No
Green 2015 10000 No

Dataset=2




Statistical measure: Entropy Calculation

Best Attribute
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Calculation:

c

Entropy(S) = Z —pi loga pi

i=1

@ ¢c=2 , buy = Yes or No

o [pt,p7]=[2%,27]

Colour Model Mileage Buy

Red 2011 10000 Yes

Red 2010 10000 Yes

Red 2010 60000 No

Green 2015 10000 No
Dataset=2

zwanl7/
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sure: Entropy Calculation

Calculation:
C
Entropy(S) = E —p; logs p;
Colour Model Mileage Buy i=1
Red 2011 10000 Yes
Red 2010 10000 Yes @ ¢c=2 , buy = Yes or No
Red 2010 60000 No
Green 2015 10000 No o [pt,p ] = [2F,27]
Dataset=2

2 2
Entropy(S)z—{zlogg } { logs }

Entropy(S) = 0.5 + 0.5 (4)
Entropy(S) =1

Dr. Rizwan Ahmed Kk
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Statistical measure: Entropy Calculation

Calculation:
c

Colour Madel Mileage Buy E’I’Lt’l"Opy(S) - z : —Dpi lOgg Di
Red 2011 10000 Yes 1=1

Red 2010 10000 Yes

Red 2010 60000 Yes

vellow 2015 60000 ves

Yellow 2015 10000 Yes

Dataset=3

Dr. Rizwan Ahmed
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tical mea; e

Statistical measure: Entropy Calculation

Calculation:
C

Colour Madel Mileage Buy E’I’Lt’l"Opy(S) = z : —Dpi lOgg Di
Red 2011 10000 Yes i=1
Red 2010 10000 Yes
Red 2010 60000 Yes
vellow 2015 50000 Yes @ c=2, buy = Yes or No
Yellow 2015 10000 Yes + + 0

o [pt,p7|=[5%,07]

Dataset=3

\nrizwanl7/
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sure: Entropy Calculation

Calculation:
C

Colour Madel Mileage Buy E’I’Lt’l"Opy(S) = z : —Dpi lOgg Di
Red 2011 10000 Yes i=1
Red 2010 10000 Yes
Red 2010 60000 Yes
vellow 2015 50000 Yes @ c=2, buy = Yes or No
Yellow 2015 10000 Yes + + 0

o [pt,p7|=[5%,07]

Dataset=3

5 5
Entropy(S) = —{5 logs 5} -0
Entropy(S) =0

(5)

Dr. Rizwan Ahmed Kk
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sure: Entropy Calculation

& 08
gos
S eranabity rcporion ofpeie marpioa S|
e [31,27] e [27,27] e [51,07]
e Entropy (S) = 0.9710 e Entropy (S) =1 e Entropy (S) =0

Entropy is measure of disorder or randomness!

Dr. Rizwan Ahmed Kk
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s
Information Gain

o Given entropy as a measure of the impurity in a collection of training examples, we
can now define a measure of the effectiveness of an attribute in classifying the training
data. Generally, information gain (IG) is used as this measure of effectiveness.

o The difference in the entropy before and after the split is called information gain.

Dr. Rizwan
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Statistical measure

Information Gain

o Given entropy as a measure of the impurity in a collection of training examples, we
can now define a measure of the effectiveness of an attribute in classifying the training
data. Generally, information gain (IG) is used as this measure of effectiveness.

o The difference in the entropy before and after the split is called information gain.
Mathematically:

Gain(S, A) = Entropy(S) — Z f;f' Entropy(Sy) (6)

vevalues(A)

where:

- S set of training data, and

- values(A) is the set of all possible values for attribute A (feature vector dimensions), and
- S, is the subset of S for which attribute A has value v.

Dr. Rizwan Ahmed Khan, https: om /site/drkhanrizwanl7/ Decision Tree
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s o
Information Gain

e For DT construction,
entropy/IG gives us a criterion
to select the best split.

Vs .

A not-so-good A good split
b split e oo
a “oon -

Non-urmiform Label
lmm’tm tatel, -~ Distributions "
o Sinbutions - ne 3

I I 5 (High entropy) ™ _I ] i ' {Low entrogy) . I
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Section Contents

e Tree Construction: Second test / Node
@ Tree Construction: Third Node / Test
@ Trained Decision Tree

o Function Approximation

© Learning
o Example Problem statement
@ Tree Construction: Root Node

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Example Problem statement

Day Outlook  Temperature  Humidity Wind PlayTennis
m Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owvercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

zwanl7/
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Example Problem statement

Problem Setting:

Day || Outlook  Temperature Humidity ~Wind | PlayTennis (1 Set of possible instances X

Dl Sunny Hot High Weak No

D2 || sunny Hot High  Strong No e each instance in X is defined by a feature vector,
D3 Owercast Hot High Weak Yes o . “ 7. o
=i | V) S R for example < Outlook = rain, Humidity =
D5 Rain Cool Normal — Weak Ye lou)7 Wind = weak, .. >

D6 Rain Cool Normal  Strong No _

D7 || Overcast Coal Normal \-r.‘-—i Yes ° & =<ZT1,T2;...,Tn >

s Su Mild ig eak o .

Il s  Gees e B | & @ Unknown target function f: X — Y
noiiff St SN Yk g e Y =1 if we play tennis on specific day, else 0.
DIl Sunny Mild Strong Yes
DI2 || Overcnst - Mild ves @ Set of function hypotheses H = {h|h: X — Y}
D13 Overcast Hot g Yes
pis || Rain Mild Strong No e each hypothesis h is a decision tree.

e tree sorts z to leaf, which assigns y.

n Ahmed Khan,
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Example Problem statement

Day || Outlook Temperature Humidity =~ Wind | PlayTennis
D Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owvercast Hot High Weak Ye:
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yo
Dé Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Ye:
DIl Sunny Mild {armal Yes
D12 Overcast Mild Ye
D13 Overcast Hot Yes
D14 Rain Mild Strong No

o Initially, we have 14 example
[9F,57].

o We need to calculate IG of all
attributes to find which
attribute is the best.

o List of attributes:
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Example Problem statement

Example Problem statement

Day || Outlook Temperature Humidity ~ Wind | PlayTennis o Initially, we have 14 example
D1 Sunny Hot High Weak No + 0

m Sunny Hot High Strong No [9 , 5 ]

D3 || Overcast Hot High Weak Yes

ol e g S i @ We need to calculate IG of all
D5 Rain Cool Normal  Weak Ye attributes to find which

D6 R: Cool Normal Strong No . .

D7 :!\n‘:‘m Cool r::w \':‘"! Yes a‘ttrlbUte 18 the beSt‘

D8 Sunny Mild High Weak No o LlSt Of attributes:

Do Sunny Cool Normal ~ Weak Yes

D10 Rain Mild Normal  Weak Yes @ Outlook

DI Sunny Mild Jormal Yes e Temperature

D12 || Overcast Mild Yes ..

D13 || Overcast Hot Weak Yes @ Humidity

D14 Rain Mild Strong No Q@ Wind

Dr. Rizwan A
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Tree Construction: Root Node

ng IG Criterion: Outlook

c
Gain(S, A) = Entropy(5) — |_|¢;J_|| Entropy(S,) Entropy(S) = Z —pi logz pa
f=1

D utlook & Humid Wind | PlayT ® e=2, play = ¥es or No

ay Outlool ‘emperature umidity Ning ayTennis _ _

D1 Sunny Hot High Weak No ° [p+’ p ] = [9+’ 5 ]

D2 Sunny Hot High Strong No

D3 Owercast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Ye

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

Ds Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes
D10 Rain Mild srmal Weak Yes
DIl Sunny Mild Normal Yes
D2 Owvercast Mild Yes
D3 Overcast Hot Yes
D14 Rain Mild Strong No




Tree Construction: Root Node

DT Construction using IG Criterion: Outlook

L

— ' ’ |8y o, "
Gain(S, A) = Entropy(5) — E _|“‘J_| Entropy(S,) Entropy(S) = E —pi logz pa
v umluas(A)
@ c=2, play = Yes or No
Day || Outlook Temperature Humidity —Wind | PlayTennis
) ) ) + 4 oe—
Dl Sunny Hot High Weak No ° [p P ] = [9 »5 ]
D2 Sunny Hot High Strong No
D3 || Overcast Hot High Weak Yes
D4 Rain Mild Weak Yes 9 9 5 5
3 2 Entropy(S) = —{— loga —} — {— loga —}

D5 Rain Cool mal Weak Ye: 14 14 14 14
D6 || Rain Cool Normal  Strong No Entropy(S) = 0.4098 + 0.5305 = 0.9403
D7 || Overcast Cool Normal  Strong Yes
Ds Sunny Mild High Weak No
Do i Cool Normal Weak Yes “Qutlook” attribute has three values:
D10 Rain Mild mal Weak Yes
DIl Sunny Mild Normal  Strong Yes
D12 || Overcast Mild High Strong Yes
D13 || Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No




struction:

Root Node

Learning

®00000

DT Construction using IG Criterion: Outlook

Gain(S, A) = Entropy(5) —

Z |85
]

veunlues(d)

Day Outlook  Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool rmal Weak Ye
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
Ds Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Ye
D11 Sunny Mild Normal Strong Yes
D2 Owvercast Mild St Ye
D3 Overcast Hot Weak Yes
D14 Rain Mild Strong No

L

Entropy(S,) Entrapy(5) = Z —pi lagz ps

i=1

@ c=2, play = Yes or No
° [pt,p7] = [97,57]

9 9 5 5
Butropy(S) = {1 loga 1} = {5 logz =}
Entropy(S) = 0.4098 4 0.5305 = 0.9403

“Outlook” attribute has three values:
@ Sunny [27,37]
@ Overcast [47,07]
@ Rain [37,27]

Gain(S, Outlook) = 77




Tree Construction: Root Node

DT Construction using IG Criterion: Outlook

c
Gain(s, A) = Entropy(S) — ‘—;:‘il‘ Entropy(s,) Entrapy(8) = Z —pilaga ps
Gain(S, Outlook): T gyt afirimue  we e, Mheas Vabues
&) Semey ‘il 2, =5}
Day Outlook  Temperature  Humidity Wind | PlayTennis
DI Sunny Hot High Weak No ) Onepaas 145, n'i
D2 Sunny Hot High Strong No " =
D3 Overcast Hot ||:|v \\r.\: Yes L—J an\ (III‘ 5" P = i
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Ye: ” y 1
D6 Rain Cool Normal  Strong No (—"\"-:5"\ (\f—".- '—"‘-L"\”"-‘V‘j = oAy - = .\f‘l 2 -—E_\U&‘ = - %"__'ulj
D7 || Overcast Cool Normal Yes (T L !
D8 Sunny Mild High No
D9 Sunny Cool Normal Yes
D10 Rain Mild Normal Yes
DIl Sunny Mild {ormal Yes
D12 Overcast Mild Yes
D13 Overcast Hot rmal Weak Yes
D14 Rain Mild High Strong No

Rizwan
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Tree Construction: Root Node

DT Co ucti ing IG Criterion: Temperature

1) Ll“ L=, \.L....\,:n\:.mj

“Vegis
'T'M?HM Rosa B dadusd

SR FUE

Day Outlook ~ Temperature  Humidity Wind | PlayTennis (SRR URPY %_‘-‘." . ;_—1
D1 Sunny Hot High Weak No o
02 Sunny Hot High Strong No W o E 3.y 3
D3 Owercast Hot High Weak Yes

D4 Rain Mild High Weak Yes Lyoim |2, "L"‘T'M _

D5 Rain Cool Normal Weak Ye:

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No = e -
D9 Sunny Cool Normal Weak Yes

D10 Rain lormal  Weak Yes il
D11 Sunny Mild Normal T
D12 Overcast Mild High = I
D13 Overcast Hot Normal g Yes o
D14 Rain Mild High Strong No
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Tree Construction: Root Node

DT Co ucti ing IG Criterion: Humidity

[ <
L,
Day || Outiook Temperature Humidity ~Wind | PlayTennis SRkt SR s N i
D1 Sunny Hot High Weak No -
D2 Sunny Hot High Strong No ) H—'El\_ }\;__,"I
D3 || Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes ) N
D5 Rain Cool Normal Weak Ye: [ 2
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal St Yes
DS || Sunny Mild High Weak No Gunl S, Smsinde seabe- 1., \ IPV—
D9 Sunny Cool Normal Weak Yes R T | 7‘“&»:{ 3 b
D10 Rain Mild Normal Weak Yes
DIl Sunny Mild Normal Yes . SO TR P
D12 || Overcast Mild High : Yes 1 x\ F'% i H '1\
DI3 || Overcast Hot Normal Weak Yes
D14 Rain Mild High  Strong No = payw - ohA% - e A8
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Tree Construction: Root Node

DT Co ucti ing IG Criterion: Wind

Day Outlook ~ Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
3 . Wind,
D2 Sunny Hot High Strong No 4 Y r-'\'“"'L L e )
D3 || Overcast Hot High Weak Yes a) Weal (‘;Lé. 5 1'!'
D4 Rain Mild High Weak Yes ; 4
: W evewpieT, WY
D5 Rain Cool Normal Weak Ye ) v_g?‘— G
D6 Rain Cool Normal Strong No . € 0 T T B ¢ 3
¥ S, owhed) = oofMp - B ox )t g, B oo =g, o
D7 || Overcast Cool Normal  Strong Yes Goinl, \} 4 2 C8 B 3 |
D8 Sunny Mild High Weak No
z =) &
D9 || Sunny Cool Normal  Weak Yes - by \_‘ % 1. % e 2\
D10 Rain Normal Weak Yes 1H
DIl Sunny Normal Yes —_ - o4R
T Gaa)E
D12 || Overcast Yes Goin L%, =
D13 Overcast Hot Normal Yes
D14 Rain Mild High Strong No
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Tree Construction: Root Node

Decision tree: first node deci

Gain(S, Outlook) : 0.248 Having decided which feature (highest IG) to test at the
Gain(S, Temperature) : 0.031 5
Gain(S, Humidity) : 0.153 root, let’s grow the tree

Gain(S, Wind) : 0.048

Day Outlook Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
[22] Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Ye:
D6 Rain Cool Normal  Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild Weak No
D9 Sunny Cool Weak Yes
D10 Rain Mild Weak Yes
DIl Sunny Mild Yes
D12 Overcast Mild tro Ye:
D13 || Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Rizwan Ahm,
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Tree Construction: Root Node

Decision tree: first node decided

Gain(S, Outlook) : 0.248 Having decided which feature (highest IG) to test at the
Gain(S, Temperature) : 0.031

)
Gain(S, Humidity) : 0.153 root, let’s grow the tree

Gain(S, Wind) : 0.048 e
‘”n( ’ m ) \._t,)“:\ \nuK!

.
Day || Outlook  Temperature  Humidity ~ Wind | PlayTennis s
D1 Sunny Hot Weak No ’ g
D2 S v Hot Strong Ne H
unny o rong o i OVereasi Ropinm
D3 || Overcast Hot Weak Yes

D4 Rain Mild Weak Yes / L \ \

D5 Rain Cool Normal — Weak Ye *

Dé R if_-& e 5
6 ain Cool Normal  Strong No a

D7 Overcast Cool Normal Strong Yes Ry 5"%’ %; P r‘- 'S

Ds Mild B

Sunny High Weak No

4

D9 Sunny Cool mal Weak Yes

D10 Rain Mild Weak Yes ": 77 ||

D1 Sunny Mild C S Yes a 0

D12 || Overcast Mild Ye \ s L} ™
Y

D13 Overcast Hot 13‘1’ DS-,'b“ \..t?,

Norm Yes 5
B
DI4 Rain Mild High  Strong No 1t (R | 3.1 M T
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Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

@ Iterate - for each child node, select the feature
with the highest IG.
@ No need to expand the middle node (already pure -

all yes).
@ If a feature has already been tested along a path
earlier, we don’t consider it again. E(E
[y 5\
- -\-V\.\‘-\-
i i, * V- § = OVt asic Roim
) eay Cul lonl, Vs, | WA LU G~ it
—=if || _ oAl e 25 — 4 / D\ \ \
B Sy Yot Bigh [ vk | Ne FLats
= ST

] |
D, Sewey | oWt | W 4 | Sl ™ R
| o i, D, D)

by = 3 .
5 o | LWVY \Awl\n Weal | nlp i3, Y, ™ ,13“3\

D
1 \ a“;uﬁk“ﬁ || <za\ Notwead | tleabe | Yoo
| |
" | T, ]
i “'\‘\E\. LY el = -
s |I e ||| o | *gl"/_‘,
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Tree Construction: Second test / Node
DT Construction using IG Criterion: Second Node
I54] -
Gain(S, A) = Entropy(5) — E _|“'J_| Entropy(S,) Entropy(S) = E —pi logz pa
veunlues(d) P

@ c=2, play = Yes or No
° [ptpT]=[27,37)

iton Cul lonl, Tk, | \;_‘w‘_(\_l:] f U ) P
= _:._ i pic al _\__i_ B OGN o0 | — _Q‘
L= {15 o I
.-D. = o Ve | &‘\ . Wenk | Mo
3, Soriay Wl | Wil | by e
Ay = 3 :
. s | A W :\L\“ Weall | na
>
A \ Q:w.x“ﬁ [T ot ma ) ol Veig
{

| =y wad | ‘I\\nm&l amlaly,_a




/ Node
IG Criterion: Second Node

Tree Construction: Second

DT Construction using

Gain(S, A) = Entropy(5) —

veunlues(d)

Daow, Ouft lanl, Tompn, | WA ] ek | Play,
— —;'.ll— — i _l__l_ __-:] % _Q‘
b, Stvng | Yoot | MR [ ek | Mo
L ':'mam_j [T Wi 3),\ | -:..—m,,_a o
Dy Sy Mad | WA | Wk | e
>
n \ Q:w.x“ﬁ || —ael LNTLESVA] ol Wi
| |
A} LT
A | =i, -
iy | | 6l | e vag
Eo |I o _j_ | 5 *—9 Yes

Dr. Rizwan Ahmed Khan, htt

Learning
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L

Entropy(S) = Z —pi logz pa

18] ’
E '—-‘J—l Entropy(S,)
3]
=1

@ c=2, play = Yes or No
° [ptpT]=[27,37)

2 2 3 3

Ent S)y=—-{=1 -} —{=1 -
ntropy(S) {5 logz o} —{ log2 o}
Entropy(S) = 0.5288 + 0.4422 = 0.9710

“Temperature” attribute has three values:

>cision Tree

(®)
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/ Node
IG Criterion: Second Node

Tree Construction: Second

DT Construction using

L

|84
Gain(S, A) = Entropy(5) — Z —lt;J—ll Entropy(S,) Entropy(S) = Z —p: logz s
vevalues(A) s
@ c=2, play = Yes or No
® [pt,p7] = [27,37]
‘_'":».,l [ Out \anl, T, | \;_‘w‘_(\_l:] W | By,
b [ P e O e Entropy(S) = —{2 loga 2} — {2 loga 2}
. i = -1z -7 =1z =
3). =trong | Yoy | ‘-‘*lk .l el | Np niropy 5 0g2 5 s 092 5 ®)
. Entropy(S) = 0.5288 + 0.4422 = 0.9710
D, Soveeny | B | oW 3),\ | -:..—m,,_a i
| .
AN Sy YA Wiah Wl | e “Temperature” attribute has three values:
D Hot [0T, 2~
1 Q;mmg | a6\ etwal | el Yo (1) [ ’ ]
' ' @ Mild [1F,17]

iy I| L R CL -
— 7B [P | S| e Al @ Cold [1*,07]
' I Gain(Ssynny, Temperature) = 77

Dr. Rizwan Ahmed Khan, htt
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Tree Construction: Second test / Node
DT Construction using IG Criterion: Second Node
IS -
E _|“'J_| Entropy(S,) Entrapy(5) = E —pi lagz ps
=1

Gain(S, A) = Entropy(5) —
vSvaluasA)

Gain(Ssunny, Temperature) = 77

iton Cul lonl, Tk, | \;_‘w‘_(\_l:] f U ) P
= _:._ i pic al P10, e (25 — _Q‘
.-D. E‘“'n'nj Yend | s &‘\ . Wenk | No
3, Soriay Wl | Wil | by e
Ay = . :
. s | A W :\L\“ Weal | g
>
A \ Q:w.x“ﬁ [T ot ma ) ol Veig
I

- |
A |‘.‘.~>u\-\\:\ LRy |
LA

Plogenal = a3
gl __:m?lly .

\

le.com /site/drkhanrizwanl7/

Rizwan Ahmed Khan, htt
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Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

c
} " ; . |8l :
Gain(S, A) = Entropy(5) — Z _I“'J_Il Entropy(S,) Entropy(S) = Z —p: logz s
veunlues(d) ot
ain(Ssunn emperature) = 7
Gain(Ssunny, T t 7
‘_'"m} [ Out \anl, T e, : \;_‘w‘_(\_l:] \\1'.,...}_. '_\ Y‘-\a_.,\ —&:—‘J )
B | o | e | M o bewas U5 Sl §0,2
=g Vend | -“\a [ Wenk | No | et Sy ) Vor= %0, ‘_?_Q
. | | . wid=$a L AN
:D;\_ a“'\w\u | et | \L\a}\ '*‘:-"Nm.._a win i f,._II.L-\— (\1
v = - - l : R~ X L L . il -
. ot A “‘:\L\“ Weal | nlp T‘_,: ® \0 - 22
D
1 alw*“ﬁ || = Tt v ) e e, Ve = ‘255"' [--%-‘bﬁk_—?i— = _‘5- \BSL _‘t"'l
{
™, o, PO
|||(-‘.‘>\.. \-“‘\_._\ N\;\:\ | ‘\\n‘smn& 2 Yﬂ‘-& — 3:): = lL 2=
e . | || || *—9

n Ahmed Khan, htt
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cond test / Node

ee Construction
DT Construction using IG Criterion: Second Node

]

|54
Gain(S, A) = Entropy(S) — E —l;—l‘ Entropy(S.) Entropy(5) = Z —pilaga ps
i=1

veualuas[A)

Wik | Blau,

Doy | Oult ok, Tedp, | B
e I I o o il el %
o, Sy | Bk | \aﬁl\,\ [ venk | Mo
:D:L S“""“J Wl ‘ \;‘—31,\ | f,ﬁu..‘_a N
|

By Sy BANA Vs:l\n Weakt, | nlo
D

A ul“'”‘“ﬂ T Nt | e ok Ve
B Fesuics : |

= el e B

il —

Gain(Ssunny, Humidity) =
@ High [07,37]

© Normal [21,07]
zwanl7/

Rizwan Ahmed
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Tree Construction: Second test / Node
DT Construction using IG Criterion: Second Node

|8
Gain(S, A) = Entropy(S) — E —l—l‘ Entropy(S.) Entropy(5) = Z —pilaga ps
i=1

veualuas[A)

i ,& 1 B,

By oibspery o] wmemng) ek (g
B, Sty | Vi | Sagh | vk | Mo
D, Su.mn \ WAl | W 31,\ | :,Aum_a LMY
Dy Svereny A I Vs:l\n Weak | np
) ‘ Sommny ‘I el Notwad | Wheade | Yeu
| |
P el g

Gain(Ssunny, Humidity) = 77
@ High [07,37]

© Normal [21,07]
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ee Constructior cond test / Node
DT Construction using IG Criterion: Second Node
= c
Gatn(S, A) = Entropy(S) — Z —I‘:—l‘ Entropy(S.) Entropy(5) = Z —ps lage ps
=1

vevaluas[A)

Wk | Bla,

l

D, | Oulilanl,
gl =
) Sty WEEk | il
|
o, S“MW -r;\npa W
|
b, - Mad | WA | Wear | g
D
q ”:wa.“ﬁ | eael SAtTwna) e ale Ve
| 1
S5 | By IREY Wl | i
“ ‘ 72‘“_ e i) Yes

|

Gain(Ssunny, Wind) = 77
@ Weak [11,27]
@ Strong [17,17]

Dr. Rizwan A
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Tree Construction: Second test / Node
DT Construction using IG Criterion: Second Node

]

|s
= Entropy(S) — E _|“‘_|‘ Entropy(S.) Entropy(5) = Z —piloga ps
i=1

vevaluas[A)

Gain(s, A)

D Cauin (S 5 wind)

LARA] Wi | Pha,
st Bt e
Wealhs QL.L*

Do Oudi ok, T, |
o ﬂ' =p i Bt vl |
o, Sty Bk | “%l‘-\ Vieads | Mo
D - L | v N - o
D 1 Wt | “3“ = "1 5*(0»—3;1‘1 F N 1
|
% Sonrny Mad [ | e | g
1 o (Gaim = 0-a® T W
S ' Pee— \l “sel etmal | Wealt | Yes e} 2
1
i v ag
i Sy RN w w.\ EES 5 - LI U Ll
fhes, . H‘ “_—; lI 75"( - -.__C‘\ \f g & ol
= oAk - 085y - .y s

Gain(Ssunny, Wind) = 77
o Weak [1+,27] 1\ C:\aln (c‘ . i

@ Strong [17,17]

n Ahmed Khan, htt
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Tree Construction: Second test / Node

Decision tree: second node decided

Lets grow tree!

Wik | Bl
&

!

:_\;-O_Mf‘_oin”u\_ I )
o, E‘.,““J | [ | \hlk | H=...k| S
D, By \ Wt |yl | i_\"wt\ win
b Sy BANA I L :l\f\ Weak | g
D 1 a;"“*“:_} | a0 ool | Weade | Yoo

| |
L e (B ok mesime

Gain(Ssunny, Temperature) = 0.571
Gain(Ssunny, Humidity) = 0.971

Gain(Ssunny, Wind) = 0.02

zwanl7/
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Tree Constructior cond . / Node

Decision tree: second node decided

Lets grow tree!

|| DuXlaal, ]!

T

Dan Oult Lonk, Vo, | Bl dity] Wied | Play
—f — t — = 4
-,‘). E‘“'\'\V\J Yt | \“"l'ﬂ | Wenk | No Coprny BNk Rairn,
5 \
‘D; Sumw et ‘ Wi 31,\ | e,—\u\,_a win /-./
| Far, o ,th* o {’b" 1‘1
N 3 _ 5 G| ; ;
IS ] BADA 3\" Weak | g LD, DD D % i
'h‘ - " 3 D T-ﬁ,ﬁ‘_, L,Cu.;m.—'..,
e | | a0 ool | Weade | Yoo \
™ [ | —_—
& | Summy g Woymal v Yeg | Prueek @
e l'— e l_a b //'\\
Wi, "
_ S
Gain(Ssunny, Temperature) = 0.571 1‘[“’. D'E {o7, = E
D, B, T, By

Gain(Ssunny, Humidity) = 0.971
Gain(Ssunny, Wind) = 0.02

Dr. Rizwan A
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ee Construction: Third Node / Test

DT Construction using IG Criterion: Third Node

What to do next?

i DuXlaal, ]!
= g
e
ot P
Surnsy Enesask =PRI
7

Dr. Rizwan A



Tree Construction: Third Node / Test

DT Construction using IG Criterion: Third Node

|| DuXlaal, ]!

" il //TE\\
-0

Enereask k

What to do next?

Calculate Gain for remaining attributes:
Gain(Sgrain, Wind)

Gain(SRrain, Temperature)

—t\ 1 1 . e
'_m:\ Bodtlont, Tewperaline Humeidi 14 Wi Hlay
= > 0 d

My R Wi sy &\ We ale, Yee

D Raim Coal Hrrvnal, “la_ale Yeu
D B Maala Canl o @ .—a\.ﬂ wln
! GE !

1= ‘r—’-.m oY L H it A ~law M weale }fc )
3 g .

A Coim ML W '3\\'\- =5 LR Ny
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Trained Decision Tree

Trained classification tree

@ c=2, play = Yes or No
° pt.p7]=[37,27]

Dr. Rizwan Ahmed Khar
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1ed Decision Tree

Trained classification tree

@ c=2, play = Yes or No
° pt.p7]=[37,27]

3 3 2 2
Entropy(S) = *{g log> g} - {g logs 5}

Entropy(S) = 0.4422 + 0.5288 = 0.9710
)

Dr. Rizwan Ahmed Khan, htt
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ined Decision Tree

ined classification tree

@ c=2, play = Yes or No
° pt.p7]=[37,27]

3 3 2 2
Entropy(S) = *{g log> g} - {g logs 5}

Entropy(S) = 0.4422 + 0.5288 = 0.9710
)

3 3 3
Gain(Srain, Wind) = 0.971 — 5 X {g loga 5 0}
2 2 2
5 x {0 — glogz g}
(10)

Gain(Sgain, Wind)=0.971

Dr. Rizwan Ahmed Khan, htt c /sit rk rizwanl?7/



ined Decision Tree

ined classification tree

@ c=2, play = Yes or No
° pt.p7]=[37,27]

3 3 2 2
Ent S)=—-{=1 -} —-{=1 -
ntropy(S) {5 logz o} —{; log2 o}

Entropy(S) = 0.4422 + 0.5288 = 0.9710
)

3 3 3
Gain(Srain, Wind) = 0.971 — 5 X {g loga 5 0}
2 2 2
——x{0—-=1 =
{ 5 0g2 5}

’ (10)

Gain(Sgain, Wind)=0.971

Dr. Rizwan Ahmed Khan, https

Learning

e.com/site/drkhanrizwanl7/

Decision Tree

1.“\1,'3)‘ B B, DD, D
| Wi A\_‘Il
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Function Approximation

Function Approximation

S 5\.5,1\1:3 B BB D @ We began problem with unknown target function
l ik Rl T iR f: X — Y that classifies whether to play tennis or
= — 1 not on a given day X.
““T"I‘A;ﬁa‘ N @ Now we have decision tree for f :<
~ Ty -

Yes Bjabto Sl § Outlook, Temperature, Humidity, Wind >— Y.

. Rizwan Ahmed Khan, htt ites le.com/site/drkhanrizwanl7/
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Weka
Play Tenni

outlook
/N
=sunny = overcast =rain
hurmidity yes (4.0) win
/N /N
= high = narmal =weak = strang

no (é ye\s(z.ﬂ) VCES (3/0) >(2.D)

*5

5ID3 Algorithm

Dr. Rizwan



Weka
Play Tenni

outlook i“ 5_1 \\
/R (ﬁ’*“, - .
. B . § §1_3 ’1-1
=sunny  =overcast  =rain S S

| ' R R TS T S WS e
/ ‘ \ 1 { AR O

hurnidity yes (4.0) wind “w_v\__&{;i]_ @ —
§ony Lwind |
a /N A <

=high = normal =weak = strong / \ W/f—n& Serag

/ \ / \ teel 1o vy \ \
B, By =5 e, D e} .2
no (3.0% yes (2.0 yes (3.0) no (2.0} i o B D N
o

Dr. Rizwan



Python

Play Tennis: Python

outlook_Overcasts 0.5
entropy = 0.961
samples = 13
value = (B, 8]
class = Yes

humidity_High= 0.5
anbropy = 0891
samples =9
valus =[5, 4]
class = No

wind_Weak = 0.5
enfropy = 1.0

su'nples=-2 2
value =[1. 1] value =[1, 1]
_ chass =Neo J | slass = Ne

6Result obtained with CART algorithm

CART stands for Classification
and Regression Trees.

“scikit-learn” uses an optimized
version of the CART algorithm.
CART constructs binary trees
(twoing criteria).

Unlike ID3, it uses pruning to
avoid over-fitting.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr



Python
Decision Tree: Python

2 import numpy as np

3 import pandas as pd

i from sklearn.model_selection import train_test_split
5 from sklearn.tree import DecisionTreeClassifier

¢ from sklearn.metrics import accuracy_score

7 from sklearn.tree import export_graphviz

s from sklearn.preprocessing import OneHotEncoder

o from IPython.display import Image

10 from sklearn.tree import export_graphviz

11 from pydotplus import graph_from_dot_data

13 df = pd.read_csv(’play_tennis.csv’)

15 # Before we do anything we’ll want to split our data into training and test
sets.

We’1ll accomplish this by first splitting the DataFrame into features (X) and

target (y), then passing X and y to the train_test_split() function to

split the data so that 70% of it is in the training set, and 307 of

it is in the testing set.

H* O H

function is used to access a g
r. Rizwan Ahmed Khan, htt e.com/site/drkhanr




Python
Decision Tree: Python

1 # loc() function is used to access a group of rows and columns by label(s) or
a boolean array

3 X = df .loc[:, [’outlook’, ’temp’, ’humidity’, ’wind’]]
1+ y = df.loc[:, ’play’]

¢ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.05,
7 random_state = 42)

o #Encode categorical data as numbers

10 #Since all of our data is currently categorical (recall that each column is
11 #in string format), we need to encode them as numbers. For this,

12 # we’ll use a handy helper object from sklearn’s preprocessing module

13 # called OneHotEncoder.

14 # One-hot encode the training data and show the resulting

15 # DataFrame with proper column names

16 ohe = OneHotEncoder ()

17 ohe.fit(X_train)

18 X_train_ohe = ohe.transform(X_train).toarray()

20 # Creating this DataFrame is not necessary its only to show the result of the
he

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl?7/
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Decision Tree: Python

# Creating this DataFrame is not necessary its only to show the result of the
ohe
ohe_df = pd.DataFrame(X_train_ohe,
columns=ohe.get_feature_names (X_train.columns))

# Create the classifier, fit it on the training data and make predictions on
the test set

clf = DecisionTreeClassifier(criterion=’entropy’)

clf . fit(X_train_ohe, y_train)

#DecisionTreeClassifier (class_weight=None, criterion=’entropy’, max_depth=None

s
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False,

# random_state=None, splitter=’best’)

#Plot the decision tree

#You can see what rules the tree learned by plotting this decision tree.

#To do this, you need to use additional packages such as pytdotplus

H* O HH

#Note: If you are run into errors while generating the plot,

# you probabl need to install python-graphviz in your machine
Dr. Rizwan Ahmed Khan, htt le.com /site/drkhanrizwanl7/ Decision T:




Python
Decision Tree: Python

# Create DOT data

dot_data = export_graphviz(clf, out_file=None,
feature_names=ohe_df.columns,
class_names=np.unique(y).astype(’str’),
filled=True, rounded=True, special_characters=True)

# Draw graph
graph = graph_from_dot_data(dot_data)

# Show graph
Image (graph.create_png())

X_test_ohe = ohe.transform(X_test)
y_preds = clf.predict(X_test_ohe)

print (’Accuracy: ’, accuracy_score(y_test, y_preds))

Dr. Rizwan Ahmed Khan, htt 5 e/drkhanrizwanl7/
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Code

Ocular Proof

kNN Classifier - classification (k= 1)
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Decision Boundary of SVM with RBF kernel
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Ocular Proof

Decision Boundary of Decision Tree
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Section Contents

@ Considerations
e Splitting measure / Statistical test
o Inductive Bias
@ Problem of Overfitting
@ Pruning
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Play Tennis: Python - Chénging Statistical T
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Entropy(S) = E —pi log2 pi

i=1

‘humidity_High = 0.5
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Splitting measur tical test

Play Tenn P’y{.‘h()l - Cl

c n

Entropy(S) = Z —pi loga pi Gini(S) =1 — Z(Pi)z (11)

i=1 i=1

{temg_Cool=05

enropy = 1.0
samples =2 samples = 2
value =[1. 1] ) value =1, 1] valu = [1, 1]

_class=he  J \__slass = Ho i _class: Mo

7/



Considerations

Splitting measure / al test

Play Tennis: Pytlidn - Clﬁnging Statistical Test

Please read more on different splitting measure / statistical test to understand which one
suits which type of datasets and what are benefits and drawbacks for different criteria.
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Inductive Bias

Inductive Bias of Learning Algorithm: ID3

@ As with other inductive learning methods, ID3 can be characterized as searching a space of hypotheses (set
of possible decision trees) for one that fits the training examples.

@ ID3 performs hill-climbing search through hypothesis space.
@ Hill climbing algorithm is a technique which is used for optimizing the mathematical problems i.e.
Traveling Salesman Problem (TSP).
@ It is also called greedy local search as it only looks to its good immediate neighbor state and not
beyond that.
© It does not backtrack the search space, as it does not remember the previous states.

Objective function Global maximun

shionlder Local maximum

“fat”™

local maxinmm

= State space
Current

state
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Inductive Bias of Learning Algorithm: ID3

@ The evaluation function that
guides this hill-climbing search
is information gain.

e By looking at the figure, we
can get insight into capabilities
and limitation of ID3 in terms
of search space and search
strategy.

Dr. Rizwan Ahmed Khan, htt



Inductive Bias

Inductive Bias of Learning Algorithm: ID3

Considerations

0000

e Every discrete valued function can be represented
by some decision tree.

e ID3 performs no backtracking. Once attribute is
selected at certain level of tree, it never
backtracks to reconsider choice.

o ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for one
that fits the training examples.

Which tree ID3 selects?

rizwanl?7/



Considerations

0000

Inductive Bias

Inductive Bias of Learning Algorithm: ID3

e Every discrete valued function can be represented
by some decision tree.

e ID3 performs no backtracking. Once attribute is
selected at certain level of tree, it never
backtracks to reconsider choice.

o ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for one
that fits the training examples.

Which tree ID3 selects?

It chooses first acceptable tree it encounters in hill
climbing (greedy) strategy (placing attribute with
highest information gain closest to the root), thus
favoring shorter trees.

Dr. Rizwan Ahmed Khan, https://si om /site/drkhanrizwanl?7/ Decision Tree
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Inductive Bias

Inductive Bias of Learning Algorithm: Occam’s razor
g AlZ

- Is ID3’s inductive bias favoring shorter trees a sound basis for generalization?
- Philosophers and Scientists have debated this question for centuries. William of Occam
(or William of Ockham, Ockham was the village in the English county of Surrey) was one
of the first to discuss this, so this bias often goes by the name of Occam’s razor.
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Inductive Bias

Inductive Bias of Learning Algorithm: Occam’s razor
g AlZ

Occam’s Razor

- Is ID3’s inductive bias favoring shorter trees a sound basis for generalization?
- Philosophers and Scientists have debated this question for centuries. William of Occam
(or William of Ockham, Ockham was the village in the English county of Surrey) was one
of the first to discuss this, so this bias often goes by the name of Occam’s razor.

Read more

Are shorter / simpler explanation always correct? Do read more and find issues with
Occam’s razor.
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Problem of
Stor ) 7 to grow tree?

Add Noise / just one example / feature vector:
< Outlook = Sunny, Temperature = Hot, Humidity = Normal, Wind = Strong, PlayTennis = No >

- Right side tree has added another level to cater for one (noise) example.
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Add Noise / just one example / feature vector:
< Outlook = Sunny, Temperature = Hot, Humidity = Normal, Wind = Strong, PlayTennis = No >

- Right side tree has added another level to cater for one (noise) example.

Slnok_Dvereasts OF
-l =0985

P
samples = 3
walug=[1.1]
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Overfitting

ID3 grows deeply enough to perfectly classify all training examples. This leads to problem
when there is noise in the data (refer previous slide). This also highlights the problem of
overfitting training data.




Considerations
0®@0000
Problem of Overfitting

Overfitting

ID3 grows deeply enough to perfectly classify all training examples. This leads to problem
when there is noise in the data (refer previous slide). This also highlights the problem of
overfitting training data.

Given a hypothesis space H, a hypothesis h € H is said to overfit the training data if there
exists alternative hypothesis h’ € H, such that h has smaller error than i’ over training
examples but A’ has smaller error than h over entire distribution of instances.

Dr. Rizwan Ahmed Khan, http i >.com/site/drkhanrizwanl7/ Decision Tree
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Overfitting

Overfit

Given a hypothesis space H, a
hypothesis h € H is said to
overfit the training data if there
exists alternative hypothesis

h' € H, such that h has smaller
error than h’ over training
examples but A’ has smaller
error than h over entire
distribution of instances.

Dr. Rizwan Ahmed Kk
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Problem of Overfitting

Overfitting Vs Underfitting

Is this a good fit?
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Problem of Overfitting

Overfitting Vs Underfitting

Is this a good fit?

\nrizwanl7/



Considerations

O00000e

Problem of Overfitting

Overfitting Vs Underfitting

Is this a good fit?

- Overfitting happens when a model memorizes its training data so well that it is learning
noise on top of the signal

rizwanl?7/
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Pruning

How to avoid overfitting in Decision Tr:

Two approaches:
@ Stop growing when data split not statistically significant.

o Grow full tree, then post-prune.
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siderations

Pruning

How to avoid overfitting in Decision Tr:

Two approaches:
@ Stop growing when data split not statistically significant.

o Grow full tree, then post-prune.

Pruning

Pruning reduces the size of decision trees by removing parts of the tree that do not provide
statistical significance to classify instances.

Dr. Rizwan Ahmed Kk
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Pruning

Reduced error pruning

o Split data into training and validation set

@ Do until further pruning is harmful:

@ Evaluate impact on validation set of pruning each possible node (plus those below it).
@ Greedily remove the one that most improves validation set accuracy.

@ Produces smallest version of most accurate subtree.
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siderations

Pruning

Reduced error pruning

o Split data into training and validation set

@ Do until further pruning is harmful:

@ Evaluate impact on validation set of pruning each possible node (plus those below it).
@ Greedily remove the one that most improves validation set accuracy.

@ Produces smallest version of most accurate subtree.

Dr. Rizwan Ahmed Kk



siderations

Pruning

How to avoid overfitting in Decision Tr:

How to select best tree:
@ Measure performance over training data

@ Measure performance over separate validation data set

Dr. Rizwan Ahmed Kk
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Support Vector Machines
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Reference Books

Reference Books

Reference books for this Module:

o Chapter 3: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4'" or latest
edition.
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Introduction

Reference Books

Reference Books

Reference books for this Module:

o Chapter 3: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4'" or latest
edition.

o Chapter 6 & 7: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.
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Introduction

Reference Books

Reference Books

Reference books for this Module:

o Chapter 3: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4'" or latest
edition.

o Chapter 6 & 7: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.

e Book Support Vector Machines Succinctly, Alexandre Kowalczyk, 2017.

rizwanl?7/ Support
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Intuition - Decision Boundary

How would you divide +ve examples from —wve examples?

+
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Intuition - Decision Boundary

How would you divide +ve examples from —wve examples?
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Seems infinite possibilities.
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Intuition - Decision Boundary

Intuition - Decision Boundary

How would you divide +ve examples from —wve examples?

+

Seems infinite possibilities.
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Intuition - Decision Boundary

How would you divide +ve examples from —wve examples?

1k

[ Seems infinite possibilities.
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Intuition - Decision Boundary

How would you divide +ve examples from —wve examples?
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'.II. Seems infinite possibilities
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Intuition - Decision Boundary

Intuition - Decision Boundary

h J
%

Tree / Perceptron k— Nearest Neighbor
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Intuition - Decision Boundary

Intuition - Decision Boundary

h J
%

Tree / Perceptron k— Nearest Neighbor Neural Network
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Intuition - Decision Boundary

Goal of SVM

\ e Goal of SVM is to identify an optimal
1 separating hyperplane which maximizes the
Ty margin between different classes of the

training data.

+

F

1
P

|
r
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Intuition - Decision Boundary

Goal of SVM

b
1 \ I I e Goal of SVM is to identify an optimal
1 1 separating hyperplane which maximizes the
\ | i af margin between different classes of the
I 'l training data.
- | l'.'. e SVM ¢ is completely based on Mathematical
| .II Optimization problem.
-5 |
|
d |
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Intuition - Decision Boundary

Goal of SVM

w—

B
—

F

+

1
P

|

A 4

e Goal of SVM is to identify an optimal
separating hyperplane which maximizes the
margin between different classes of the
training data.

e SVM ¢ is completely based on Mathematical
Optimization problem.

@ SVMs are linear classifiers (a line in 2

dimensions, a plane in 3 dimensions, a n — 1

dimensional hyperplane in n dimensions °.

®Cortes, C., Vapnik, V. Support-vector networks. Machine
Learning 20,

273-297 (1995). https://doi.org/10.1007/BF00994018
bcs276a SVM Review-Stanford University

com/site/drkh

rizwanl?7/ Support
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\ Widest Street Approach
b \ oo o Find such a line that maximizes the
- \ distance between +ve examples and —wve
N examples, while deciding decision
_ \\ boundary / surface.
\
N
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SVM - Decision Boundary
Intuition - Decision Boundary

N Widest Street Approach

kS o Find such a line that maximizes the
= \ distance between +ve examples and —ve
N examples, while deciding decision

S boundary / surface.

\ o What would the decision rule?
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Decision Rule
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SVM - Decision Boundary
Intuition - Decision Boundary

N Widest Street Approach

o o Find such a line that maximizes the
= \ distance between +ve examples and —ve
N examples, while deciding decision

S boundary / surface.

o What would the decision rule?
\ Median Line
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SVM - Decision Boundary
Decision Boundary

o Consider a vector ¥ that is perpendicular to

| N median / or gutter. We don’t know anything
\ + about its length yet.
\
\ ¢
= N\
N
\
- hY
o \

g"’ w \
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SVM - Decision Boundary

Decision Boundary

o Consider a vector ¥ that is perpendicular to
median / or gutter. We don’t know anything
about its length yet.

e Consider unknown point I/ and a vector points to
it.

Dr. Rizwan Ahmed Khan, htt
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SVM - Decision Boundary

Decision Boundary

o Consider a vector ¥ that is perpendicular to
b median / or gutter. We don’t know anything
U \ about its length yet.
N\ & e Consider unknown point I/ and a vector points to
b it.
\ @ We are interested to know whether this unknown
\ is either right side of street or left or we want to
know its label.

ﬂ/ w \ @ What we can do, project that to perpendicular
e vector. The further we go we can find that its on
the right side of the street.

Dr. Rizwan Ahmed Khan, https://si e.com/site/drkhanrizwanl?7/ Support Vector Machines
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SVM - Decision Boundary
Decision Boundary

o We are interested to know whether this unknown
is either right side of street or left or we want to

N & know its label.
u s e What we can do, project U to vector W which is
\ . . .
f \ + perpendicular median line. The further we go, we
= \ can find that its on the right side of the street.
N
\
- hY
. \
- k
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SVM - Decision Boundary
Decision Boundary

o We are interested to know whether this unknown
is either right side of street or left or we want to

N & know its label.
u s e What we can do, project U to vector W which is
\ . . .
f \ + perpendicular median line. The further we go, we
= \ can find that its on the right side of the street.
N
N\ V. >
N \ w.U>C
. \
- .
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SVM - Decision Boundary

Decision Boundary

L
A +
U s
R
ey b, ™
\
N
- N
0 \
v °

o We are interested to know whether this unknown
is either right side of street or left or we want to
know its label.

e What we can do, project U to vector W which is
perpendicular median line. The further we go, we
can find that its on the right side of the street.

W.U>C
e Dot product is projecting onto 17. The bigger the
projection is then it will cross median line and

then unknown vector can be labeled as +wve
sample.

Dr. Rizwan Ahmed Khan, https:
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ﬁ\ % 1 @ Then, without loss of generality we can say:
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SVM - Decision Boundary

Decision Boundary

@ Then, without loss of generality we can say:

W-U+b>0 THEN +ve (1)

This is Decision Rule.
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SVM - Decision Boundary

Decision Boundary

@ Then, without loss of generality we can say:

W-U+b>0 THEN +ve (1)

This is Decision Rule.

o We don’t know (yet) what constant b, C' = —b, to
use and what W to use either.

Dr. Rizwan Ahmed Khan, htt
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Constraints

| N e We just know that 1/ needs to be perpendicular
AR + to the median line of the street.
\

\ +

= N\
N
\
- hY
S \

w \
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Constraints

| N e We just know that 1/ needs to be perpendicular
AR + to the median line of the street.
N + e But then there many W, perpendicular to the
\ b N\ median line of the street, any length is not fixed
\ yet.
N e What should we do?
- hY
S \
w \
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Constraints

| N e We just know that 1/ needs to be perpendicular
AR + to the median line of the street.
N + e But then there many W, perpendicular to the
\ b N\ median line of the street, any length is not fixed
\ yet.
N e What should we do?

//" A \ @ So we need to put constraints to find particular

W \ W and b that maximizes width of the street

L (separation between +4 and —).

Dr. Rizwan Ahmed Khan, https://si e.com/site/drkhanrizwanl?7/ Support Vector Machines
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Constraints

U\ % . i e Putting constraints to calculate 17 and b.
% _ _
\ + WXy +b>1 {for +ve samples}  (2)
= N\
\ _ _
\ W-.X_+4+b< -1 {for-vesamples} (3)
ke N
S \
w \

1Did you see similarity with “Perceptron” decision rule?
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[e]e] le]e]e]

Constraints

U\ % . i e Putting constraints to calculate 17 and b.
% _ _
\ + WXy +b>1 {for +ve samples}  (2)
= N\
\ _ _
\ W-.X_+4+b< -1 {for-vesamples} (3)
ke N
J//_’ \ So imposing separation of -1 to +1 for —ve and
w \ ~+ve samples (maximizing margin).
*1 .

1Did you see similarity with “Perceptron” decision rule?
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PR Proof:
U\\ + Q@ for +wve samples:
\\ "
) \\ 1X(W'Xl+b)21 (5)
\ o
S \\ =W-X,+0b)>1
e .
Same as Eq. 2.

e Equation 2 and 3 can be
written / combined as:

y(W-X;+b)>1  (4)

where:
- y; is +1 for +ve samples.
- y; is —1 for —wve samples.
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Constraints

e Equation 2 and 3 can be
written / combined as:

y(W- X, +b)>1  (4)
where:
- y; is +1 for +ve samples.
- y; is —1 for —ve samples.

Proof:

Q@ for +wve samples:

Ix (W-X;+b)>1 )
= (W-X;+0b)>1
Same as Eq. 2.
© for —wve samples:
—1X(W°X¢+b)21
:>—W'Xi—b21 (6)
:>V_V Xi—l—bg—l

Same as Eq. 3.

Dr. Rizwan Ahmed Khan, https:/
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Constraints

4N
Y +
U \\ Equation 4 can be written as:
+
\\ yl(WXZ-i-b)Zl (7)
//1 1 \\ yz(W-Xz—l-b)—lZO
7] \

Additional constraint:
Back to equation 4:

yi(W - X; +0) > 1 y(W-X;+b)—1=0
where: {for samples (X;) in gutter or at boundary / margin}
- y; is +1 for +ve samples. (8)

- y; is —1 for —wve samples.

Dr. Rizwan Ahmed Khan, https://si e.com/site/drkhanrizwanl?7/ Support Vector Machines



Additional constraint:

- S yi(W-X;+b)—1=0

\ {for samples (X;) in gutter or at boundary / margin}
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4 N
N\
> N ¥ Additional constraint:
. @
@ \\ gy (W-X;+b)—1=0
\ {for samples (X;) in gutter or at boundary / margin}
@ b \ These samples are also called as Support Vectors.
A Y
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Constraints

[ Jelele]e}

/w boundary lin

margin / gutters

e We are trying to arrange line W and b in a such a
way that it maximizes width of the street
(separation between +¢ and —).

1pport V



Constraints

Distance b/w boundary lines

Distance b/w ary lines / margin / gutters

e We are trying to arrange line W and b in a such a
way that it maximizes width of the street
(separation between +¢ and —).

o Boundary lines are parallel to one another, we
can pick points on these lines to define width of
the street.

v
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Constraints

[ Jelele]e}

Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

e We are trying to arrange line W and b in a such a
way that it maximizes width of the street
(separation between +¢ and —).

o Boundary lines are parallel to one another, we
can pick points on these lines to define width of
the street.

o Width of the street is distance b/w the gutters /
boundary lines.

v
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Constraints

[ Jelele]e}

Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

e We are trying to arrange line W and b in a such a
way that it maximizes width of the street
(separation between +¢ and —).

o Boundary lines are parallel to one another, we
can pick points on these lines to define width of
the street.

o Width of the street is distance b/w the gutters /
boundary lines.

o Difference of two vectors can give us width of the
street:

(X —X)

v

/

Dr. Rizwan Ahmed Khan, htt .com/site/drkhanrizwanl?7/ Support Vector Mack



Constraints

Distance b/w boundary lines

Distance b/w ary lines / margin / gutters

o Width of street:

= 6= X) [y

(9)

- Where H% is a unit vector (1) perpendicular

/ normal to gutter or boundary line.
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Constraints

Distance b/w boundary lines

Distance b/w ary lines / margin / gutters

o Width of street:

= 6= X) [y

(9)

- Where H% is a unit vector (1) perpendicular

/ normal to gutter or boundary line.

- In other words, projection of difference vector
on to unit vector (W) will be width of the street
(difference in the direction of W vector).

Dr. Rizwan Ahmed Khan, htt 5 s r nrizwanl?7/



Constraints

[e] le]e]e}

Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

o Width of street:

= 6= X) [y

(9)

- Where H% is a unit vector (1) perpendicular

/ normal to gutter or boundary line.

- In other words, projection of difference vector
on to unit vector (W) will be width of the street
(difference in the direction of W vector).

> - It’s a dot product, so its scalar, width of the
street.

/
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Constraints
[e]e] le]e}

Distance b/w boundary lir

margin / gutters

From Equation 8 we know that, samples in a gutter
(enforcing constraint) =

yi(W - X;4+b)—1=0
So,

o for +ve sample:

W-X;=1-b (10)

o for —ve sample:

v

Width of street: o
-W.-X;—b—-1=0

n i 11
W WX, =1+b ()
W1

=Xy —X)-

Dr. Rizwan Ahmed Khan, http e.com/site/drkhanrizwanl7/ Support Vector Mach



Constraints

Distance b/w boundary lines

Distance b/w ary lines / margin / gutters

Width of street:

_ _ W
X, —X_)e ——
o = X) T

1

W]

(12)
WX, - W-X_ -

Putting back values from Equations 10 and 11 into Equation 12.

2
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Constraints
[e]e]ee] }

Distance b/w boundary lines

Distance b/w gutter

Width of street:

2
Width = ——
W

- SVM tries to maximize this width, to have
maximum possible separation between samples of
different classes.

1
Width = MaX”WH = Min||W|| :>Min§||W\|2

Dr. Rizwan Ahmed Khan, htt
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Constraints
[e]e]ee] }

Distance b/w boundary lines

Distance b/w gutter

Width of street:

2
Width = ——
W

- SVM tries to maximize this width, to have

maximum possible separation between samples of
different classes.

1
Width = MaX”WH = Min||W|| :>Min§||W\|2

1
Width = Min§\|W\|2 (14)

Dr. Rizwan Ahmed Khan, htt



Constraints
o0

Summary

S ummary

Stages in the development:

@ Decision Rule: o
W-.-U+4+b>0 THEN +ve

@ Projection of W on U and put a constraint then it should be > 41 for +ve samples
and < —1 for —ve samples.

WX, +b>1 {for +ve samples}

W-X_+b< -1 {for-ve samples}

@ Additional constraint for samples in gutter

yi(W'Xi,‘i’b)*l:O

© Then we discovered we wish to maximize / minimize this expression:

1
Width = Min§|\W|\2

Dr. Rizwan Ahmed Khan, https://sit e.com/site/drkhanrizwanl7/ Support Vector Machines



Constraints

at’s next?

@ We have now transformed the problem into a form that can be efficiently solved.

1
Width = Min§|\W|\2

@ The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanr:



Constraints

at’s next?

@ We have now transformed the problem into a form that can be efficiently solved.

1
Width = Min§|\W|\2

@ The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.

e How can we go forward (QUIZ):
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Constraints

at’s next?

@ We have now transformed the problem into a form that can be efficiently solved.

1
Width = Min§|\W|\2
@ The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.

e How can we go forward (QUIZ):
@ Laplace
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Constraints

at’s next?

@ We have now transformed the problem into a form that can be efficiently solved.

1
Width = Min§|\W|\2

@ The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.

e How can we go forward (QUIZ):

@ Laplace
© Legendre
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Constraints

at’s next?

@ We have now transformed the problem into a form that can be efficiently solved.

1
Width = Min§|\W|\2

@ The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.

e How can we go forward (QUIZ):

@ Laplace
© Legendre
@ Lagrange

Dr. Rizwan Ahmed Khan, htt
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Section Contents

@ Optimal Margin Classifier
o Summary
@ Ocular proof
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Optimal Margin Classifier
O®@000000

Lagrange Multiplier

o Lagrange multipliers provides a way for finding extremum of a function subject to
equality constraints i.e., subject to the condition that one or more equations have to
be satisfied exactly by the chosen values of the variables.

o The great advantage of this method is that it allows the optimization to be solved
without explicit parameterization in terms of the constraints.

@ Method can be summarized as follows: in order to find the stationary points of a
function f(x) subjected to the equality constraint g(z) = 0, form the Lagrangian
function:

L(z,A) = f(x) = Ag(x) (15)

where A = Lagrange multiplier

2Refer Section 8 to see disscussion on intuition of Lagrange multiplier

Dr. Rizwan Ahmed Khan, https://si le.com/site/drkhanrizwanl7/ Support Vector Machines



Optimal Ma.
[e]e] lelele]ele)

Lagrange Multiplier

- Taking Equation 15 and writing function that we are trying to find extremum.

1
L= §|\W||2 - Z a;(write down constraints)
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Optimal Margin Classifier
[e]e] le]ele]ele]

Lagrange Multiplier

- Taking Equation 15 and writing function that we are trying to find extremum.
1
L= §|\W||2 - Z a;(write down constraints)
- Constraint is given in Equation 8
1 o
L=glWI* = e [ys(W - Xi +b) ~ 1] (16)

where «; = Lagrange multiplier
«; will be non-zero for vectors connected with samples in gutter, otherwise it will be zero.

rizwanl?7/ Support
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[e]e]e] lelelele)

Find Extremum

- What needs to be done to find extremum of Equation 16 7

1 A X
L= §|\W|\2 = i [ (W X; +b) — 1]

Dr. Rizwan ned Khan, htt



Optimal Margin Cle
[e]e]e] lelelele)

Find Extremum

- What needs to be done to find extremum of Equation 16 7
1 AN
L= §|\W|\2 > i [p(W - X +b) — 1]

- Take derivative and set it equal to zero.

Dr. Rizwan ned Khan, htt



Optimal Margin Cle
[e]e]e] lelelele)

Find Extremum

- What needs to be done to find extremum of Equation 16 7
1 A4 Y
L= §HW|‘2 - Zai [yi(W - X; +b) — 1]
- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W?”:
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Optimal Margin Cle
[e]e]e] lelelele)

Find Extremum

- What needs to be done to find extremum of Equation 16 7
1 A4 Y
L= §HW|‘2 - Zai [yi(W - X; +b) — 1]
- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W?”:

oL - _ ) _
W W — Z%%Xz =0—= W= Z ;Y X (17)
Where «; is a scalar, y; is +1 or -1 and X; is sample vector. What this equation

signifies?

Dr. Rizwan Ahmed Kk




Optimal Margin Classifier
[e]e]e] lelelele)

Find Extremum

- What needs to be done to find extremum of Equation 16 7
1 A4 Y
L= §HW|‘2 - Zai [yi(W - X; +b) — 1]
- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W?”:

oL - _ ) _
Where «; is a scalar, y; is +1 or -1 and X; is sample vector. What this equation

signifies?

hat this equation signifies

Decision vector W is linear sum of some samples. Some, in the sense that a; will be
non-zero for few vectors (connected with samples in gutter).

Dr. Rizwan Ahmed Khan, htt

rizwanl?7/ Support



Optimal Margin Cle
[e]e]e]e] lelele)

Find Extremum

- Back to Equation 16. Any other variable that may vary?

1 A
L= §HWH *Z@i lyi(W + X; +b) — 1]

Dr. Rizwan ned Khan, htt com/site/dr r ) Support V
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[e]e]e]e] lelele)

Find Extremum

- Back to Equation 16. Any other variable that may vary?
1 9 - =
L:§HWH *Z@i lyi(W + X; +b) — 1]

- Take derivative w.r.t. “b”:

Dr. Rizwan ned Khan, htt com/site/dr r ) Support V



Optimal Margin Cle
[e]e]e]e] lelele)

Find Extremum

- Back to Equation 16. Any other variable that may vary?
1 9 - =
L:§HWH *Z@i lyi(W + X; +b) — 1]

- Take derivative w.r.t. “b”:
oL
%__Zaiyizoizaﬂh—o (18)
1 1

Dr. Rizwan Ahmed Kk
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Find Extremum

Plug back value of W from Equation 17 to Equation 16.

W=> ayX;

w

2= i [y (W - X+ b) — 1]

i

1
L=
2

Dr. Rizwan ned Khan, htt com/site/dr r ) Support V
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Find Extremum

Plug back value of W from Equation 17 to Equation 16.
W=> ayX;
1 N
= 5”” II* = Z%‘ ly:(W - X; +b) — 1]
Z azyz z Z a]y]
Zo‘ly% i ZO‘J% (19)
—Z iyib + Z Q

r. Rizwan Ahmed Khan, https:// ».com/site/drkhanrizwan17/ Support Vector Machines
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Find Extremum

Term shown in red in Equation 19 = 0 , refer Equation 18

Now arrange and re-write Lagrangian Equation 19

zwanl?/ Support V



Optimal Ma.
00000080

Find Extremum

Term shown in red in Equation 19 = 0 , refer Equation 18

Now arrange and re-write Lagrangian Equation 19

L= ZOQ — % Z Zaiocjyiyj)?i . Xj (20)
% i

zwanl7/



Optimal Margin Cle
00000080

Find Extremum

Term shown in red in Equation 19 = 0 , refer Equation 18

Now arrange and re-write Lagrangian Equation 19

L= ZOQ — % Z Zai(xjyiyj)?i . Xj (20)
% i

hat this equation signifies

This optimization / finding extremum of a function depends only on dot products of pairs
of samples (dual problem).

Dr. Rizwan Ahmed Kk
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Decision Rule

Recall Equation 1, related to decision rule:
W-.U+b>0 THEN +4ve

Now, we can update this Equation, with derived value of W, refer Equation 17:

Dr. Rizwan ned Khan, htt com/site/dr r / Support V



Optimal Margin Classifier
O000000e

Decision Rule

Recall Equation 1, related to decision rule:
W-U+b>0 THEN +ve
Now, we can update this Equation, with derived value of W, refer Equation 17:

> aiyiX;-U+b>0 THEN 4ve (21)
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Optimal Margin Classifier
0000000e

Decision Rule

Recall Equation 1, related to decision rule:
W-U+b>0 THEN +ve
Now, we can update this Equation, with derived value of W, refer Equation 17:

> aiyiX;-U+b>0 THEN 4ve (21)

What this equation signifies?

Decision rule depends again only on dot product of unknown vector and sample vector.

rizwanl?7/ Support
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Summary

S ummary

uminar

@ Recall Equation 13, Width = Maxﬁ, while satisfying constraints, given by: classify

training examples correctly v;(W - X; +b) — 1 > 0, Vi.
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Optimal Margin Clz

@00
Summary

S ummary

uminar

@ Recall Equation 13, Width = Maxﬁ, while satisfying constraints, given by: classify

training examples correctly v;(W - X; +b) — 1 > 0, Vi.

o Then, we transformed above equation into equivalent problem (which is easier to
solve), Equation 14, Width = Min%HWHZ.

e Why its easier?
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Optimal Margin Clz
@00

Summary

S ummary

uminar

@ Recall Equation 13, Width = Maxﬁ, while satisfying constraints, given by: classify

training examples correctly v;(W - X; +b) — 1 > 0, Vi.

o Then, we transformed above equation into equivalent problem (which is easier to
solve), Equation 14, Width = Min%HWHZ.

e Why its easier?

o Actually, this is easier to solve as when we have optimization problem in the form
given above while satisfying constraints, is called quadratic programming (QP)
problem. QP is well known field and it’s solution is easier to find.
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Optimal Margin Classifier

Summary

S ummary

1mmary

@ Recall Equation 13, Width = Maxﬁ, while satisfying constraints, given by: classify
training examples correctly v;(W - X; +b) — 1 > 0, Vi.

o Then, we transformed above equation into equivalent problem (which is easier to
solve), Equation 14, Width = Min||W|.

e Why its easier?

o Actually, this is easier to solve as when we have optimization problem in the form
given above while satisfying constraints, is called quadratic programming (QP)
problem. QP is well known field and it’s solution is easier to find.

o Optimization problems of this form have convex function and thus unique solution is
always guaranteed.

Ahmed Khan, s rk 7 Support Vector Machines



Optimal Margi
@00

Summary

S ummary

@ Recall Equation 13, Width = Maxﬁ, while satisfying constraints, given by: classify
training examples correctly v;(W - X; +b) — 1 > 0, Vi.

o Then, we transformed above equation into equivalent problem (which is easier to
solve), Equation 14, Width = Min||W|.

e Why its easier?

o Actually, this is easier to solve as when we have optimization problem in the form
given above while satisfying constraints, is called quadratic programming (QP)
problem. QP is well known field and it’s solution is easier to find.

o Optimization problems of this form have convex function and thus unique solution is
always guaranteed.

o Quadratic programming problem form: L =13, a; — >, > iy Xi - X

Dr. Rizwan Ahmed Khan, ht om /site/drkhanr: Support or Machines
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Summary

S ummary

o Quadratic programming problem form: L =3, a; — >, > iy Xi - X
While, W = Zi Oliini and
Zi o;y; =0
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Summary

S ummary

e Quadratic programming problem form: L =} o; — %ZZ Zj aiajyiyj)zi . X'j
While, W =", a;y; X; and

Zi a;y; =0
t N
. +
\\ It turns out most of «; are zeros, which implies that
.t only few vectors (with non-zero ;) matters in finding
- \\ solution / decision boundary while most of vectors do
\ N N not. Thus, building a machine with few support
R vectors (with non-zero «;).
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Optimal M

Summary

S ummary

e Quadratic programming problem form: L =} o; — %ZZ Zj aiajyiyj)zi . X'j
While, W =", a;y; X; and

Zi oy, =0
4 N
. +
\\ It turns out most of «; are zeros, which implies that
@ \\ @ only few vectors (with non-zero «;) matters in finding
5 solution / decision boundary while most of vectors do
@ b " not. Thus, building a machine with few support
N vectors (with non-zero o).
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Summary

S ummary

o Quadratic programming problem form: L =3, a; — >, > iy Xi - X
While, W =", a;y; X; and
Zi o;y; =0

o This optimization / finding extremum of a function depends only on dot products of

pairs of samples , (XiT - X;). Note®.
o Analyzing : X, - X ; , What it actually means?
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Summary

S ummary

Optimal Margin Clz

o Quadratic programming problem form: L =3, a; — >, > iy Xi - X
While, W = ", a,;y; X; and
Zi o;y; =0
o This optimization / finding extremum of a function depends only on dot products of
pairs of samples (XiT . Xj). Note®.
o Analyzing : X, - X ; , What it actually means?
@ Its a dot product, projection of one on another.

@ It is a measure of similarity between two non-zero vectors. If vectors are orthogonal
value will be zero, and if vector in opposite direction value will be —ve.

®Transpose is used to make matrix dimensions compatible

Dr.
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Ocular proof

Ocular proof

SVM - Max. margin shown in solid line

10 [ X LY

What to do here? Data is not
linearly separable!
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o Kernel Trick

© Kernel Trick

@ Problem Statement
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Problem Statement

Non-linearly

SN
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Kernel Trick

Problem Statement

Non-linearly sepa
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Kernel Trick

Problem Statement

Non-linearly separable

SN
\ + 4+
N
\ + +
- \
- . - *+ N
SN = \
\ + 4 - \ N
\ - \
\ + + = \
\ Y
- +
- \
+
- A . . . .
- . T e What to do, since SVM find linear classification
- TN ¢ boundary? SVMs are linear classifiers (a line in 2
- N dimensions, a plane in 3 dimensions, a n — 1

dimensional hyperplane in n dimensions.

@ Some probabilities:

Dr. Rizwan Ahmed Khan, htt
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Kernel Trick

Problem Statement

Non-linearly separable

SN
\ + 4+
N
\ + +
- \
- . - *+ N
SN = \
\ + 4 - \ N
\ - \
\ + + = \
\ Y
- +
- \
+
- A . . . .
- . T e What to do, since SVM find linear classification
- TN ¢ boundary? SVMs are linear classifiers (a line in 2
- N dimensions, a plane in 3 dimensions, a n — 1

dimensional hyperplane in n dimensions.
@ Some probabilities:
@ Probably its a outlier!
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Kernel Trick

Problem Statement

Non-linearly separable

SN
\ + 4+
N
\ + +
- \
- . - *+ N
SN = \
\ + 4 - \ N
\ - \
\ + + = \
\ Y
- +
- \
+
- A . . . .
- . T e What to do, since SVM find linear classification
- TN ¢ boundary? SVMs are linear classifiers (a line in 2
- N dimensions, a plane in 3 dimensions, a n — 1

dimensional hyperplane in n dimensions.
@ Some probabilities:
@ Probably its a outlier!
@ or find linear decision boundary while minimizing
some cost function that penalizes for training error.
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Kernel Trick

Problem Statement

Non-linearly separable

- In previous example, one
example seemed outlier and
solution was proposed, but in
this case it is impossible to
come up with linear classifier.
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Kernel Trick

Problem Statement

Non-linearly separable

o As it seems impossible to use SVM / linear classifier,

- should we just remove SVM from machine learning
"+ 4+ + - toolkit?
- T+l
- + +t.

- In previous example, one
example seemed outlier and
solution was proposed, but in
this case it is impossible to
come up with linear classifier.
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Problem Statement

Non-linearly separable

o As it seems impossible to use SVM / linear classifier,
should we just remove SVM from machine learning

"+ +' - toolkit?
- + +++1- - @ No, there is a little trick that can be done to
-+ 4

- transform data (change the data point without
changing the data point) in a such away that it
become linearly separable.

- In previous example, one
example seemed outlier and
solution was proposed, but in
this case it is impossible to
come up with linear classifier.
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Kernel Trick
oe

Problem Statement

Non-linearly separable

o As it seems impossible to use SVM / linear classifier,
should we just remove SVM from machine learning

"+ +' - toolkit?
- + +++1- - @ No, there is a little trick that can be done to
+ +7T.

transform data (change the data point without
changing the data point) in a such away that it
become linearly separable.

@ Define function ¢ that will take data point and

change its dimension (in our example there are two
- In previous example, one dimension).

example seemed outlier and
solution was proposed, but in
this case it is impossible to
come up with linear classifier.
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Problem Sta
Non-linearly separable

o As it seems impossible to use SVM / linear classifier,
should we just remove SVM from machine learning

"+ +' - toolkit?
- + +++I - @ No, there is a little trick that can be done to
-+ 4

- transform data (change the data point without
changing the data point) in a such away that it
become linearly separable.

@ Define function ¢ that will take data point and

change its dimension (in our example there are two
- In previous example, one dimension).

example seemed outlier and
- ] o For example, we can transform data from our example
solution was proposed, but in . - S
thi i i Hlo ¢ in three dimensions using;:
is case it is impossible to B(z) =< 22,22, 2z 25 >

come up with linear classifier. . . .
where: z; and x, are dimension of same vector
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®000000
Kernel Trick

Intuition

o There is a little trick that
can be done to transform
data (change the data
point without changing the
data point) in a such away
that it become linearly
separable.

@ Define function ® that will
take data point and change
its dimension.

Decision surface

kernel

Video showing XOR data from 2D to 3D. %

Shttps://youtu.be/5KIYu3zKvqo
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Non-linearly

o &(z) =< 22,23,V 2r120 >

- - @ There isn’t any new information!
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Kernel Trick

Non-linearly separable

o &(z) =< 22,23,V 2r120 >

== _ @ There isn’t any new information!
- ++++++ - e Reminder: Quadratic programming problem form:
- 4+ - 1 _ r
I L=3%ai— 53020 0ioyyiy; Xi - X;
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0O@00000

Kernel Trick

Non-linearly separable

o &(z) =< 22,23,V 2r120 >
== _ @ There isn’t any new information!
- ++++++ - e Reminder: Quadratic programming problem form:
R P L=3ai— 55,0 0ciayyiy; Xi - X
T .- e Reminder: This optimization / finding extremum of a
function depends only on dot products of pairs of samples,

given by XZ-T . Xj.
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Kernel Trick

Non-linearly separable

o &(z) =< 22,23,V 2r120 >
== _ @ There isn’t any new information!
- ++++++ - e Reminder: Quadratic programming problem form:
R P L=3ai— 55,0 0ciayyiy; Xi - X
T .- e Reminder: This optimization / finding extremum of a
function dependb only on dot products of pairs of samples,

given by X X
o What will be ®(X;)T - ®(X;) for a given ®(x)
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Kernel Trick

Non-linearly separable

@ QUIZ: What will be
®(X;)T - ®(X;) for a given
P(x) ?
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Kernel Trick

Non-linearly separable

o Consider X; as  and X as y, for the ease of notations:

' ®(x) B(y) =
R
- 4+
- + +t.

@ QUIZ: What will be
®(X;)T - ®(X;) for a given
P(x) ?
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Kernel Trick

Non-linearly separable

o Consider X; as  and X as y, for the ease of notations:

} o) D(y) =
= — T
- +++ + - < x%aif%»\f?xﬂtz > < y%7y§7 \/§y1y2 >
- + ++ + . 2, 2 2 2 29
- 4+ 4+t TIYT + 2512201Y2 + T2Y5 (22)
T a= (z1y1 +$2y2)2

@ QUIZ: What will be
®(X;)T - ®(X;) for a given
P(x) ?
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Kernel Trick

Non-linearly separable

o Consider X; as  and X as y, for the ease of notations:

} o) D(y) =
= — T
- +++ + - < x%aif%»\f?xﬂtz > < y%7y§7 \/§y1y2 >
- + ++ + . 2, 2 2 2 29
- 4+ 4+t TIYT + 2512201Y2 + T2Y5 (22)
T a= (z1y1 +$2y2)2

@ or this is equal to:

@ QUIZ: What will be
®(X;)T - ®(X;) for a given
P(x) ?

(«"y)’ (23)
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Kernel Trick

Non-linearly separable

o Consider X; as  and X as y, for the ease of notations:

} o) D(y) =
= — T
- +++ + - < x%aif%»\f?xﬂtz > < y%7y§7 \/§y1y2 >
- + ++ + . 2, 2 2 2 29
- 4+ 4+t TIYT + 2512201Y2 + T2Y5 (22)
T a= (z1y1 +$2y2)2

@ or this is equal to:

@ QUIZ: What will be
®(X;)T - ®(X;) for a given
P(x) ?

(«"y)’ (23)

@ So, dot product becomes square of last dot product.

Dr. Rizwan Ahmed Khan, ht om /site/drkhanr: Support Vector Machines



Kernel Trick
0O00@000

Kernel Trick
Kernel Trick

e Refer Equation 23, its particular form of equation of circle
in matrix form.

I
- 4+
- + +t.
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Kernel Trick
0O00@000

R
- 444
- +++

e Refer Equation 23, its particular form of equation of circle
in matrix form.

— T —
e Somehow, the notion of similarity (X, - X}) is
transformed to notion of circle where some points remain
inside the circle while others don’t.




Kernel Trick
0O00@000

Kernel Trick
Kernel Trick

o Refer Equation 23, its particular form of equation of circle
in matrix form.
— T —
e Somehow, the notion of similarity (X, - X}) is
transformed to notion of circle where some points remain
inside the circle while others don’t.

e So, data got transformed from 2D to 3D (without any
additional information) in such a way that now it can be
separated by hyperplane.
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Kernel Trick
0O00@000

Kernel Trick
Kernel Trick

o Refer Equation 23, its particular form of equation of circle
in matrix form.
— T —
e Somehow, the notion of similarity (X, - X}) is
transformed to notion of circle where some points remain
inside the circle while others don’t.

e So, data got transformed from 2D to 3D (without any
additional information) in such a way that now it can be
separated by hyperplane.

o This little trick of projecting data into higher dimension
space to make it separable is called Kernel trick.
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Kernel Trick
Kernel Trick

o Coming back to this equation:
Quadratic programming problem form:

L= Zai — % Z Zaiajyiiji
i i

=

and Equation 23:
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Kernel Trick
Kernel Trick

Kernel Trick

0O000e00

o Coming back to this equation:
Quadratic programming problem form:

L = Zai — %ZZalajylyJXl . X]
% i J

and Equation 23:
(7y)"

e This signifies that data points don’t need to be
transformed separately, but rather its just a dot product
squared! So we actually never used o.

r. Rizwan Ahmed Khan, htt
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Kernel Trick
0O000e00

Kernel ick

Kernel Trick

o Coming back to this equation:
Quadratic programming problem form:

L = Zai — %ZZalajylyJXl . X]
% i J

and Equation 23:
(7y)"

i e This signifies that data points don’t need to be
transformed separately, but rather its just a dot product
squared! So we actually never used o.

o That’s the beauty of mathematics and SVM.

Dr. Rizwan Ahmed Khan, ht om /site/drkhanr: Support Vector Machines
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Kernel Trick
Kernel Trick

(2

1 -
L:Zai—§z ' o0y X - X
i J
@ This equation can now be written as:
1 o
L:Zaif §Zchi(yjy,,;yjK(Xi-Xj) (24)
7 i J

Where K is Kernel function, that takes X; and X; and returns scalar, the inner
product (generalization of the dot product) between two points in a suitable feature
space.

o Kernel functions allow to inject domain knowledge into classifier.

Dr.

Rizwan Ahmed Khan, htt e.com/site/dr
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Kernel Trick

Kernel Trick
000000

Dr.

o Gaussian Kernel

Polynomial

Neural-net inspired!

o Radial Basis

Rizwan Ahmed Khan, htt

—llx;—x; 1%

K(xi,x;) =€ 2?

K (xi,%;) = (%)%, +¢)P

K(x,x;) = tanh(kx;x; — 0)"

K(xi,x;) = eOlxi=x11%)
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Section Contents

© Python
@ Code

@ Results
@ XOR problem visualization
o Conclusion
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Code

Python for SVM

1 from __future__ import division, print_function
2 import numpy as np

3 from sklearn import datasets, svm

4 #from sklearn.cross_validation import train_test_split
5 from sklearn.model_selection import train_test_split

¢ import matplotlib.pyplot as plt

s from sklearn.tree import DecisionTreeClassifier

o from sklearn. ensemble import RandomForestClassifier , BaggingClassifier,
AdaBoostClassifier, VotingClassifier

iris = datasets.load_iris ()

12 X = iris.datal[:,:2] # First two features, can take last two using [:,2:]

y = iris.target

15 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=42)

Dr. Rizwan Ahmed Khan, htt le.com/ /drkhanrizwanl7/
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Code

Python for SVM

1 def evaluate_on_test_data(model=None):

2 predictions = model.predict(X_test)

3 correct_classifications = 0

] for i in range(len(y_test)):

5 if predictions[i] == y_test[i]:

6 correct_classifications += 1

7 accuracy = 100*correct_classifications/len(y_test) #Accuracy as a
percentage

8 return accuracy

10 kernels = (’linear’,’poly’,’rbf’)

11 accuracies = []

12 for index, kernel in enumerate (kernels):
13 model = svm.SVC(kernel=kernel)

14 model.fit (X_train, y_train)

15 acc = evaluate_on_test_data (model)

16 accuracies.append (acc)

17 print ("{} % Test accuracy obtained with kernel = {}".format (acc, kernel))

r. Rizwan Ahmed Khan, htt 5 e/drkhanrizwanl7/
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Python for SVM

Python
[e]e] o]

#Train SVMs with different kernels

svc = svm.SVC(kernel=’linear’).fit(X_train, y_train)

rbf_svc = svm.SVC(kernel=’rbf’, gamma=0.7).fit(X_train, y_train)
poly_svc = svm.SVC(kernel=’poly’, degree=9).fit(X_train, y_train)

#Create a mesh to plot in

h = .02 # step size in the mesh

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

XX, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange (y_min, y_max, h))

#Define title for the plots
titles = [’SVM with linear kernel’,
>SVM with RBF kermnel’,
’SVM with polynomial (degree 9) kernel’]

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl7/ Support
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Code

Python for SVM

1 for i, clf in enumerate((svc, rbf_svc, poly_svc)):

2 # Plot the decision boundary. For that, we will assign a color to each
3 # point in the mesh [x_min, m_max]x[y_min, y_max].

4 plt.figure (i)

6 Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

7 # Put the result into a color plot

8 Z = Z.reshape(xx.shape)

9 plt.contourf (xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)

11 # Plot also the training points

12 plt.scatter (X[:, 0], X[:, 1], c=y, cmap=plt.cm.ocean)
13 plt.xlabel(’Sepal length’)

14 plt.ylabel (’Sepal width’)

15 plt.xlim(xx.min (), xx.max())

16 plt.ylim(yy.min(), yy.max())

17 plt.xticks (())

18 plt.yticks (())

19 plt.title(titles[il])

20 plt.show()

Dr. Rizwan Ahmed Khan, htt e.com/site/drkhanrizwanl7/ Support



Sepal width

SVM with linear kernel

Sepal length
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Python

SVM with Linear Kernel (No

transformation)

K(Xi,Xj) = XiTXj +c
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isulaization

SVM with RBF kernel

2
— Il —x; |

K(x;,xj) =€ 2v

Sepal width

Sepal length
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sulaization

SVM with polynomial (degree 3) kernel

M with Polynomial Kernel (Degree 3)

Sepal width

Sepal length
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sulaization

SVM with polynomial (degree 5) kernel

M with Polynomial Kernel (Degree 5)

Sepal width

Sepal length
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sulaization

SVM with polynomial (degree 7) kernel

M with Polynomial Kernel (Degree

K (xi,%x;) = ((x:)"%; + ¢)?

Sepal width

Sepal length
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XOR problem visualization

OR problem

Lo L L]

0.8+
~ 06 - XOR data.
£ - Problem is non-linearly separable
"
£ 0a in the given feature space.

02

0.0 L] L]

0:0 0:2 0:4 0.‘5 0:8 ]..Iﬂ
Feature 1

Video 4

4nttps://youtu.be/5KIYu3zKvqo
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OR problem visualization

OR problem

SVM with linear kernel

Feature 2

SVM with Linear Kernel (No
transformation)

Feature 1
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OR problem visualization

OR problem

SVM with polynomial (degree 2) kernel

Feature 2

SVM with Polynomial Kernel

Feature 1
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SVM with RBF kernel

Feature 2

Feature 1

Python
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SVM with RBF Kernel




Python

Conclusion

Conclusion

Powerful theoretical grounds.
Global, unique solution (convex optimization function).
Performance depends on choice of kernel and parameters.

Training is memory-intensive.

Complexity dependent on the number of support vectors.

Video 5

Shttps://youtu.be/FxLIsbnp_5c

Dr. Rizwan Ahmed Khan, htt
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@ Need for soft Margin SVM
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Need for soft l\Ial gin SVM

o Real-life data is often noisy, thus linear separability is an issue.

o Even when the data is linearly separable, the outlier can be closer to the other
examples than most of the examples of its class, thus reducing the margin, or it can
among the other examples and break linear separability.

be

oW A

Outlier reducing the margin

» 1 2 3 45678 9%

o1

12

12
n
n

RN R

) 1

i

3

4

5 6

T8 51010

Outlier breakslinear separability g4

o In this case, there is no solution to the optimization problem solved earlier.

6Image taken from SVM Succinctly
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Soft margi

Slack variable

o In 1995, Vapnik and Cortes introduced a modified version of the original SVM that
allows the classifier to make some mistakes.

@ The goal is now not to make zero classification mistakes, but to make as few mistakes
as possible.

o Constraints of the optimization problem was modified, so the constraint (refer Eq 4)
yi(W - X; +b) > 1
becomes
yi(W - Xi+b) > 1-¢ (29)

where: £= slack variable and V; > 0.
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Soft Margin SVM
@00

Soft margin

o In 1995, Vapnik and Cortes introduced a modified version of the original SVM that
allows the classifier to make some mistakes.

@ The goal is now not to make zero classification mistakes, but to make as few mistakes
as possible.

o Constraints of the optimization problem was modified, so the constraint (refer Eq 4)

yi(W-X; +b) >1

becomes

y(W-X;+b)>1-¢ (29)

where: £= slack variable and V; > 0.

o ¢ is subtracted from 1, in order to make it possible to satisfy constraint.

Dr. Rizwan Ahmed Khan, httgp m /site/drkhanrizwanl7/ Support Vector Machines
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Soft margin

Slack variable

@ The problem is that we could choose a huge value of £ for every example, and all the
constraints will be satisfied.

o To avoid this, we need to modify the objective function (refer Eq. 14 for objective
function of hard margin SVM) to penalize the choice of a big &:

1 n
argmin = ||[W||* + C f 30
i 51V + 3¢ (30)
subject to

y(W-X; +b) >1-¢
and § >0V,

Dr. Rizwan Ahmed Khan, https: om /site/drkhanrizwanl7/ Support Vector Machines
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Soft margin

Slack variable

o Consider:
1 n
argmin —||W||* + C’Z&
Whe 2 p
The slack variable &; allows the input xi to be closer to the hyperplane (or even be on
the wrong side), but there is a penalty in the objective function for such “slack”.

o How to select hyper-parameter C'?

rizwanl?7/ Support



Soft Margin SVM
ooe

Soft margin

Slack variable

o Consider:
1 n
argmin —||W||* + C’Z{Z
Whe 2 p
The slack variable &; allows the input xi to be closer to the hyperplane (or even be on
the wrong side), but there is a penalty in the objective function for such “slack”.

o How to select hyper-parameter C'?

Value of ¢ ' (hyper-parameter tuning)

@ If C is very large (penalty is higher), the SVM becomes very strict and tries to classify all
data points correctly.
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Soft Margin SVM
ooe

Soft margin

Slack variable

o Consider:
1 n
argmin —||W||* + C’Z{Z
Whe 2 p
The slack variable &; allows the input xi to be closer to the hyperplane (or even be on
the wrong side), but there is a penalty in the objective function for such “slack”.

o How to select hyper-parameter C'?

Value of ¢ ' (hyper-parameter tuning)

@ If C is very large (penalty is higher), the SVM becomes very strict and tries to classify all
data points correctly.

@ If C is very small, the SVM becomes very loose and may “sacrifice” some points to obtain a
simpler solution.
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Soft Margin SVM
ooe

Soft margin

Slack variable

o Consider:
1 n
argmin —||W||* + C’Z{Z
Whe 2 p
The slack variable &; allows the input xi to be closer to the hyperplane (or even be on
the wrong side), but there is a penalty in the objective function for such “slack”.

o How to select hyper-parameter C'?

Value of ¢ ' (hyper-parameter tuning)

@ If C is very large (penalty is higher), the SVM becomes very strict and tries to classify all
data points correctly.

@ If C is very small, the SVM becomes very loose and may “sacrifice” some points to obtain a
simpler solution.

© Usually telescopic / grid search is applied to find best C' for the given dataset.

Dr. Rizwan Ahmed Khan, https://si le.com/site/drkhanrizwanl7/ Support Vector Machines
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Ocular Proof

Ocular Proof

This image corresponds to large value of C'.

"Demo images from LIBSVM website: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

1pport V
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Soft Ma

Ocular Proof

Ocular Proof

This image corresponds to small value of C,
over-simplification of solution.

"Demo 1mages from LIBSVM website: https://www.csie.ntu.edu. tw/ cjlin/libsvm/

Dr. Rizwan < A h com/site/dr
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Ocular Proof

Ocular Proof

This image corresponds to appropriate value
of C' given dataset (maximizing margin,
sacrificing few (one data point) to obtain
wider margin / better generalization).

*7

"Demo 1mages from LIBSVM website: https://www.csie.ntu.edu. tw/ cjlin/libsvm/

Dr. Rizwan
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Section Contents

© Lagrange Optimization
@ Function Visualization
@ Function Optimization
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Function Visualiz

Optimizing function with constraint

- Maximize f(z,y) = 2%y on the set
22 9% =1.
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Lagrange Optimization
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Function Visualization

Optimizing function with constraint

- Maximize f(z,y) = 2%y on the set
22 9% =1.

- Here we are trying to
o Optimize multi-variable function
flzy) =2y
e with the constraint g(z,y) that
22 +y? =1 (unit circle)
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Lagrange Optimization
00000

Function Visualization

Optimizing function with constraint

- Maximize f(z,y) = 2%y on the set
22 9% =1.

- Here we are trying to

o S . isualizati
o Optimize multi-variable function Visualization

fla,y) = 2%y
e with the constraint g(z,y) that
22 +y? =1 (unit circle)
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Function Visualization

Optimizing function with constraint

Visualization
Visualization of fix,y) =x? y

- Maximize f(z,y) = 2%y on the set g
z? +y? =1

. = 0.2
- Here we are trying to .

e Optimize multi-variable function
fla,y) = 2%y 24+

e with the constraint g(z,y) that
2?4+ y? =1 (unit circle)

The function is in 3-D. To analytically examine the

problem , we can use contour plot.
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Function Visualization

Optimizing function with constraint

Visualization
Visualization of g(x,y)

- Maximize f(z,y) = 2%y on the set
x4+ y2 =1.

- Here we are trying to
o Optimize multi-variable function
flz,y) =2y
e with the constraint ¢g(z,y) that
2% +y? =1 (unit circle)

Dr. Rizwan od Khan, htt com/site/dr
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Function Visualization

Optimizing function with constraint

Visualization

3D surface plot of fix,y) = x* y (blue} and g{xy) = x+ ,2 -1 (red}

- Maximize f(z,y) = 2%y on the set 3]
2%+ 9% = 1.

- Here we are trying to 1~

o Optimize multi-variable function |
() = %y )
e with the constraint g(z,y) that o
22 4+ y? =1 (unit circle) 2-
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Function Visualization

Optimizing function with constraint

Visualization

3D surface plot of f{x,y) = x* y (blue) and g(xy} =x* + y* - 1 {red)

- Maximize f(z,y) = 2%y on the set
2?2 +y? =1.

- Here we are trying to
o Optimize multi-variable function
fzy) =2y
e with the constraint g(z,y) that
22 +y? = 1 (unit circle)
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Function Visualization

Optimizing function with constraint

Visualization

3D surface plot of fix,y) = x* y (blue} and g{xy) = x+ ,2 -1 (red}

- Maximize f(z,y) = 2%y on the set 3
2?2 +y? =1. )
- Here we are trying to o
o Optimize multi-variable function i
fzy) =2y N
e with the constraint g(z,y) that 3’
2N

22 +y? = 1 (unit circle)

Dr. Rizwan Ahmed Khan, htt



Lagrange Optimization
00000

Function Visualization

Optimizing function with constraint

- Maximize f(z,y) = 2%y on the set Visualization
22 +y? = 1.

Contour plot

A contour plot is a graphical technique for

- Here we are trying to representing a 3-D surface by plotting

o Optimize multi-variable function constant z slices, called contours, on a 2-D
flx,y) =%y format. That is, lines are drawn for all

e with the constraint ¢g(z,y) that possible pairs of (x,y) that produce
2? +y? =1 (unit circle) same/constant output (z).
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Function Visualization

Contour Plot

; 05 2% -
25, o : 0
Xz ¥ 3 0 -75 -sa 2% oo 28 5.0 78 0.0

75100 100" A

3D Plot Contour Plot

Contour plot

A contour plot is a graphical technique for representing a 3-D surface by plotting constant
z slices, called contours, on a 2-D format. That is, lines are drawn for all possible pairs of
(z,y) that produce Same/constant output (z).

Support Vector Mack
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Function Visualization

Contour Plot

Visualization of fcy) =x" y

Carour plot of )= 5 y

|
o
ol &
o o
o o
2
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~ of0 0
2,
& g'b/
4 \
NN N,
P %, 2 P
v i
.y & YAy
A f f#
T A [ [/

3D plot of function, along with corresponding contour plot of the problem in hand.

Contour plot

A contour plot is a graphical technique for representing a 3-D surface by plotting constant
z slices, called contours, on a 2-D format. That is, lines are drawn for all possible pairs of
(z,y) that produce same/constant output (z).

Dr. Rizwan Ahmed Khan, htt
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Function Visualization

Optimizing function with constraint

Lagrange Optimization
[e]e]
Visualization
Function with constraint tvislualilzation
- Maximize f(z,y) = 2%y on the set ’ 17 1H ' \
22 4+y? =1 S
;.'I r_" III'.I '\\.
- Here we are trying to / e
e Optimize multi-variable function A
flz,y) = 2%y it
e with the constraint that 22 + 3% =1 |
(unit circle)

Dr.

A
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Function Visualization

Optimizing function with constraint

Lagrange Optimization
00800

Visualization
Function with constraint yislualization
{ ,. _I . | . 1 Ill II'-I
T [ TN
i i AR R i
- Maximize f(z,y) = 2%y on the set fr-ef 4 | ' tAd A
2% +y? = 1. ' | | |
o ! | h, | \ \
/ . | ! i\\\ \ \_\
. / / _,-" | | This Lo;ﬁltour tine "\
- Here we are trying to %4 ftetf | || | shows al possile '\
. . . . / f faf | | values afipair cf\,[x, 7
o Optimize multi-variable function T T T T ek s jooie
f(z,y) = z%y AN A B L S R
« 4 ‘\.
e with the constraint that 22 + 7% = 1 L
(unit circle) X
Dr. Rizwan Ahmed Khan,

e.com/site/dr
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Function Visualization

Optimizing function with constraint

\

Function

ry =01

&)

T T

Constraint

Function intersects with the constraint.
This means that this pair of (x,y)
satisfies constraint (four possible pair of
(z,y) values), but visually we can
observe that they are maximum values.

Dr. Rizwan Ahmed , htt c s r r Support V



Lagrange Optimization
00000

Function Visualization

Optimizing function with constraint

\

Function

Function

&)

|—\ = §

Constramt I ! whpsd =

Constraint

Function intersects with the constraint.
This means that this pair of (x,y)
satisfies constraint (four possible pair of
(z,y) values), but visually we can
observe that they are maximum values.

Function never intersects with the constraint.
This means that this pair of (z,y) is off the
constraint. It also shows that, as we are max. z2y
subject to constraint, we can never go as high as

these values of (z

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Function Visualization

Optimizing function with constraint

- Here we are trying to
o Optimize multi-variable function
flz,y) = 2%y
e with the constraint that 2% + 32 = 1
(unit circle)

Dr. Rizwan Ahmed Khan, htt e.com/site/dr



Lagrange Optimization
0000@

Function Visualization

Optimizing function with constraint

- Here we are trying to
o Optimize multi-variable function
fz,y) =2y
e with the constraint that 2% + ¢% = 1
(unit circle)

Objectiv

To maximize function f(x,y) = z?y while
satisfying constraint z> + 32 = 1, is to find
maximum value of pair of (x,y) or value of
constant s to the point that afterwards its off
the constraint.

This will only happen when the two
functions (f(z,y) & g(z,y)) are tangent.

/

Dr. Rizwan Ahmed Khan, htt .com /site/drkh v Support



Function Visualization

Optimizing func

Lagrange Optimization
0000e
ion with constraint

- Here we are trying to

o Optimize multi-variable function
flz,y) = 2%y

e with the constraint that 22 + 3% =1
(unit circle)

Function

Objectiv

Yv =r

s
-
H
.
.
"
.
H
.
.
=
»
»
H
-
.
.
.
-
[}
.

To maximize function f(x,y) = z?y while
satisfying constraint z> + 32 = 1, is to find

maximum value of pair of (x,y) or value of

-t
P PR L ok

2 : 2
constant s to the point that afterwards its off \2‘ . e
the constraint. . C'c:ns:(;;\in; ’
This will only happen when the two

functions (f(z,y) & g(z,y)) are tangent.

Dr.

Rizwan Ahmed Khan, htt

.com /site/drkh

Support




Function Visualization

Lagrange Optimization
0000@

Optimizing function with constraint

- Here we are trying to
o Optimize multi-variable function
fz,y) =2y
e with the constraint that 2% + ¢% = 1
(unit circle)

Objectiv

To maximize function f(x,y) = z?y while
satisfying constraint z> + 32 = 1, is to find
maximum value of pair of (x,y) or value of
constant s to the point that afterwards its off
the constraint.

This will only happen when the two
functions (f(z,y) & g(z,y)) are tangent.

/

Dr. Rizwan Ahmed Khan, htt .com/site/drkh
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Optimizing function with constraint

se Optimization
©00000

The gradient of f or g evaluated at a point
(20, y0) always gives a vector perpendicular
to the contour line passing through that
point (as there is no change in value along
contour line).

n Ahmed Khan, htt
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Function Optimization

Optimizing function with constraint

Gradient plot of the contours of function x2 + y> =1

The gradient of f or g evaluated at a point
(z0,y0) always gives a vector perpendicular
to the contour line passing through that
point (as there is no change in value along
contour line).

Dr. Rizwan Ahmed Khan, htt
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Function Optimization

Optimizing function with constraint

o The gradient of f evaluated at a point
(20, y0) always gives a vector
perpendicular to the contour line passing
through that point (as there is no
change in value along contour line).

e When the contour lines of two functions
f and g are tangent, their gradient

V = Gradient
vectors are parallel.

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Function Optimization

Optimizing function with constraint

o The fact that contour lines are tangent
tells us nothing about the magnitude of
each of these gradient vectors, but that’s
okay. When two vectors point in the
same direction, it means we can multiply
one by some constant to get the other.

@ Since this tangency means their gradient
vectors align:

e Vi(@,y) =Avg(z,y)
= Gradient

..... A = Lagrange multiplier
f(z,y) = Function
g(z,y) = Constraint

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Function Optimization

Ocular Proof

Gradient plot of the contours of I[x.y} =x%yand gixy) =xZ +y® -1

[i2:]
2 @ Ocular Proof: When the
04 contour lines of two functions f
) and g are tangent, their
di i
gradient vectors are parallel.
> 0
@ Since this tangency means their
o gradient vectors align:
0.4
VI y) = AV g(z,y)
0.8
A

1 0.8 NG 04 0.z 0 0z 04 HE) 08 1

Dr. Rizwan Ahmed Khan, htt E / rk zwanl7/ 1pport V
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Function Optimization

Ocular Proof

L Ocular Proof: When the
vs [ contour lines of two functions f
and g are tangent, their
o4 gradient vectors are parallel.
) @ Since this tangency means their
- gradient vectors align:
IS Vi(z,y) =Avg(z,y)
a2t

1pport V
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Function Optimization

Ocular Proof

i Ocular Proof: When the
contour lines of two functions f

o5t | and g are tangent, their
gradient vectors are parallel.

i @ Since this tangency means their

04 gradient vectors align:

% VI y) = AV g(z,y)

0zr

Dr. Rizwan Ahmed Khan, htt E / rk zwanl7/ 1pport V
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Function Optimization

Ocular Proof

Gradlenl plot of the contours of fixy)=xly and gixy)=x% + yl 1

%,
A\

0.8 ff i
7
075 ¥ ¥
e e Ocular Proof: When the
£ contour lines of two functions f
il and g are tangent, their

gradient vectors are parallel.

@ Since this tangency means their
gradient vectors align:

Vf(x?y) = )\Vg(%y)

0.35

Dr. Rizwan Ahmed K

zwanl7/

1pport V



Function Optimization

wange Optimization
00@000

Ocular Proof

Gradient plot of the contours of flxy) = x* y and gixy) =x* + y* -1

i - o7 wF e e i
P # i i 2
oTr g
b £
Fes e a
n&5F
L e
# #
-
> 08
r r iy
A e
P
A A
0
)/ e -
0.45
065

Dr. Rizwan Ahmed Khan, htt

zwanl7/

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.

Since this tangency means their
gradient vectors align:

Vf(x?y) = )\Vg(%y)

1pport V
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Function Optimization

Ocular Proof

e

0.64

@ Ocular Proof: When the

) contour lines of two functions f
. 5 and g are tangent, their
gradient vectors are parallel.

0.6
) @ Since this tangency means their
assl p gradient vectors align:
ot V(@ y) =Av9(z,y)
A o

Dr. Rizwan Ahmed Khan, htt
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Ocular Proof

tion

Lagrange Optimization

00@000

ne2

0.6

0.57

0.596

Gradient plot of the contours of flx,y) = x* y and gix.y) =x% + y* -1

@ Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.

@ Since this tangency means their
gradient vectors align:

Vf(x?y) = )\Vg(%y)

Dr. Rizwan Ahmed Khan, htt
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Function Optimization

Optimizing function with constraint: Example Solution

L= f(xay) - Ag(‘r,y)
= 2%y — Al2* + 7]

To find max. take derivative. First partial derivative w.r.t “x”:

oL
e 2xy — \2x (31)
y=A
Partial derivative w.r.t “y”:
oL 9
— =a"— A2
y * 4
.1‘2 = )\Qy (32)

2 =2 (asy = \)

Dr. Rizwan Ahmed Khan, htt e.com/site/dr
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Function Optimization

Optimizing function with constraint: Example Solution

and “y” found from equations 31 and 32 in the constraint

Putting back values of “z”

equation:
22 2 =1
V2N + A2 =1
1
A=ty =
3

Dr. Rizwan Ahmed Khan, htt
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Function Optimization

Optimizing function with constraint: Example Solution

.E : - From equations 34 and 35 , we know values
fr—irtat ' it of x and y. They make four possible pairs of
maximizes : H (z,y):
function while :

o : : 0 (\/3.1/%)
satisfying XLy . ! 3°'V 3
canstraint :

: 2 /1
: o -2/

.
.
.
[
»
.
.
.
.
D

b O C/ED

Support V

Dr. Rizwan Ahmed
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Function Optimization

Optimizing function with constraint: Example Solution

.E ' - From equations 34 and 35 , we know values
v that ' et of x and y. They make four possible pairs of
maximizes | : (z,9):
function while :: :
satisfying HEp, : ! \/;7 f
canstraint H H 5 1
SN @ (—/2,/})
;i : (8) 2y(2 J
: 2 (3%) o (\/2-/b
{0.816, 0:577)
- . - 2 1
Snunun| 0 (-/2,-/b)
? i ? f - Last two point make function (z%y)

negative (will not max. func.) and first two
points gives same output and that is the
maximum value function can achieve while
satisfying constraint (refer image on the left).

pport Vector Mack

Dr. Rizwan Ahmed Khan, htt
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A linear Classifier
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Outline

o Why Perceptron o Artificial Neuron
© Perceptron © Convergence
o History @ Perceptron Algorithm
o Algorithm @ Perceptron Convergence Setup
o Formalization @ Perceptron Convergence
@ Algorithm @ Perceptron Convergence Conclusion
@ Perceptron Learning Algorithm @ Interesting Facts
o Example @ Rev: Line & Hyperplane
@ Visualization e Line
o w Update o Plane

o Algorithm Demo o Intuition
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Reference Books

Reference books for this lecture:

o Chapter 4: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Reference Books

Reference books for this lecture:

o Chapter 4: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
o Chapter 5: Pattern Classification, R. DUDA et al., Wiley Interscience, latest edition.
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Reference Books

Reference books for this lecture:

o Chapter 4: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
o Chapter 5: Pattern Classification, R. DUDA et al., Wiley Interscience, latest edition.

e Chapter 3: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4" or latest
edition.
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Why Perceptron
oe

1es with K-Nearest Neighbors

o Although k-nearest neighbor is a strong classifier and can achieve good results if the
number of training samples (n) are very large, but one issue that restricts to use it
(for practical reason) is:




Why Perceptron
oe

Issues with K-Nearest Neighbors

o Although k-nearest neighbor is a strong classifier and can achieve good results if the
number of training samples (n) are very large, but one issue that restricts to use it
(for practical reason) is:

What is computational complexity of K-Nearest Neighbors

@ Compare query data / test data to all training examples.
@ Training Complexity : O(1)

Dr. Rizwan Ahmed Khan Perceptron



Why Perceptron
oe

Issues with K-Nearest Neighbors

o Although k-nearest neighbor is a strong classifier and can achieve good results if the
number of training samples (n) are very large, but one issue that restricts to use it
(for practical reason) is:

What is computational complexity of K-Nearest Neighbors

@ Compare query data / test data to all training examples.
@ Training Complexity : O(1)

@ Test Complexity : O(nd), where n = number of training instances and d = dimensions of
training data. It’s linear time algorithm and that is not good!

© Result: K-Nearest Neighbors is slow.

o For practical application, test time is more important that train time.

Dr. Rizwan Ahmed Khan Perceptron
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Section Contents

© Perceptron
o History
o Algorithm
o Formalization
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Perceptron
[ le]

cal Context

@ The first artificial neural network (ANN) was invented in
1958 by psychologist Frank Rosenblatt, called Perceptron.

e It was intended to model how the human brain processed
visual data and learned to recognize objects.

o Press Conference in 1958: “the embryo of an electronic
computer that [the US Navy (funding agency)| expects will
be able to walk, talk, see, write, reproduce itself and be
conscious of its existence”.

Dr. Rizwan Ahmed Khan Perceptron



Perceptron
[ le]

cal Context

Dr. Rizwan Ahmed Khan

The first artificial neural network (ANN) was invented in
1958 by psychologist Frank Rosenblatt, called Perceptron.

It was intended to model how the human brain processed
visual data and learned to recognize objects.

Press Conference in 1958: “the embryo of an electronic
computer that [the US Navy (funding agency)| expects will
be able to walk, talk, see, write, reproduce itself and be
conscious of its existence”.

In 1969 it was proved that Perceptron could not be trained
for non-linearly separable data (i.e. XOR problem). This
lead to field of neural network research to stagnate for
many years (almost quarter of a century — A.I winter).

Perceptron



NEW NAVY DEVICE |
LEARNS BY DOING

Fsychologist Shows Embryo
of Computer Desi d to

It‘:i Pearceptron will malee mis-|
es at first, but will grow,
wiser as it galns experience, he
sald,

Dr. Resenblatt, a research

at the -Cornell

Read and Grow Wiser

WABHINGTON, July 7 (UFL}
—Tha Navy revealed the em-
bryo of an slecironie computer
today that it expects will be
abla to wallk, talk, aee, writa,
reproduce flself and be  con-
celous of Its existence,

The emb the
Bureau's 52,000,000 “T04" eom-
puter—lenrned ta differentiate
between right and left after
tifty mitempic In the Nu’yq
demonstration o newsmen,

The service said it would naz
this prineiple to build the first
of itz Perceptron thinking ma-
chinos that will be able to read

and write. It is expected to be

finished in about a yemr at a
cost of §100,000.
Dr.

first device to think ms the ho-
man brain, As do huyman be-

Aéronautical Laboratory, Buf-
falo, said Perceplrons might be|
fired to the planets as mechani-|
cal space explorers. |
Without Human Controls
The Navy said the perceptron,
would be the- first non-living|
mechanism ‘“capabla of receiv-|
ing, recognizing and identifying |
lits surrolndings without any
human lra:mm; or control.”
Tha * min‘ in dang'md. to

1958 New York
Times...

In today's demonstration, the
“704" was fed two cards, one
‘with squares marked on the left
side and the other with squares
on the right side.

Lenrng by Doing

In the first fifty trials, the
machine made no distinction be-
Lween them. I then started
registering a Q™ for the left
squares and “0" for the right

l.ion it has perceuved itself. Drdi-
nary mmputﬂ!‘s remember only
what ig fed into them on punch
cards or magnetic tape.

Later Perceptrons wtl:. “be able
to recognize people and call out
their names and instantly trans-
late speech in one language to
speechk or writing In another

language, it was predicted,
Mr, Hosenblatt said in prin-
ciple it would be possible to
build braing that could repro-
duca themselves on an assembly
line and which would be eon-
sclous of their existence,

Dr., Resenblatt said he could
lain why the machine
|learned only in highly technical
terms. But he :ald the computer
had undergone A “self-induced
change In the wiring diagram.”
The first Pereeplron  will
have about 1,000 electronic
“associgtien cells” recelving
electrical impulses from an eye-
like scanning device with 400
to-cells. The human brain
10,000,000,000  responsive
cells, including 100,000,000 con-
{nechona with the eyes,
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Perceptron
[ leJe]e]

®e
X o0
NE x 0g © Assumptions or Bias:
2 % Xx x °,*
g % . I
w e - Binary classification
X X ’; .. '
Yi € {_17 +1}
Feature 1
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Perceptron
[ leJe]e]

Algorithm
Assumption

Assumptions or Bias:

- Binary classification

~ xx " 9 yi € {-1,+1}
o o g ©
2l X Xx x °,*
‘fu ¥ +ve Examples _
x X There must be a

hyperplane that linearly
separates the data (one
Feature 1 class from the other).

-ve Examples

- All data points from one
class lie on one side of
hyperplane.

Dr. Rizwan Ahmed Khan
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Perceptron
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Assumption

o What will happen in this case? Now data is
not linearly separable.

Feature 2

Feature 1

Dr. Rizwan Ahm




Perceptron
[o] Te]e]

Algorithm

Assumption

o What will happen in this case? Now data is
not linearly separable.

o In high dimensional space data points tend

to be far away from each other (difficult to
visualize).

Feature 2

In low dimensional spaces linear separability
doesn’t hold for long but in high dimensional
space it almost holds i.e. (kernel trick).

Feature 1

Dr. Rizwan Ahmed Khan
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Perceptron
[o] Te]e]

Algorithm

Assumption

Feature 2

Feature 1

Dr. Rizwan Ahmed Khan

o What will happen in this case? Now data is
not linearly separable.

o In high dimensional space data points tend
to be far away from each other (difficult to
visualize).

In low dimensional spaces linear separability
doesn’t hold for long but in high dimensional
space it almost holds i.e. (kernel trick).

In essence Perceptron is opposite of k-NN as
k-NN works better in low dimensional spaces
(rem: curse of dimensionality) while Perceptron
assumption holds in high dimensional spaces.

Perceptron 10 / 60



Perceptron
[e]e] o]
Algorithm

Assumption : Data in higher dimensional space

XOR Problem

Inputs | Output

08 0] 0O 0
08 f 0 1 1
0 1 0 1
il 1 1 0
0.5
04t 1 e XOR in 2D is not linearly
03t 1 separable but in 3D it is.
0z 1 o In low dimensional spaces
01} - linear separability doesn’t hold

for long but in high

dimensional space it almost
holds i.e. (kernel trick).

Perceptron


https://www.youtube.com/watch?v=5KIYu3zKvqo

Perceptron
[e]e] o]

Algorithm
Assumption : Data in higher dimensional space

XOR Problem

Inputs | Output

0] 0O 0
' 0 1 1

1 0 1
08 1 1 0
0.8

e XOR in 2D is not linearly

o separable but in 3D it is.

e o In low dimensional spaces
05 ] linear separability doesn’t hold
for long but in high
001 02 83 04 05 06 07 08 03 dimensional space it almost
holds i.e. (kernel trick).

Perceptron


https://www.youtube.com/watch?v=5KIYu3zKvqo

Perceptron
[e]e] o]

Algorithm
Assumption : Data in higher dimensional space

XOR Problem

Inputs | Output
0] 0O 0
0 1 1
1 0 1
1 1 0

e XOR in 2D is not linearly
separable but in 3D it is.

o In low dimensional spaces
linear separability doesn’t hold
for long but in high
dimensional space it almost
holds i.e. (kernel trick).

Perceptron


https://www.youtube.com/watch?v=5KIYu3zKvqo

Perceptron
[e]e] o]

g
Assumption : Data in higher dimensional space

XOR Problem

A Inputs | Output
e N 0] 0 0
0 1 [ 1
— 1 0 1
n ]. 1 0
0.8 —f
06 ~
A e XOR in 2D is not linearly
. /_,.--’ I separable but in 3D it is.
%27 _/"/ ,;/ o In low dimensional spaces
o P linear separability doesn’t hold
o, e .o
0z i " e for long but in high
. 1

dimensional space it almost
holds i.e. (kernel trick).

XOR in 3D: https://www.youtube.com/watch?v=6KIYu3zKvqo

Dr. Rizwan Ahmed Khan



https://www.youtube.com/watch?v=5KIYu3zKvqo

Perceptron
[e]e] o]

g
Assumption : Data in higher dimensional space

XOR Problem

Inputs | Output

g 0] 0 0
. i 0] 1 1
ol 1] 0 1
nee 1 1 0
06
U o XOR in 2D is not linearly
4 separable but in 3D it is.
0.3
iy o In low dimensional spaces
v ] linear separability doesn’t hold

— —¢ o
= | | . | _/_,_,_:5 1 for long but in high

0 02 04 o6 ik - dimensional space it almost
holds i.e. (kernel trick).

XOR in 3D: https://www.youtube.com/watch?v=6KIYu3zKvqo

Dr. Rizwan Ahmed Khan
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Perceptron
[efe]e] ]

o There is a little trick that
can be done to transform
data (change the data
point without changing the
data point) in a such away
that it become linearly
separable.

@ Define function ® that will
take data point and change
its dimension.

@ @ : i Decision surface

Video showing XOR data from 2D to 3D. 1

Kernel Trick 2

Ihttps://youtu.be/5KIYudzKvqo
2Later in the course during lecture on SVM

Dr. Rizwan Ahmed Khan
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Perceptron

Formalization

Classifier Visualization : Defining hyperplane

-ve Exam

Feature 2

[ Jelele]e}

(]
® @ +veExamples
®e

H={x:wx+b=0]}
Weight vector that
Defines the hyperplane

On this side Wl 2“ this side
wix+b<0 wix+b>0
Feature 1

- In case of difficulty in understanding equation of a hyperplane, refer Section 7

Dr. Rizwan Ahmed Khan
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Perceptron

[e] le]e]e}
tion

Calculus

o Assuming that hyperplane exists that
linearly separates data according to labels,

8 C S Perceptron algorithm tries to find it.
-ve Example ®
xi‘ xx o, °¢ H={x:wx+b=0) o Mathematically hyperplane can be given by:
'é' b 4 Weight vector that
[ R N\ T M=o (WTR+0) = 0)
On te ide wl Wg:tzis;iieo where: b is the bias term (without the bias
ki ‘ term, the hyperplane that w defines would

Feature 1

always have to go through the origin).

o Learning a perceptron involves choosing
values for weights w.

Dr. Rizwan Ahmed Khan
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Perceptron
0000

Formalization

sifier Calculus

-ve Exam|

Feature 2

e What to do at test time? (unknown sample x;)

h(x;) = sign(w ' x; + b)

L]
@ @ +veExamples

aie& % ® ° OR
x x H={x:wlx+b=0)
b 4 Weight vector that
x® b 4 X x Defines the hyperplane -
XX w' x+b>0 Vxin classl, +ve Examples
On this side wi Oiithils=ide
wix+b<0 wix+b>0

Feature 1

w'x+b<0 Vxin class2, -ve Examples

o This means test time speed is constant. It’s very
fast.

Dr. Rizwan Ahmed Khan




Perceptron

[e]e]e] lo}
Formalization

Classifier Calculus

o Dealing with b separately is difficult (difficult for
mathematical proofs and for programming), thus
this term can be merged with weight vector w.
Under this convention:

L]
@ @ +veExamples

-ve Example;
% X

1
™ Hi= (% W%+ b=i0} X; becomes 1
o b 4 Weight vector that
% ® xx x Defines the hyperplane
2 X x

On this side

Onthisside w2 wi w becomes
wix+b<0 wix+b>0 b
Feature 1

o We can verify:

Ahmed Khan



Perceptron
0000e
Formalization

Classifier Calculus

-ve Example:
% X

x X H={x:wlx+b=0}
o X Weight vector that
% x xx x Defines the hyperplane
& X x

On this side

wix+b>0

On this side

wl
wix+b<0

Feature 1

Ahmed Khan

<

x; becomes 1’
w

w becomes b

Now we can say:

Rem: We absorbed b with w, in essence b is offset and
w is orientation of hyperplane.




Algorithm

Section Contents

@ Algorithm
@ Perceptron Learning Algorithm
e Example
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Perceptron Learning Algorithm

g Algorithm

Algorithm 1 Perceptron Learning Algorithm

Result: Learned Hyperplane / Decision Boundary
initialization w = 0
while TRUE do
missClassification = 0
for (z;,y;) € D do

if y;(w'2;) <0 then

W 4— W+ yx
missClassification <— missClassification + 1

end

end

if missClassification = 0 then
| break

end

end

Dr. Rizwan Ahmed Khan



Perceptron Learning Algorithm

g Algorithm

e In algorithm, what this statement
specifies?

o Remember: We are dealing binary
classification y; € {—1,+1}
And

@' x>0 V+4ve Examples  (2)

W'x <0 V-ve Examples (3)

r. Rizwan Ahmed Khan Perceptron
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Perceptron Learning Algorithm

Perceptron Learning Algorithm

e In algorithm, what this statement

specifies? By combining Equations 2 and 3, we can

write:
yi(@' ;) >0 (4)
o Remember: We are dealing binary
classification y; € {—1,+1}
And

@' x>0 V+4ve Examples  (2)

W'x <0 V-ve Examples (3)

r. Rizwan Ahmed Khan Perceptron 20 / 60



Algorithm
(o] le}

Perceptron Learning Algorithm

Perceptron Learning Algorithm

e In algorithm, what this statement
By combining Equations 2 and 3, we can

specifies?
write:
ST -
yi(w 2;) <0 1
o) . yi (@) >0 (4)
o Remember: We are dealing binary _
) . Proof
classification y; € {—1,+1}
And Q@ 5 (wW'z;) >0,y = +1 for +ve samples
+1(w " 7)) > O = (@W'7;) >0
@ x>0 Y +ve Examples (2) same as Equation 2

W'x <0 V-ve Examples (3)
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Perceptron Learning Algorithm

Perceptron Learning Algorithm

e In algorithm, what this statement
specifies?

o Remember: We are dealing binary
classification y; € {—1,+1}
And

W' x>0 VY +ve Examples

wW'x <0 V-ve Examples

By combining Equations 2 and 3, we can
write:

yi(@' ) >0 (4)

Proof:
Q@ 5 (wW'z;) >0,y = +1 for +ve samples
+1(w " 7)) > O = (@'7;) >0
(2) same as Equation 2

Q y;(W'z;) >0, y; = -1 for -ve samples
~1(@'z;) >0 = (@74;) <0
(3) same as Equation 3

20 / 60
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Perceptron Learning Algorithm

@ Again, in perceptron learning algorithm, what this statement (refer Equation 1)
specifies?
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@ Again, in perceptron learning algorithm, what this statement (refer Equation 1)
specifies?

This shows a misclassification!
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Perceptron Learning Algorithm

@ Again, in perceptron learning algorithm, what this statement (refer Equation 1)
specifies?

This shows a misclassification!

This is weight update rule.
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Perceptron Learning Algorithm

g Algorithm

@ Again, in perceptron learning algorithm, what this statement (refer Equation 1)
specifies?

This shows a misclassification!

This is weight update rule.
@ if misclassified sample is from +1 class then add in @ amount proportional to ¥
@ if misclassified sample is from —1 class then subtract in @ amount proportional to T

@ The algorithm belongs to a more general algorithmic family known as reward and
punishment schemes.

Dr. Rizwan Ahmed Khan
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Example

Example : Perceptron Learning Algorithm

- Design a linear classifier using the perceptron algorithm

o Consider four data points (first two points belong
to class w1, while other two belongs to class w2):

o [\]
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- Design a linear classifier using the perceptron algorithm

o Consider four data points (first two points belong
to class w1, while other two belongs to class w2):
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Example

Example : Perceptron Learning Algorithm

- Design a linear classifier using the perceptron algorithm

o Consider four data points (first two points belong
to class w1, while other two belongs to class w2):

-1
o
& lg‘ :0 )
| ° 1
l OJ (0]
= ° 1]
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00000
Example

Example : Perceptron Learning Algorithm

- Design a linear classifier using the perceptron algorithm

o Consider four data points (first two points belong
to class w1, while other two belongs to class w2):

-1
H > L]
@ 1 0
(2]
o] ]
0 0 0
(5]
& 3¢ 1)
°
0 L]
T L 1] o Consider initial weight vector is chosen as w(0) =
0
0| in extended 3D space i.e. merged w and b.
0
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Example : Perceptron Learning Algorithm
—1
@ Consider first data point | 0 |, find @’ &
1
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E]i:ai;{fyl;le : Perceptron Learning Algorithm
-1
@ Consider first data point | 0 |, find @’ &
1
-1
=1[000] | 0 | =0 (Miss-classification, result should be > 0 for w1 samples)
1
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E]i:ai;{fyl;le : Perceptron Learning Algorithm
-1
@ Consider first data point | 0 |, find @’ &
1
-1
=1[000] | 0 | =0 (Miss-classification, result should be > 0 for w1 samples)
1

- update rule, w : W < W+ y&
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Example
Exampple : Perceptron Learning Algorithm
—1
@ Consider first data point | 0 |, find @’ &
1
-1
=1[000] | 0 | =0 (Miss-classification, result should be > 0 for w1 samples)
1
- update rule, w : W W+ y&
) 0 ~1 —1
w(l)« |0 +(1) | 0 | = | 0 | (This is updated w)
0 1 1
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Example
Exampple : Perceptron Learning Algorithm
-1
@ Consider first data point | 0 |, find @’ &
1
-1
=1[000] | 0 | =0 (Miss-classification, result should be > 0 for w1 samples)
1
- update rule, w : W < W+ y&
. 0 17 [t
w(l)« |0 +(1) | 0 | = | 0 | (This is updated w)
0 1 1
0
@ Consider second data point |1 |, find "%
1
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Example

Example : Perceptron Learning Algorithm

@ Consider first data point | 0 |, find @’ &
1
-1
=1[000] | 0 | =0 (Miss-classification, result should be > 0 for w1 samples)
1
- update rule, w : W < W+ y&
. 0 17 [t
w(l)« |0 +(1) | 0 | = | 0 | (This is updated w)
0 1

@ Consider second data point , find 0’z

== O =

=[-101] =1 > 0 (Correct as w7 > 0 for wl samples, no update in w(l)

)

— —

required, w(2) = w(1))
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Example : Perceptron Learning Algorithm
0
@ Consider third data point |—1], find w" %
1
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Example
Example : Perceptron Learning Algorithm
0
@ Consider third data point |—1], find w" %

1

0

[-101] |-1| =1 > 0 (Miss-classification, result should be < 0 for w2 samples)
1
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Example

Example : Perceptron Learning Algorithm

@ Consider third data point |—1], find w" %

1

0

[-101] |-1| =1 > 0 (Miss-classification, result should be < 0 for w2 samples)
1

- update rule, w : W < W+ y&

) -1 0 -1 0 -1 }

wB)«— | 0| —-1|-1|=]0]|—|—1| =1 1] (Thisis updated w(3))

1 1 1 1 0
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Example : Perceptron Learning Algorithm

@ Consider third data point |—1], find w" %

1
0
[-101] |-1| =1 > 0 (Miss-classification, result should be < 0 for w2 samples)
1
- update rule, w : W< W+ yr
) -1 0 -1 0 -1 }
wB)«— | 0| —-1|-1|=]0]|—|—1| =1 1] (Thisis updated w(3))
1 1 1 1 0
1
@ Consider fourth data point |0 |, find "7
1
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Example : Perceptron Learning Algorithm

@ Consider third data point |—1], find w" %

1
0
[-101] |-1| =1 > 0 (Miss-classification, result should be < 0 for w2 samples)
1
- update rule, w : W< W+ yr
) -1 0 -1 0 -1 }
wB)«— | 0| —-1|-1|=]0]|—|—1| =1 1] (Thisis updated w(3))
1 1 1 1 0
1
@ Consider fourth data point |0 |, find "7
1

1
[-110] |0 =-1<0
1

Dr. Rizwan Ahmed Khan Perceptron



Example

Example : Perceptron Learning Algorithm

@ Consider third data point |—1], find w" %

1
0
[-101] |-1| =1 > 0 (Miss-classification, result should be < 0 for w2 samples)
1
- update rule, w : W< W+ yr
) -1 0 -1 0 -1 }
wB)«— | 0| —-1|-1|=]0]|—|—1| =1 1] (Thisis updated w(3))
1 1 1 1 0
1
@ Consider fourth data point |0 |, find "7
1
1
[-110] |0l =-1<0
1

— — —

(Correct as w!'Z < 0 for w2 samples, no update in w(3) required, w(4) = w(3))
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Example : Perceptron Learning Algorithm

@ One loop on dataset is completed in which misclassification were encountered, now
again go through dataset (loop will only stop if there is no misclassification). Consider
-1
0 |, find W%
1
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Example : Perceptron Learning Algorithm

@ One loop on dataset is completed in which misclassification were encountered, now
again go through dataset (loop will only stop if there is no misclassification). Consider

-1
0 |, find W%
1
1 B B
[-110] | 0 | =1 >0 (Correct as w''Z > 0 for wl samples, w(5) = w(4))
1
0
@ Consider second data point |1 |, find "%
1
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00080

Example

Example : Perceptron Learning Algorithm

@ One loop on dataset is completed in which misclassification were encountered, now
again go through dataset (loop will only stop if there is no misclassification). Consider

—1
0 |, find W%
1
1 ) )
[-110] | 0 | =1 >0 (Correct as w''Z > 0 for wl samples, w(5) = w(4))
1
0
@ Consider second data point |1 |, find "%
1
0 — —
[-110] [1| =1 >0 (Correct as @& > 0 for wl samples, w(6) = w(5))
1

Dr. Rizwan Ahmed Khan Perceptron 25 / 60



Algorithm
0000e

Example

Example : Perceptron Learning Algorithm

0
@ Consider third data point | 1|, find @’ #
1
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Example

Example : Perceptron Learning Algorithm

0
@ Consider third data point | 1|, find @’ #
1
0
[-110] |-1] =-1<0
1

(Correct as w!# < 0 for w2 samples, w(?) = w(6))
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Example : Perceptron Learning Algorithm

0
@ Consider third data point | 1|, find @’ #
1
0
[-110] |-1] =-1<0
1

(Correct as w!# < 0 for w2 samples, w(?) = w(6))

- Since for four consecutive steps no correction is needed, all points are correctly
classified and the algorithm terminates. Final weight vector w = [71 1 O]T.
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Example

Example : Perceptron Learning Algorithm

0
@ Consider third data point | 1|, find @’ #
1
0
[-110] |-1] =-1<0
1

(Correct as w!# < 0 for w2 samples, w(?) = w(6))
- Since for four consecutive steps no correction is needed, all points are correctly
classified and the algorithm terminates. Final weight vector w = [71 1 O]T.

- That is the resulting linear classifier that correctly separates all data points. This
line has slope = 1 and intercept = 0, how?
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w Up

w update visualization

Draw new W
After an update oo
(after encountering) X

Misclassified

point .
& - Draw new  after
— . — . .
X encountering 7 € w., which is

misclassified point.

- update rule, w : W + W + y&
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Visualization
o

w Update

w update visualization

1
\\ : Vector addition
Misclassified 4
point \ .
: \ - Draw new w after
7 LY ! encountering ¥ € w., which is
% : misclassified point.
\ I w
\ - update rule, w : W <+ W+ y&
{00} o
\ Wi
\
\
\
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Visualization
o

w Update

w update visualization

- Draw new  after
encountering # € w, which is
misclassified point.

After an update

Correctly w(t+ 1)

classified ®
X - update rule, w : W < W+ y&
- In our example after an
update & gets correctly
—— e classified but there is no
W(t ) guarantee that after one update
\ data point will be correctly

\ classified.
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Demo 1: Perceptron Learning Algorithm
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Algorithm Demo

Demo 1: Perceptron Learning Algorithm

Perceptron after iteration : 2
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Algorithm Demo

Demo 1: Perceptron Learning Algorithm

Perceptron after iteration : 3
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Demo 2: Perceptron Learning Algorithm
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Algorithm Demo

Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 1
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Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 2
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Algorithm Demo

Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 3
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Algorithm Demo

Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 4
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Algorithm Demo
Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 5
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Algorithm Demo
Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 6
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Algorithm Demo
Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 7
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Algorithm Demo
Demo 2: Perceptron Learning Algorithm

Perceptron after iteration : 8
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al Neuron

wy
X1 &—
\ 7z Step 1
¥ l Modeling synaptic
W, / T connection.
X o——1|- T; X W;
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_ _ Thr.eshlold,’ Output
Inputs Weights summation Activation
Function
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Artificial Neuron
Artificial Neuron

Wy
X1
I~ =
¥ Z Modeling collection of
@, L inputs
Xn i
_ ' Thrreshfaldf Output
Inputs Weights Summation Activation
Function
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Artificial Neuron

Visualization
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Inputs Weights
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Step 3

Decision, whether
collective input is more
than threshold to fire
neuron

lofe >T
0, otherwise
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Section Contents

© Convergence
@ Perceptron Algorithm
@ Perceptron Convergence Setup
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Convergence
o
Perceptron Algorithm

Perceptron Algorithm

o First algorithm with a strong formal guarantee of convergence.

@ If the data is linearly separable, it will find a separating hyperplane in a finite number of
updates.

@ If the data is not linearly separable, it will loop forever.

Feature 2

Feature 1
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Convergence
o
Perceptron Algorithm

Perceptron Algorithm

o First algorithm with a strong formal guarantee of convergence.

@ If the data is linearly separable, it will find a separating hyperplane in a finite number of
updates.

@ If the data is not linearly separable, it will loop forever.

Perceptron Algorithm

o If 3w such that y;(w'x) > 0 V(x;,%;) € D, then
Perceptron will find that w in finite number of steps.
- Condition to satisfy:

Feature 2

y =+1: w'x>0
y(w'x) >O{y D (5)

Feature 1

- Update rule:

. . q{y =+1: W W+
W 4— W+ Yyxr . .
Y ) & W —

Dr. Rizwan Ahmed Khan
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Perceptron Convergence Setup

Perceptron Convergence : Setup

Q@ If Iw* such that y;(wx'x) > 0 V(x;,4;) € D

© Rescale each data point and the w* such that: Unit Radius
[[w*|| =1 and [Ixi]| <1 Vx; €D prime
- To get ||x;|| < 1, divide all x by norm of max of x.

@ Let us define the Margin (it’s a constant) (the distance
from the hyperplane to the closest data point) 7 of the
hyperplane w* as v = miny, ,)ep |ws T x|

Note:
w™* is one of the hyperplane that separates data and point no. 2
elaborates on how data is scaled to be confined in unit radius circle.

This helps in proof of convergence.

Dr. Rizwan Ahmed Khan erceptron



Convergence

@00

Perceptron Convergence Setup

Perceptron Convergence : Setup

Q@ If Iw* such that y;(wx'x) > 0 V(x;,4;) € D

© Rescale each data point and the w* such that: Unit Radius
[[w*|| =1 and [Ixi]| <1 Vx; €D prime
- To get ||x;|| < 1, divide all x by norm of max of x.

@ Let us define the Margin (it’s a constant) (the distance
from the hyperplane to the closest data point) 7 of the
hyperplane w* as v = miny, ,)ep |ws T x|

Note:
w™* is one of the hyperplane that separates data and point no. 2
elaborates on how data is scaled to be confined in unit radius circle.

This helps in proof of convergence.

Theorem
If all of the above holds, then the Perceptron algorithm makes at most 1/v? mistakes
before it converges.
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Convergence

oeo

Perceptron Convergence Setup

Perceptron Convergence : Setup

e w is initial hyperplane that we have (let’s say all zeros)
e w" is a separating hyperplane that we want to obtain.
o Keeping previous definition, consider the effect of an update
(w + yx) on the two terms:
QO w'wt
QO w'w,

Why these two terms?

@ First Term (w'w*): Calculates how closer w is getting to w*, inner product.

© Second term (w'w): This is required in order to understand that increase in first
term is not due to scaling (first term can grow even if hyperplanes are not getting close
but getting scaled i.e. scaled by 2) but these hyperplanes are actually getting closer
i.e. w is tilting towards w*. So it is required that this term should not grow fast.
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Perceptron Convergence Setup

Perceptron Convergence : Two Terms

@ First Term (w' w*): Calculates how closer w is getting to w*, inner product.

© Second term (w'w): This is required in order to understand that increase in first

term is not due to scaling (first term can grow even if hyperplanes are not getting close
but getting scaled i.e. scaled by 2) but these hyperplanes are actually getting closer
i.e. w is tilting towards w*. So it is required that this term should not grow fast.
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Perceptron Convergence Setup

Perceptron Convergence : Two Terms

@ First Term (w' w*): Calculates how closer w is getting to w*, inner product.

© Second term (w'w): This is required in order to understand that increase in first

term is not due to scaling (first term can grow even if hyperplanes are not getting close
but getting scaled i.e. scaled by 2) but these hyperplanes are actually getting closer
i.e. w is tilting towards w*. So it is required that this term should not grow fast.

W

- ———>

Inner product b/w
two vectors grows
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Perceptron Convergence Setup

Perceptron Convergence : Two Terms

these two ter

@ First Term (w' w*): Calculates how closer w is getting to w*, inner product.

© Second term (w'w): This is required in order to understand that increase in first

term is not due to scaling (first term can grow even if hyperplanes are not getting close
but getting scaled i.e. scaled by 2) but these hyperplanes are actually getting closer
i.e. w is tilting towards w*. So it is required that this term should not grow fast.

W

- ———>

Inner product b/w

two vectors grows tWo Vectars prows
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Perceptron Convergence

Perceptron Convergence : First Term

Unit Radius
Cirele

@ y(x'w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

@ y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

Ahmed Khan



Convergence

000

Perceptron Convergence

Perceptron Convergence : First Term

Unit Radius
Cirele

pdated

@ y(x'w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

@ y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.
-

o How this update ( W + « + y&) effects (first term), which is w' w*:

Dr. Rizwan Ahmed Khan Perceptron



Convergence

000

Perceptron Convergence

Perceptron Convergence : First Term

in case w g
@ y(x'w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

@ y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

o How this update ( 1 < + y7) effects (first term), which is w ' w*:
°
(wHyx) ' w =w'w +yx w)>w w4+ (7)
—_——

>0 or >v Resultant
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Convergence

000

Perceptron Convergence

Perceptron Convergence : First Term

in case w g
@ y(x'w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

@ y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

o How this update ( 1 < + y7) effects (first term), which is w ' w*:
°
(wHyx) ' w =w'w +yx w)>w w4+ (7)
—_——

>0 or >v Resultant
the distance from the hyperplane defined by w* to x must be at least v
or

y(x'

w*) = |XTW*\ >

Dr. Rizwan Ahmed Khan Perceptron
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Perceptron Convergence

Perceptron Convergence : First Term

Two facts, in case w gets updated
© y(x"w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

© y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

o How this update ( 1 < + y7) effects (first term), which is w ' w*:
°
(wHyx) ' w =w'w +yx w)>w w4+ (7)
—_——

>0 or >v Resultant
the distance from the hyperplane defined by w* to x must be at least v
or

y(x'

w*) = |XTW*\ >

Conclusion-1

T

This means that for each update, w' w* grows by at least v i.e. w'w* + 7.
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Perceptron Convergence

Perceptron Convergence : Second Term

Unit Radius
Cirele

@ y(x'w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

@ y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

o How this update (w0 < i + y7) effects (second term), which is w ' w:

Ahmed Khan Perceptron
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Perceptron Convergence

Perceptron Convergence : Second Term

in case w g
@ y(x'w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

@ y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

o How this update (w0 < i + y7) effects (second term), which is w ' w:

o
(wet ) (wtyx) =w w+ 2y(w %)+ y (X x0<w wl (8)
<0 =1 <1 Resultant

Dr. Rizwan Ahmed Khan Perceptron 39 / 60
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Perceptron Convergence

Perceptron Convergence : Second Term

Unit Radius
Cirele

Two facts, in case w gets updated

© y(x"w) <0 : This holds because x is misclassified by w - otherwise
update wouldn’t happen.

© y(x'w*) > 0: This holds because w* is a separating hyper-plane
and classifies all points correctly.

o How this update (w0 < i + y7) effects (second term), which is w ' w:

o
(wet ) (wtyx) =w w+ 2y(w %)+ y (X x0<w wl (8)
<0 =1 <1 Resultant

o The inequality follows from the fact that:
e 2y(w'x) < 0 as we had to make an update, meaning x was misclassified.

0 0<y?(x"x)<1lasy?=1and x"x <1 (because ||x|| < 1, data was scaled to have max.
norm of 1)

Conclusion-2

This means that for each update, w'w grows by at most 1, i.e. w'w + 1.

Dr. Rizwan Ahmed Khan
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Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

My<w'w'=|w'w

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms

Ahmed Khan Perceptron



Convergence

ooe

Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

My<wiw =|w w|
——
- Abs.Val.
< wHIW o =W as [jwr]] =
—_———

Cauchy-Schwarz inequality

1 (Data scaled)

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms

Ahmed Khan Perceptron



Convergence

ooe

Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

My<wiw =|w w|
——
- Abs.Val.
< wHIW o =W as [jwr]] =
—_———

Cauchy-Schwarz inequality

1 (Data scaled)
= Vwlw

Definition of norm

{

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms
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Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

-
My<wiw = |w ' w| - What do we know about w'w?
——
- Abs.Val.
< W [l =TlwT]| as [jw*]] =
—_———

Cauchy-Schwarz inequality

1 (Data scaled)
= Vwlw

Definition of norm

{

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms

Ahmed Khan Perceptron



Convergence

ooe

Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

-
My <w'w* = |w ' w*| - What do we know about w'w?
—— T
Abs.Val. - w'w grows by at most 1 Conc-2.
< WL =W as |lw*]] =
—_——

Cauchy-Schwarz inequality

1 (Data scaled)
= Vwlw

Definition of norm

{

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms
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Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

* T %
My <wiw* =|w'w"| - What do we know about w ' w?
—— T
Abs.Val. - w'w grows by at most 1 Conc-2.
< [[w | [.]]w*| =|lw'| as|w*||= - So, after M updates:
T — —VwTw< VM

Cauchy-Schwarz inequality

1 (Data scaled)
= Vwlw

Definition of norm

{

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms
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Perceptron Convergence

Perceptron Convergence : Final Step

Q@ w'w* > M~y asw'w* grows by at least v, so after M updates it must be at least M~y
Q@ w'w < M as w'w grows by at most 1

* T %
My <wiw* =|w'w"| - What do we know about w ' w?
—— T
Abs.Val. - w'w grows by at most 1 Conc-2.
< [[w | [.]]w*| =|lw'| as|w*||= - So, after M updates:
—_——

=Vwiw< VM

Cauchy-Schwarz inequality

1 (Data scaled)
= Vwlw

Definition of norm

5

Interesting find
M~ <~vVM

{

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms
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Perceptron Convergence Conclusion

Perceptron Convergence : Final Step

M~y < vVM

- Solve for M:




Convergence
L ]
Perceptron Convergence Conclusion

Perceptron Convergence : Final Step

We proved
M~y < vVM
- Solve for M:

M~y < VM 9)
M2 < M (10)
M< % (11)

- This proof made Frank Rosenblatt famous. Such a strong result!
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Perceptron Convergence Conclusion

Perceptron Convergence : Final Step

We proved

M~y < vVM
- Solve for M:
M~y < VM (9)
M?>y2 < M (10)
1
M < ? (11)

- This proof made Frank Rosenblatt famous. Such a strong result!

Perceptron Algorithm Convergence

M < ,Y%: This means number of updates M is bounded from above by a constant. So
algorithm wouldn’t make more mistakes than constant % (smallest distance between data
point x and w*) before finding a linear separating hyperplane.
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Interesting Facts
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- @

Frank Rosenblatt
19281960

Rosenblatt's perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an 1BM
704 computer at Cornell in 1957,
but by the early 1960s he had built
speclal~purpose hardware that provided a direct, par-
allel implermentation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Interesting Facts
000

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this back contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

*6

6Image from Pattern Recognition and Machine Learning Book by Christopher Bishop
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Interesting Facts

“igure 4.8 lllustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs
were obtained using a simple camera system in which an input scene, in this case a printed character, was
lluminated by powerful lights, and an image focussed onto a 20 » 20 array of cadmium sulphide photocells,
jiving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph,
which allowed different configurations of input features to be tried. Often these were wired up at random to
lemonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modem
ligital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was
mplemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby
allowing the value of the weight to be adjusted automatically by the learning algorithm.

*7

"Image from Pattern Recognition and Machine Learning Book by Christopher Bishop
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Equation of a line

Equation of a line:

Yy =mx—+c
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Line
Equation of a line

Equation of a line:

| =mx+c¢
o¢ y=mr

/ : : m= 7o
/ | ' - m = slope
Z ' - ¢ = y-intercept
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Derivative / Slope Recap
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Line
Equation of a line

Derivative / Slope Recap

o Consider

e if x =1 then f(z) =2




Rev: Line & Hyperplane
lo] le]e}
Line

Equation of a line: Slope

Derivative / Slope Recap

» e Consider
f(z) =2(x) or y=2x
o if x =1 then f(z) =2
o if x = 1.4 then f(z) = 2.8
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Line
Equation of a line: Slope

Derivative / Slope Recap

0 . . | o Consider

y' r oal [T

- e if z =1 then f(z) =2

o if z = 1.4 then f(x)

e Slope (%) of f(z) is 2.
dy __ height

818 width
04 =2

2.8
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Equation of a line: General Form (2D)

ar+by+c=0 (12)
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Equation of a line: General Form (2D)

ar+by+c=0 (12)

This equation (ref Equation 12) is same as slope form of a line y = ma + ¢
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Line
Equation of a line: General Form (2D)

ar+by+c=0 (12)

This equation (ref Equation 12) is same as slope form of a line y = ma + ¢

ax+by+c=0 (13)

y: _—— —

cor,y—intercept  m or, slope
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Line

Equation of a line: General Form (2D)

ar+by+c=0 (12)

This equation (ref Equation 12) is same as slope form of a line y = ma + ¢

ax+by+c=0 (13)
y = —_—— —
cor, y—intercept m or, slope
- If axis are 1 and x9, then az 4 by + ¢ = 0 can be written as:

axy +bryg+c=0 (15)

Dr. Rizwan Ahmed Khan Perceptron
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Line
Equation of a line: General Form (2D)

- Get rid of a and b as well, since we may need to write equation in n dimensions and then
in this case we will run out of alphabets. Thus, Equation 15 can be written as:

W1T1 + Weko + Wo = 0 (16)

- What about in 3D?
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Plane

Plane in 3D

- Equivalent of a line in 2D is a plane in 3D.
- Idea is same. Line separates data in 2D surface, while plane separates data in 30 volume.
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Plane

Plane in 3D

- Equivalent of a line in 2D is a plane in 3D.
- Idea is same. Line separates data in 2D surface, while plane separates data in 30 volume.

/
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Plane

Plane in 3D

Co - Extending Equation 16 to write equation of
a plane in 3D:
P '
w1r1 + waxs + w3xs3 + wo = 0 (17)
& /

1’0"3)

- What about plane in nD?

Dr. Rizwan Ahmed Khan 51 / 60
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Plane
Plane in nD

- Plane in n dimensions is called hyperplane.
- Equation of a plane nD can be formulated easily from Equations 16 and 17.

wo + wiT1 + WaTe + w3xz + - +wpx, =0 (18)
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Plane
Plane in nD

- Plane in n dimensions is called hyperplane.
- Equation of a plane nD can be formulated easily from Equations 16 and 17.

wo + wiT1 + WaTe + w3xz + - +wpx, =0 (18)

- Is there a more concise way to write this equation?
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Plane
Plane in nD

- Plane in n dimensions is called hyperplane.
- Equation of a plane nD can be formulated easily from Equations 16 and 17.

wo + wiT1 + WaTe + w3xz + - +wpx, =0 (18)
- Is there a more concise way to write this equation?

wo + > wia; =0 (19)
=1

- Above form is summation form / notation of an equation. Is there a vector form to write

this equation?

52 / 60
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Plane
Vector notation of a plane in nD

- Vector notation of a plane in nD

wo + w1, wa, w3, -, w] [T3] =0 (20)

w vector

——

x vector

- This equation, Equation 20 is exactly same as Equation 19.
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Plane
Vector notation of a plane in nD

- Vector notation of a plane in nD

wo + w1, wa, w3, -, w] [T3] =0 (20)

w vector

——

x vector

- This equation, Equation 20 is exactly same as Equation 19.
- Vector w has dimensions of 1 X n (w1xx)
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Plane
Vector notation of a plane in nD

- Vector notation of a plane in nD

wo + w1, wa, w3, -, w] [T3] =0 (20)

w vector
Tn

x vector

- This equation, Equation 20 is exactly same as Equation 19.
- Vector w has dimensions of 1 X n (w1xx)

- Vector z has dimensions of n x 1 (2,x1)
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Plane
Vector notation of a plane in nD

- Vector notation of a plane in nD

wo + w1, wa, w3, -, w] [T3] =0 (20)

w vector
Tn

x vector

- This equation, Equation 20 is exactly same as Equation 19.
- Vector w has dimensions of 1 X n (w1xx)

- Vector z has dimensions of n x 1 (2,x1)

- Multiplication of vector w & vector a will give scalar or 1 x 1 matrix (multiplication of a
row vector with a column vector).
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Plane
Vector notation of a plane in nD

wq
w2
- In ML literature, as a standard, vector are written as column vector i.e. |3
Wy,
Taking Equation 20, and using standard notation, we can write:
wo+w' T =0 (21)

- This is standard form of hyperplane equation!
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Intuition

Hyperplane equation with reference to line equation

- Equation of plane in 2D :

w1z + wore +wo =0
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Intuition

Hyperplane equation with reference to line equation

- Equation of plane in 2D :

w1z + wore +wo =0

- Rearrange:
wo w1
Ty =—————I]

o - w2 W2

2 -

~
e
4"‘.
-

"_,/‘

r‘{'
.rf/.
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Intuition

Hyperplane equation with reference to line equation

- Equation of plane in 2D :

w1z + wore +wo =0

- Rearrange:
wo w1
Ty =—————T
o - w2 W2
@ -
v
e - Can you find correspondence of this equation with
~ y=mzx+c
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Intuition

Hyperplane equation with reference to line equation

- Equation of plane in 2D :

w1z + wore +wo =0

- Rearrange:
wo w1
Ty =—————T
o - w2 W2
@ -
v
e - Can you find correspondence of this equation with
-~ y=mzx+c
T
Wo w1
Tog = ——— — X1 (22)
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Intuition

Hyperplane passing through origin

As we have seen:

- If this line passes through origin then ¢ = 0 or wy = 0. Then Equation 16 will become:

wix1 + woxe =0 (23)

- In 3D (Plane)
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Intuition

Hyperplane passing through origin

As we have seen:

- If this line passes through origin then ¢ = 0 or wy = 0. Then Equation 16 will become:

wix1 + woxe =0 (23)

- In 3D (Plane)

W11 + woxg + w3xz = 0 (24)

- In nD (Hyperplane)
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Intuition

Hyperplane passing through origin

As we have seen:

- If this line passes through origin then ¢ = 0 or wy = 0. Then Equation 16 will become:
w11 + waxe =0 (23)
- In 3D (Plane)
w11 + Wwoko + wzxrs =0 (24)

- In nD (Hyperplane)

w1x1 + Was + w3x3 + -+ + WpT, =0 (25)

Perceptron
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Intuition

Hyperplane passing through origin

- Vector form of equation of hyperplane passing through origin:

w'Z=0 (26)

- Vector form of equation of hyperplane not passing through origin:

wo+w'Z =0 (27)
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Intuition

Geometric interpretation of Hyperplane

- Consider hyperplane that passes through origin, so Equation would be @'z = 0, where
w1 T
wsa T2
w= Y| andx = |3
w’n, '/ITH
w-z=w'z=|w| l|z|] cosby, « (28)
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Intuition

Geometric interpretation of Hyperplane

- Consider hyperplane that passes through origin, so Equation would be @'z = 0, where

w1 T

w9 T2

w= |Y| andx = |3

w’n/ X n
w-z=w'z=||w||||z]| cosby .. (28)

- According to definition of hyperplane passing through origin @'z = 0. This will only be
true if vector w and z are orthogonal i.e (cos(90) = 0).

Perceptron
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Intuition

Geometric interpretation of Hyperplane

[|wl| [J2]] cosbuy o = 0

- As w and x vectors are orthogonal \ -

{0,0)

- Usually vector w is taken as vector perpendicular (L) to the hyperplane as well, for all
data points / vector x lie on the plane.
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Intuition

Geometric interpretation of Hyperplane

[|wl| [J2]] cosbuy o = 0

- As w and x vectors are orthogonal \ -

{0,0)
- Usually vector w is taken as vector perpendicular (L) to the hyperplane as well, for all

data points / vector x lie on the plane.
- Often hyperplane is defined by a unit vector w =

_w
[lwl]

(e.g. w L hyperplane).
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Intuition

Geometric interpretation of Hyperplane
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Reference Books

Reference books for this Module:

o Chapter 8: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Reference Books

Reference books for this Module:

o Chapter 8: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.

o Chapter 2 & 5: Pattern Recognition, Konstantinos Koutroumbas and Sergios
Theodoridi, Academic Press, 4th or latest edition

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN



Abstraction
L]

Section Contents

@ Abstraction
o 1-D World
e 2-D World

Ahmed Khan n ) d Learning -



Abstraction Abstract to Concrete Image Classification
[¢] lele]e} 000000000000 000 00000000
1-D World

Abstraction: 1-D

If we live in one dimensional world:

Python 3ig Picture Dimensionality Curse

0O0000000000000 OO0O000O000000 0000000000000
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Abstraction Abstract to Concrete Image Classification
[¢] lele]e} 000000000000 000 00000000
1-D World

Abstraction: 1-D

If we live in one dimensional world:

Python 3ig Picture
000000000000 00 OOO0O0O0O0O0O00000

Dimensionality Curse
0000000000000

KD-Tree la
00000000 0O

What would you say?
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1-D World

Abstraction: 1-D

o Previous slide presented points with associated labels i.e. 1 and 6.
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1-D World

Abstraction: 1-D

o Previous slide presented points with associated labels i.e. 1 and 6.

o When we are presented with point with unknown label i.e. test point, based on
training points we were quick to answer.
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1-D 1d
Abstraction: 1-D

@ Previous slide presented points with associated labels i.e. 1 and 6.

@ When we are presented with point with unknown label i.e. test point, based on
training points we were quick to answer.

o We were quick to understand underlying pattern in the data.
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1-D 1d
Abstraction: 1-D

@ Previous slide presented points with associated labels i.e. 1 and 6.

@ When we are presented with point with unknown label i.e. test point, based on
training points we were quick to answer.

o We were quick to understand underlying pattern in the data.

o Without much of information we figured out that points are grouping together i.e.
minimum distance
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Abstraction Abstract to Concrete Image Classification Python 3ig Picture Dimensionality Curse KD-Tree Tasks
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2-D World

Abstraction: 2-D

What would you say?
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2-D World

Abstraction: 2-D

@ Again, in 2-D points with associated labels i.e. 1 and 6 were presented. When we are
presented with point with unknown label i.e. test point, based on training points we
were quick to answer.

d Learning -
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-D World

Abstraction: 2-D

@ Again, in 2-D points with associated labels i.e. 1 and 6 were presented. When we are
presented with point with unknown label i.e. test point, based on training points we
were quick to answer.
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Dimensio

-D World

Abstraction: 2-D

@ Again, in 2-D points with associated labels i.e. 1 and 6 were presented. When we are
presented with point with unknown label i.e. test point, based on training points we
were quick to answer.

e Without much of information we figured out that points are grouping together
(understand underlying pattern) i.e. minimum distance.
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D World

Abstraction: 2-D

@ Again, in 2-D points with associated labels i.e. 1 and 6 were presented. When we are
presented with point with unknown label i.e. test point, based on training points we
were quick to answer.

e Without much of information we figured out that points are grouping together
(understand underlying pattern) i.e. minimum distance.

Nearest Neighbor Classifier

Dr. Rizwan Ahmed Khan sta sed Learning - KNN
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Algorithm

K-NN Algorithm *

e Assumption: Similar Inputs have similar outputs.

o Classification rule: For a test input z, assign the most common label amongst its &k
most similar training inputs.

e Formal definition of k-NN:

o Test point : =
e Denote the set of the k nearest neighbors of z as S;.
o Formally S, is defined as Sx C D (dataset) s.t. |Sx| = k and V(x',y’) € D\Sx

dist(x,x’) > max dist(x,x") (1)
(x",y"")ESx

That is every point in D but not in S, is at least as far away from x as the farthest
point in S,.

1Cover, Thomas and Hart, Peter. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 1967, 13(1): 21-27

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 10 / 81



Distance Metrics

Distance metric learning is a research field, but most commonly used are Minkowski Distance. Distance metric
uses distance function which provides a relationship metric between elements in the dataset.

Minkowski Distance:

dist(a,b) =

—
S
ESh
=
S
~
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Distance metric learning is a research field, but most commonly used are Minkowski Distance. Distance metric

uses distance function which provides a relationship metric between elements in the dataset.

Minkowski Distance:

n P

dist(a,b) = Z(ai —b;)P (2)

i=1

Q if p = 1, Manhattan Distance

n

distry(a,b) = (la; — bil) (3)

i=1
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Distance metric learning is a research field, but most commonly used are Minkowski Distance. Distance metric

uses distance function which provides a relationship metric between elements in the dataset.

Minkowski Distance:

n P

dist(a,b) = Z(ai —b;)P (2)

i=1

Q if p = 1, Manhattan Distance

n

distra(a,b) =) (lla; — bil]) (3)
i=1
Q if p = 2, Euclidean Distance

diStLQ (a, b) =

Ahmed Khan
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nce Metrics

Distance metric learning is a research field, but most commonly used are Minkowski Distance. Distance metric
uses distance function which provides a relationship metric between elements in the dataset.

Minkowski Distance:

n P

dist(a,b) = Z(ai —b;)P (2)

i=1

Q if p = 1, Manhattan Distance

distri(a,b) = (la; = bil]) (3)
i=1
Q if p = 2, Euclidean Distance
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Distance Metrics

Manhattan or Euclidean Distance

Intuition of distances

(6,6)

distry(a,b) = Z(Hai —bil)
/ i=1

v distri(a,b) = (6 —0)+ (6 —0) =12 (5)

(0,0}
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Distance Metrics

Manhattan or Euclidean Distance

Intuition of distances

(6,6)

distry(a,b) = Z(Hai —bil)

v distri(a,b) = (6 —0)+ (6 —0) =12 (5)

diStLQ (a b) =
(0,0}

distra(a,b) = /62 +62 = V72 ~ 849 (6)

In Manhattan / taxicab geometry, the red, yellow, and blue paths all have the same shortest path length of 12. In
Euclidean geometry, the green line has length 61/2 ~ 8.49 and is the unique shortest path.
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Toy Problem : Exercise

Toy Problem statement

K — NN : Toy d

We are given a training dataset with n = 6 observations of d = 2 dimensions.

Table 1: Toy dataset

X %) Label

1 1 class 1
2 25 class1
3 1.2 class1
5.5 6.3 class 2
6 9 class 2

7 6 class 2

Predict output class / label for query data point z, = [3,4]” for K = 1.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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Toy Problem :

Toy Problem

Visualization of toy problem?

=1
&
&

%

J ) *

B (1.1)(2.25).31.2)

W Label C2

a8 1 11—

6.3),06.9)(7.6)

o Ltk

(34) =

W Latsal 7
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Toy Problem : Exercise

Toy Problem: Python

I import numpy as np
2> import matplotlib.pyplot as plt
3 import seaborn as sns

5 #Create Training Set, 2D vector
6 x_train=np.array([[1,1], [2,2.5], [3,1.2], [5.5, 6.3], [6,9], [7,611)
7 y_train=(1,1,1,2,2,2)

10 # create color dictionary for printing
11 colors = {1:’r’, 2:°b’}

13 fig, ax = plt.subplots()

14 # plot each data-point

15 for i in range(len(x_train)):

16 ax.scatter(x_train[i,0], x_train[i,1],color=colors[y_train[i]])

15 ax.set_xlabel (’Feature 17)
10 ax.set_ylabel (’Feature 27)

Dr. Rizwan Ahmed Khan ) cd Learning - KNN
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Toy Problem: Python Visualization

Feature 2
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Toy Problem : Exercise

Toy Problem: Python

> ax.set_xlabel (’Feature 1°)
3 ax.set_ylabel (’Feature 2°)

6 # Create Test point
7 x_test=np.array([3,4])
s y_test=(1)

11 #plot again train + test data

12 #plt.figure ()

15 fig, axl = plt.subplots()

14 for i in range(len(x_train)):

15 axl.scatter(x_train[i,0], x_train[i,1],color=colors[y_train[il])
16 axl.scatter(x_test[0],x_test[1],color="g’)

17 axl.set_xlabel (’Feature 1°)

s axl.set_ylabel (’Feature 27)

10 axl.set_title(’Classify Green Point!’)

Dr. Rizwan Ahmed Khan n ) d Learning - KNN
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Toy Problem: Py

Feature 2

Classify Green Point!
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Toy Problem : Exercise

Toy Problem: Py

1

Intuition : It seems new point (GREEN) is nearer to red points but How
mathematically we can prove that new point is near to red point?

Step 1: Find Distance to all points in training

Step 2: Find point with minimum distance in training set

Step 3: Assign label of nearest point to test point

STEP 1
def dist(x, y):
return np.sqrt(np.sum((x-y)**2))

distance=np.zeros (len(x_train))

for i in range(len(x_train)):
distance[il=dist(x_train[i],x_test)

print (distance)

#Step 2: Find point with minimum distance in training set

min_index = np.argmin(distance)
#Step 3: Assign label of nearest point to test point
print (’New point is classified in Class : ’,y_train[min_index])

Dr. Rizwan Ahmed Khan
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Toy Problem : Exercise

Toy Problem: Python Visualization

In [21]: print(distance)
print('New point is classified in Class : ',y_train[min_index])

[3.6@555128 1.88277564 2.8 3.39785755 5.83@95189 4.47213595]
New point is classified in Class : 1
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Toy Problem : Exer

rify Result: Euclidean Distance

TS
&
C
In [21]: print(distance)
i print( New point is classified in Class : ',y train[min_index])
o e (1,10.02.2.5).(3.1.2) [lﬁBE?ﬁlQ? 1‘88277‘5@1 2:8 3.397@85755 5.83@95189 4.47213595]
New point is classified in Class : 1
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S
Move forward

o This is intuitive, easy to understand.

o Now the question is, can we map an image, audio, document to a point in feature
space? As we have already seen the method to classify unknown point on feature
space i.e. Nearest Neighbor Classifier.
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Move forward

o This is intuitive, easy to understand.

@ Now the question is, can we map an image, audio, document to a point in feature
space? As we have already seen the method to classify unknown point on feature
space i.e. Nearest Neighbor Classifier.
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Move forward

o If we can represent image in a space3like we did with toy example than its easy to
classify it.

Labeled training set

2Example images from CS50 - Harvard University.
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o If we can represent image in a space3like we did with toy example than its easy to
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Summary

Move forward

o If we can represent image in a space3like we did with toy example than its easy to
classify it.

2Example images from CS50 - Harvard University.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN



Move forward

o If we can represent image in a space3like we did with toy example than its easy to
classify it.

Dr. Rizwan Ahmed Khan sta ased Learning - KNN



Move forward

o If we can represent image in a space3like we did with toy example than its easy to
classify it.

Dr. Rizwan Ahmed Khan sta ased Learning - KNN



Dimen

ummary

Move forward

o If we can represent image in a space3like we did with toy example than its easy to
classify it.

Dr. Rizwan Ahmed Khan sta sed Learning - KNN



bstraction ract to oncrete Ima > i Dimen nality

Summary

Move forward

o If we can represent image in a space’like we did with toy example than its easy to
classify it.

Labeled training set

2Example images from CS50 - Harvard University.
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© Image Classification
@ Dataset
@ Feature Space
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Dataset
Concrete Example: Digits Datase

This dataset is made up of 1797, 8 x 8 images. Each image, like the one shown below, is of
a hand-written digit*.

Dr. Rizwan Ahmed Khan
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Image Classification

Dataset

Concrete Example: Digits Dataset

This dataset is made up of 1797, 8 x 8 images. Each image, like the one shown below, is of

a hand-written digit*.
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Image C ification
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Feature Space

Image Representation in Feature Space

How can we represent image in feature space?
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Feature Sp

Image Representation in Feature Space

How can we represent image in feature space?

o We can represent it with any dimension 1D, 2D, 3D , --- nD

1L

v

v

1

b

v
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Feature Space

Image Representation in Feature Space

o The dataset we are working with has 8 x 8 pixels with max. pixel value of 16.

o This image could be thought of point in 64-D space.

ol
1 [0 0. 10. 14. 8. 1. 0. 0.
5] 0. 2. 16. 14. 6. 1. 0. 0.

0 0. 15. 15. 8. 15. 0. 0.
3 0 0. 5. 16. 16. 10. 0. 0.
N mm- 5 . 10, 15, 15. 12. 0. 0.

0 4. 16. 6. 4. 16. 6. 0.
1 0 8. 16. 10. 8. 16. 8. 0.
61 0 1. 8. 12. 14. 12 1. 0.]
.
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Feature Space

Image Representation in Feature Space

o This image could be thought of point in 64-D space.

1L [ 0. 0. 10. 14. i
0. 2. 16. 14, 0.
0. 0. 0. @
0. }e 0.
0. Ya 0. G
0. 4. 6. O
p. 8. 8.
o o 1 -1

v

64-D Space




cation Python g Pic € Dimensio

Feature Space

Image Representation in Feature Space

If we can represent image with a point in 64-D space, then we need to find distance of test
example to training set and can assign label of nearest train example! We have a classifier!

Labeled training set
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Feature Space
Image Representation in Feature Space

If we can represent image with a point in 64-D space, then we need to find distance of test
example to training set and can assign label of nearest train example! We have a classifier!

Labeled training set
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Feature Space

Image Distance or Similarity Measure

Distance metric uses distance function which provides a relationship metric between
elements in the dataset.
Minkowski Distance:

o=

dist(a,b) = (Z(ai - bi)p> (7)

i=1
Q if p = 1, Manhattan Distance

n

distry(a,b) = Z(llai —bil)) (8)

Q if p = 2, Euclidean Distance

diStLQ (a, b) =

@ if p = oo, Chebychev Distance
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Section Contents

@ Python
o Digits Dataset Classification: Python
o Improvement?
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Python

1 import numpy as np
2 import matplotlib.pyplot as plt

1+ from sklearn import datasets
5 digits = datasets.load_digits ()

8 The dataset contains 1797 images. Two array:
9 digits.images

10 digits.target

12 print(digits.images [0])

13 print (digits.target[0]) # label of image

15 # What is this number?

16 plt.figure ()

17 plt.imshow(digits.images[0], cmap = plt.cm.gray_r, interpolation=’nearest’)
15 plt.show()

Ahmed Khan n d Learning - KNN
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Python
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on

Python

1 #Creating training set by selecting first 10 images

3 #x_train = digits.images [0:10]
1 x_train = digits.data[0:10] # it is reshaped images in one row
5 y_train = digits.target [0:10]

7 #x_test = digits.images [345]
s Xx_test = digits.data[345]

10 # To visulaize test image

11 plt.figure()

12 plt.imshow(digits.images[345], cmap = plt.cm.gray_r, interpolation=’nearest’)
13 plt.title(’Test Image’)

14 plt.show ()

15 ####

Ahmed Khan n ) d Learning - KNN
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Test Image




Python
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on

Python

2 Step 1: Find Distance to all points in training

3 Step 2: Find point with minimum distance in training set
1 Step 3: Assign label of nearest point to test point

5 STEP 1

7 def dist(x, y):
8 return np.sqrt(np.sum((x-y)**2))

10 #Step 2: Find point with minimum distance in training set
12 distance=np.zeros(len(x_train))

13 for i in range(len(x_train)):

14 distance[i]l=dist(x_train[i],x_test)

16 min_index = np.argmin(distance)

18 #Step 3: Assign label of nearest point to test point
10 print(’New point is classified in Class : ’,y_train[min_index])
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fication: Python

Visualization

..t print('New point is classified in Class : ',y _train[min_index])
MNew point is classified in Class : 3
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et C ation: Python
ng Error on 100 Test Images

o Up till now we have trained model on 10 images and tested it on only one image.

e How about running / testing same model on last 100 (test) images.

d Learning -
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Python
0000000080

hLdtl(!]l Python

So far, it seems a good classifier with correct result.

How about running it for 100 test images to see how accurate it is?
nnn

num=len (x_train)
no_errors=0
distance=np.zeros (num)

for j in range (1697, 1797): # taking last 100 images as test
Xx_test=digits.datal[j]

for i in range (num): # Cal. dist. from selested test examp to all train
examp .
distance[i]l=dist(x_train[i],x_test)

min_index=np.argmin(distance) # labeling test example.

if y_train[min_index] != digits.target[j]:
no_errors +=1

print (’Total error : ’, no_errors)

Khan
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Dataset Classification: Python

Visualization

In [3@]: print('Total errer @ ', no_errors)
Total error @ 37

n Ahmed Khan
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ement?

o How to improve accuracy?
@ For 100 test examples, 37 examples are misclassified.

o Any idea?

Dr. Rizwan Ahmed Khan ce >d Learnin
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Improvement?

Improvement?

Id

We have used only 10 training examples to train. With only 10 samples model will not be
able to capture all the variations of writings present in database. To cater different
variation we need to add more training samples!

Ahmed Khan Instance- ed Learning - KNN
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Improvement?

Improvement?

Idea-1

We have used only 10 training examples to train. With only 10 samples model will not be
able to capture all the variations of writings present in database. To cater different
variation we need to add more training samples!

Idea-2

It is possible that add more neighbors! By adding more neighbors, final label of test
sample can be verified by majority voting.
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Python

Improvement?

Improvement?

Idea-1

We have used only 10 training examples to train. With only 10 samples model will not be
able to capture all the variations of writings present in database. To cater different
variation we need to add more training samples!

Idea-2

It is possible that add more neighbors! By adding more neighbors, final label of test
sample can be verified by majority voting.

Idea-3

Changing distance measure? e.g. Mahalanobis distance, Bhattacharyya distance, etc.
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Improvem

Results: Idea 1 and Idea 3

- Adding more training samples (samples added with step size of 10)
- Distance Measure Comparison

Test Examples = 100, Changing training volums

40
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)
o)

Number of Errors
L)
[=]

w

10

5 1[ \_\

o 00 200 300 400 S0 600 700 800 940 | 1000 1100 1200 1300 1400 1500
Number of Training Examples

n Ahmed Khan



Big Picture
[

Section Contents

© Big Picture

Ahmed Khan

@ K-Nearest Neighbors

@ Inductive Bias of K-Nearest Neighbors

@ Decision Boundary for K-Nearest
Neighbors

@ Instance-based Learning
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o Taking Idea-2 forward: to label query / test data we have looked only 1-neighbor. For
most problems one neighbor can lead to misclassification i.e. noise in data, inter class
variations in data point are less.
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t N elgflbOl‘s

o Taking Idea-2 forward: to label query / test data we have looked only 1-neighbor. For
most problems one neighbor can lead to misclassification i.e. noise in data, inter class
variations in data point are less.

¢ o @ if k=1, label = diamond
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K-Nearest Neighbors

K-Nearest Neighbors

o Taking Idea-2 forward: to label query / test data we have looked only 1-neighbor. For
most problems one neighbor can lead to misclassification i.e. noise in data, inter class
variations in data point are less.

¢ o @ if k=1, label = diamond
Q if k=3, label = star
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K-Nearest Neighbors

K-Nearest Neighbors

o Taking Idea-2 forward: to label query / test data we have looked only 1-neighbor. For
most problems one neighbor can lead to misclassification i.e. noise in data, inter class
variations in data point are less.

if k=1, label = diamond
if k=3, label = star
if k=7, label = star

© 00

Dr. Rizwan Ahmed Khan Instance-Based Learning -



Big Picture
O@0000
K-Nearest Neighbors

K-Nearest Neighbors (k-NN): Pseudo-code

Algorithm 1 K-Nearest Neighbors (k-NN)

Out of the N training vectors, identify the k nearest neighbors, regardless of class label.
Caution: k is chosen to be odd for a two class problem, and in general not to be a
multiple of the number of classes M.

Out of these k& samples, identify the number of vectors k; , that belong to class wy,
i=1,2,...,m. Y ki=k.

Assign x to the class w; with the maximum number k; of samples.
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K-Ne. Neighbors
Number of Neighbors: K

o Taking Idea-2 forward: add K neighbors. It’s a parameter that has to be learned for
problem in hand!
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K-Nearest Neighbors

Number of Neighbors: K

o Taking Idea-2 forward: add K neighbors. It’s a parameter that has to be learned for
problem in hand!

’ @ Q if k=1, label = diamond
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K-Nearest Neighbors

Number of Neighbors: K

o Taking Idea-2 forward: add K neighbors. It’s a parameter that has to be learned for
problem in hand!

’ @ Q if k=1, label = diamond
Q if k=3, label = star
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K-Nearest Neighbors

Number of Neighbors: K

o Taking Idea-2 forward: add K neighbors. It’s a parameter that has to be learned for
problem in hand!

’ @ Q if k=1, label = diamond
if k=3, label = star
if k=7, label = diamond

© ©
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K-Nearest Neighbors

Number of Neighbors: K

o Taking Idea-2 forward: add K neighbors - improvement!
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K-Nearest Neighbors

Number of Neighbors: K

o Taking Idea-2 forward: add K neighbors - improvement!

’ * @ Distance-weighted nearest neighbor
algorithm: One obvious refinement,
. to weight the contribution of each of
* the k neighbors according to their
distance to the query / test point.

’ ’ @ @ Giving greater weight to closer

neighbors.

* 1

ight; =
* et dist(train;, test)?

(10)

© Robust to noise
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Practical issue with K-Nearest Neighbors

@ Compare query data / test data to all training examples.
@ Training Complexity : O(1)
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K-Nearest Neighbors
Practical issue with K-Nearest Neighbors

t is computational complexity of K-Nearest Neighbors

@ Compare query data / test data to all training examples.
@ Training Complexity : O(1)

@ Test Complexity : O(nd), where n = number of training instances and d =
dimensions of training data. It’s linear time algorithm and that is not good!

@ Result: K-Nearest Neighbors is slow.

s 2P

\ YevaEr=S o
Suggestions

i . Any suggestions to make it fast i.e.
§ / to reduce its complexity!

Dr. Rizwan / 2d a Instance-Based Learning - KNN
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Neighbors

Practical issue with K-Nearest Neighbors

@ Curse of dimensionality (more on this later)

e Reduce d by removing irrelevant features (feature selection).
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Neighbors

Practical issue with K-Nearest Neighbors

@ Curse of dimensionality (more on this later)
e Reduce d by removing irrelevant features (feature selection).
@ Reduce "n”

e Don’t compare all n.
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Practical issue with K-Nearest Neighbors

@ Curse of dimensionality (more on this later)

e Reduce d by removing irrelevant features (feature selection).

@ Reduce "n”
e Don’t compare all n.
e Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
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Practical issue with K-Nearest Neighbors

@ Curse of dimensionality (more on this later)
e Reduce d by removing irrelevant features (feature selection).

@ Reduce "n”

e Don’t compare all n.
e Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,

| m << n. Thus, complexity will reduce to O(md).
o KD-tree: Its a data structure and can find m nearest neighbors in O(logzn). Works

well for low dimensional data but it can miss neighbors.

52 / 81
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Practical issue with K-Nearest Neighbors

@ Curse of dimensionality (more on this later)
e Reduce d by removing irrelevant features (feature selection).

@ Reduce "n”
e Don’t compare all n.
e Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
o KD-tree: Its a data structure and can find m nearest neighbors in O(logzn). Works
well for low dimensional data but it can miss neighbors.
e Inverted list: data structure for storing a mapping from data.
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Practical issue with K-Nearest Neighbors

@ Curse of dimensionality (more on this later)
e Reduce d by removing irrelevant features (feature selection).

@ Reduce "n”

e Don’t compare all n.

e Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).

o KD-tree: Its a data structure and can find m nearest neighbors in O(logzn). Works
well for low dimensional data but it can miss neighbors.

e Inverted list: data structure for storing a mapping from data.

o Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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What is the inductive bias of k-NN classifier?
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Inductive Bias

What is the inductive bias of k-NN classifier?

Inductive Bias

For k-NN classifier inductive bias corresponds to an assumption that the classification of
an test instance, will be most similar to the classification of other instances that are nearby
in (Euclidean) space.
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Decision Boundary

Voronoi Cells / Diagram / Tessellation
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Decision Boundary for K-Nearest Neighbors

classification (k = 1)

5.0 ¢
a5
a0l A small value of k£ could lead to

_ overfitting as well as a big value of k
>3 can lead to underfitting. Overfitting
301 imply that the model is well on the
- training data but has poor

performance when new data is

208 coming i.e. high variance.
154
10 £

Dr. Rizwan Ahmed Khan 3 Learning - F



Big Picture
oeo

Decision Boundary for K-Nearest Neighbors

classification (k = 2)
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Decision Boundary for K-Nearest Neighbors

classification (k = 3)

5.0 ¢
a5
a0 A small value of k could lead to

_ overfitting as well as a big value of k
>3 can lead to underfitting. Overfitting
301 imply that the model is well on the
- training data but has poor

performance when new data is

7o coming i.e. high variance.
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classification (k = 4)

5.0 ¢
a5
a0 A small value of k could lead to

_ overfitting as well as a big value of k
>3 can lead to underfitting. Overfitting
301 imply that the model is well on the
- training data but has poor

performance when new data is

7o coming i.e. high variance.
154
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Q@ +ve: (—1,3),(—2,2),(1,1)

Q@ —ve: (2,1),(-1,2),(-1,0)
Draw decision boundary for 1 — NN classifier
with Euclidean distance.
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Decision Boundary for K-Nearest Neighbors

Decision Boun

+ve examples are shown in color red, while —ve
examples are shown in color blue.

3.0 1 L]
Decision Boundary : Exercise 5
Consider following 2D dataset: 204 e o
Q +ve: (_1a3)7(_2a2)7<1a1) ; 15
Q@ —wve: (2,1),(-1,2),(-1,0) g
Draw decision boundary for 1 — NN classifier L ¢ ¢
with Euclidean distance. i
0.0 L]

20 -15 -10 -05 00 05 10 15 20
Feature 1
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+ve examples are shown in color red, while —ve
examples are shown in color blue.

0 .
Decision Boundary : Exercise 5
Consider following 2D dataset:
Q +ve: (-1,3),(~2,2),(1,1) N :
Q@ —ve: (2,1),(-1,2),(~1,0) g 11
Draw decision boundary for 1 — NN classifier : 205 a -
with Euclidean distance.
0.5
0.0 4 [ ]

20 -15 -10 -05 00 05 10 15 20
Feature 1
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Instance-based Learning

Instance-based Learning

o Instance-based learning methods (Lazy learners) simply store the training examples
(lazy learner vs Eager learner).

Generalizing beyond given examples is postponed until a new instance gets classified.

A key advantage: instead of estimating the target function once for the entire instance
space, it learns target function for each new instance to be classified.

o Instance-based learning includes:

@ k-Nearest Neighbor (Instances represented as points in a Euclidean space)

@ Locally weighted regression methods (Constructs local approximation)

@ Case-based reasoning methods (Uses symbolic representations and knowledge-based
inference)

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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Instance-based Learning

o Disadvantages:

@ Cost of classifying new instances is high (nearly all computation takes place at
classification time rather than when the training examples are first encountered (eager
learner approach)).

@ All attributes of the instances are considered when attempting to retrieve similar
training examples from memory.

Khan
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Section Contents

© Dimensionality Curse
@ Curse of Dimensionality
@ Dimensionality Reduction
@ Feature Transformation
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Curse of Dimensionality

@ One practical issue in applying k-NN classifier is that the distance between instances
is calculated based on all attributes / features of the instance / example.
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Curse of Dimensionality

@ One practical issue in applying k-NN classifier is that the distance between instances
is calculated based on all attributes / features of the instance / example.

@ This is in contrast to many other ML algorithms i.e. Decision Tree where learning
selects only a subset of the instance attributes when forming the hypothesis.
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Curse of Dimensionality

Curse of Dimensionality

Curse of Dimens
@ One practical issue in applying k-NN classifier is that the distance between instances
is calculated based on all attributes / features of the instance / example.

@ This is in contrast to many other ML algorithms i.e. Decision Tree where learning
selects only a subset of the instance attributes when forming the hypothesis.

o Consider applying k-NN classifier to a problem that has 20 features, but only 2
attributes are relevant or inter-class variability depends only on 2 features. In this
case k-NN distance function can give misleading results.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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Curse of Dimensionality

Curse of Dimens

@ One practical issue in applying k-NN classifier is that the distance between instances
is calculated based on all attributes / features of the instance / example.

@ This is in contrast to many other ML algorithms i.e. Decision Tree where learning
selects only a subset of the instance attributes when forming the hypothesis.

o Consider applying k-NN classifier to a problem that has 20 features, but only 2
attributes are relevant or inter-class variability depends only on 2 features. In this
case k-NN distance function can give misleading results.

o This difficulty, which arises when many irrelevant attributes are present, is sometimes
referred to as the curse of dimensionality.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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Curse of Dimensionality

As the number of features or dimensions grows, the amount of data need to be generalized
accurately grows exponentially.

o The K —NN classifier makes the assumption that
similar points share similar labels.

Dr. Rizwan Ahmed Khan n 9 d Learning -
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Curse of Dimensionality

Formally, curse of dimensionality

As the number of features or dimensions grows, the amount of data need to be generalized
accurately grows exponentially.

o The K —NN classifier makes the assumption that i
similar points share similar labels.

o Unfortunately, in high dimensional spaces, points
that are drawn from a probability distribution,
tend to never be close together, Example —>:

e How big this little box has to be to encapsulate | =7 _______
all K — nearest neighbors of a test point? 1

—
e g A

Dr. Rizwan Ahmed Khan Instance-Based Learning -
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Curse of Dimensionality

e Formally, this is unit cube of d dimensions i.e. R?. All training
data is sampled uniformly within this cube.

an Ahmed Khan n ) d Learning -
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Curse of Dimensionality

e Formally, this is unit cube of d dimensions i.e. R?. All training
data is sampled uniformly within this cube.

o Considering the k = 10 nearest neighbors and n = 1000.

d Learning -
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Curse of Dimensionality

e Formally, this is unit cube of d dimensions i.e. R?. All training
data is sampled uniformly within this cube.

o Considering the k = 10 nearest neighbors and n = 1000.

@ Then: volume of box =

WARS % (as the box contains k points out of n). This says, roughly

L volume is same as the ratio of the points, because of uniform
S S . ¢ : distribution.
; : = = U~ ( >
: | n n
A |
i > e How large is £7
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Curse of Dimensionality

e Formally, this is unit cube of d dimensions i.e. R?. All training
data is sampled uniformly within this cube.

o Considering the k = 10 nearest neighbors and n = 1000.

@ Then: volume of box =

77777777777777777 CARS % (as the box contains k points out of n). This says, roughly
il . volume is same as the ratio of the points, because of uniform
IE St oo ees o ' distribution.
1 : ' Zdzﬁ:>€z<é>
v : : n n
1 S )
A e How large is £7
1
4
2 0.1
10 0.63
100 0.955

1000 0.9954

Instance-Based Learning - KNN
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Curse of Dimensionality

@ So as d dimension increases almost the entire space is needed to find the 10 — N V.
What does it mean?

Dr. Rizwan Ahmed Khan n ) d Learning -



Dimensionality Curse
00080

Curse of Dimensionality

Curse of Dimensionality

@ So as d dimension increases almost the entire space is needed to find the 10 — N V.
What does it mean?

e 10 points are at the edge of smaller cube and that edge of cube is almost touching
outer cube that that has remain 9990 points.
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Curse of Dimensionality

Problems identified

@ So as d dimension increases almost the entire space is needed to find the 10 — N V.
What does it mean?

e 10 points are at the edge of smaller cube and that edge of cube is almost touching
outer cube that that has remain 9990 points.

@ This breaks down the k-NN assumptions, because the k-NN are not particularly closer
(and therefore more similar) than any other data points in the training set.

@ So the distance between two randomly drawn data points increases drastically with
their dimensionality. Neighbors are not close! All the points whether they are in
neighbors or not are roughly at the same distance.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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Curse of Dimensionality

o Not all is lost. Data may lie in low dimensional subspace or on
sub-manifolds. Example: natural images (digits, faces (they are
not uniformly distributed)). Here, the true dimensionality of
the data can be much lower than its ambient space.

Dr. Rizwan Ahmed Khan n Learning -
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Curse of Dimensionality

Curse of Dimensionality

Should w

o Not all is lost. Data may lie in low dimensional subspace or on
sub-manifolds. Example: natural images (digits, faces (they are
not uniformly distributed)). Here, the true dimensionality of
the data can be much lower than its ambient space.

@ k-NN would work if data has low intrinsic dimensionality.

Dr. Rizwan Ahmed Khan s ) cd Learning - k
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Curse of Dimensionality

Should we remove k-NN from toolkit?

o Not all is lost. Data may lie in low dimensional subspace or on

Dimensionality
0000@

sub-manifolds. Example: natural images (digits, faces (they are
not uniformly distributed)). Here, the true dimensionality of
the data can be much lower than its ambient space.

@ k-NN would work if data has low intrinsic dimensionality.

o Ref Figure * a manifold is a topological space that locally
resembles Euclidean space near each point, but globally it is
not. For k-NN it works as only nearby points are considered.

e Human faces are a typical example of an intrinsically low
dimensional data set. Although an image of a face may require
10M pixels, a person may be able to describe this person with
less than 50 attributes / features (e.g. male/female, blond/dark

hair, ...) along which faces vary.

%Image courtesy Dr. Kilian Weinberger

Dr. Rizwan Ahmed Khan

Instance-Based Learning - KNN

Figure 1: An example of
a data set in 3D that is
drawn from an
underlying 2D manifold.
The blue points are
confined to the pink
surface area, which is
embedded in a 3D
ambient space.
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Dimensionality Reduction

o Generally, when the number of features are very large (relative to the number of
observations in your dataset (not completely true, as in the case of k-NN)), algorithms
struggle to train effective models.

@ Preprocessing of dataset is always recommended before applying machine learning
algorithm.

@ One of the main step of preprocessing is dimensionality reduction. Approaches for
dimensionality reduction can be divided into feature selection and feature extraction.

Dr. Rizwan Ahmed Khan 2 Learning - F



Dimensionality Curse
©00000

Dimensionality Reduction

Dimensionality Reduction

o Generally, when the number of features are very large (relative to the number of
observations in your dataset (not completely true, as in the case of k-NN)), algorithms
struggle to train effective models.

@ Preprocessing of dataset is always recommended before applying machine learning
algorithm.

@ One of the main step of preprocessing is dimensionality reduction. Approaches for
dimensionality reduction can be divided into feature selection and feature extraction.

@ Feature selection : try to find a subset of the input variables/ features. The three
strategies are:
@ the filter strategy (e.g. information gain)

@ the wrapper strategy (e.g. search guided by accuracy),
©® and the embedded strategy
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Dimensionality Reduction

o Generally, when the number of features are very large (relative to the number of
observations in your dataset (not completely true, as in the case of k-NN)), algorithms
struggle to train effective models.

@ Preprocessing of dataset is always recommended before applying machine learning
algorithm.

@ One of the main step of preprocessing is dimensionality reduction. Approaches for
dimensionality reduction can be divided into feature selection and feature extraction.

@ Feature selection : try to find a subset of the input variables/ features. The three
strategies are:
@ the filter strategy (e.g. information gain)
@ the wrapper strategy (e.g. search guided by accuracy),
©® and the embedded strategy
@ Feature extraction / projection / transformation : Feature projection (also called
Feature extraction) transforms the data from the high-dimensional space to a space of
fewer dimensions. Mostly used technique for feature extraction, principal component
analysis (PCA), performs a linear mapping of the data to a lower-dimensional space in
such a way that the variance of the data in the low-dimensional representation is
maximized.
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tion Algorithm

Problem:
n features — m features : m < n

@ Linear
© Polynomial

© Exponential

Dr. Rizwan Ahmed Khan n Learning -



Dimensionality Curse
®0000

ity Reduction

tion Algorithm

Problem:
n features — m features : m < n

@ Linear
© Polynomial

© Exponential

Solution:
o It’s like choosing a subset of n features that gives best score. f(n) — Score
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ity Reduction

tion Algorithm

Problem:
n features — m features : m < n

@ Linear
© Polynomial

© Exponential

Solution:
o It’s like choosing a subset of n features that gives best score. f(n) — Score
o Intuitively, need to create all possible subsets of n features and to try which one is
best.

Dr. Rizwan Ahmed Khan n ) d Learning -



Dimensionality Curse
0000

Dimensionality Reduction

Feature Selection Algorithm

Problem:
n features — m features : m < n

@ Linear
© Polynomial

© Exponential

Solution:
o It’s like choosing a subset of n features that gives best score. f(n) — Score
o Intuitively, need to create all possible subsets of n features and to try which one is
best.
o Exponential number of subsets i.e.

Dr. Rizwan Ahmed Khan ce >d Learning - E
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Dimensionality Reduction

Feature Selection Algorithm: Filtering

Filter framework \
i 1 Best Feature
All f;at::res [ Search strategy | S;ul;{get
r“ j - Feature — [ o ] =
— | Subset —

( Feature
\ Evaluation J

|20——|>n—'r|—mv':hr"n|

Filtering based approach

o Feature selection algorithm doesn’t take feed back from final classification / learning
algorithm to score selected feature subset.

@ Selection criterion is independent from classification / learning criterion.
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Dimensionality Reduction

Feature Selection Algorithm: Filtering

Examples:
Advantage: @ Decision trees (e.g. using inductive bias
Q Fast of DT to learn features than using k-NN
Disadvantage: to classify)

@ Statistical tests:
@ Pearson Correlation
@ Chi-square
© Gini Index

@ There isn’t any feedback from learning
algorithm.

@ Features are scored in isolation.

[C]
2 2 L
Filter framework \
i A
Best Featu :
s re
All features [ Search strategy Subset 'rl'
r"' > Feature — fﬂ—* F
e ; Subset o= 1
Feature ¢
Evaluation / A
- == 'I'
I
[¢]
LN |
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Dimensionality Reduction

Feature Selection Algorithm: V

Wrapper framework =
) Best Feature
All fg??res [_Search strategy | Subset
l—~| ,| Feature " Estimated 5 F—s
Subset Accuracy hs o

|'_classlficatlon |
Algorithm ] )

|20——1bn—-n_mm:b.-ﬁ|

Wrapper based approach

o Feature selection algorithm, after selecting subset of features gets feedback from final
classification / learning algorithm to score selected feature subset.
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tion Algorithm: V
Advantage: Examples:
@ With feed back from learning algorithm, © Recursive Feature Elimination
feature selection is optimal. @ Genetic Algorithm
@ Takes into account learning bias of final @ Forward Search Algorithm
learning algorithm. @ Backward Search Algorithm (consider
Disadvantage: football team, remove player who is not
@ Very slow performing)
Wrapper framework ™
A\|f€??rgs [ Search strategy | Be;:;:::m

] .| Feature " Estimated =
Subset | Accuracy e
|'_Classlﬂcatlon |
Algorithm J

(

|20——1hn—11—mmb|—ﬁ|
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Feature Transformation

Principal Component Ana

Construct the covariance
matrix from d-dimensional
dataset D.

© Decompose the covariance
matrix into its Eigenvectors
and Eigenvalues.

r. Rizwan Ahmed Khan 3 Learning - F
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Feature Transformation

Principal Component Ana

Sort the eigenvalues by
decreasing order to rank the
corresponding eigenvectors.

@ Select k eigenvectors which
correspond to the k largest
eigenvalues, where k is the
dimensionality of the new
feature subspace (k < d).

6Matlab demo
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Feature Transformation

Principal Component Ana

@ Construct a projection matrix
W from the “top” k
eigenvectors.

Q@ Transform the d-dimensional
input dataset D using the
projection matrix W to obtain
the new k-dimensional feature
subspace.

6Matlab demo

Dr. Rizwan Ahmed Khan 3 Learning - F
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@ KD-Trees
@ Practical issue with K-NN
o K D-tree intuition
o KD-Tree Data Structure
o KD-tree for kNN search
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Practical issue with K-Nearest Neighbors

/hat is computational complexity of K-Nearest
Neighbors
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with K-NN
ue with K-Nearest Neighbors

3 3 ot Q
Suggestions

We can reduce
neighborhood search
complexity using
appropriate data structure.

Dr. Rizwan Ahmed Khan

KD-Trees
o

What is computational complexity of K-Nearest
Neighbors

@ Compare query data / test data to all training
examples.

@ Training Complexity : O(1)
@ Test Complexity : O(nd), where n = number of
training instances and d = dimensions of training

data. It’s linear time algorithm and that is not
good!

@ Result: K-Nearest Neighbors is slow.

Instance-Based Learning - KNN
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KD-tree data structure for kNN search

- Consider one neighbor case.

- Claim: Just look for the nearest neighbor in the partition in which test / query point lies. Proof?
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KD-tree intuition

KD-tree data structure for kNN search

- Consider one neighbor case.

- Claim: Just look for the nearest neighbor in the partition in which test / query point lies. Proof?

o Identify which side the test/query point lies in, e.g. the
right side.

o Find the NN zf of z; in the same side. The R denotes
. that nearest neighbor is also on the right side.

. o Compute the distance between x; and the dividing “wall”.
o Denote this as d,,. IF

dy > d(x4, J;ﬁN)

we got 2x speedup.

o Simply, if the distance to the partition is larger than the
distance to closest neighbor, it means none of the data
points inside that partition can be closer.

Ahmed Khan ce ed Learning - KNN
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

@ The general idea of KD-trees is to
partition the feature space.

i @ Only one-dimensional (axis aligned)
® ° ® splits. Instead of splitting in the middle,
e o choose the split “carefully” (many
° e o ° variations).

e o By using KD-tree lots of data points
ee, o immediately gets discarded from search
® ® space as their partition is further away
than k closest neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

@ The general idea of KD-trees is to
partition the feature space.

i @ Only one-dimensional (axis aligned)
® ° ® splits. Instead of splitting in the middle,
e o choose the split “carefully” (many
° ® o ° variations).

e o By using KD-tree lots of data points
e, o immediately gets discarded from search
® ® space as their partition is further away
than k closest neighbors.
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@ The general idea of KD-trees is to
partition the feature space.

i @ Only one-dimensional (axis aligned)
® ° ® splits. Instead of splitting in the middle,
e o choose the split “carefully” (many
e e e variations).

e o By using KD-tree lots of data points
e, o immediately gets discarded from search
® ® space as their partition is further away
than k closest neighbors.
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

@ The general idea of KD-trees is to
partition the feature space.

i @ Only one-dimensional (axis aligned)

® ° ® splits. Instead of splitting in the middle,
e o choose the split “carefully” (many
e e variations).

e o By using KD-tree lots of data points
esje, o immediately gets discarded from search
® ® space as their partition is further away
than k closest neighbors.
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

@ The general idea of KD-trees is to
partition the feature space.

@ Only one-dimensional (axis aligned)

° ® splits. Instead of splitting in the middle,
e o choose the split “carefully” (many

e e variations).

e o By using KD-tree lots of data points

e immediately gets discarded from search
® ® space as their partition is further away
than k closest neighbors.
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

@ The general idea of KD-trees is to
partition the feature space.

@ Only one-dimensional (axis aligned)

° ® splits. Instead of splitting in the middle,
e o choose the split “carefully” (many

e e variations).

e o By using KD-tree lots of data points

e immediately gets discarded from search
® ® space as their partition is further away
than k closest neighbors.
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

@ The general idea of KD-trees is to

A s partition the feature space.
"‘"—‘--\_
q)hLlu:gnudes @ Only one-dimensional (axis aligned)
splits. Instead of splitting in the middle,
If 2 ! choose the split “carefully” (many
2 nl |2 > !:l

variations).

o By using KD-tree lots of data points
‘ ' [ store data in immediately gets discarded from search
leaf nodes . i .
space as their partition is further away
than k closest neighbors.

P'
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Structure

KD-tree data structure

Example Dataset

®2.9)
WUN

{38}

olL5}

{5.3}

16,2}

{7.1}
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KD-Tree Data Structure

KD-tree data structure

{6,2}
{7,1}
{2,9}
{3,6} Sortwith x-value
{4,8}
{8.,4}
{5,3}
{1,5}
{9,5}

» {1,51{2,9},{3,6}, {4,8}, {5,3}, {6,2}, {7.1}, {8,4}, {9,5}
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KD-Tree Data Structure

KD-tree data structure

{6,2}
{7,1}
{2,9}

{3,6} Sort with x-value
{a,8} > {1,5},{2,9},{3,6}, {4,8},{5,3}, {6,2}, {7,1}, {8,4}, {9,5}

{8,4} | | | |
{5,3} | 1 I
{1,5}

Median
{9,5} Left subtree Root No{ie Right subtree
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KD-tree data structure
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KD-tree data structure

{1,5},12,9}, (3,6}, {4,8}, {5,3}, 6,2}, {7,1}, {8,4}, {9,5}

| | 1 l |
1 |
Median / .
Left subtree Root Node Right subtree

Sort subtrees using y-axis

{1,5113,6}, {4,8}, {2,9}, {5,3}, {7,1}, {6,2}, {8,4}, {9,5}
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KD-tree data structure

{1,5},12,9}, {3,6}, {4,8}, {5,3}, {6,2},{7,1}, {8,4}, {9,5}

Median /

Left subtree Root Node

Right subtree

Sort subtrees using y-axis

{1,5},13,6}, 14,8}, 12,9}, {5,3}, 17,1}, {6,2}, {8,4}, {9,5}

Find root node

{1,51,{3,6},{4,8}, {2,9}, {5,3}, {7,1}, {6,2}, {8,4}, {9,5}

t t
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KD-Tree Data Structure

KD-tree data structure

{1,5}{2,9}, (3,6}, {4,8}, {5,3}, {6,2}, {7,1}, {8,4}, {9,5}

Median /

Left subtree Root Node

Right subtree

Sort subtrees using y-axis

{1,5},13,6}, 14,8}, 12,9}, {5,3}, 17,1}, {6,2}, {8,4}, {9,5}

Find root node

{1,5},13,6}, 14,8}, {2,9}, {5,3}, {7,1}, {6,2}, {8,4}, {9,5}

Left subtree Right subtree Left subtree Right subtree
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KD-tree data structure

{1,51,{3,6}, 14,8}, {2,9}, {5,3}, {7,1}, {6,2}, {8,4}, {9,5}

Left subtree Right subtree Left subtree Right subtree

Sort with x-value

{1,5113,6},{2,9}, {4,8}, {5,3}, {7,1}, {6,2}, {8,41}, {9,5}

Find root node

{1,5},13,6}, {2,9}, {4,8}, {5,3}, {7,1}, {6,2}, {8,4}, {9,5}

t t

No more elements to sort as only one element in each half is left!
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{1,5}1{2,9}, {3,6}, {4,8}, {5,3}, {6,2}, {7,1}, {8,4}, {9,5}

Sorted with x-value and recorded root/median
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KD-Tree Data Structure
KD-tree data structure

{1,5},43,6},{4,8}, 12,9}, {5,3}, {7,1}, 16,2}, {8,4}, {9,5}

Sorted with y-value and recorded root/median
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KD-Tree Data 1cture

KD-tree da tructure

{1,5113,6} 12,8}, {4,8}, {5,3}, {7,1}, {6,2}, {8,4}, {9,5}

Sorted with x-value and recorded root/median
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KD-tree for kNN arch
cture for kNN search

s BN
A cﬁ/\> o/\o

5 . s \bcf \b\bcj’ Cg‘b\b dd’\bb

o

We traverse the tree looking for the nearest
neighbor of the query point.
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ucture for kNN search
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Examine nearby points first: Explore the branch of

the tree that is closest to the query point first.




ucture for kNN search
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Examine nearby points first: Explore the branch of

the tree that is closest to the query point first.
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KD-tree dat ucture for kNN search
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When we reach a leaf node: compute the distance
to each point in the node.
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KD-tree dat ucture for kNN search

When we reach a leaf node: compute the distance
to each point in the node.




KD-tree for
KD-tree dat ucture for kNN search

\
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Then we can backtrack and try the other branch at
cach node visited.
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KD-tree dat ucture for kNN search

Gi‘-
\

\
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Each time a new closest node is found. we can
update the distance bounds.




KD-tree for kNN search
KD-tree data structure for kNN search

PRI AT B2
b ) ) cﬁ/\y o \‘
.. °f°: . ! d/\b\bd’ \b\b d/d:b@

Using the distance bounds and the bounds of the
data below each node. we can prune parts of the
tree that could NOT include the nearest neighbor.
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Using the distance bounds and the bounds of the
data below each node. we can prune parts of the
tree that could NOT include the nearest neighbor.




KD kN
KD-tree dat cture for kNN search

Using the distance bounds and the bounds of the
data below each node. we can prune parts of the
tree that could NOT include the nearest neighbor.
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KD-tree for kNN search
KD-tree data structure summary

o Exact

o Easy to build

o Popular in Computer Graphics i.e. meshes, polygons , used to find which points are
close in 3D surfaces.
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KD-tree for kNN search

KD-tree data structure summary

e Exact

o Easy to build

o Popular in Computer Graphics i.e. meshes, polygons , used to find which points are
close in 3D surfaces.

o Curse of dimensionality makes KD-Trees ineffective for higher number of dimensions
(almost all data points on the edges far away). Will not work if data is confined to

manifold which is present is high dimensional ambient space. In such cases ball trees
will be useful.

o All splits are axis aligned.
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KD-tree for kNN search

KD-tree data structure summary

o Exact
o Easy to build

o Popular in Computer Graphics i.e. meshes, polygons , used to find which points are
close in 3D surfaces.

o Curse of dimensionality makes KD-Trees ineffective for higher number of dimensions
(almost all data points on the edges far away). Will not work if data is confined to

manifold which is present is high dimensional ambient space. In such cases ball trees
will be useful.

o All splits are axis aligned.

Approximation: Limit search to m leafs only
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Exercise

Question

© Repeat experiment with Digits dataset by varying values of k and find its optimal
value.

© What is the error bound of k-NN classifier. What happen when number of samples
n—oo?

Further Reading

@ Effect of K on decision boundary i.e. k=1 or k=3 or k = 7 etc.

@ Feature transformation / reduction : Singular Value Decomposition (SVD), Principal
Component Analysis (PCA)

@ Feature selection techniques i.e. statistical test and GA
@ Locally weighted regression
@ Ball-Trees
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© Introduction
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o Example
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@ Measure of Classification Performance
@ Further Reading
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Reference books for this Module:

e Chapter 1 & 5: Pattern Recognition, Theodoridis et al., Academic Press, 4" Edition
or latest edition.
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Reference books for this Module:

e Chapter 1 & 5: Pattern Recognition, Theodoridis et al., Academic Press, 4" Edition
or latest edition.

e Chapter 1: Combining Pattern Classifiers: Methods and Algorithms, Ludmila I.
Kuncheva, Wiley-Interscience.
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Reference Books

Reference Books

Reference books for this Module:

e Chapter 1 & 5: Pattern Recognition, Theodoridis et al., Academic Press, 4" Edition
or latest edition.

e Chapter 1: Combining Pattern Classifiers: Methods and Algorithms, Ludmila I.
Kuncheva, Wiley-Interscience.

o Chapter 2: Data Mining , Practical Machine Learning Tools & Techniques, Witten
and Franck, Elsevier Books, 2"¢ Edition.
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Reference Books

Reference Books

Reference books for this Module:

e Chapter 1 & 5: Pattern Recognition, Theodoridis et al., Academic Press, 4" Edition
or latest edition.

e Chapter 1: Combining Pattern Classifiers: Methods and Algorithms, Ludmila I.
Kuncheva, Wiley-Interscience.

o Chapter 2: Data Mining , Practical Machine Learning Tools & Techniques, Witten
and Franck, Elsevier Books, 2"¢ Edition.

o Chapter 2: Data Mining & Analysis : Fundamental Concepts & Algorithms, Zaki and
Meira, Cambridge University Press 2014.
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© Problem Setup
@ Basic Terminology
@ Machine Learning Problem Setup
@ Hypothesis Class
@ Objective
o Loss Functions
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ic Terminology

sic Terminology

o Algorithm: An Algorithm is a set of rules that a machine follows to achieve a
particular goal. An algorithm can be considered as a recipe that defines the inputs,
the output and all the steps needed to get from the inputs to the output.

for j =1to N do
detect color (imagey)
lots of code

end for

; Model Evaluation
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ic Terminology

sic Terminology

o Algorithm: An Algorithm is a set of rules that a machine follows to achieve a
particular goal. An algorithm can be considered as a recipe that defines the inputs,
the output and all the steps needed to get from the inputs to the output.

for j =1to N do
detect color (imagey)
lots of code

end for

o Learner: A Learner or Machine Learning Algorithm is the program used to learn a
machine learning model from data. Another name is “inducer” (e.g. “tree inducer: is
a program which builds the decision tree from data”).
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sic Terminology

o Classification: Classification is the process of predicting the class of given data
points. Classes are sometimes called as targets / labels or categories.
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ic Terminology

sic Terminology

o Classification: Classification is the process of predicting the class of given data
points. Classes are sometimes called as targets / labels or categories.

o Target function: The target function f: X — Y is the function f that we want to
model. It maps data points to targets / labels.

Ahmed Khan ble: Se B B ; Model Evaluation



Problem Setup
oe

Basic Terminology

Basic Terminology

o Classification: Classification is the process of predicting the class of given data
points. Classes are sometimes called as targets / labels or categories.

o Target function: The target function f: X — Y is the function f that we want to
model. It maps data points to targets / labels.

e Machine Learning Model / Classifier / Hypothesis: A Machine Learning Model is the
learned program / function that maps inputs to outputs / predictions. For example:
decision tree is a classifier or this can be a set of weights for a linear model or for a
neural network.

Problem Setting:
o Set of possible instances X i.e. {< x;,y; >}
e Unknown target function f: X — Y
o Set of function hypotheses H = {h|h : X — Y}

Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Prep: & Model Evaluation
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Machine Learning Problem Setup

Problem Formalization

Problem formalization

o Set of possible instances X i.e. {< Z;,y; >}
o Dataset D, given by D = {< Z;,y; >,..., < Tp,yn >} S X XY
Where:
7; is a feature vector (R9),
y; is a label / target variable,
X is space of all features and
Y is space of labels.

e Unknown target function f: X — Y
@ Set of function hypotheses H = {h|h : X — Y}

Output:

- Hypothesis h € H that best approximates target function f. Or a classification “rule”
that can determine the class of any object from its attributes values.

- If training is done correctly h(Z;) ~ y;
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Machine Learning Problem Setup

Problem Formalization

e Binary classification
Y={0,1}
Y:{'la'i']-}

e Multi-class classification
Y={1,2,--- ,K}
where (K > 2)

@ Regression

Y=R
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- : image features

==y B

== ) ==

X; 6MPcamera = R!%M

- This is actually not a good representation and before deep
learning / CNN, raw pixel values were not used for learning
concepts (feature extraction).

Ahmed Khan oblem Setup, D

; Model Evaluation




- : image features

==y B

== ) ==

X; 6MPcamera = R!%M

- This is actually not a good representation and before deep
learning / CNN, raw pixel values were not used for learning
concepts (feature extraction).

- Word document : Sparse representation!
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: image features

Some common /

traditional image feature
.R extractors:
G @ Scale-Invariant
x; B Feature Transform
(SIFT)
R e Speeded-Up Robust
G Features (SURF)
|2 o Local Binary Pattern

X; 6MP camera = R'®M (LBP)

- This is actually not a good representation and before deep

o GIST extractor
learning / CNN, raw pixel values were npt used for learning o Histogram of Oriented
concepts (feature extraction). :
. Gradients (HoG)
- Word document : Sparse representation!
°.
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Machine Learning Problem Setup

Train setup

- Aim is that algo. should
learn to map &; — y;

A — - If training is done
; Yn correctly h(Z;) ~ y;

Train ML Algorithm |~ h

Khan

Model Evaluation
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Machine Learning Problem Setup

ML Algorithm

X —

[ -

Ahmed Khan

— h

Test

Computer

— h(x)

- For test, take & whose
label is unknown.

- Then computer passes
that & to h to make
prediction on unknown
data.

Important

It will only work if train
and test data are drawn
from the same distribution.

; Model Evaluation
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o Hypothesis h € H that best approximates target function f.

o Before we can find a function A from infinite many possibilities H , we must specify
what type of function it is that we are looking for. It could be:
@ Decision Tree
© Nearest Neighbor
@ SVM
Q@ ANN
@ Bayesian classifier

Q .
@ There is NO best algorithm. It all depends on the problem and on the data.
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Problem Setup

- How to select h € H?
Some random ideas:

@ Pick h € H randomly (and hope it works!).
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Problem Setup

- How to select h € H?
Some random ideas:
@ Pick h € H randomly (and hope it works!).
- Problem: Space H (the set of functions that can possibly be learned) is very large
and it is very unlikely that randomly picked function would work.
- Any corner case, where it might work?

; Model Evaluation
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Hypothes
Hypothesis ¢ selection

- How to select h € H?
Some random ideas:
@ Pick h € H randomly (and hope it works!).
- Problem: Space H (the set of functions that can possibly be learned) is very large
and it is very unlikely that randomly picked function would work.
- Any corner case, where it might work?
- It may work, only if, H is restricted enough (set of function that will work)
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ss selection

- How to select h € H?
Some random ideas:

@ Pick h € H randomly (and hope it works!).
- Problem: Space H (the set of functions that can possibly be learned) is very large
and it is very unlikely that randomly picked function would work.
- Any corner case, where it might work?
- It may work, only if, H is restricted enough (set of function that will work)

@ Traverse all the h in hypothesis class H and chose the one that works best i.e. least
error.
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ss selection

- How to select h € H?
Some random ideas:

@ Pick h € H randomly (and hope it works!).
- Problem: Space H (the set of functions that can possibly be learned) is very large
and it is very unlikely that randomly picked function would work.
- Any corner case, where it might work?
- It may work, only if, H is restricted enough (set of function that will work)

@ Traverse all the h in hypothesis class H and chose the one that works best i.e. least
error.
- Problem: Again space H is very large.
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ss selection

- How to select h € H?
Some random ideas:
@ Pick h € H randomly (and hope it works!).
- Problem: Space H (the set of functions that can possibly be learned) is very large
and it is very unlikely that randomly picked function would work.
- Any corner case, where it might work?
- It may work, only if, H is restricted enough (set of function that will work)
@ Traverse all the h in hypothesis class H and chose the one that works best i.e. least
error.
- Problem: Again space H is very large.

Essentially, we try to find a function A within the hypothesis class that makes the fewest
mistakes within training data.
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o The purpose of machine learning is to discover patterns in the data and then make
predictions on test set based on experience / data. Thus, selected function h within
the hypothesis class H, should minimize error on unseen future examples (prediction).
But before making prediction, function h is selected based on lowest error on the
training set.

o To find h € H that makes least errors on training data loss functions are used.

@ The higher the loss, the worse it is - a loss of zero means it makes no errors.
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Loss Functions or Objective Functions

@ Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

; Model Evaluation
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Loss Functions or Objective Functions

@ Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

—_

o Afh(xg) # i
0, Otherwise

1 n
Lop(h) =~ D Oni) sy Where G2y, = (1)

i=1
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L Functions

Loss Functions or Objective Functions

@ Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

—_

o Afh(xg) # i
0, Otherwise

1 n
Lop(h) =~ D Oni) sy Where G2y, = (1)

i=1

- Is this loss function fine for regression settings?
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L Functions

Loss Functions or Objective Functions

@ Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

Loj(h) =~ D Oni) sy Where G2y, = 0. Otherwise
i=1 ’

(1)

- Is this loss function fine for regression settings?

@ Squared loss: The squared loss function is typically used in regression settings.
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Loss Functions

Loss Functions or Objective Functions

@ Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

Loj(h) =~ D Oni) sy Where G2y, = 0. Otherwise
i=1 ’

(1)

- Is this loss function fine for regression settings?
@ Squared loss: The squared loss function is typically used in regression settings.

n

Logh) = = S (hix) — )’ ®)

i=1
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Loss Functions

Loss Functions or Objective Functions

@ Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

o Afh(xg) # i
Loj1(h) = = > Snix)tyer Where Sy, = :
n 0, Otherwise

—_

(1)

- Is this loss function fine for regression settings?

@ Squared loss: The squared loss function is typically used in regression settings.

Z (xi) yz (2)

o The loss suffered grows quadratically with the absolute mis-predicted amount. This
property encourages no predictions to be really far off (or the penalty would be so large
that a different hypothesis function is likely better suited). Penalty of one example off
by 10 is much higher than penalty of ten examples off by 1.

3\*—‘
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Loss Functions or Objective Functions

@ Absolute loss: is also typically used in regression settings. Loss grows linearly (as
opposed to squared loss) with mis-predictions, thus it is more suitable for noisy data.

Lans(W) = = " x0) ~ i )
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Hypothesis class selection

- How to select h € H?
Some random ideas:




Problem Setup
O0e000

Loss Fun

Hypothesis ¢ selection

- How to select h € H?
Some random ideas:
@ If you find a function Ah(-) (i.e. memorizer®) with low loss on your data D, how do you
know whether it will still get examples right that are not in D7
memorizer*
h(l‘) — Yi, if El(xlvyi) € D7 s.t., x =X,
0,  other wise
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Problem Setup
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Loss Functions

Hypothesis class selection

- How to select h € H?
Some random ideas:

@ If you find a function A(-) (i.e. memorizer®) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*

h(x) _ yi, if H(Xi,yi) € D, s.t., x = x;,
0, other wise

It has ZERO training error.



Problem Setup
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Loss Fun

Hypothesis ¢ selection

- How to select h € H?
Some random ideas:

@ If you find a function A(-) (i.e. memorizer®) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*

W) = vi, if (x4, y:) € D, s.t., x = x;,

0, other wise

What is the issue with this algorithm?
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Problem Setup

Loss Func

Hypothesis ¢ selection

- How to select h € H?
Some random ideas:
@ If you find a function h(-) (i.e. memorizer*) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*
if A(x;,y;) € D, s.t., x = x;,

0, other wise

It will perform horribly with samples not in D, i.e., there’s the over-fitting issue with this
function.
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@ We have the metric to measure loss on training set. How about Generalization?
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Loss Functions

Hypothesis class selection : Generalization

@ We have the metric to measure loss on training set. How about Generalization?
o What actually is required?
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Loss Fun

Hypothesis ¢ selection : Generalization

@ We have the metric to measure loss on training set. How about Generalization?

o What actually is required?

e We want min error for
V(#,y) ~ P Where (Z,y) are new data points drawn from distribution P and P is not
known , although distribution D is drawn from P.

Or Minimize Expected Loss

Model Evaluation
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Loss Fun

Hypothesis ¢ selection : Generalization

@ We have the metric to measure loss on training set. How about Generalization?

o What actually is required?

e We want min error for
V(#,y) ~ P Where (Z,y) are new data points drawn from distribution P and P is not
known , although distribution D is drawn from P.

Or Minimize Expected Loss
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Problem Setup
000e00

Loss Fun

Hypothesis ¢ selection : Generalization

@ We have the metric to measure loss on training set. How about Generalization?

o What actually is required?

e We want min error for
V(Z,y) ~ P Where (Z,y) are new data points drawn from distribution P and P is not
known , although distribution D is drawn from P.

Or Minimize Expected Loss

Generalization

e We don’t have distribution P so we can’t compute loss for it. Good thing is we can
approximate it.

o In ML usually dataset is divided in three parts train, validation and test to measure
generalization capabilities (more on this later in the lecture).
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Loss Functions

Summary

@ We train our classifier by minimizing the training loss:

. * . 1
Learning: h*(:) = argmmh(,)eﬂﬁ Z £(x,ylh(-))
TR (x,y)€DTR

where H is the set of all possible classifiers h(.). In other words, we are trying to find
a hypothesis h which would have performed well on the training data.
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Loss Functions

@ We train our classifier by minimizing the training loss:

. * . 1
Learning: h*(:) = argmmh(,)eﬂﬁ Z £(x,ylh(-))
TR (x,y)€DTR

where H is the set of all possible classifiers h(.). In other words, we are trying to find
a hypothesis h which would have performed well on the training data.
© We evaluate our classifier on the test data to calculate testing loss:

1
Evaluation: erg = m Z (%, ylh*(+))
(

x,y)€EDTE
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Loss Functions

Summary

@ We train our classifier by minimizing the training loss:

. * . 1
Learning: h*(:) = argmmh(,)eﬂﬁ Z £(x,ylh(-))
TR (x,y)€DTR

where H is the set of all possible classifiers h(.). In other words, we are trying to find
a hypothesis h which would have performed well on the training data.
© We evaluate our classifier on the test data to calculate testing loss:

1
Evaluation: erg = m Z (%, ylh*(+))
(

x,y)€EDTE

@ If the samples are drawn independent and identically distributed from the distribution
‘P, then the testing loss is an unbiased estimator of the true generalization loss:

Generalization: € = Ex ,)~p[{(x, y|h"("))]
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Functions

Why does erg — € as |Drg| — 400 7

or

Why Test error ety becomes same as generalization error ¢ when test set is really large
n — +oo.
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L Functions

Summ

Quiz

Why does erg — € as |Drg| — 400 7

or

Why Test error ety becomes same as generalization error ¢ when test set is really large
n — +oo.

Read

Weak law of large numbers : the empirical average of data drawn from a distribution
converges to its mean
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Section Contents

o Basic Questions
o Features

© Dataset
@ Understanding Dataset
o Example
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o A Dataset / Training set / database: is set of data containing features and the target
to predict.
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Dataset
©00

o A Dataset / Training set / database: is set of data containing features and the target
to predict.

o An Instance: is a row in the dataset. Other names for instance are: (data) point,
example, observation. An instance consists of the feature values.
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Dataset
©00

o A Dataset / Training set / database: is set of data containing features and the target
to predict.

o An Instance: is a row in the dataset. Other names for instance are: (data) point,
example, observation. An instance consists of the feature values.

o The Features / Attributes: are the inputs used for prediction or classification. A
feature is a column in the dataset. A feature is an individual measurable property or
characteristic of a phenomenon being observed. Choosing informative, discriminating
and independent features is a crucial step for effective algorithms in Machine Learning.
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Understanding Dataset

Toy Dataset

Training Data / Features extracted from real data

Dr. Rizwan Ahmed Khan

Weight | Texture | Class
150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth Apple
130g Smooth Apple
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Understanding Dataset

Toy Dataset

Training Data / Features extracted from real data

Weight | Texture | Class
150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth Apple
130g Smooth Apple

@ Each row in training data is an example (Feature extractor algorithm).

Dr. Rizwan Ahmed Khan
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Understanding Dataset

Toy Dataset

Training Data / Features extracted from real data

Weight | Texture | Class
150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth Apple
130g Smooth Apple

@ Each row in training data is an example (Feature extractor algorithm).

@ Last column is class / label / target.

Dr. Rizwan Ahmed Khan
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Understanding Dataset

Understanding Dataset

Weight | Texture | Class

150g Bumpy | Orange
170g Bumpy | Orange

140g Smooth Apple Toy Dataset.

130g Smooth | Apple

Problem Setup, D ; Model Evaluation
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Instance / Example —{_

Weight | Texture | Class
150¢g Bumpy | Orange
170g Bumpy | Orange
140g Smooth | Apple
130g Smooth Apple

Dr. Rizwan Ahmed Khan

Problem Setup, D

An Instance is a row in the
dataset. It is also called as
Obervation , Example.

& Model Evaluation




Attributes

q

Instance / Example ——C

[

o ——T———— T

[ Weight | Texture D Class
150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth | Apple
130¢g Smooth | Apple

Dr. Rizwan Ahmed Kh

an

Problem Setup, D

The Features / Attributes: are
the inputs used for prediction
or classification.

& Model Evaluation



Target/

Attributes Class
| |
__--——--__-_-‘__
q_Weight | Texture p Class
Instance / Example —={_ 150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth | Apple
130g Smooth | Apple

Dr. Rizwan Ahmed Khan
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Target / class is the
information the machine learns
to predict.
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nding Dataset

nding Dat

Target/
Attributes Class
[ ——l Complete dataset consists of
{Weight | Texture p Class 2t a2y, features and class variables.
Instanccg’E:ampte—‘C 150g | Bumpy Ol’ﬂllg(‘ 1521 One instance is represented as

170g Bumpy | Orange x} 22y, <zl g2 n >

140g Smooth Apple : '7_7,1 1 "'Tl_,’ h nor

130g Smooth Apple - < Z1,y1 > where 7; € R

= x:‘; ’xfl ¥u
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Example

From Image to Data Point

- To understand all previously described terms, have a look at this example® from Medical
Image Classification.

- Two images, each having a distinct region inside it.
o First image from a benign lesion

e Second image from malignant one (cancer)

1Image from Theodoridis book
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Example

From Image to Data Point

o The first step is to identify the measurable quantities or features that make these two
regions distinct from each other (problem of feature identification / engineering).
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Example

From Image to Data Point

o The first step is to identify the measurable quantities or features that make these two
regions distinct from each other (problem of feature identification / engineering).

o Figure below shows a plot of the mean value of the intensity in each region of interest
versus the corresponding standard deviation around this mean.

e Each point corresponds to a different image from the available database.

A

; Model Evaluation
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Example

From Image to Data Point

o The first step is to identify the measurable quantities or features that make these two
regions distinct from each other (problem of feature identification / engineering).

o Figure below shows a plot of the mean value of the intensity in each region of interest
versus the corresponding standard deviation around this mean.

e Each point corresponds to a different image from the available database.

L4
e
oo
o oo
o o /
= //'
- - +
/ iy
- +J._
A
i
>

; Model Evaluation
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Example

From Image to Data Point

- Assume that we are given a new image (shown as *). Algorithm will again calculate same

features i.e. mean intensity and standard deviation in the region of interest to classify new
data point.

o The measurements used for the classification, the
¥ P mean value and the standard deviation in this
0o / case, are known as features.
o oo "
o 0 /
// Zy
e £
T2 gt
.
e
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Example

From Image to Data Point

- Assume that we are given a new image (shown as *). Algorithm will again calculate same
features i.e. mean intensity and standard deviation in the region of interest to classify new
data point.

o The measurements used for the classification, the
mean value and the standard deviation in this

o o / case, are known as features.
o oo "
oo o Feature is an individual measurable property or
/// T characteristic of a phenomenon being observed °.
+ 4 +
T2 £
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Example

From Image to Data Point

- Assume that we are given a new image (shown as *). Algorithm will again calculate same
features i.e. mean intensity and standard deviation in the region of interest to classify new
data point.

o The measurements used for the classification, the
mean value and the standard deviation in this

_ g case, are known as features.

oo S o Feature is an individual measurable property or

// P characteristic of a phenomenon being observed °.

£ + o Generally, n features are used to describe one

observation : < x;',z;%,--- ,2;" > € R". This is
v also called feature vector.

%Bishop, Christopher (2006). Pattern recognition and machine learning
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Example

From Image to Data Point

e Each of the feature vectors (< z;, 2;%,- -+, 2;," > € R")
identifies uniquely a single pattern (object / observation /
example).

A .
o )0 : ° /
" e o /'/
-

y "

7 £

s RN

//
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Example

From Image to Data Point

Dataset
000e

e Each of the feature vectors (< z;, 2;%,- -+, 2;," > € R")
identifies uniquely a single pattern (object / observation /
example).

e The straight line in Figure is known as the decision line,
i and it constitutes the classifier whose role is to divide the

2 / feature space into regions that correspond to either class A

oo or class B.
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Dataset
000e

Example

From Image to Data Point

e Each of the feature vectors (< z;, 2;%,- -+, 2;," > € R")
identifies uniquely a single pattern (object / observation /
example).

e The straight line in Figure is known as the decision line,
e and it constitutes the classifier whose role is to divide the
Bla / feature space into regions that correspond to either class A
oo or class B.

o Py o If decision line fails to correctly classify example, a
g + misclassification has occurred.
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Dataset
000e

Example

From Image to Data Point

e Each of the feature vectors (< z;, 2;%,- -+, 2;," > € R")
identifies uniquely a single pattern (object / observation /
example).

e The straight line in Figure is known as the decision line,
e and it constitutes the classifier whose role is to divide the
Bla / feature space into regions that correspond to either class A
oo or class B.

o Py o If decision line fails to correctly classify example, a
g + misclassification has occurred.

o The feature vectors whose true class < y; > is known
g (supervised learning) and which are used for the design /
training of the classifier are known as training feature
vectors in broad sense.
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Dataset
000e

Example

From Image to Data Point

e Each of the feature vectors (< z;, 2;%,- -+, 2;," > € R")
identifies uniquely a single pattern (object / observation /
example).

e The straight line in Figure is known as the decision line,
e and it constitutes the classifier whose role is to divide the
Bla / feature space into regions that correspond to either class A
oo or class B.

o Py o If decision line fails to correctly classify example, a
g + misclassification has occurred.

o The feature vectors whose true class < y; > is known
g (supervised learning) and which are used for the design /
training of the classifier are known as training feature
vectors in broad sense.

o Training feature vectors are further divided into train,
validation and test set.

Dr. Rizwan Ahmed Khan Problem Setup, D



ic Questions

sic Questions: Classification Task

* HoG
* SURF
* GIST

@ How are the features generated? It is not trivial to know which feature will have
discriminative ability. It is problem dependent, and it concerns the feature generation
/ extraction / engineering stage of the design of a classification system. In image
above few feature extraction algorithms are given, each of which transform image data
to n-dimensional feature vector.

; Model Evaluation



Dataset

B Questions
Basic Questions: Classification Task

- o Feature Selection
Feature E i t
Feature Extraction { Tenistormati
. SIFT = PER
+ HoG - fca
+ SURF + Wrapper approach

. GIST * Filter approach

@ How are the features generated? It is not trivial to know which feature will have
discriminative ability. It is problem dependent, and it concerns the feature generation
/ extraction / engineering stage of the design of a classification system. In image
above few feature extraction algorithms are given, each of which transform image data
to n-dimensional feature vector.

© What are the best n number of features to use? This is also a very important task
and it concerns the feature transformation / selection / preprocessing stage of the
classification system.
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| Feature Bxtraction ) ;g:mresalecuon l .

-« SIFT + PCA SVM
+ HoG + lca + KNN
*= SURF + Wrapper approach * Random Forest

- GIsT = HMRarapgraatly * Neural Net

@ How does one design the classifier? Is linear classifier a good choice (like the one in
previous example). These questions concern the classifier design stage.

2Question 2-4 will be discussed

; Model Evaluation



Dataset

B Questions
Basic Questions: Classification Task

e ey ;?rau.wesdecﬂon ‘.ﬂ Class / Label

-« SIFT + PCA SVM
+ HoG + lca + KNN
= SURF + Wrapper approach * Random Forest

- GIsT = HMRarapgraatly * Neural Net

@ How does one design the classifier? Is linear classifier a good choice (like the one in
previous example). These questions concern the classifier design stage.

@ Finally, how can one assess the performance of the designed classifier? That is, what is
the classification error rate? This is the task of the system / model evaluation stage.

Note 2
2Question 2-4 will be discussed
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Dataset

Features

Features quality

Feature is an individual measurable property or characteristic of a phenomenon being
observed.

Fundamental qu

What are good features?
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Dataset

Features

Features quality

Feature is an individual measurable property or characteristic of a phenomenon being
observed.

Fundamental question

What are good features?

Good feature

Good features makes it easy for classifier to decide (learn) between two different classes /
concepts / labels OR good features enhances inter class variations while minimize intra
class varaition.

Dr. Rizwan Ahmed Khan



Features

Feature Types

Mainly feature variable can have two distinct types:

£\

Weighty | Texture | Class
150g Bumpy | Orange
170g Bumpy | Orange
140¢ Smooth | Apple
130g Smooth | Apple

\\ : //

i —

Ahmed Khan

@ Numerical variable / feature :
Numerical data is a type of data that is
expressed in terms of numbers rather than

natural language descriptions
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Features

Feature Types

Mainly feature variable can have two distinct types:

it ¥
/Texture\

Weight Class
150g | Bumpy \ Orange
170g Bumpy || Orange
140g Smooth || Apple
130g Smooth Apple

-7

@ Numerical variable / feature :
Numerical data is a type of data that is
expressed in terms of numbers rather than

natural language descriptions

@ Categorical variable / feature :
Categorical data is a type of data that can be
stored into groups or categories

Dr. Rizwan Ahmed Khan
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Dataset

Features

Feature Types

@ Numerical variable / feature

@ Continuous: Observations can take any value between a certain set of real numbers.




Dataset

Features

Feature Typ

@ Numerical variable / feature
@ Continuous: Observations can take any value between a certain set of real numbers.
@ Discrete: Observations can take a value based on a count from a set of distinct whole
values. A discrete variable cannot take the value of a fraction between one value and the
next closest value.
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Features

Feature Types

@ Numerical variable / feature
@ Continuous: Observations can take any value between a certain set of real numbers.
@ Discrete: Observations can take a value based on a count from a set of distinct whole
values. A discrete variable cannot take the value of a fraction between one value and the
next closest value.

@ Categorical variable / feature
@ Ordinal: Observations can take a value that can be logically ordered or ranked. The
categories associated with ordinal variables can be ranked higher or lower than another,
but do not necessarily establish a numeric difference between each category e.g. short,
tall.

Dr. Rizwan Ahmed Khan > P, N ; Model Evaluation



Dataset

Features

Feature Types

@ Numerical variable / feature
@ Continuous: Observations can take any value between a certain set of real numbers.
@ Discrete: Observations can take a value based on a count from a set of distinct whole
values. A discrete variable cannot take the value of a fraction between one value and the
next closest value.

@ Categorical variable / feature

@ Ordinal: Observations can take a value that can be logically ordered or ranked. The
categories associated with ordinal variables can be ranked higher or lower than another,
but do not necessarily establish a numeric difference between each category e.g. short,
tall.

® Nominal: Observations can take a value that is not able to be organized in a logical
sequence e.g. the name or colour of an object. A nominal variable may be numerical in
form, but the numerical values have no mathematical interpretation. E.g. label 10
people as numbers 1,2, 3,...,10 , but any arithmetic with such values, e.g. 1 +2 =3
would be meaningless.
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Section Contents

@ Preprocessing
@ Motivation
o Feature Scaling
@ Outliers
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Preprocessing

@00

Motivation

What is Preprocessing?

o Pre-processing refers to the transformations applied to our data before feeding it to
the algorithm. It converts the raw data into a clean data set (improved
interpretability), suitable for machine learning.

e Data preprocessing is an integral step in Machine Learning as the quality of data and

the useful information that can be derived from it directly affects the ability of model
to learn.
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tivation

y Preprocess Data?

o It helps in removing redundant information / Outliers
(a point that lies very far from the mean of the
corresponding random variable).
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tivation

y Preprocess D

o It helps in removing redundant information / Outliers
(a point that lies very far from the mean of the
corresponding random variable).

e Noise removal to improve performance. Data may
come from some “sensors”e.g. physical devices,
instruments, software programs such as web crawlers,
manual surveys, etc which are prone to malfunction.
Secondly, there could be human error in recoding data
as well.

; Model Evaluation



Motivation

Why Preprocess Data?

o It helps in removing redundant information / Outliers
(a point that lies very far from the mean of the
corresponding random variable).

e Noise removal to improve performance. Data may
come from some “sensors”e.g. physical devices,

1 9 NaN 90 00 7.0 instruments, software programs such as web crawlers,

manual surveys, etc which are prone to malfunction.

Secondly, there could be human error in recoding data

2
3 7 100 30 6.0 4.0 as well.
4

0 2 50 30 860 NaN

19 17.0 NaN 9.0 NaN

@ Some specified machine learning algorithm needs

2 8.0 10.0 NaN 3.0 . .. o .
information in a specified format, for example:

o Random Forest algorithm does not support null
values.

e Principal Component Analysis (PCA) algorithm
requires data to have zero mean and unit variance.
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Preprocessing
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Motivation

Data Preprocessing Techniques

@ Data Scaling / Data Normalization : This technique transforming feature / data so
that it fits within a specific scale, like 0-100 or 0-1. For example, standardization
transforms attributes to a standard Gaussian distribution with a mean of 0 and a
standard deviation of 1 (requirement for PCA).
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Preprocessing
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Motivation

Data Preprocessing Techniques

@ Data Scaling / Data Normalization : This technique transforming feature / data so
that it fits within a specific scale, like 0-100 or 0-1. For example, standardization
transforms attributes to a standard Gaussian distribution with a mean of 0 and a
standard deviation of 1 (requirement for PCA).

@ Outlier Removal : Points with values very different from the mean value produce large
errors during training and may have disastrous effects.

Problem Setup, D Model Evaluation



Preprocessing
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Motivation

Data Preprocessing Techniques

@ Data Scaling / Data Normalization : This technique transforming feature / data so
that it fits within a specific scale, like 0-100 or 0-1. For example, standardization
transforms attributes to a standard Gaussian distribution with a mean of 0 and a
standard deviation of 1 (requirement for PCA).

@ Outlier Removal : Points with values very different from the mean value produce large
errors during training and may have disastrous effects.
@ Missing Data / Null value handling : Two ways to handle

@ Discard feature vectors with missing values, provided large data sets and these values
are rare.
@ “Complete” the missing values by (a) zeros or (b) mean (c) defining customized function

Completing the missing values in a set of data is also known as imputation.
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Feature Scaling

Feature / Data Scaling

@ Range of values of attributes / features varies widely. Thus, features with large values
may have a larger influence in the cost function than features with small values,
although this does not necessarily reflect their respective significance in the design of
the classifier.

Ahmed Khan > B N ; Model Evaluation



Feature Scaling

Feature / Data Scaling

ure / Data Scaling - Mot

@ Range of values of attributes / features varies widely. Thus, features with large values
may have a larger influence in the cost function than features with small values,
although this does not necessarily reflect their respective significance in the design of
the classifier.

o For example, many classifiers and clustering algorithm (i.e. K- nearest neighbor, K-
Means) calculate the distance between two points by the Euclidean distance. Without
scaling one feature (with broad range of values) will dominate this calculation.
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Preprocessing

®00000

Feature Scaling

Feature

Data Scaling

re / Data Scaling - Moti

@ Range of values of attributes / features varies widely. Thus, features with large values
may have a larger influence in the cost function than features with small values,
although this does not necessarily reflect their respective significance in the design of
the classifier.

o For example, many classifiers and clustering algorithm (i.e. K- nearest neighbor, K-
Means) calculate the distance between two points by the Euclidean distance. Without
scaling one feature (with broad range of values) will dominate this calculation.

@ Secondly, scaling is applied as some algorithm i.e. gradient descent, converges much
faster with feature scaling than without it.
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@ Range of values of attributes / features varies widely. Thus, features with large values
may have a larger influence in the cost function than features with small values,
although this does not necessarily reflect their respective significance in the design of
the classifier.

o For example, many classifiers and clustering algorithm (i.e. K- nearest neighbor, K-
Means) calculate the distance between two points by the Euclidean distance. Without
scaling one feature (with broad range of values) will dominate this calculation.

@ Secondly, scaling is applied as some algorithm i.e. gradient descent, converges much
faster with feature scaling than without it.

@ In Principle Component Analysis (PCA), without scaling results will be biased
towards feature that has higher range (components that maximize the variance).
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Feature ing

Feature Scaling Methods

@ Min-max normalization: This equation scales features to the range in [0, 1].

xscaled _ T — mm(m)
~ maz(z) — min(x) 5)

scaled

where z is an original value, z is the normalized value.
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Feature ing

Feature Scaling Methods

@ Min-max normalization: This equation scales features to the range in [0, 1].

scaled __ T — mm(m)

maz(x) — min(zx)

scaled

where z is an original value, z is the normalized value.

© Mean normalization :
r—T

wscaled _

maz(x) — min(zx)

where z = distribution average /mean
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Feature ing

Feature Scaling Methods

@ Min-max normalization: This equation scales features to the range in [0, 1].

xscaled _ T — mm(m)
~ maz(z) — min(x) 5)

scaled

where z is an original value, z is the normalized value.

© Mean normalization :
r—T

wscaled _

maz(x) — min(zx)

where z = distribution average /mean

@ Standardization: Feature standardization makes the values of each feature in the
data have zero-mean and unit-variance. This method is widely used for normalization.

scaled T—T
= — 7

where z = distribution average /mean and o is standard deviation.

; Model Evaluation
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Feature ng

Feature Scaling - Example

o Consider this data presented below 3. This data needs to be scaled as values of
attributes / features are varying widely.

e Age (Xq) | Income (Xa)

X1 12 300

X2 ! 500

X3 18 1000

x4 23 2000 o Calculate:

X 27 3500 Scale feature using Equation 5 :
Xg 25 4000 l,scaled - z—min(z)

X7 3 4300 — maz(z)—min(x)
X5 37 6000

Xg a9 2500

X1 40 2700

3Data from Data mining book by Zaki & Meira
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Feature ling

Feature Scaling - Example

x; Age (Xq) | Income (Xo)

X1 2 300

X i =00

X3 18 1000

= = 2000 Calculate:

X Pl 3500 Scale feature using Equation 5 :
X¢ 28 4000 pscaled _ z—min(x)

X7 3 4300 — max(x)—min(x)
X 37 G000

Xo 39 2500

heli] 40 2700
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Feature ling

Feature Scaling - Example

% || Age (X4) | Income (Xs)
p.<] 2 300

2 B! 500

% 18 1000

= 23 2000

X 27 3500 Scaled values are ...
X = 3000

= 3 1300

X5 37 G000

X 0 2500
— 10 2700
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Feature aling

Feature Scaling - E

X_normalized - NumPy array

0 1
@
% || Age (X | Income (Xy) 1 ©8.8714286 9.8350877
X1 12 300
X3 14 500 2 8.214286 8.122807
X3 18 1000
% = 2000 3 8.392857 8.298246
= 97 e
X5 =l 3500 4 @.535714 8.5614084
Xg 25 4000
x7 34 4300 5 @.571429 8.649123
X5 a7 G000
= 0 3500 6 @.785714 8.781754
X1 il 2700 7 ®8.892857 1
3 8.964286 8.385965
) 1 8.421053
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Feature Scaling

Feature Scaling - Python

1 #Qauthor: rizwan.khan

2 import numpy as np

5 from sklearn import preprocessing

i from sklearn.preprocessing import StandardScaler

6 #Create Training Set, 2D vector, Values from Zaki’s book example
7 X=np.array([[12 , 300], [14 , 500], [18 , 10001, [23 , 20001, [27 ,
35001,

s [28 , 4000],[34 , 4300],[37 , 6000],[39 , 25001, [40 , 270011)
o # First Method: Range Normalization (xi-min(xi))/(max(xi)-min(xi))

11 max_xl=np.max(X [:,0])
12 max_x2=np.max (X [:,1])
13 min_x1=np.min(X [:,0])
14+ min_x2=np.min(X [:,1])

16 x1_tran=(X[:,0]-min_x1)/(max_x1-min_x1)
17 x2_tran=(X[:,1]-min_x2)/(max_x2-min_x2)

19 X_normalized =np.r_[x1_tran[None,:],x2_tran[None,:]]
20 X_normalized = np.transpose (X_normalized)
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Feature ling

Feature Scaling - Example

x; || Age (X1) | Income (Xs)

X1 2 300

X3 14 H00

x3 18 100D

;I ;? iﬂﬁﬂ Scale feature using Equation 7 :
x,— 2R 2000 xscaled . %

X7 H 4300

X5 37 6000

Xo 39 2500

X 40 2700
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Feature aling

Feature Scaling - E

X_s - NumPy array

X Age (X | Income (Xo)
X1 12 300
X3 14 500
Xa 18 1000
x4 23 2000
Xz 27 3500
Xg 28 4000
X7 34 4300
X5 37 G000
Xo 39 2500
x10 40 2700

0 1

-1.55654 -1.37879
1 -1.35173 -1.26292
2 -8.942117 -8.973263
3 -8.438897 -@.39394
4 -B8.8284888 @.475845
5 @.8819232 8.764787
B @.696347 @.938584
7 1.88356 1.92335
g 1.28837 -8.184278

9 1.31877 8.8115865



Outliers

Detectking Outliers

o Outliers are data points with values very different from the mean value. Thus they
may produce large errors during training and can have disastrous effects. For example
AdaBoost increase the weights of misclassified example, thus outliers can have more
weights as they tend to be often misclassified.

o linear & logistic regression are easily impacted by the outliers in the training data, so
does K — NN, if K is small.
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Outliers

Detectking Outliers

o Outliers are data points with values very different from the mean value. Thus they
may produce large errors during training and can have disastrous effects. For example
AdaBoost increase the weights of misclassified example, thus outliers can have more
weights as they tend to be often misclassified.

o linear & logistic regression are easily impacted by the outliers in the training data, so
does K — NN, if K is small.

o Common methods for detecting outliers :
e Z-Score: Z-Score is calculated using Equation 7. The data points which are way too far
from zero mean can be outliers.

Not unusual

Maoderataly
unusual

Maderately
unusual

Outliers Outliers
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Outliers

Detecting Outliers

o Outliers are data points with values very different from the mean value. Thus they
may produce large errors during training and can have disastrous effects. For example
AdaBoost increase the weights of misclassified example, thus outliers can have more
weights as they tend to be often misclassified.

o linear & logistic regression are easily impacted by the outliers in the training data, so
does K — NN, if K is small.

o Common methods for detecting outliers :
e Z-Score: Z-Score is calculated using Equation 7. The data points which are way too far
from zero mean can be outliers.

e Box-Plot : This is quickest and easiest way to identify outliers is by visualizing them
using plots.
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Preprocessing

Dealing with Outliers

o If the number of outliers is very small and dataset is large enough, outliers are usually
discarded.
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Outliers

Dealing with Outliers

o If the number of outliers is very small and dataset is large enough, outliers are usually
discarded.

o In some applications where dataset is small, dropping data is a harsh step and should
be avoided.

o Few techniques to deal with outliers, if they are not dropped:

o Winsorizing : setting the extreme values of an attribute to some specified value. For
example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.
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Outliers

Dealing with Outliers

o If the number of outliers is very small and dataset is large enough, outliers are usually
discarded.

o In some applications where dataset is small, dropping data is a harsh step and should
be avoided.

o Few techniques to deal with outliers, if they are not dropped:

o Winsorizing : setting the extreme values of an attribute to some specified value. For
example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

o Log-Scale Transformation : This method is often used to reduce the variability of data
including outlying observation.
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Outliers

Dealing with Outliers

o If the number of outliers is very small and dataset is large enough, outliers are usually
discarded.

o In some applications where dataset is small, dropping data is a harsh step and should
be avoided.

o Few techniques to deal with outliers, if they are not dropped:

o Winsorizing : setting the extreme values of an attribute to some specified value. For
example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

o Log-Scale Transformation : This method is often used to reduce the variability of data
including outlying observation.

o Adopt cost functions that are not very sensitive in the presence of outliers.
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Outliers
insorization: Python

2 Qauthor: rizwan.khan

5 import scipy.stats

6 import numpy as np

7 a = np.array([92, 19, 101, 58, 1053, 91, 26, 78,
i0, 13, -40, 101, 86, 85, 15, 89, 89, 28, -5,
411)

o print (a)
10 print(scipy.stats.mstats.winsorize(a, limits
=[0.05, 0.051))
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Winsorization: Python

Qauthor: rizwan.khan
nnn

import scipy.stats

import numpy as np

a = np.array([92, 19, 101, 58, 10563, 91, 26, 78,
i0, 13, -40, 101, 86, 85, 15, 89, 89, 28, -5,
411)

print (a)
print (scipy.stats.mstats.winsorize(a, limits
=[0.05, 0.051))

EE data_after_winsor - N

0 0
0 92 0 £
1 19 1 19
2 101 2 101
3 58 3 58
F) 1653 F) 161
5 91 5 Ei
6 26 6 26
7 78 7 78
8 18 8 16
9 13 9 13
10 -40 10 =3
1 101 1 101
12 88 12 86
13 85 13 85
14 15 14 15
15 89 15 89
16 89 16 89
17 28 7 28




Model Evaluation
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Section Contents

a Model Evaluation
o Workflow for Classification
@ Dataset Partitioning
@ Measure of Classification Performance
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‘Workflow of a supervised learning algorithm for classification:

@ Data preprocessing and feature extraction (not required in DL)
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@ Data preprocessing and feature extraction (not required in DL)

@ Training phase : {< z;,y; >} — algorithm
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tion

Supervised Learning Algorithm

‘Workflow of a supervised learning algorithm for classification:
@ Data preprocessing and feature extraction (not required in DL)
@ Training phase : {< z;,y; >} — algorithm

© Evaluation phase : provides feedback to improve model accuracy.
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Workflow r as ation

rkflow: Supervised Learning Algorithm

‘Workflow of a supervised learning algorithm for classification:
@ Data preprocessing and feature extraction (not required in DL)
@ Training phase : {< z;,y; >} — algorithm

© Evaluation phase : provides feedback to improve model accuracy.

The training process is repeated until a desired accuracy level is achieved

Training Data

New Data |:> Classifier E> Pradiction
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tion

Supervised Learning Algorithm

‘Workflow of a supervised learning algorithm for classification:
@ Data preprocessing and feature extraction (not required in DL)
@ Training phase : {< z;,y; >} — algorithm

© Evaluation phase : provides feedback to improve model accuracy.

The training process is repeated until a desired accuracy level is achieved

Eval model
F 3
Y
Feature matrix Machine
Training data Feature iaiae Madel
(Raw data) 7| extracti g [Pt 1
aw datal extraction algorithm
| Labels 3
Fraluie wWilor
| Feature sasmen
| extraction

Training

Predicting
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Workflow for CI. cation
Model Evaluation

o Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.
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Workflow for C ation
Model Evaluation

o Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.

@ A learned classifier has to be tested on a different test set to gauge its performance.
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Workflow for C ation
Model Evaluation

o Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.
@ A learned classifier has to be tested on a different test set to gauge its performance.

@ The experimental performance on the test data is a proxy for the performance on
unseen data. It checks the classifier’s generalization ability.
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Workflow for Cla cation

Model Evaluation

o Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.

o A learned classifier has to be tested on a different test set to gauge its performance.

o The experimental performance on the test data is a proxy for the performance on
unseen data. It checks the classifier’s generalization ability.
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Workflow for Cl. fication

Model Evalus

o Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.

o A learned classifier has to be tested on a different test set to gauge its performance.

o The experimental performance on the test data is a proxy for the performance on
unseen data. It checks the classifier’s generalization ability.
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Workflow for Classification
Model Evaluation

o Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.

o A learned classifier has to be tested on a different test set to gauge its performance.

o The experimental performance on the test data is a proxy for the performance on
unseen data. It checks the classifier’s generalization ability.

Learning the training data too precisely usually leads to poor classification results on new
data.
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Workflow for C ation
Model Evaluation

o How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.
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Workflow for C ation
Model Evaluation

o How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.

@ The above issue can be handled by evaluating the performance (generalization
capability) of a trained model model on unseen data, separated from available dataset.
Following are few dataset partitioning techniques:

e Hold out

e k — fold Cross validation

e Bootstrap

e Leave-one-out (:ross—validation
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Workflow for Cla ation
Model Evaluation

o How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.

@ The above issue can be handled by evaluating the performance (generalization
capability) of a trained model model on unseen data, separated from available dataset.
Following are few dataset partitioning techniques:

e Hold out

e k — fold Cross validation

e Bootstrap

e Leave-one-out (:r()ss—validation

o More training data gives better generalization.
o More test data gives better estimate for the classification error probability.

o Never evaluate performance on training data. The conclusion would be biased.
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Dataset Partitioning

Hold Out Cross Validation

Hold out cross validation
o Given data is randomly partitioned into two independent sets i.e. training set and the
testing set.
o The function approximator / classifier fits a function using the training set only. Then
learned model is used to predict the output values for the data in the testing set.
o It is now becoming a common practice to use three instead of two data sets: one for
training, one for validation, and one for testing.. More on this later.

| DATASET |

Training Dataset Testing Dataset

A A

| TRAIN

Train Modsl
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Dataset Partitioning
k — fold Cross Validation

In k-fold cross validation, dataset is divided into k equal subsets. k-1 subsets are used for the training while a
single set is retained for testing. The process is repeated k times (k-folds), with each of the k subsets used exactly

once for testing. Then, the k estimations (accuracy) from k-folds are averaged to produce final estimated value.

sstadunassessant
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Dataset Partitioning

Bootstrap

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.

IProposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123-140.
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rtitioning

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.

@ Given: the training set T' consisting of n entries.

IProposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123-140.
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Dataset Partitioning

Bootstrap

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.
@ Given: the training set T' consisting of n entries.

@ Bootstrap generates m new datasets T; each of size n’ < n by sampling T uniformly with replacement. The
consequence is that some entries can be repeated in Tj.

IProposed in: Breiman, Leo (1996). Bagging predlctors Machine Learnlng 24 (2): 123-140.
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Dataset Partitioning

Bootstrap

@ The bootstrap (also called bagging® ) uses sampling with replacement to form the training set.
@ Given: the training set T' consisting of n entries.

@ Bootstrap generates m new datasets T; each of size n’ < n by sampling T uniformly with replacement. The
consequence is that some entries can be repeated in Tj.

@ The m statistical models (e.g., classifiers, regressors) are learned using the above m bootstrap samples.

Sampling with
replacement

/
=

\\-___/

Original Training Data of size 5\

Bootstrap Samples of size 3
IProposed in: Breiman, Leo (1996). Bagging predictors. Machine Learnmg 24 (2): 123-140.

—————= ML Algorithm

Dog \\
\

ML Algorithm

ML Algorithm

Problem
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Dataset Partitioning

Leave-One-Out Cross-Validation

@ Do N experiments. In each experiment, use N — 1 samples for training, and leave only
1 sample for testing.
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Dataset Partitioning

Leave-One-Out Cross-Validation

@ Do N experiments. In each experiment, use N — 1 samples for training, and leave only
1 sample for testing.
@ Compute the testing error F;,;i=1,2,..., N .
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One-Out Cross-Valid.

@ Do N experiments. In each experiment, use N — 1 samples for training, and leave only

1 sample for testing.
@ Compute the testing error F;,;i=1,2,..., N .
@ After N experiments, compute the overall estimated error:

T T T T T

R > Performance|
I > Performance
I > Performance

- Performance

I > Performance

blem Setup, D
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Measure of C ation Performance

Error Estimation

o Performance evaluation metrics explain the performance of a model on unseen data
and provides feedback. Thus allowing to make continuous improvements till desired
accuracy is achieved.
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Measure of C ation Performance

Error Estimation

o Performance evaluation metrics explain the performance of a model on unseen data
and provides feedback. Thus allowing to make continuous improvements till desired
accuracy is achieved.

@ The choice of evaluation metrics / error estimation depends on a problem in hand
(such as classification, regression, clustering, topic modeling, among others) and final
goal.
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Measure of Cla cation Performance

Error Estimation

o Performance evaluation metrics explain the performance of a model on unseen data
and provides feedback. Thus allowing to make continuous improvements till desired
accuracy is achieved.

@ The choice of evaluation metrics / error estimation depends on a problem in hand
(such as classification, regression, clustering, topic modeling, among others) and final
goal.

@ Most used classification performance evaluation metrics:
Classification accuracy

Confusion matrix

Precision

Recall

F-Measure

Receiver Operating Characteristic (ROC) Area Under Curve (AUC)
Logarithmic loss
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e The most simple way to calculate the accuracy of any classification machine learning
model is:

cec
Dy

where N.. = Number of examples correctly classified and D;s = total examples in testing data set.

Accuracy =
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e The most simple way to calculate the accuracy of any classification machine learning
model is:

cec
Dy

where N.. = Number of examples correctly classified and D;s = total examples in testing data set.

Accuracy =

@ N, in actual is sum of true positives 7}, and true negative T,.
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O®@00000000

e The most simple way to calculate the accuracy of any classification machine learning
model is:

cec
Dy

where N.. = Number of examples correctly classified and D;s = total examples in testing data set.

Accuracy =

@ N, in actual is sum of true positives 7}, and true negative T,.

Any drawbacks?
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ure of Cla cation Performance

ification Accur

e The most simple way to calculate the accuracy of any classification machine learning
model is:

cec
Dy

where N.. = Number of examples correctly classified and D;s = total examples in testing data set.

Accuracy =

@ N, in actual is sum of true positives 7}, and true negative T,.
Any drawbacks?
Consider that in Dys, 98% samples belongs to class A (class imbalance problem).

According to this method, model can achieve 98% accuracy by simply predicting every
training sample to class A.
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@ The real problem arises, when the cost of misclassification of the minor class samples
are very high. For example If we deal with a rare but fatal disease, the cost of failing
to diagnose (False negative, F,) the disease of a sick person is much higher than the
cost of sending a healthy person to more tests (False positive, F},).

; Model Evaluation
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@ The real problem arises, when the cost of misclassification of the minor class samples
are very high. For example If we deal with a rare but fatal disease, the cost of failing
to diagnose (False negative, F,) the disease of a sick person is much higher than the
cost of sending a healthy person to more tests (False positive, F},).

@ Let’s understand:
@ True positives T),: Classifier predicted disease and the person actually has the disease.
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@ The real problem arises, when the cost of misclassification of the minor class samples
are very high. For example If we deal with a rare but fatal disease, the cost of failing
to diagnose (False negative, F,) the disease of a sick person is much higher than the
cost of sending a healthy person to more tests (False positive, F},).

o Let’s understand:

@ True positives T),: Classifier predicted disease and the person actually has the disease.
@ True negative T,,: Classifier predicted no disease and the person actually is healthy.

; Model Evaluation
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Measure of C ation Performance

Classification Accuracy

@ The real problem arises, when the cost of misclassification of the minor class samples
are very high. For example If we deal with a rare but fatal disease, the cost of failing
to diagnose (False negative, F,) the disease of a sick person is much higher than the
cost of sending a healthy person to more tests (False positive, F},).

@ Let’s understand:
@ True positives T),: Classifier predicted disease and the person actually has the disease.
@ True negative T,,: Classifier predicted no disease and the person actually is healthy.
@ False positive F},: Classifier predicted disease but the person actually is healthy, also
known as a “Type I error”.
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Measure of C ation Performance

Classification Accuracy

@ The real problem arises, when the cost of misclassification of the minor class samples
are very high. For example If we deal with a rare but fatal disease, the cost of failing
to diagnose (False negative, F,) the disease of a sick person is much higher than the
cost of sending a healthy person to more tests (False positive, F},).

o Let’s understand:

@ True positives T),: Classifier predicted disease and the person actually has the disease.

@ True negative T,,: Classifier predicted no disease and the person actually is healthy.

@ False positive F},: Classifier predicted disease but the person actually is healthy, also
known as a “Type I error”.

@ False negative F),: Classifier predicted no disease and the person actually has the
disease, also known as a “Type II error”.
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Measure of Cl tion Performance

Confusion Mz

@ To overcome problem shown above, we have a diagnostic / visualization tool, called
Confusion Matrix.
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Measure of C ion Performance

Confusion M

@ To overcome problem shown above, we have a diagnostic / visualization tool, called
Confusion Matrix.

o It contains information about actual and predicted classifications. For Example:
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Measure of C ion Performance

Confusion M

e To overcome problem shown above, we have a diagnostic / visualization tool, called
Confusion Matrix.

o It contains information about actual and predicted classifications. For Example:

Predicted Class

Disease )
Disease
Disease 45 20
Actual
Class N?
Disease 5 30

Please label these quantities as T}, T5,, F), & F,
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Measure of C ion Performance

Confusion M

e To overcome problem shown above, we have a diagnostic / visualization tool, called
Confusion Matrix.

o It contains information about actual and predicted classifications. For Example:

Predicted Class

Disease )
Disease
i T F
Disease a5 T® 50 In
Actual
Class Nf’ F T
Disease 5 P 30 "

Please label these quantities as T}, T5,, F), & F,
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Measure of ification Performance

Confusion

@ To find out how the errors are distributed across the classes we construct a confusion
matrix using the testing data set D;s. The entry a;; (off-diagonal) of such a matrix
denotes the number of elements from D;, whose true class is w;, and which are
assigned by classifier to class other than w;.

4nttps://tel.archives-ouvertes.fr/tel-01166539/
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Measure of ification Performance

Confusion

Model Evaluation
O000@00000

@ To find out how the errors are distributed across the classes we construct a confusion
matrix using the testing data set D;s. The entry a;; (off-diagonal) of such a matrix
denotes the number of elements from D;, whose true class is w;, and which are

assigned by classifier to class other than w;.

Sadness  Happiness Surprise Anger  Disgust  Fear
Sadness 6.1 8.8 6.3 4.3 3.5 1]
Happiness 10.8 T0.8 16.4 0 2 0
Surprise Y 10.8 70.1 1 L7 44
Anger i} 10.3 0 62.1 151 12.3
hsgust 10.3 155 84 i 63.3 2.5
Fear 3 2.6 3.3 10.1 207 60.3

Confusion matrix (in multiclass problem, define one class as +ve and rest of other as —ve) from my PhD

research?

o The additional information that the confusion
misclassifications have occurred.

4nttps://tel.archives-ouvertes.fr/tel-01166539/
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Measure of ification Performance

Confusion

@ To find out how the errors are distributed across the classes we construct a confusion
matrix using the testing data set D;s. The entry a;; (off-diagonal) of such a matrix
denotes the number of elements from D;, whose true class is w;, and which are
assigned by classifier to class other than w;.

Sadness  Happiness Surprise Anger  Disgust  Fear

Sardness 68.1 8.8 6.3 43 3.5 g
Happiness 10.8 T0.8 16.4 0 2 0
Surprise Y 10.8 70.1 1 L7 44
Anger i} 10.3 0 62.1 151 12.3
hsgust 10.3 155 84 i 63.3 2.5
Fear 3 2.6 3.3 10.1 07 60.3

Confusion matrix (in multiclass problem, define one class as +ve and rest of other as —ve) from my PhD

research?

o The additional information that the confusion matrix provides is where the
misclassifications have occurred.
o Information provided can help to focus on classes that are difficult to classify, or

classes that are more similar / confusing than others.
4nttps://tel.archives-ouvertes.fr/tel-01166539/
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Spemﬁcm' & Pr

o Sensitivity / Recall calculates the ratio of positive

S—— class correctly detected. This metric gives how good

. . . T,
the model is to recognize a positive class. i,

Spam Non-Spam
Spam TP=45 FN=20
Actual Class
Non-Spam FP=5 TN=30
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Spemﬁcm‘ & Pr

Actual Class

Predicted Class
N ——
Spam Non-Spam
Spam TP=45 FN=20
Non-Spam FP=5 TN=30

Ahmed Khan

o Sensitivity / Recall calculates the ratio of positive
class correctly detected. This metric gives how good
the model is to recognize a positive class. 7"

s

o Specificity is characterized as the ratio of actual

negatives, which model predicted as a negative class
. F,
or true negative. Tty

; Model Evaluation
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ion Performance

Spemﬁcm‘ & Pr

o Sensitivity / Recall calculates the ratio of positive
class correctly detected. This metric gives how good

Predicted Class . . L
the model is to recognize a positive class. 7"
b+

o —

Spam | NowSpam | o Qnecificity is characterized as the ratio of actual

e T i negatives, which mo}giel predicted as a negative class
AiodiFies or true negative. FPTPTTL
Non-Spam FP=5 TN=30
\ @ Precision is ratio of total number of correctly classified

positive examples and the total number of predicted

positive examples.
TF
TptFp

; Model Evaluation
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Spemﬁcm‘ & Pr

@ Precision and recall both indicate accuracy but there is subtle difference between the
two. Precision means the percentage of results which are relevant. Recall refers to the
percentage of total relevant results correctly classified by algorithm.
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@ Precision and recall both indicate accuracy but there is subtle difference between the
two. Precision means the percentage of results which are relevant. Recall refers to the
percentage of total relevant results correctly classified by algorithm.

e To increase recall algorithm needs to keep generating results which are not accurate, hence
lowering precision.
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@ Precision and recall both indicate accuracy but there is subtle difference between the
two. Precision means the percentage of results which are relevant. Recall refers to the
percentage of total relevant results correctly classified by algorithm.

e To increase recall algorithm needs to keep generating results which are not accurate, hence
lowering precision.

e Thus, it is not possible to maximize both these metrics at the same time.
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@ Precision and recall both indicate accuracy but there is subtle difference between the
two. Precision means the percentage of results which are relevant. Recall refers to the
percentage of total relevant results correctly classified by algorithm.

e To increase recall algorithm needs to keep generating results which are not accurate, hence
lowering precision.

e Thus, it is not possible to maximize both these metrics at the same time.

e For simplicity, there is another metric available, called F-score:

precision x recall

Fo=Q1+0
I+a )a2 X precision + recall

F-score is a harmonic mean of precision and recall.
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@ Precision and recall both indicate accuracy but there is subtle difference between the
two. Precision means the percentage of results which are relevant. Recall refers to the
percentage of total relevant results correctly classified by algorithm.

e To increase recall algorithm needs to keep generating results which are not accurate, hence
lowering precision.

e Thus, it is not possible to maximize both these metrics at the same time.

e For simplicity, there is another metric available, called F-score:

precision x recall

Fo=Q1+0
I+a )a2 X precision + recall

F-score is a harmonic mean of precision and recall.

o when a =1 (F1 - score)

recision X recall
F=2x2

precision + recall

an Ahmed Khan > B N Model Evaluation
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Spemﬁcnv & Precision: Quiz

In the following machine learning application domain, which metric would be more useful?

3. Object Detection (balanced

1. Cancer Detection 2. Spam Email Identification dataset)
@ Precision @ Precision @ Precision
@ Recall @ Recall © Recall
@ Accuracy @ Accuracy @ Accuracy
@ Specificity Q@ Specificity @ Specificity

; Model Evaluation
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Specificity & Precision: Quiz

In the following machine learning application domain, which metric would be more useful?

3. Object Detection (balanced

1. Cancer Detection 2. Spam Email Identification
dataset)
@ Precision @ Precision @ Precision
@ Recall @ Recall © Recall
@ Accuracy @ Accuracy @ Accuracy
@ Specificity Q@ Specificity @ Specificity
Recall

Cost of failing to diagnose the
disease of a sick person F, is
much higher than the cost of
sending a healthy person to
more tests F,.

Problem Setup, D
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Measure of cation Performance

Sensitivity, Specificity & Precision: Quiz

In the following machine learning application domain, which metric would be more useful?

. P . Obje et lance
1. Cancer Detection 2. Spam Email Identification 3. Object Detection (balanced

dataset)
@ Precision @ Precision @ Precision
© Recall © Recall © Recall
@ Accuracy @ Accuracy @ Accuracy
@ Specificity Q@ Specificity @ Specificity
Recall
Cost of failing to diagnose the = Precision
disease of a sick person F), is It is important that legitimate
much higher than the cost of email should not be classified
sending a healthy person to as Spam, so cost of F), is high.

more tests F,.
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Model Evaluation

0000000800

In the following machine learning application domain, which metric would be more useful?

1. Cancer Detection

@ Precision
© Recall

@ Accuracy
@ Specificity

Recall

Cost of failing to diagnose the
disease of a sick person F, is
much higher than the cost of
sending a healthy person to
more tests F,.

Dr. Rizwan Ahmed Khan

2. Spam Email Identification

@ Precision
© Recall

@ Accuracy
Q@ Specificity

Precision

It is important that legitimate
email should not be classified
as Spam, so cost of F), is high.

Problem Setup,

3. Object Detection (balanced
dataset)

@ Precision
© Recall

@ Accuracy
@ Specificity

Accuracy

Accuracy is a good measure
when the target variable classes
in the data are near%y balanced.
Accuracy = 2

Y= TF Tt Fn

; Model Evaluation
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Measure of C ation Performance

It’s not only about numbers

@ Accuracy or Interpretability?
Interpretability is critical if a model has
to be explained for transparency.

The “Best’ Machine Learning Method

Interpretable Simple
Accurate
Fast
(to train and test) Scalable

http://radar.oreilly.com/2013/09/
gaining-access-to-the-best-machine-learning-methods.

html
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Measure of C ation Performance

It’s not only about numbers

@ Accuracy or Interpretability?
Interpretability is critical if a model has
to be explained for transparency.

The “Best’ Machine Learning Method

et g Siphe © Complex or Simple?

Simplicity is important for practical
Accurate reasons: it is impossible to tune model if
model has “too many knobs to tune” .

Fast

(to train and test) Scalable

http://radar.oreilly.com/2013/09/
gaining-access-to-the-best-machine-learning-methods.

html
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Measure of cation Performance

about numbers

@ Accuracy or Interpretability?
Interpretability is critical if a model has
to be explained for transparency.

The “Best’ Machine Learning Method

et g Siphe © Complex or Simple?

Simplicity is important for practical
Accurate reasons: it is impossible to tune model if
model has “too many knobs to tune” .

— @ Scalability?
Scalable , v
—— Either model needs to be scalable in
ietp://radar - oreilly. con/2013/09/ terms of size of data or parameters.

gaining-access-to-the-best-machine-learning-methods.

html
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Measure of C cation Performance

It’s not only about numbers

@ Accuracy or Interpretability?
Interpretability is critical if a model has
to be explained for transparency.

The “Best’ Machine Learning Method

et g Siphe © Complex or Simple?

Simplicity is important for practical
Accurate reasons: it is impossible to tune model if
model has “too many knobs to tune” .

(to "a:;aasng tost) Soa—. © ]SEIjSIll(ZEIiESC;eI needs to be scalable in
http://radar.oreilly.com/2013/09/ terms of size of data or parameters.
gaining-access-to-the-best-machine-learning-methods. Q Fast pl‘OtOtypiIlg?
html Either production needs to deliver fast

or can R & D be initiated?
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Why Netflix Never Implemented The Algorithm That Won The Netflix
$1 Million Challenge

from the Hmes-change dept
Fri, Apr 13th 2012 12:07am — Mike Masnick

You probably recall all the sxcitement that went around when a group finally wen the big
Netflix 51 million prize in 2009, improving Metflix's recommendation algorithm by 10%. But
‘ what you might not know, is that Netflix never implemented that selution itzelf. Metflix
Innovation recently put up a blog post discussing some of the details of its recommendation system,
which (as an aside} explains why the winning entry never was used. First, they note that
thay did make use of an earlier bit of code that came out of the contest:

A year into the competition, the Korbell team won the first Progress Prize with an
8.43% Improvement. They reported more than 2000 hours of work In 1 Lo come ug
with the final combination of 107 algorithms that gave them this prize. And, they gave
us the source code. We looked ot the two underilying algorithms with the best
performance in the ensemble: Matrix Focterization fwhich the community generally
called SVD, Singular Violue Decomposition) and Restricted Boitzmann Machines (REBM).
5VD by itself provided ¢ 0.8914 RMSE (roof meaon squared error), while RBM alone
provided a competitive but siightly worse 0.89%0 RMSE, A linear blend of these two
reduced the error ta 0.88. To put these aleorithms to use, we hod to work to overcome
some [imitations, for instance thot they were built to handle 100 million ratings,
instead of the more than 5 billion that we have, and that they were not built to adapt
as members odded more ratings. But ence we overcame those challenges, we put the
two algorithms into production, where they ore still used os part of our
recommendation engine.




Further Reading
o]

Section Conten

@ Further Reading




Further Reading
oce

Further Reading

@ Dense Vs. Sparse representation of feature vector.

o Data Preprocessing techniques in Machine Learning:
e Handling Categorical Variables
e One-Hot Encoding
o Outlier handling - Cook’s distance
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Further Reading

@ Dense Vs. Sparse representation of feature vector.

o Data Preprocessing techniques in Machine Learning:

e Handling Categorical Variables
e One-Hot Encoding
o Outlier handling - Cook’s distance

o Considering recent trend of having large datasets, which dataset partitioning
technique is suitable?
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Further Reading
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Further Reading

Further Reading

@ Dense Vs. Sparse representation of feature vector.

o Data Preprocessing techniques in Machine Learning:
e Handling Categorical Variables
e One-Hot Encoding
o Outlier handling - Cook’s distance
o Considering recent trend of having large datasets, which dataset partitioning
technique is suitable?

@ Dealing with Imbalance dataset.

o Article reading: The use of the area under the ROC curve in the evaluation of
machine learning algorithms (https:
//www .sciencedirect.com/science/article/abs/pii/S0031320396001422)
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© Taxonomy

o Big Picture o Introduction

° Context. ) @ Supervised Learning

e Demystifying AI e Unsupervised Learning

o Al waves o Reinforcement Learning
© Machine Learning @ Workflow

o Intuition o Features

o What? o Python code

o Why? © Examples
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Reference books for this lecture:

o Chapter 1: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Reference books for this lecture:

o Chapter 1: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
o Chapter 1: Pattern Classification, R. DUDA et al., Wiley Interscience, latest edition.
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Reference Books

Reference books for this lecture:

o Chapter 1: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
o Chapter 1: Pattern Classification, R. DUDA et al., Wiley Interscience, latest edition.

e Chapter 1: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4" or latest
edition.
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Abstraction Learning Learning
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Artificial Intelligence

Al is the science of making intelligent machines which can perform tasks that
require inteliigence when performed by humans.

Perceiving Machine Lea rﬂing

Learning

Supervised | Unsupervised
Abstraction Learning

Reasoning

Machine
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Context

Context

Artificial Intelligence
Al is the science of making intelligent machines which can perform tasks that
require intelligence when performed by humans.
- : i / Representation
i Machine Lea rning In AI, perception is a process
to interpret, acquire, select,
and then organize the sensory
Abetraction i:::.lri\:sed Unsupervised information from the physical

& Jueaming world to make actions like

humans.

Learning

Reasoning
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Artificial Intelligence

Al is the science of making intelligent machines which can perform tasks that
require intelligence when performed by humans.

e Machine Learning Learni
Learving Learning is the ability of a
system to improve its behavior
Supervised | Unsupervised b d .
Abstraction Leiming Canriai ased on experience.

Reasoning
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Context

Reasoning is a way to infer
facts from existing data. It is a

Artificial Intelligence
Al Is the science of making intelligent machines which can perform tasks that

require inteliigence when performed by humans. general process of thinking
rationally, to find valid
e Machine Learning conclusions.
Machine Learning Vs Machine
Learning Reasoning: one is about finding
Supervissd. | Unsupervised patterns, while the other is
Abstraction Learning Learning about understanding
) _ relationships (tackle new
Reasoning i I problems with a deductive and

inductive reasoning approach) ¢

“From Machine Learning to
Machine Reasoning, L Bottou 2011
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ext

Cc
Context

Artificial Intelligence
Al Is the science of making intelligent machines which can perform tasks that

require inteliigence when performed by humans. A Ol
» Abstraction is a fundamental
ks Machine Learning mechanism underlying both

human and artificial perception,
representation of knowledge,
Supervised | Unsupervised reasoning and learning. It aims
Abstraction Learning | Learning at taking knowledge that is
discovered at certain level and
applying it up at another level.

Learning

Reasoning
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Artificial Intelligence

Al is the science of making intelligent machines which can perform tasks that
require intelligence when performed by humans.

Bottlen
“The most important problem
for Al today is abstraction and

supervised | Unsupervised reasoning” — Francois
pistcn edming Chollet-IBM

|

Perceiving Machine Lea rning

Learning

Reasoning
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Artificial Intelligence
Al is the science of making intelligent machines which can perform tasks that

require intelligence when performed by humans. Al / ML
Perseiving Machine Learning o Write Al for fund-raising

Field of study that gives computers the ability to (SCieHCG fiction feel)

Learning learn without being explicitly programmed. . : .
it e Write Machine Learning

" Supervised | Unsupervised for Hiring
Abstraction Learni . 9 o7L.q7I9
SEE (Engineering sensibility)

Reasoning

Ahmed Khan Machine
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Demystifying Al

AT Hype

@ There is lot of hype about Al that it will exceed the capabilities of human beings or
will displace humanity.

@ In this lecture and course I will try to demystify the hype and will discuss where
technology currently is and where it is head. What it can do or can’t do.
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AT Hype

@ There is lot of hype about Al that it will exceed the capabilities of human beings or
will displace humanity.

@ In this lecture and course I will try to demystify the hype and will discuss where
technology currently is and where it is head. What it can do or can’t do.

@ When people or media refer to term Al, usually they refer to General Al or AGI.
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@ There is lot of hype about Al that it will exceed the capabilities of human beings or
will displace humanity.

@ In this lecture and course I will try to demystify the hype and will discuss where
technology currently is and where it is head. What it can do or can’t do.

@ When people or media refer to term Al, usually they refer to General Al or AGI.

Artificial General Intelligence (AGI)

Hypothetical intelligence of a machine that has the capacity to understand or learn any
intellectual task that a human being can. Full autonomy, topic of science fiction (at the moment).
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Demystifying Al

AT Hype

@ There is lot of hype about Al that it will exceed the capabilities of human beings or
will displace humanity.

@ In this lecture and course I will try to demystify the hype and will discuss where
technology currently is and where it is head. What it can do or can’t do.

@ When people or media refer to term Al, usually they refer to General Al or AGI.

Artificial General Intelligence (AGI)

Hypothetical intelligence of a machine that has the capacity to understand or learn any
intellectual task that a human being can. Full autonomy, topic of science fiction (at the moment).

Artificial Narrow Intelligence (ANI)

ANT is focused on one narrow task. Every sort of machine intelligence that surrounds us
today is Narrow Al

o Google Assistant

@ Google Translate

@ Siri

@ Recommender systems, etc.

Dr. Rizwan Ahmed Khan Machine Learning
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Tmage inspiration: MIT-Mathematics of Big Data and Machine Learning
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Big Data Compute Power

Tmage inspiration: MIT-Mathematics of Big Data and Machine Learning
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Big Picture

Big Data Compute Power ML Algorithms
B

Convergence of big data, compute power, advancements in machine learning algorithms
and investment (big) helped in widespread AI development / deployment.

Note: !

Tmage inspiration: MIT-Mathematics of Big Data and Machine Learning
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Big Data Compute Power ML Algorithms Money
e 9 fun

i

&

Tmage inspiration: MIT-Mathematics of Big Data and Machine Learning
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AI System Architecture : End-to-End Pipeline

Sanscrs

Structured Data Algorithms, e.g.: Human-Machine Users
i Data _ | Conditioning =5 el Teaming (CoA) {Missions)
= i ks Leaming [ Human
‘_] [ Managsmant '"70""8“0\" . LLJnsqurvisad Knon-vledgf o uﬂ::a Insight - Data
* Data = S : = Complement 43 : .
Sources | Unstuetured| CUration * Transfer Leaming 6 ot Conditioning,
o Data - Data o Reurqurcemsnl relates to
G n >»| Labeling Leaming
5 & * Ele. Spectrum - 1
(& P oRe pre-processing
A ¢ ¢ ¢ steps
- Algorithms: Life
Modern Computing beyond NN or
O] [« Y ] DNN
CPUs GPUs PU MNeuromarphic Custom Quantum

Robust Al

Metrics and Verification Security Policy, Ethics,
ity SR

CoA = Courses of Action GPU = Graph Processing Unit TPU = Tensor Processing Unil

2Image courtesy MIT-Mathematics of Big Data and Machine Learnmg
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Demys

Al System Alchltectule End-to-End Pipeline

Sanscrs Structured Data Algorithms, e.g.: Human-Machine Users
Data Conditioning T S Teaming (CoA) {Missions)
"i > ks [ Human
+ Data _ Saming
‘_] i1 Management Informatien | « Unsupervised Knowledge | [ Human- Insight _ D‘(lt%l
2 i 3 Machine ’
it [ Complement st :
; . i >
Sources | Unstructured | S1rStEn :a::et Leaming i Conditioning,
e Data . Data * Reinfarcament relates to
= G n 3| Labsiing Leaming <::>
T - =R Spectrum _ 1
(& P oRe pre-processing
A ¢ ¢ ¢ steps
- Algorithms: Life
Modern Computing beyond NN or
<] [« v @ A DNN
CPUs GPUs Neuromarphic Custom Quantum _ Supervised

Learning: This
Robust Al -

Mi rificati Se Policy, Ethi course
etrics and Verification eurily olicy, Elhics,
ity SR

CoA = Courses of Action GPU = Graph Processing Unit TPU = Tensor Processing Unil

2Image courtesy: MIT-Mathematics of Big Data and Machine Learning
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First Al wave : Reasoning

fted kno

e Experts took knowledge (a particular domain) and
characterize it in rule that fit in the computers. Good at
explainability of AT (XAI).

Perceiving _
Learning
Abstraction

Reasoning

3Waves adapted from John Launchbury-DARPA
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Al waves

First Al wave : Reasoning

e Experts took knowledge (a particular domain) and
characterize it in rule that fit in the computers. Good at
explainability of AT (XAI).

- e Huge data not required. No learning. Operate in narrow
Perceiving _

i domain. No perception (doesn’t sense natural world).
earning

Abstraction

Reasoning

3Waves adapted from John Launchbury-DARPA
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First Al wave : Reasoning

Handcrafted knowledge / Reasoning based systems

e Experts took knowledge (a particular domain) and
characterize it in rule that fit in the computers. Good at
explainability of AT (XAI).

e Huge data not required. No learning. Operate in narrow

Pereiis domain. No perception (doesn’t sense natural world).

Learning
e Example: Expert System. Reasoning through knowledge,

represented mainly as if-then rules.

Abstraction

Reasoning

o MYCIN: diagnosis of infectious diseases.
o CaDet: identification of cancer.
o IBM’s Deep Blue: Defeated chess champion in 1997.

o Enables reasoning over narrowly defined problems but with
no learning and abstraction (handling uncertainty)
capabilities. Still valid today (for some applications).

*3
3Waves adapted from John Launchbury-DARPA
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Al waves

Second Al wave : Learning

Statistical / Machine Learning

e Enabled by learning algorithms and lots of data.
Algorithm itself learns rules / patterns from the data to
make prediction on unseen data.

e Good to perceive natural world, e.g. identify person,
. object, sound etc.
Perceiving
i e They are not capable to contextualize / abstract
Abctrar information and provide limited reasoning power (black

box).

@ Most of recent success is based on research and
advancements in ML algorithms. Examples of ML based
tools (more on this later):

SIRI / Google Assistant

Autonomous cars

Spam filters

Medical diagnosis

Reasoning

r. Rizwan Ahmed Khan Machine Learning
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Al waves
Challenges with second Al wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Robustness

ML algo results are only as
good as data it is trained on.

! Neural networks fed inaccurate
v or incomplete data will simply

is holding produce the wrong results.
all bat.

Machine
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AT wa
Challenges with second Al wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

+.007 x

Object Recognition

No robustness against noise

“panda” “nematode” “gibbon"
57.7% confidence 8.2% confidence 99.3 % confidence
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AT wa
Challenges with second Al wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Face recognition

With colorful glasses system
failed
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Al waves

Challenges with second Al wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Q‘, b ety ol Microsoft’s Tay-Tweets
@ReynTheo HITLER DID NOTHING WRONG! Microsoft took it down just
- after 24 hours. This chat-bot
& 48 sEma got offensive messages and

learned the pattern (skewed
training data).

Dr. Rizwan Ahmed Khan Machine Learning
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Al waves

Third (future) AT wave : Context

Contextual Adaptation
e To remove bottlenecks of techniques of second wave of Al.
Research is at beginning stages.
o Third wave: systems construct explanatory models that
allow them to characterize real-world phenomena.
Percauhie o Example: Third Wave Al will not only recognize the
Learning “cat”, but will be able to explain why it’s a cat and how it
arrived at that conclusion (i.e. has a fur, two ears and a
tail etc.) — a giant leap from today’s “black box” systems.
Third wave -> (XAI).

Abstraction

Reasoning

Machine Learning

Dr. Rizwan Ahmed Khan



Big Picture
[efe]e] )

Al waves

Third (future) Al wave : Context

Contextual Adaptation

e To remove bottlenecks of techniques of second wave of Al.
Research is at beginning stages.

o Third wave: systems construct explanatory models that
allow them to characterize real-world phenomena.
Perceaiis o Example: Third Wave Al will not only recognize the
Learning “cat”, but will be able to explain why it’s a cat and how it
Abstraction arrived at that conclusion (i.e. has a fur, two ears and a
Reasoning tail etc.) — a giant leap from today’s “black box” systems.
Third wave -> (XAI).

o It does not take much imagination to envision the
tremendous possibilities of Third Wave AI. Some under
development products:

o Pandai
e Aigo

Dr. Rizwan Ahmed Khan Machine Learning
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Section Contents

© Machine Learning
o Intuition
o What?
o Why?
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Intuition

Intuition

o How easily we recognize face, color, shape or handwritten characters.

@ How children learn to balance or develop preference to some taste.

4Cecilia Heyes, New thinking: the evolution of human cognition, Philosophical Transactions of the Royal
Society 2012.

Ahmed Khan
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Intuition

Intuition

o How easily we recognize face, color, shape or handwritten characters.

@ How children learn to balance or develop preference to some taste.

o Human’s cognitive abilities have transformed every aspect of our lives.

e Human mind is a set of cognitive gadgets, specialized to learn. *

4Cecilia Heyes, New thinking: the evolution of human cognition, Philosophical Transactions of the Royal
Society 2012.

Ahmed Khan
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Intuition

Intuition

How children learn?

* No explicit features identification
given,

* They learn from experience.

es take image every 200 ms
de and fixation, 5 pictures
ond) (300 pictures / minute).

= Enormous amount of data given
as input (ages->).

Dr. Rizwan Ahmed Khan Machine Learning 15 / 47



Machine Learning Faxonomy Workflow Example
00@00C

Intuition

Intuition

How children learn?

* No explicit features identification
given,

* They learn from experience.

es take image every 200 ms
de and fixation, 5 pictures
ond) (300 pictures / minute).

= Enormous amount of data given
as input (ages->).

Humans learn from experience!
Dr. Rizwan Ahmed Khan

Machine Learning 15 / 47
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Intuition

How Machine Learning is different from Traditional Programming?

Write a program (pseudo-code) to identify “cat” in an image

Ahmed Khan
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Intuition

How Machine Learning is different from Traditional Programming?

Traditional programing

for j =1 to N do

Program detect color (imagen)
lots of code
if [eyes == 2) & (legs == 4} & {tail == 1) . then end for
print "Cat"
for j =1 to N do
detect shape (imagen)
lots of code
l for j =1 to N do
“Cat” Output detect fur (imagen)
L ; lots of code
Traditionial Progratmming end for
Is this enough to recognize cat?
Note?
ote

Scourtesy: Prof. Fei-Fei Li (Stanford)

Khan
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Intuition

How Machine Learning is different from Traditional Programming?

Can we manually write an algorithm (hard

code) that caters all the variations?
Program =

‘ ago
if (eyes == 2) & (legs == 4} & (tail == 1) . then Fé il
print "Cat" =

“Cat” Output

Traditionial Progratmming

Note5

Scourtesy: Prof. Fei-Fei Li (Stanford)
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Intuition

How Machine Learning is different from Traditional Programming?

Can we manually write an algorithm (hard
Input code) that caters all the variations?
Program e
[ ago
if {eyes == 2} & (legs -- 4} & (tail == 1) then Fd il
print "Cat" —

‘Cat”

Traditionial Progratmming

Output

Note5

Scourtesy: Prof. Fei-Fei Li (Stanford)

Ahmed Khan
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Intuition

How Machine Learning is different from Traditional Programming?

Output Input B
“Cat” ¢ s
@ Machine learning algorithms are
algorithms that learn models from data
/ experience.
@ No need to formulate explicit rules.
l ProgHam @ Algorithm performance gets better with

experience / data.

Cat Recognition

Machine Learning Programming

Note

Scourtesy: Prof. Fei-Fei Li (Stanford)

n Ahmed Khan
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What?
What is Machine learning?

hine Learning

Field of study that gives computers the ability to learn without being explicitly
programmed.

Arthur Samuel,
1959

Dr. Rizwan Ahmed Khan Machine Learning



Machine Learning
0e00
What?

What is Machine learning?

Dr. Rizwan Ahmed Khan

*® Machine learning is the
study of computer
algorithms that allow
computer programs to

automatically improve
through experience.

~ Tom Mitchell,
Machine Learning, McGraw Hill, 1997
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Wha
What is Machine learning?

IL in a Nutshell

A computer program is said to learn from experience F with respect to some class of tasks
T and performance measure P, if its performance at tasks in 7', as measured by P,
improves with experience F.

Example:

- Task T : Recognize human face

- Performance measure P : Accuracy of prediction
- Experience E : Dataset of human faces

Dr. Rizwan Ahmed Khan
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Wha
What is Machine learning?

IL in a Nutshell

A computer program is said to learn from experience F with respect to some class of tasks
T and performance measure P, if its performance at tasks in 7', as measured by P,
improves with experience F.

Example:

- Task T : Recognizing hand-written words

- Performance measure P : Percentage of words correctly classified

- Experience F : Database of human-labeled images of handwritten words

Dr. Rizwan Ahmed Khan
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Wha
What is Machine learning?

IL in a Nutshell

A computer program is said to learn from experience F with respect to some class of tasks
T and performance measure P, if its performance at tasks in 7', as measured by P,
improves with experience F.

Example:

- Task T : Categorize email messages as spam or legitimate

- Performance measure P : Percentage of email messages correctly classified
- Experience F : Database of emails, some with human-given labels

Dr. Rizwan Ahmed Khan
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Wha
What is Machine learning?

IL in a Nutshell

A computer program is said to learn from experience F with respect to some class of tasks
T and performance measure P, if its performance at tasks in 7', as measured by P,
improves with experience F.

Example:

- Task T : Categorize X-ray image having lung disease

- Performance measure P : Percentage of X-ray images correctly classified
- Experience F : Database of X-ray image with domain expert labels

Dr. Rizwan Ahmed Khan
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is Machine learning?

e Machine Learning algorithms ingest data and learn a model (hypothesis).
@ The learned model can be used to:

@ Detect pattern / trends / structures etc. from the data

© Make predictions on unseen / new data

L

Dr. Rizwan Ahmed Khan



Machine Learning
@0

y Machine Learning?
Machine Learning is used when:

e Humans can’t explain their expertise:

e speech recognition
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hy Machine Learning?

Machine Learning is used when:
e Humans can’t explain their expertise:
e speech recognition
e visual recognition

Khan
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y Machine Learning?

Detected faces Machine Learning is used when:
' o Humans can’t explain their expertise:
e speech recognition

e visual recognition
o face detection, expressions recognition




M

Jachine Learning?

Machine Learning is used when:

What makes a 2 o Humans can’t explain their expertise:

e speech recognition

o 0 @ 1 k ( /{ & {I 2 e visual recognition

o face detection, expressions recognition

a g -2 ey 'a 2 ; 5 )7 ? o hand writing recognition (pattern recog.) etc

l L

7

/167949704659

N/1T48%7

b8978 0997

Slide credit: Geoffrey Hinton
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Why Machine Learning?

Machine Learning is used when:
e Humans can’t explain their expertise:
e speech recognition

e visual recognition
o face detection, expressions recognition

s o hand writing recognition (pattern recog.) etc
ol ) . .
' J '—"Iﬁ [) 6 o Models must be customized (personalized
] =1 medicine, personalized recommendations, home
; assistant)

Dr. Rizwan Ahmed Khan
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Why?

Why Machine Learning?

Machine Learning is used when:
o Humans can’t explain their expertise:
e speech recognition
e visual recognition
o face detection, expressions recognition
o hand writing recognition (pattern recog.) etc
o Models must be customized (personalized
medicine, personalized recommendations, home
assistant)

@ Models are based on huge amounts of data

e genomics
e stock prices

Ahmed Khan Machine
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Machine Learning is used when:
o Humans can’t explain their expertise:
e speech recognition
e visual recognition
o face detection, expressions recognition
o hand writing recognition (pattern recog.) etc
o Models must be customized (personalized
medicine, personalized recommendations, home
assistant)

@ Models are based on huge amounts of data

e genomics
e stock prices
o self driving cars etc.

Dr. Rizwan Ahmed Khan
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Why Machine Learning?

Machine Learning is used when:
o Humans can’t explain their expertise:
e speech recognition
e visual recognition
o face detection, expressions recognition
o hand writing recognition (pattern recog.) etc
o Models must be customized (personalized
medicine, personalized recommendations, home
assistant)

@ Models are based on huge amounts of data

e genomics
e stock prices
o self driving cars etc.

e Human expertise does not exist (Mars navigating)

Dr. Rizwan Ahmed Khan
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Why Machine Learning?

Machine Learning is used when:
o Humans can’t explain their expertise:
e speech recognition
e visual recognition
o face detection, expressions recognition
o hand writing recognition (pattern recog.) etc
e Models must be customized (personalized
medicine, personalized recommendations, home
assistant)

@ Models are based on huge amounts of data

e genomics
e stock prices
o self driving cars etc.

e Human expertise does not exist (Mars navigating)
o Human capabilities needs to be augmented
(medical diagnosis)

Dr. Rizwan Ahmed Khan
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Why ML is growing?

1. ML is preferred approach to:
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Why ML is growing?

1. ML is preferred approach to:
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Why ML is growing?

ML Niche
Why ML is growing?

1. ML is preferred approach to:
o Medical imaging

@ Speech recognition

Dr. Rizwan Ahmed Khan




Machine Learning
(o] J

Why ML is growing?

ML Niche
Why ML is growing?

1. ML is preferred approach to:
o Medical imaging

@ Speech recognition

e Robotics

Dr. Rizwan Ahmed Khan
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Why ML is growing?

ML Niche
Why ML is growing?

—

. ML is preferred approach to:
Medical imaging
Speech recognition
Robotics

Computer vision:

Dr. Rizwan Ahmed Khan
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) ML is growing?

ML Niche
Why ML is growing?

—

. ML is preferred approach to:
Medical imaging
Speech recognition
Robotics

Computer vision:

2. ML is preferred approach to all of the
above problems and:

o Improved ML algorithms
@ Person identification

© Activity recognition
© Object detection
@ Autonomus driving

Dr. Rizwan Ahmed Khan Machine Learning
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ML is growing?

ML Niche
Why ML is growing?

—

. ML is preferred approach to:
Medical imaging
Speech recognition
Robotics

Computer vision:

2. ML is preferred approach to all of the
above problems and:

o Improved ML algorithms
@ Person identification

© Activity recognition
© Object detection
@ Autonomus driving

o Availability of large volumes of datasets

Dr. Rizwan Ahmed Khan

Machine Learning
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ML is growing?

ML Niche
Why ML is growing?

1. ML is preferred approach to:
o Medical imaging
@ Speech recognition
P _ & 2. ML is preferred approach to all of the
° Robotics above problems and:
e Computer vision: o Improved ML algorithms
@ Person identification s
© Activity recognition o Availability of large volumes of datasets
@ Object detection @ Self customizing software i.e. Speech
@ Autonomus driving recognition or Spam filter
Q ..
° .

Dr. Rizwan Ahmed Khan
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Section Contents

© Taxonomy
@ Introduction
@ Supervised Learning
@ Unsupervised Learning
o Reinforcement Learning

Dr. Rizwan Ahmed Khan



Taxonomy
o

Introduction

xonomy of Machine learning

Dr. Rizwan Ahmed Khan



Taxonomy
o

Introduction

Taxonomy of Machine lea

Learming using labeled data

Some examples

- Classifcation
- Regression
- Ranking
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Learning using labeled data (usually considered harder)

Some axamples

Some examples

- Clustenng
- Dimansionality Reduction
- Unsupervisad Density

Estimation

- Classifcation
- Regression
- Ranking

Given: {Input, 7}
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Taxonomy
o

hine learning

: Learning using unlabeled da
Learning using labeled data (usually considered harder)

Some axamples

Some examples

- Clustenng
- Dimansionality Reduction
- Unsupervisad Density

Estimation

- Classifcation
- Regression
- Ranking

Given: {input, some output, grade
for this output}

RL doesn't use “labeled” or
“unlabeled" data in the tradiional
sense! In RL, an agent leams via
its Interactions with an envirenment
{feedback-dnven “policy” learming)
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Taxonomy
o

hine learni

Learning using unlabeled da

Learning using labeled data (usually considered harder)

Some axamples

Some examples

- Clustenng
- Dimansionality Reduction
- Unsupervisad Density

Estimation

- Classifcation
- Regression
- Ranking

many other specialized flavors of ML also exist,
some of which include

- Semi-superased Learning

- Active Leaming

- Transfer Learming

- Multitask Learning

- Imitation Learning (somewhat related to RL)
- Zero-Shot Learning

- Few-Shot Learning

RL doesn't use “labeled” or
“unlabeled" data in the tradiional
sense! In RL, an agent leams via
its Interactions with an envirenment
{feedback-dnven “policy” learming)
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Supervised Learning

Supervised Learning rk

Labeled
Training
Data

Test
Image —pl =)
g “Feature” .

Extraction

Predicted
Label
(cat/dog)

Dr. Rizwan Ahmed Khan
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Labeled
Training —
Data Hod
“dog”
doq”
‘Featurs” I “dog” q
Estraction
“cat
|:|I'r:as‘
.

Note: The feature extraction phase may be part of the
machine leaming algorithm itzsif

(referred to “feature learning” or “representation l=aring™)
Modern “doep learming” algos do pracisely that!

Test Predicted
Image —pl ) Label
i “Feature’ ' (cat/dog)

Extraction

Khan
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Supervised Learning

Function approximation

Supervised learning is about function approximation
Problem Setting:

@ Set of possible instances X

o Unknown target function f: X — Y

@ Set of function hypotheses H = {h|h: X — Y}
Input:

o training examples {< x;,y; >}. For example x is an email and y is either Spam or No
Spam.

Output:
o Hypothesis h € H that best approximates target function f. OR

@ a classification “rule” that can determine the class of any object from its attributes
values.

Dr. Rizwan Ahmed Khan Machine Learning
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Supervised Learning

Inductive Learning
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Supervised Learning

Inductive Learnir

m

Input 1 2 3 4 5 6 7
Output 1 4 9 16 25 36 77

-f:X? -5 Y OR
- f input?® — output

Dr. Rizwan Ahme
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Supervised Learning

Inductive Learning

)




Supervised Learning

Inductive Learning

Input 1 2 3 4 5 6 7
Output 1 4 9 16 25 36 77

-f:X?>Y OR

-f: input? — output

e T T T

Taxonomy
000000
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Supervised Learning

Inductive Learning

- f input?® — output
0 . . . . . . . 1 .

/
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Supervised Learning

Inductive Learning

Input 1 2 3 4 5 6 7
Output 1 4 9 16 25 36 77

Dr. Rizwan Ahmed Khan
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Supervised Learning

Inductive Learning

Input 1 2 3 4 5 6 7
Output 1 4 9 16 25 36 77

-f:X? =Y OR
- f input® — output

Dr. Rizwan Ahmed Khan Machine Le
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Supervised Learning

Inductive Learning

What if function is not well behaved? What

Inmput 1 2 3 4 5 6 7 if everything squared up to 67
Output 1 4 9 16 25 36 77

-f:X? =Y OR
- f input® — output

Dr. Rizwan Ahmed Khan Machine Learning
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Supervised Learning

Inductive Learning

Guarantee

What if function is not well behaved? What

Input 1 4 5 6 7 if everything squared up to 67

2 3
Output 1 4 9 16 25 36 77 Fundamental assumption:

@ Function is well behaved and consistent
with the data

o Generalize (induction)

-f:X? =Y OR
- f input® — output

Machine Learning

Dr. Rizwan Ahmed Khan
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Supervised Learning

Inductive Learning

e Specifics — generality

o Examples/observed instances — general rules




Taxonomy
00000®

Supervised Learning

Inductive Learning

e Specifics — generality
o Examples/observed instances — general rules

Supervised learning is about function approximation or induction of approximate function.

Dr. Rizwan Ahmed Khan
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Unsupervised Learning Workflow for clustering

Unlabeled
Data

—

Cluster 2
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Unsupervised Learning

Unsupervised Learning Workflow for clustering

Unlabeled
Data

—

‘Feamre

¢ g : Extraction

Cluster 2

Note: Unsupervised Learning too can
have {(and often has) a “test” phase.
E.g., in this case, given a new cat/dog
image, predict which of the two
clusters it belengs to.

Can do it by assigning the image to the
cluster with closer centroid
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e Learning

Unsupervised learning is about description, opposed to approximation (supervised
learning).

tlf I.abelz / AJ\\ _}\

r. Rizwan Ahmed Khan
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Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised

learning).
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Deductive Learning

e Unlabeled data / examples
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Unsupervised Learning

Deductive Learning

e Unlabeled data / examples
@ Derive structure from the data by looking at relationship b/w input examples

Dr. Rizwan Ahmed Khan
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Unsupervised Learning

Deductive Learning

e Unlabeled data / examples

@ Derive structure from the data by looking at relationship b/w input examples

5 =
65 - x *x x *x
x b x
o : 5 L
Bas x 5 .
) *
L
2 P » »
o

Dr. Rizwan Ahmed Khan
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Unsupervised Learning

Deductive Learning

e Unlabeled data / examples

@ Derive structure from the data by looking at relationship b/w input examples

5 =
65 - x *x x *x
x b x
o : 5 L
Bas x 5 .
) *
L
2 P » »
o

o Unsupervised learning is about description

Dr. Rizwan Ahmed Khan
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Reinforcement Learning

Reinforcement Leél rning Workflow
o Learning from delayed reward
Agent State Sf

a 0

|
Y

Observation O;_ Action 44.]‘-

Reward Rg

SF‘
Environmental State 24

Agent's goal is 1o leam a policy for some task
Agent does the following repeatedly

- Senses/ohserves the environment

- Takes an action based on its current policy
- Recelves a reward for that action

- Updates its policy

n Ahmed Khan
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Reinforcement Learning

Reinforcement Learning Workflow

o Learning from delayed reward
Agent State Sf

a 0

Y
Observation O; i Agent's goal is 1o leam a policy for some task
. Reward I Action Ay gent's go! policy

Agent does the following repeatedly

Ly
- Senses/observes the environment

4 ~ - Takes an action based on its current policy

v - Recelves a reward for that action

- Updates its policy

| There is supervision, not explicit (as in Supervised
| Leaming) but rather implicit (feedback based)

SF‘
Environmental State 24

n Ahmed Khan
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Section Contents

@ Workflow
o Features
@ Python code
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IBishop, Christopher (2006). Pattern recognition and machine learning

Dr. Rizwan Ahmed Khan



Workflow
@000

Featu
Features or attributes

Traditional Workflow for classification

Feature Extraction
(SIFT, HoG, SURF, LEP ...)

Feature is an individual measurable property or characteristic of a phenomenon being
observed!.

IBishop, Christopher (2006). Pattern recognition and machine learning

Dr. Rizwan Ahmed Khan



Workflow
@000

Featu
Features or attributes

Traditional Workflow for classification

Feature Extraction
(SIFT, HoG, SURF, LEP ...)

Feature is an individual measurable property or characteristic of a phenomenon being
observed!.

IBishop, Christopher (2006). Pattern recognition and machine learning
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Featu
Features or attributes

Traditional Workflow for classification

Feature Extraction
(SIFT, HoG, SURF, LEP ...)

- Decision Tree
- SVM

- KNN

-MLP

- Naive Bayes

Feature is an individual measurable property or characteristic of a phenomenon being
observed!.

IBishop, Christopher (2006). Pattern recognition and machine learning

Dr. Rizwan Ahmed Khan
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Feature Extraction Label /
(SIFT, HoG, SURF, LBP ...) Class

- Decision Tree
- SVM

- KNN

-MLP

- Naive Bayes

Feature is an individual measurable property or characteristic of a phenomenon being
observed!.

IBishop, Christopher (2006). Pattern recognition and machine learning

Dr. Rizwan Ahmed Khan
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Feature

What features can differentiate between Apple and Oranges, consider different color
variations.

Ahmed Khan
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What features can differentiate between Apple and Oranges, consider different color
variations.
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What features can differentiate between Apple and Oranges, consider different color
variations.
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Toy Example

What features can differentiate between Apple and Oranges, consider different color
variations.
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Features
Features quality

Feature is an individual measurable property or characteristic of a phenomenon being
observed.

Fundamental qu n

What are good features?

Dr. Rizwan Ahmed Khan
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Features
Features quality

Feature is an individual measurable property or characteristic of a phenomenon being
observed.

Fundamental question

What are good features?

Good feature

Good features makes it easy for classifier to decide (learn) between two different classes /
concepts / labels OR good features enhances inter class variations while minimize intra
class varaition.

“Good" features “Bad” features

Dr. Rizwan Ahmed Khan
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Features

Features: Toy Example

Coming back to toy example. What are good features (individual measurable property or
characteristic) to learn concept of “Apple” and “Orange” ?

In (supervised )Machine Learning algorithm (more on this):

o Input is set of features and label / class.

o Output is set of rules or pattern related to specific class. Simply output is trained
Classifier or Decision Surface

o Classifier is function f: X - Y

Dr. Rizwan Ahmed Khan
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Python code

ML code: Toy Example

Remember this!

Feature Extraction Label /
(SIFT, HoG, SURF, LBP ...) Class

- Decision Tree
- SVM

- KNN

-MLP

- Naive Bayes

Dr. Rizwan Ahmed Khan
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Python code

ML code: Toy Example

Remember this!

Feature Extraction Label /
(SIFT, HoG, SURF, LBP ...) Class

- Decision Tree
- SVM

- KNN

-MLP

- Naive Bayes

Steps:

@ Collect training data (features extraction)

Dr. Rizwan Ahmed Khan
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Python code

ML code: Toy Example

Remember this!

Feature Extraction Label /
(SIFT, HoG, SURF, LBP ...) Class

- Decision Tree
- SVM

- KNN

-MLP

- Naive Bayes

Steps:
@ Collect training data (features extraction)

@ Train classifier

Dr. Rizwan Ahmed Khan
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Python code

ML code: Toy Example

Remember this!

Feature Extraction Label /
(SIFT, HoG, SURF, LBP ...) Class

- Decision Tree
- SVM

- KNN

-MLP

- Naive Bayes

Steps:
@ Collect training data (features extraction)
@ Train classifier
@ Predict new data

Dr. Rizwan Ahmed Khan



Python code

First ML code: Toy Example

Training Data / Features extracted from real data

Dr. Rizwan Ahmed Khan

Weight | Texture | Class
150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth Apple
130g Smooth Apple

Machine Learning

Workflow
0@00
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Python code

First ML code: Toy Example

Training Data / Features extracted from real data

Weight | Texture | Class
150g Bumpy | Orange
170g Bumpy | Orange
140g Smooth Apple
130g Smooth Apple

@ Each row in training data is an example (Feature extractor Algorithm)
@ Last column is class / label

@ Train classifier (ML Algorithm) - More data, better classifier training!
@ Predict new data

Dr. Rizwan Ahmed Khan Machine Learning



Python code

First ML code: Toy Example

from sklearn import tree
#features=[[140, "smooth"
#labels=["apple","apple"

1,I[130,
,"orange" ,"orange"]
#sklearn uses real-valued features

features=[[140,
labels=[0,0,1,1]

11,0130, 11,[150,0 1, [170,

#Train Classifier - Decision Tree

clf = tree.DecisionTreeClassifier ()

"smooth"],[150, "bumpy" 1,

Workflow
0000

[170, "bumpy" 1]

0 11

clf=clf.fit(features,labels) #Classifier is trained on our data

#Predict
print (clf.predict ([[140,011))
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Python code

Expectation from ML Specialist?

Previous example has six lines of code!
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Python code

Expectation from ML Specialist?

Previous example has six lines of code!
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- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

» :.: '
anm— =21
l ‘ /Classifier ==

- Some practical examples of (supervised learning) are:

Disease diagnosis
e The X are the properties of the patient.
@ The f(X) is the disease they suffer from.
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Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

mnd /Classifier

- Some practical examples of (supervised learning) are:

Person identification
e The X are images of face.
e The f(X) is the identified person.

Dr. Rizwan Ahmed Khan Machine Learning
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Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Person identification / Biometric
o The X are finger.
o The f(X) is the identified person.
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Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Posture Analysis
@ The X are images with different postures.
o The f(X) is the recognized posture / activity.

Dr. Rizwan Ahmed Khan Machine Learning



Examples

Examples
o] e

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Semantic Scene Analysis
@ The X are images.

o The f(X) is the recognized label for each pixel.
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Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

.-

- Some practical examples of (supervised learning) are:

Medical Image segmentation
o The X are images coming from different modalities.

o The f(X) is the segmented images with clear boundaries.

Machine
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- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

o ov ; - - s :
= Regression %ﬂi“ - i‘ﬁ &;‘

- Some practical examples of (supervised learning) are:
- This is Regression. i.e. real-valued output.

Stock Price Prediction
e The X data recorded for ¢ time.
@ The f(X) is prediction.
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43
A Breakthrough in
Machine Learning °
will be worth ten

Microsofts.

- Bill Gates /% -
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