
Signal Processing for Neuroscientists,
A Companion Volume

Ae jωt = A[cos(ωt) + j sin(ωt)] = A cos(ωt) + jA sin(ωt)

P(a, b, f, tn)= a cos(2πftn) + b sin(2πftn)

y = f (α) + – (x – α) f ' (α) + – (x – α)2 f "(α) + – (x – α)3f "'(α) +...1
1!

1
2!

1
3!

x = RC— + y

Av = λv

dy
dt

(τ1, τ2) x(t – τ1) x(t – τ2) dτ1dτ2

Signal Processing
for Neuroscientists,
A Companion Volume
Advanced Topics, Nonlinear Techniques
and Multi-Channel Analysis

Wim van Drongelen

AMSTERDAM � BOSTON � HEIDELBERG � LONDON � NEW YORK � OXFORD

PARIS � SAN DIEGO � SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Elsevier

32 Jamestown Road London NW1 7BY

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2010

Copyright r 2010 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or any information storage and retrieval system, without

permission in writing from the publisher. Details on how to seek permission, further information about

the Publisher’s permissions policies and our arrangement with organizations such as the Copyright

Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/

permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher

(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods, professional practices, or medical treatment

may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and

using any information, methods, compounds, or experiments described herein. In using such information

or methods they should be mindful of their own safety and the safety of others, including parties for

whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-384915-1

For information on all Elsevier publications

visit our website at elsevierdirect.com

This book has been manufactured using Print On Demand technology. Each copy is produced to order

and is limited to black ink. The online version of this book will show color figures where appropriate.

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions
http://www.elsevier.com/permissions

Preface

This text is based on a course I teach at the University of Chicago for students

in Computational Neuroscience. It is a continuation of the previously published

text Signal Processing for Neuroscientists: An Introduction to the Analysis of

Physiological Signals and includes some of the more advanced topics of linear and

nonlinear systems analysis and multichannel analysis. In the following, it is assumed

that the reader is familiar with the basic concepts that are covered in the introductory

text and, to help the student, multiple references to the basics are included.

The popularity of signal processing in neuroscience is increasing, and with the

current availability and development of computer hardware and software it may be

anticipated that the current growth will continue. Because electrode fabrication has

improved and measurement equipment is getting less expensive, electrophysiologi-

cal measurements with large numbers of channels are now very common. In addi-

tion, neuroscience has entered the age of light, and fluorescence measurements are

fully integrated into the researcher’s toolkit. Because each image in a movie con-

tains multiple pixels, these measurements are multichannel by nature. Furthermore,

the availability of both generic and specialized software packages for data analysis

has altered the neuroscientist’s attitude toward some of the more complex analysis

techniques. Interestingly, the increased accessibility of hardware and software may

lead to a rediscovery of analysis procedures that were initially described decades

ago. At the time when these procedures were developed, only few researchers had

access to the required instrumentation, but now most scientists can access both the

necessary equipment and modern computer hardware and software to perform com-

plex experiments and analyses.

The considerations given above have provided a strong motivation for the devel-

opment of this text, where we discuss several advanced techniques, rediscover

methods to describe nonlinear systems, and examine the analysis of multichannel

recordings. The first chapter describes two very specialized algorithms: Lomb’s

algorithm to analyze unevenly sampled data sets and the Hilbert transform to detect

instantaneous phase and amplitude of a signal. The remainder of the text can be

divided into two main components: (I) modeling systems (Chapter 2) and the anal-

ysis of nonlinear systems with the Volterra and Wiener series (Chapters 3�5) and

(II) the analysis of multichannel measurements using a statistical approach

(Chapter 6) and examination of causal relationships (Chapter 7). Throughout this

text, we adopt an informal approach to the development of algorithms and we

include practical examples implemented in MATLAB. (All the MATLAB scripts

used in this text can be obtained via http://www.elsevierdirect.com/companions/

9780123849151)

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

It is a pleasure to acknowledge those who have assisted (directly and indirectly) in

the preparation of this text: Drs. V.L. Towle, P.S. Ulinski, D. Margoliash, H.C. Lee,

M.H. Kohrman, P. Adret, and N. Hatsopoulos. I also thank the teaching assistants for

their help in the course and in the development of the material in this text: thanks,

Matt Green, Peter Kruskal, Chris Rishel, and Jared Ostmeyer. There is a strong cou-

pling between my teaching efforts and research interests. Therefore, I am indebted to

the Dr. Ralph and Marian Falk Medical Research Trust for supporting my research

and to the graduate and undergraduate students in my laboratory: Jen Dwyer, Marc

Benayoun, Amber Martell, Mukta Vaidya, and Valeriya Talovikova. They provided

useful feedback, tested some of the algorithms, and collected several example data

sets. Special thanks to the group of students in the 2010 winter class who helped me

with reviewing this material: Matt Best, Kevin Brown, Jonathan Jui, Matt Kearney,

Lane McIntosh, Jillian McKee, Leo Olmedo, Alex Rajan, Alex Sadovsky, Honi

Sanders, Valeriya Talovikova, Kelsey Tupper, and Richard Williams. Their multiple

suggestions and critical review helped to significantly improve the text and some of

the figures. At Elsevier I want to thank Lisa Tickner, Clare Caruana, Lisa Jones, Mani

Prabakaran, and Johannes Menzel for their help and advice. Last but not least, thanks

to my wife Ingrid for everything and supporting the multiple vacation days used for

writing.

viii Preface

1 Lomb’s Algorithm and the
Hilbert Transform

1.1 Introduction

This first chapter describes two of the more advanced techniques in signal proces-

sing: Lomb’s algorithm and the Hilbert transform. Throughout this chapter (and the

remainder of this text) we assume that you have a basic understanding of signal

processing procedures; for those needing to refresh these skills, we include multiple

references to van Drongelen (2007).

In the 1970s, the astrophysicist Lomb developed an algorithm for spectral analy-

sis to deal with signals consisting of unevenly sampled data. You might comment

that in astrophysics considering uneven sampling is highly relevant (you cannot

observe the stars on a cloudy day), but in neuroscience data are always evenly sam-

pled. Although this is true, one can consider the action potential (or its extracellular

recorded equivalent, the spike) or neuronal burst as events that represent or sample

an underlying continuous process. Since these events occur unevenly, the sampling

of the underlying process is also uneven. In this context we will explore how to

obtain spectral information from unevenly distributed events.

The second part of this chapter introduces the Hilbert transform that allows one

to compute the instantaneous phase and amplitude of a signal. The fact that one

can determine these two metrics in an instantaneous fashion is unique because usu-

ally this type of parameter can only be associated with an interval of the signal. For

example, in spectral analysis the spectrum is computed for an epoch and the spec-

tral resolution is determined by epoch length. Being able to determine parameters

such as the phase instantaneously is especially useful if one wants to determine

relationships between multiple signals generated within a neuronal network.

1.2 Unevenly Sampled Data

In most measurements we have evenly sampled data—for instance, the interval Δt

between the sample points of the time series is constant, pixels in a picture have uni-

form interdistance, and so forth. Usually this is the case, but there are instances

when uneven sampling cannot be avoided. Spike trains (chapter 14, van Drongelen,

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00001-2

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00001-2

2007) or time series representing heart rate (van Drongelen et al., 2009) are two

such examples; in these cases one may consider the spike or the heartbeat to repre-

sent events that sample an underlying process that is invisible to the experimenter

(Fig. 1.1A).

The heart rate signal is usually determined by measuring the intervals between

peaks in the QRS complexes. The inverse value of the interval between pairs of

subsequent QRS complexes can be considered a measure of the instantaneous rate

(Fig. 1.1B). This rate value can be positioned in a time series at the instant of either

the first or second QRS complex of the pair and, because the heartbeats do occur at

slightly irregular intervals, the time series is sampled unevenly. This example for

the heartbeat could be repeated, in a similar fashion, for determining the firing rate

associated with a spike train.

When a signal is unevenly sampled, many algorithms that are based on a fixed

sample interval (such as the direct Fourier transform [DFT] or fast Fourier transform

[FFT]) cannot be applied. In principle there are several solutions to this problem:

(1) An evenly sampled time series can be constructed from the unevenly sampled one by

using interpolation. In this approach the original signal is resampled at evenly spaced

intervals. The interpolation technique (e.g., linear, cubic, spline) may vary with the

application. In MATLAB resampling may be accomplished with the interp1 command

or any of the other related functions. After resampling the time series one can use stan-

dard Fourier analysis methods. The disadvantage is that the interpolation algorithm may

introduce frequency components that are not related to the underlying process.

(2) The measurements can be represented as the number of events in a binned trace; now

our time series is a sequence of numbers, with one number for each bin. Since the bins

are equally spaced, the standard DFT/FFT can be applied. In case of low-frequency

activity, the bins must be relatively wide to avoid an overrepresentation of empty bins.

Figure 1.1 The QRS complexes in the ECG or extracellularly recorded spike trains can be

considered as a series of events such as shown in (A). The rate of events can be depicted as

the inverse of the interval between the events (B); here the inverse of the interval between

each pair of events is plotted at the instant of the second event of the pair. The signal in (B)

is unevenly sampled because the rate measure is available only at the occurrence of the

events; the dashed line is a linear interpolation between these measures.

2 Signal Processing for Neuroscientists, A Companion Volume

The disadvantage of this is that wide bins are associated with a low sample rate and thus

a low Nyquist frequency, which limits the bandwidth of the spectral analysis.

(3) The most elegant solution is to use Lomb’s algorithm for estimating the spectrum. This

algorithm is specially designed to deal with unevenly sampled time series directly with-

out the assumptions demanded by interpolation and resampling techniques (Lomb, 1976;

Press et al., 1992; Scargle, 1982; van Drongelen et al., 2009). The background and appli-

cation of this algorithm will be further described in Sections 1.2.1 and 1.2.2.

1.2.1 Lomb’s Algorithm

The idea of Lomb’s algorithm is similar to the development of the Fourier series,

namely, to represent a signal by a sum of sinusoidal waves (see chapter 5 in van

Drongelen, 2007). Lomb’s procedure is to fit a demeaned time series x that may be

sampled unevenly to a weighted pair of cosine and sine waves, where the cosine is

weighted by coefficient a and the sine by coefficient b. The fitting procedure is per-

formed over N samples of x(n) obtained at times tn and repeated for each frequency f.

Pða; b; f; tnÞ5 a cosð2πftnÞ1 b sinð2πftnÞ ð1:1Þ

Coefficients a and b are unknown and must be obtained from the fitting procedure.

For example, we can fit P to signal x by minimizing the squared difference between

them over all samples: that is, minimize ε2 5
PN21

n50

½P2XðnÞ�2: We repeat this

minimization for each frequency f. To accomplish this, we follow the same proce-

dure for developing the Fourier series (chapter 5 in van Drongelen, 2007) and set

the partial derivative for each coefficient to zero to find the minimum of the error,

that is:

@ε2=@a5 0 ð1:2aÞ

and

@ε2=@b5 0 ð1:2bÞ

For convenience, in the following we use a shorthand notation in addition to the full

notation. In the shorthand notation: C5 cosð2πftnÞ; S5 sinð2πftnÞ; and X5 xðnÞ:
For the condition in Equation (1.2a) we get:

@ε2=@a5
X

2½P2 xðnÞ� @½P2 xðnÞ�
@a

5
X

2ðaC1 bS2XÞC

5
XN21

n50

2 a cosð2πftnÞ1 b sinð2πftnÞ|ffl{zffl}
P

2 xðnÞ
2
4

3
5 cosð2πftnÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

@½P2 xðnÞ�=@a

5 0

3Lomb’s Algorithm and the Hilbert Transform

This and a similar expression obtained from the condition in Equation (1.2b) results

in the following two equations:

X
XC5 a

X
C2 1 b

X
CS

XN21

n50

XðnÞcosð2πftnÞ5 a
XN21

n50

cos2ð2πftnÞ1 b
XN21

n50

cosð2πftnÞsinð2πftnÞ
ð1:3aÞ

and

X
XS5 a

X
CS1 b

X
S2

XN21

n50

XðnÞsinð2πftnÞ5 a
XN21

n50

cosð2πftnÞsinð2πftnÞ1 b
XN21

n50

sin2ð2πftnÞ
ð1:3bÞ

Thus far the procedure is similar to the standard Fourier analysis described in chapter 5

in van Drongelen (2007). The special feature in Lomb’s algorithm is that for each

frequency f, the sample times tn are now shifted by an amount τ (Fig. 1.2). Thus,

in Equations (1.3a) and (1.3b), tn becomes tn2τ. The critical step is that for each

frequency f, we select an optimal time shift τ so that the cosine�sine cross-terms

(
P

CS) disappear, that is:

X
CS5

XN21

n50

cosð2πf ðtn 2 τÞÞsinð2πf ðtn 2 τÞÞ5 0 ð1:4Þ

Using the trigonometric identity cosðAÞsinðBÞ5 1
2
sinðA2BÞ2 sinðA1BÞ½ �; this can

be simplified into:

1
2

XN21

n50

sinð0Þ|fflfflffl{zfflfflffl}
0

2 sinð4πf ðtn 2 τÞÞ
2
4

3
55 0-

XN21

n50

sinð4πf ðtn 2 τÞÞ5 0

To separate the expressions for tn and τ, we use the trigonometric relationship

sinðA2BÞ5 sinðAÞcosðBÞ2 cosðAÞsinðBÞ to get the following expression:

Shifted sinewave

Figure 1.2 The Lomb algorithm

fits sinusoidal signals to time

series that may be unevenly

sampled, as in the example in

(A). The fit procedure (B) is

optimized by shifting the

sinusoidal signals by an amount τ.

4 Signal Processing for Neuroscientists, A Companion Volume

XN21

n50

sinð4πftnÞcosð4πf τÞ2
XN21

n50

cosð4πftnÞsinð4πf τÞ

5 cosð4πf τÞ
XN21

n50

sinð4πftnÞ2 sinð4πf τÞ
XN21

n50

cosð4πftnÞ5 0

This can be further simplified into:

sinð4πf τÞ=cosð4πf τÞ5 tanð4πf τÞ5
XN21

n50

sinð4πftnÞ
� XN21

n50

cosð4πftnÞ

Hence, condition (1.4) is satisfied if:

τ5 tan21
XN21

n50

sinð4πftnÞ
�XN21

n50

cosð4πftnÞ
" #�

4πf ð1:5Þ

The value of variable τ as a function of frequency f can be found with Equation

(1.5), and by applying the appropriate shift tn - (tn2τ), the cross-terms in

Equations (1.3a) and (1.3b) become zero. Now we can determine the a and b co-

efficients for each frequency from the simplified expressions obtained from

Equations (1.3a) and (1.3b) without the cross-terms:

X
XC5a

X
C2

XN21

n50

XðnÞcosð2πf ðtn2τÞÞ5a
XN21

n50

cos2ð2πf ðtn2τÞÞ

- a5
X

XC=
X

C25
XN21

n50

xðnÞcosð2πf ðtn2τÞÞ
�XN21

n50

cos2ð2πf ðtn2τÞÞ

ð1:6aÞ

and

X
XS5 b

X
S2

XN21

n50

xðnÞsinð2πf ðtn2 τÞÞ5 b
XN21

n50

sin2ð2πf ðtn2 τÞÞ

- b5
X

XS=
X

S25
XN21

n50

xðnÞsinð2πf ðtn2 τÞÞ
�XN21

n50

sin2ð2πf ðtn2 τÞÞ

ð1:6bÞ

5Lomb’s Algorithm and the Hilbert Transform

Now we can compute the sum of P2ða; b; f; tnÞ—that is, the sum of squares of the

sinusoidal signal in Equation (1.1) for all tn—in order to obtain an expression that

is proportional with the power spectrum S of x(n) as a function of f:

Sðf; a; bÞ5
XN21

n50

P2ða; b; f; tnÞ5
X

ðaC1 bSÞ2 5
X

a2C2 1 b2S2 1 2abCS
zfflfflffl}|fflfflffl{cross-terms

5
XN21

n50

a2 cos2ð2πf ðtn 2 τÞÞ1 b2 sin2ð2πf ðtn 2 τÞÞ1 cross-terms|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0

2
4

3
5

ð1:7Þ

Since we shift by τ, all cross-terms vanish and by substitution of the expressions

for the a and b coefficients in Equation (1.7) we get:

Sðf Þ5
X

XC
� �2

X
C2

� �2

X
C2 1

X
XS

� �2

X
S2

� �2

X
S2

5

XN21

n50

xðnÞcosð2πf ðtn 2 τÞÞ
" #2

XN21

n50

cos2ð2πf ðtn 2 τÞÞ
" #2

XN21

n50

cos2ð2πf ðtn 2 τÞÞ

1

XN21

n50

xðnÞsinð2πf ðtn 2 τÞÞ
" #2

XN21

n50

sin2ð2πf ðtn 2 τÞÞ
" #2

XN21

n50

sin2ð2πf ðtn 2 τÞÞ

This can be further simplified into:

Sðf Þ5
X

XC
� �2

X
C2

1

X
XS

� �2

X
S2

5

XN21

n50

xðnÞcosð2πf ðtn 2 τÞÞ
" #2

XN21

n50

cos2ð2πf ðtn 2 τÞÞ
1

XN21

n50

xðnÞsinð2πf ðtn 2 τÞÞ
" #2

XN21

n50

sin2ð2πf ðtn 2 τÞÞ

ð1:8Þ

6 Signal Processing for Neuroscientists, A Companion Volume

The expression for the power spectrum in Equation (1.8) is sometimes divided by 2

(to make it equal to the standard power spectrum based on the Fourier transform;

see Appendix 1.1), or by 2σ2 (σ2—variance of x) for the determination of the statis-

tical significance of spectral peaks. (Some of the background for this normalization

is described in Appendix 1.1; for more details, see Scargle, 1982.) By applying the

normalization we finally get:

Sðf Þ5 1

2σ2

XN21

n50

xðnÞcosð2πf ðtn 2 τÞÞ
" #2

XN21

n50

cos2ð2πf ðtn 2 τÞÞ
1

XN21

n50

xðnÞsinð2πf ðtn 2 τÞÞ
" #2

XN21

n50

sin2ð2πf ðtn 2 τÞÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð1:9Þ

From the above derivation, we can see that Lomb’s procedure allows (but does

not require) unevenly sampled data. Note that in Equations (1.7) and (1.8) we did not

compute power as the square of the cosine and sine coefficients, a and b, as we

would do in the standard Fourier transform; this is because in Lomb’s approach the

sinusoidal signals are not required to have a complete period within the epoch deter-

mined by the samples x(n). Because we do not have this requirement, the frequency f

is essentially a continuous variable and the spectral estimate we obtain by this

approach is therefore not limited by frequency resolution (in the DFT/FFT, the fre-

quency resolution is determined by the total epoch of the sampled data) and range

(in the DFT/FFT, the maximum frequency is determined by the Nyquist frequency).

However, to avoid misinterpretation, it is common practice to limit the bandwidth of

the Lomb spectrum to less than or equal to half the average sample rate. Similarly,

the commonly employed frequency resolution is the inverse of the signal’s epoch.

1.2.2 A MATLAB Example

To test Lomb’s algorithm we apply it to a signal that consists of two sinusoidal sig-

nals (50 and 130 Hz) plus a random noise component (this is the same example used

in fig. 7.2A in van Drongelen, 2007). In this example (implemented in MATLAB

script Pr1_1.m), we sample the signal with randomly distributed intervals (2000

points) and specify a frequency scale (f in the script) up to 500 Hz. Subsequently we

use Equations (1.5), (1.8), and (1.9) to compute τ (tau in the script) and the unscaled

and scaled versions of power spectrum S(f) (Pxx in the script) of input x(n) (x in

the script). This script is available on http://www.elsevierdirect.com/companions/

9780123849151.
The following script (Pr1_1.m) uses the Lomb algorithm to compute the spectrum

from an unevenly sampled signal. The output of the script is a plot of the input (an

unevenly sampled time domain) signal and its associated Lomb spectrum.

7Lomb’s Algorithm and the Hilbert Transform

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

% Pr1_1.m

% Application of Lomb Spectrum

clear;

t=rand(2000,1); t=sort(t); % An array of 2000 random sample intervals

f=[1:500]; % The desired frequency scale

% frequencies same as pr7_1.m in van Drongelen (2007)

f1=50;

f2=130;

% data plus noise as in pr7_1.m in van Drongelen (2007)

x=sin(2*pi*f1*t)+sin(2*pi*f2*t);

x=x+randn(length(t),1);

var=(std(x))^2; % The signal’s variance

% Main Loop

for i=1:length(f)

h1=4*pi*f(i)*t;

%Equation (1.5)

tau=atan2(sum(sin(h1)), sum(cos(h1)))/(4*pi*f(i));

h2=2*pi*f(i)*(t-tau);

%Equation (1.8)

Pxx(i)=(sum(x.*cos(h2)).^2)/sum(cos(h2).^2)+. . .
(sum(x.*sin(h2)).^2)/sum(sin(h2).^2);

end;

% Normalize; Equation (1.9)

Pxx=Pxx/(2*var);

% Plot the Results

figure;

subplot(2,1,1), plot(t,x,‘.2’)

title(‘Irregularly Sampled Signal (USE ZOOM TO INSPECT UNEVEN

SAMPLING)’)

xlabel(‘Time (s)’);ylabel(‘Amplitude’)

subplot(2,1,2),plot(f,Pxx);

title(‘Lomb Spectrum’)

xlabel(‘Frequency (Hz)’);ylabel(‘Normalized Power’)

1.3 The Hilbert Transform

One of the current frontiers in neuroscience is marked by our lack of understanding

of neuronal network function. A first step in unraveling network activities is to

record from multiple neurons and/or networks simultaneously. A question that

often arises in this context is which signals lead or lag; the underlying thought here

is that the signals that lead cause the signals that lag. Although this approach is not

foolproof, since one can only make reasonable inferences about causality if all

8 Signal Processing for Neuroscientists, A Companion Volume

connections between and activities of the neuronal elements are established, it is a

first step in analyzing network function. Multiple techniques to measure lead and

lag can be used. The simplest ones are cross-correlation and coherence (for an

overview of these techniques, see chapter 8 in van Drongelen, 2007). A rather

direct method to examine lead and lag is to determine the phase of simultaneously

recorded signals. If the phase difference between two signals is not too big, one

considers signal 1 to lead signal 2 if the phase of signal 1 (φ1) is less than the phase

of signal 2 (φ2): φ1,φ2. Of course this procedure should be considered as a heu-

ristic approach to describe a causal sequence between the components in the net-

work activity since there is no guarantee that a phase difference reflects a causal

relationship between neural element 1 (generating signal 1) and neural element 2

(generating signal 2). In this example one could easily imagine alternatives where

neural elements 1 and 2 are both connected to a common source causing both sig-

nals, or where element 2 is connected to element 1 via a significant number of

relays; in both alternatives the condition φ1,φ2 might be satisfied without a direct

causal relationship from element 1 to element 2. A frequently used technique to

compute a signal’s phase is the Hilbert transform, which will be described in the

remainder of this chapter. An alternative approach to study causality in multichan-

nel data is discussed in Chapter 7.

The Hilbert transform is a useful tool to determine the amplitude and instanta-

neous phase of a signal. We will first define the transform before demonstrating

the underlying mathematics. An easy way of introducing the application of the

Hilbert transform is by considering Euler’s equation multiplied with a constant A:

Aejωt 5A½cosðωtÞ1 j sinðωtÞ�5A cosðωtÞ1 jA sinðωtÞ ð1:10Þ

In this example we consider the first term in Equation (1.10), f ðtÞ5A cosðωtÞ; as
the signal under investigation. This signal is ideal to demonstrate the Hilbert trans-

form application because in this example we can see that the amplitude of f ðtÞ is A,
and its instantaneous phase φ is ωt. The terminology for the Hilbert transform is as

follows: the imaginary component, the second term, in Equation (1.10)
~f ðtÞ5A sinðωtÞ is defined as the Hilbert transform of f ðtÞ (we will discuss further

details in Sections 1.3.1 and 1.3.2 below), and the sum of both the signal and its

Hilbert transform multiplied by j generates a complex signal:

faðtÞ5A e jωt 5A cosðωtÞ1 jA sinðωtÞ5 f ðtÞ1 j ~f ðtÞ

in which faðtÞ is defined as the analytic signal.
To summarize, the real part of the analytic signal is the signal under investiga-

tion f ðtÞ and its imaginary component is the Hilbert transform ~f ðtÞ of the signal.

The analysis procedure is summarized in Fig. 1.3. As can be seen in Fig. 1.3A

and B, we can use the analytic signal A ejωt to determine amplitude A and instanta-

neous phase ωt of any point, such as the one indicated by *. The amplitude is:

A5

ffi
real component2 1 imaginary component2

q

9Lomb’s Algorithm and the Hilbert Transform

and the phase is:

φ5 tan21 imaginary component

real component

� �

Again, in this example we did not need the analytic signal to determine phase and

amplitude for our simple cosine signal, but our finding may be generalized to other

signals where such a determination is not trivial.

1.3.1 The Hilbert Transform in the Frequency Domain

As can be seen in the earlier example (depicted in Fig. 1.3), the Hilbert transform

can be considered as a phase shift operation on f ðtÞ to generate ~f ðtÞ: In our example

the signal cosðωtÞ is shifted by 2π/2 rad (or 290�) to generate its Hilbert trans-

form cosðωt2 π=2Þ5 sinðωtÞ: We may generalize this property and define a

(A) Analytic signal (B) Time domain

f
a
(t) = A ejωt = A cos(ωt) + A sin(ωt)

F
a
(ω) = 2Aπ δ (ω −ω0)

~
f

a
(t) = A sin(ωt)

f (t) = A cos(ωt)

ωt
Im

ag
in

ar
y

ax
is

Real axis

Hilbert transform

Instantaneous phase = ωt

Fourier transform of the
analytic signal

Frequency domain

Aπ δ (ω −ω0)

j

A j π δ (ω +ω0)

A j π δ (ω −ω0)

− j sgn(ω)

Aπ δ (ω −ω0)

−ω0 ω0

−ω0 ω0

ω

Figure 1.3 The signal amplitude A and instantaneous phase ωt of point * of the cosine

function (B, f ðtÞ; blue) can be determined with the so-called analytic signal (A). The analytic

signal consists of a real part equal to the signal under investigation (the cosine) and an

imaginary component (the sine). The imaginary component (red) is defined as the Hilbert

transform ~f ðtÞ of the signal f ðtÞ: The frequency domain equivalents of the cosine wave, the

sine wave, the Hilbert transform procedure, and the analytic signal are shown in (C). See

text for further explanation.

10 Signal Processing for Neuroscientists, A Companion Volume

Hilbert transformer as a phase-shifting (linear time invariant, LTI) system that gen-

erates the Hilbert transform of its input (Fig. 1.4A). The generalization of this prop-

erty associated with the cosine is not too far of a stretch if you recall that, with the

real Fourier series, any periodic signal can be written as the sum of sinusoidal sig-

nals (the cosine and sine waves in equation (5.1) in van Drongelen, 2007) and that

our above results can be applied to each of these sinusoidal components.

To further define the shifting property of the Hilbert transformer (see Fig.

1.4A), we begin to explore this operation in the frequency domain, because here

the procedure of shifting the phase of a signal by 2π/2 rad is relatively easy

to define as a multiplication by e2jðπ=2Þ 52j (Fig. 1.4B). If this is not obvious

to you, consider the effect of this multiplication for any complex number

z5 ejφ (representing phase φ) that can also be written as the sum of its real and

imaginary parts z5 a1 jb: Multiplication by 2j gives its Hilbert transform

~z52j a1 jbð Þ5 b2 ja; indeed corresponding to a 290� rotation of z (see

Fig. 1.4C). Although the multiplication with 2j is correct for the positive frequen-

cies, a 290� shift for the negative frequencies in the Fourier transform (due to the

negative values of ω) corresponds to multiplication with ejðπ=2Þ 5 j: Therefore, the
operation of the Hilbert transform in the frequency domain can be summarized as:

multiplication by2 j sgnðωÞ ð1:11Þ

Phase Shift by - /2 radπ

)(tf)(
~

tf
(A)

Real Axis

Im
ag

in
ar

y
A

xi
s

je j −=−)2/(π
- /2π

(B)

Real Axis

Im
ag

in
ar

y
A

xi
s

- /2π

(C)

jbaz +=

jabz −=~

*

*

Hilbert Transformer

*
*

Figure 1.4 (A) The Hilbert transform can be represented as the operation of an LTI system

(the Hilbert transformer). Input f ðtÞ is transformed into ~f ðtÞ by shifting it by 2π/2 rad

(290�). (B) The Hilbert transform operation in the frequency domain can be represented as

a multiplication with e2jðπ=2Þ 52j (orange arrow). (C) Example of the Hilbert transform in

the frequency domain—that is, multiplication of a complex number z5 a1 jb with 2j. The

result is ~z5 b2 ja: As can be seen, the result is a 290� rotation. Note in this panel that 90�

angles are indicated by M and that the angles indicated by � and * add up to 90�.

11Lomb’s Algorithm and the Hilbert Transform

Here we use the so-called signum function sgn (Appendix 1.2, Fig. A2.1)

defined as:

sgnðωÞ
21 for ω, 0

0 for ω5 0

1 for ω. 0

8<
: ð1:12Þ

Let us go back to our phase-shifting system depicted in Fig. 1.4A and define its

unit impulse response as h(t) and its associated frequency response as H(ω). Within

this approach, the Hilbert transform is the convolution of input f(t) with h(t). Using

our knowledge about convolution (if you need to review this, see section 8.3.2 in

van Drongelen, 2007), we can also represent the Hilbert transform in the frequency

domain as the product of F(ω)—the Fourier transform of f(t)—and H(ω). This is

very convenient because we just determined above that the Hilbert transform in the

frequency domain corresponds to a multiplication with 2j sgnðωÞ: To summarize,

we now have the following three Fourier transform pairs:

System’s input3Fourier transform: f ðtÞ3FðωÞ
System’s unit impulse response3Fourier transform: hðtÞ3HðωÞ
Hilbert transform3Fourier transform: f ðtÞ � hðtÞ3FðωÞHðωÞ

ð1:13Þ

Using these relationships and Equation (1.11), we may state that the Fourier trans-

form of the unit impulse response (i.e., the frequency response) of the Hilbert trans-

former is:

HðωÞ52jsgnðωÞ ð1:14Þ

We can use the expression we found for H(ω) to examine the above example of

Euler’s equation

A ejω0t 5 A cosðω0tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Signal

1 j A sinðω0tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Hilbert transform

zffl}|ffl{Analytical signal

in the frequency domain. The Fourier transform of the cosine term (using equation

(6.13) in van Drongelen, 2007) is:

Aπ½δðω1ω0Þ1 δðω2ω0Þ� ð1:15Þ

Now, according to Equation (1.13), the Fourier transform of the cosine’s Hilbert

transform is the product of the Fourier transform of the input signal (the cosine)

and the frequency response of the Hilbert transformer H(ω), that is:

Aπ½δðω1ω0Þ1 δðω2ω0Þ�
	

2j sgnðωÞ	

Aπ½δðω1ω0Þ 2j sgnðωÞð Þ1 δðω2ω0Þ 2j sgnðωÞð Þ� ð1:16Þ

12 Signal Processing for Neuroscientists, A Companion Volume

Because δðω1ω0Þ is only nonzero for ω52ω0 and δðω2ω0Þ is only nonzero for

ω5ω0; we may rewrite the 2j sgn(ω) factors in Equation (1.16) and we get:

Aπ½δðω1ω0Þð2 j sgnð2ω0ÞÞ1 δðω2ω0Þð2j sgnðω0ÞÞ�

Now we use the definition of sgn, sgnð2ω0Þ521 and sgnðω0Þ5 1 (Equation

(1.12)), and simplify the expression to:

Aπ½δðω1ω0ÞðjÞ1 δðω2ω0Þð2 jÞ�5Ajπ½δðω1ω0Þ2 δðω2ω0Þ� ð1:17Þ

As expected, Equation (1.17) is the Fourier transform of A sinðωtÞ (see equation

(6.14) in van Drongelen, 2007), which is indeed the Hilbert transform ~f ðtÞ of

f ðtÞ5A cosðωtÞ:
Combining the above results, we can find the Fourier transform of the analytic

signal faðtÞ5A cosðωtÞ1 jA sinðωtÞ5 f ðtÞ1 j ~f ðtÞ: If we define the following pairs:

faðtÞ3FaðωÞ
f ðtÞ 3FðωÞ
~f ðtÞ 3 ~FðωÞ

the above expressions can be combined in the following Fourier transform pair:

faðtÞ5 f ðtÞ1 j ~f ðtÞ3FaðωÞ5FðωÞ1 j ~FðωÞ

In the above equation we substitute the expressions for FðωÞ from Equation (1.15)

and ~FðωÞ from Equation (1.17) and get:

FaðωÞ5FðωÞ1 j ~FðωÞ

5 Aπ δðω1ω0Þ1 δðω2ω0Þ½ �|ffl{zffl}
Fourier transform of signal

1 j Ajπ δðω1ω0Þ2δðω2ω0Þ½ �	
|ffl{zffl}
Fourier transform of Hilbert transform

zffl}|ffl{Fourier transform of analytical signal

With a bit of algebra we obtain:

FaðωÞ5FðωÞ1 j ~FðωÞ5 2πAδðω2ω0Þ ð1:18Þ

This interesting finding shows that the Fourier transform of the analytic signal has

zero energy at negative frequencies and only a peak at 1ω0: The peak’s amplitude

at 1ω0 is double the size of the corresponding peak in FðωÞ (Fig. 1.3C). This find-
ing may be generalized as: “The Fourier transform of the analytic signal FaðωÞ has

13Lomb’s Algorithm and the Hilbert Transform

no energy at negative frequencies 2ω0; it only has energy at positive frequencies

1ω0 and its amplitude is double the amplitude at 1ω0 in FðωÞ.”

1.3.2 The Hilbert Transform in the Time Domain

From the frequency response presented in Equation (1.14) and the relationship

between convolution in the time and frequency domains (section 8.3.2, van

Drongelen, 2007), we know that the unit impulse response h(t) of the Hilbert trans-

former (Fig. 1.4A) is the inverse Fourier transform of 2j sgnðωÞ. You can find

details of sgnðtÞ and its Fourier transform in Appendix 1.2; using the signum’s

Fourier transform, we can apply the duality property (section 6.2.1, van Drongelen,

2007) to determine the inverse Fourier transform for 2j sgnðωÞ: For convenience

we restate the duality property as:

if f ðtÞ3FðωÞ; then FðtÞ32πf ð2ωÞ ð1:19aÞ

Applying this to our signum function (see also Appendix 1.2), we can define the

inverse Fourier transform of sgnðωÞ:

sgnðtÞ3 2

jω
; therefore

2

jt
32π sgnð2ωÞ|fflfflfflfflffl{zfflfflfflfflffl}

2sgnðωÞ

ð1:19bÞ

Note that we can substitute 2sgnðωÞ5 sgnð2ωÞ because the signum function

(Fig. A2.1) has odd symmetry (defined in Appendix 5.2 in van Drongelen, 2007).

Using the result from applying the duality property in Equation (1.19b), we can

determine the inverse Fourier transform for the frequency response of the Hilbert

transformer HðωÞ52j sgnðωÞ and find the corresponding unit impulse response

hðtÞ: Because 2π and j are both constants, we can multiply both sides with j and

divide by 2π; this generates the following Fourier transform pair:

hðtÞ5 1

πt
3Hð jωÞ52j sgnðωÞ ð1:20Þ

In Equation (1.14) we found that the frequency response of the Hilbert transformer

is 2j sgnðωÞ: Because we know that multiplication in the frequency domain is

equivalent to convolution in the time domain (chapter 8 in van Drongelen, 2007),

we can use the result in Equation (1.20) to define the Hilbert transform ~f ðtÞ of sig-
nal f ðtÞ in both the time and frequency domains. We define the following Fourier

transform pairs:

the input: f ðtÞ3FðωÞ
the Hilbert transform of the input: ~f ðtÞ3 ~FðωÞ

the unit impulse response of the Hilbert transformer: hðtÞ3HðωÞ

14 Signal Processing for Neuroscientists, A Companion Volume

Using the above pairs and Equation (1.20), the Hilbert transform and its frequency

domain equivalent are:

~f ðtÞ5 f ðtÞ � hðtÞ|ffl{zffl}
1
πt

5
1

π

ðN
2N

f ðtÞ
t2 τ

dτ3 ~FðωÞ5FðωÞHðωÞ ð1:21Þ

There is, however, a problem with our finding for the Hilbert transform expression

in Equation (1.21), which is that there is a pole for f ðtÞ=ðt2 τÞ within the integration

limits at t5 τ: The solution to this problem is to define the Hilbert transform as:

~f ðtÞ5 1

π
CPV

ðN
2N

f ðtÞ
t2 τ

dτ ð1:22Þ

in which CPV indicates the Cauchy principal value of the integral. The CPV is a

mathematical tool to evaluate integrals that include poles within the integration

limits. An example of such an application is given in Appendix 1.3. For those inter-

ested in the CPV procedure, we refer to a general mathematics text such as Boas

(1966).

1.3.3 Examples

The Hilbert transform is available in MATLAB via the hilbert command. Note

that this command produces the analytic signal f ðtÞ1 j ~f ðtÞ and not the Hilbert

transform itself; the Hilbert transform is the imaginary component of the output.

You can evaluate the example from Equation (1.10) by computing the Hilbert

transform for the cosine and plot the amplitude and phase. Type the following in

the MATLAB command window:

step=0.00001; % step size=1/sample rate

t=0:step:1; % timebase

x=cos(2*pi*4*t); % 4 Hz signal

xa=hilbert(x); % compute the analytic signal

Amplitude=abs(xa); % amplitude of the signal

Phase=atan2(imag(xa),real(xa)); % instantaneous phase
Ohmega=diff(Phase)/(2*pi*step); % instantaneous frequency in Hz

figure;plot(t,x,‘k’);hold;

plot(t,Amplitude,‘r’);

plot(t,Phase,‘g’);

plot(t(1:length(t)21),Ohmega,‘m.’)

axis([0 1 -5 5])

15Lomb’s Algorithm and the Hilbert Transform

You will obtain a graph of a 4-Hz cosine function with an indication of its amplitude

(a constant) in red, its instantaneous phase in green (note that we use the atan2

MATLAB command in the above example because we want to obtain phase angles

between 2π and 1π), and the frequency as the derivative of the phase in magenta.

You can now check both frequency characteristics we discussed by computing

the Fourier transforms and plotting these in the same graph.

X=fft(x); % Fourier transform of the signal

XA=fft(xa); % Fourier transform of the analytic signal

figure;plot(abs(X),‘k’);hold;plot(abs(XA))

If you use the zoom function of the graph to study the peaks in the plot you will

see that the peaks for the positive frequencies (far-left part of the graph) show a

difference of a factor two between the Fourier transform of the analytic signal and

the Fourier transform of the signal. The negative component (in the discrete version

of the Fourier transform this is the far-right part of the graph) shows only a peak in

the Fourier transform of the signal. Both observations are as expected from the the-

oretical considerations in Section 1.3.1.

Another property to look at is the phase shift between the signal and its Hilbert

transform. This can be accomplished by typing the following lines:

figure; hold;

plot(t,imag(xa),‘r’); % the imaginary part of the analytic signal=

% the Hilbert transform

plot(t,x,‘k.’) % the signal

plot(t,real(xa),‘y’) % real part of the analytic signal=signal

Now you will get a figure with the signal (4-Hz cosine wave) in both black (thick

line) and yellow (thin line); the Hilbert transform (the 4-Hz sine wave) is plotted

in red.

Finally we will apply these techniques to an example in which we have two neu-

ral signals, one signal generated by a single neuron and one signal generated by the

network in which the neuron is embedded. Our question here is how the phases of

these two signals relate. First, the raw extracellular trace is rectified and sent

through a low-pass filter with a 50-ms time constant (this technique of using the

analytic signal to find the instantaneous phase usually works better with signals

composed of a small band of frequencies and, in our case, we are only interested in

the low-frequency behavior; see Pikovsky et al., 2001, for more details). For the

cellular activity, we create a raster plot of the spike times and send it through the

same low-pass filter. We now have two signals representing the low-pass-filtered

spiking behavior of the cell and network (see Fig. 1.5Aiii). We can use the Hilbert

16 Signal Processing for Neuroscientists, A Companion Volume

transform technique to find the instantaneous phase of each signal (Fig. 1.5Bi). For

our case, we are interested in how the phases of the cellular and network signals

are related. To find this relationship, we calculate the difference between the two

instantaneous phase signals at each point in time and then use this information to

generate a histogram (see Fig. 1.5Bii�iii). This method has been used to compare

how the phases of cellular and network signals are related for different types of cel-

lular behavior (Martell et al., 2008).

Appendix 1.1

In the case of the standard power spectrum we have S5XX*/N (equation (7.1)

in van Drongelen, 2007). The normalization by 1/N ensures that Parseval’s conser-

vation of energy theorem is satisfied (this theorem states that the sum of squares

in the time domain and the sum of all elements in the power spectrum are equal; see

Table 7.1 and Appendix 7.1 in van Drongelen, 2007). In the case of Lomb’s algo-

rithm we compute the sum of squares for each frequency by using the expression in

(A) Pre-processing of the signal

(B) Using the Hilbert transform

(i) Raw data

(i) Instantaneous phase (ii) Phase difference (iii) Histogram of phase
differences

Cell activity

Network
activity

– π

π

– π

π

– π

– π π

π

(ii) Spike raster

(iii) Low-pass filtered

Figure 1.5 (A) Processing of a cellular and network activity (i) into a low-frequency index

of spiking activity (iii) (see text for details). (B) The low-pass-filtered signals of (A) were

transformed using the analytic signal technique to find the instantaneous phase over time (i).

The relationship between the two signals was investigated by finding the difference between the

phases over time (ii) and plotting these phase differences in a histogram (iii). In this example we

observe that the overall effect is that the network activity leads and the cell activity lags—that is,

the histogram (iii) of network activity phase minus cell activity phase is predominantly positive.

(From A. Martell, unpublished results, with permission.)

17Lomb’s Algorithm and the Hilbert Transform

Equation (1.8), which is based on Equation (1.7). Our expectation is therefore that

Lomb’s spectrum will also satisfy Parseval’s theorem. However, there is a slight dif-

ference. In the standard Fourier transform the positive and negative frequencies

each contain half the energy. Basically, this is due to the fact that the Fourier trans-

form is based on the complex Fourier series, which includes negative frequencies.

In contrast, if we compute the Lomb spectrum only up to the Nyquist frequency, we

have all energy in the positive frequencies, and therefore its values are twice as large

as compared to the standard power spectrum. An example for a single frequency is

shown in Figure A1.1. This figure is based on a standard power spectrum and Lomb

spectrum computed for the same input, a sine wave of 50 Hz. Thus, if we want the

Lomb spectrum to have the same amplitudes as the standard power spectrum, we

need to divide by two. Furthermore, if we want to normalize by the total power, we

can divide by the variance σ2. This normalization by 2σ2 is exactly the normalization

commonly applied for Lomb’s spectrum (see Equation (1.9) and Pr1_1.m).

Appendix 1.2

This appendix describes the signum function sgnðtÞ; its derivative, and Fourier

transform. The signum function is 1 for positive t and 21 for negative t

(Fig. A2.1). Similar to the derivative of the unit step function U(t) (section 2.2.2,

fig. 2.4A in van Drongelen, 2007), the derivative of this function is only nonzero at

t5 0. The only difference is that for sgnðtÞ the function increases by 2 units (from

21 to 1) instead of 1 unit (from 0 to 1) in U(t). Since the derivative of the unit step

is δðtÞ; the derivative of the signum function would be twice as large, that is:

d½sgnðtÞ�
dt

5 2δðtÞ ðA1:2:1Þ

The Fourier transform of the derivative of a function is equal to the Fourier trans-

form of that function multiplied with jω. This property is similar to the relationship

of the Laplace transform of a derivative of a function and the Laplace transform of

the function itself (see section 9.3, equation (9.3) in van Drongelen, 2007). If we

Power spectrum
based on

Lomb’s algorithm Power spectrum
based on the

Fourier transform

Figure A1.1 Spectral analysis of a 1-s epoch of a 50-Hz signal sampled at 1000 Hz. The

graph depicts the superimposed results from a standard power spectrum (red) based on the

Fourier transform and the power spectrum obtained with Lomb’s algorithm (dark blue). Note

that the total energy in both cases is identical. This figure can be created with Pr1_2.m .

18 Signal Processing for Neuroscientists, A Companion Volume

now use this property and define the Fourier transform of sgnðtÞ as S(ω), we can

apply the Fourier transform to both sides of Equation (A1.2.1):

jωSðωÞ5 2 ðA1:2:2Þ

Recall that the Fourier transform of the unit impulse is 1 (see section 6.2.1, equa-

tion (6.9) in van Drongelen, 2007). Therefore, the Fourier transform pair for the

signum function is:

sgnðtÞ3SðωÞ5 2

jω
ðA1:2:3Þ

Appendix 1.3

In Equation (1.22) we use the Cauchy principal value, CPV. This technique is used

to approach integration of a function that includes a pole within the integration lim-

its. We will not go into the mathematical details (for more on this subject please

see a mathematics textbook such as Boas, 1966), but we will give an example to

show the principle. For example, consider the integral
Ðd
2d

ð1=xÞdx: The function 1=x

in this integral has a pole (is unbounded) at x5 0: The Cauchy principal value tech-

nique approximates the integral as the sum of two separate integral:

ðd
2d

1

x
dx �

ð2ε

2d

1

x
dx1

ðd
ε

1

x
dx

where ε is a small positive value approaching zero. In this case the two integrals

cancel and approach
Ðd
2d

ð1=xÞdx: Our final result can be summarized as:

CPV

ðd
2d

1

x
dx5 lim

ε-0

ð2ε

2d

1

x
dx1

ðd
ε

1

x
dx

2
4

3
55 0

Here the Cauchy principal value is indicated by CPV; in other texts you may also

find PV or P.

–
δd

d

Figure A2.1 The signum function

and its derivative, the unit impulse

function with an amplitude of two.

19Lomb’s Algorithm and the Hilbert Transform

2 Modeling

2.1 Introduction

Signal analysis is frequently used to characterize systems. In van Drongelen

(2007), chapter 8, we described linear systems and associated techniques that allow

us determine system characteristics. In the last chapter of van Drongelen (2007)

(section 17.3) we showed how these linear methods, such as cross-correlation, fail

to characterize signals with a nonlinear component. To address this shortcoming,

we used metrics such as correlation dimension, the Lyapunov exponent, or

Kolmogorov entropy to characterize nonlinear signal properties.

The goal of this chapter is to introduce basics for modeling systems, with an

emphasis on techniques used to characterize nonlinear systems and their signals. In

this context, this chapter will also provide an introduction to the application of the

Volterra series, which forms the basis for the identification of dynamical nonlinear

systems, and which we will go over in more detail in Chapter 3. The systems that

we will introduce in this chapter are considered higher-order systems, since they

include operators beyond the (linear) first-order one. Useful references on the char-

acterization of nonlinear systems are the seminal text by Marmarelis and

Marmarelis (1978) and the reprint edition of a text from the 1980s by Schetzen

(2006). For more recent overviews, see Westwick and Kearney (2003) and

Marmarelis (2004).

2.2 Different Types of Models

Before going into mathematical detail, it is useful to summarize some of the types

of models that one may encounter in neuroscience. Attenuators and amplifiers are

both examples of linear systems, since output is simply the product of input and a

constant (e.g., y5 3x). Alternatively, expressions that characterize nonlinear sys-

tems include higher-order terms: these systems, as we will see in Chapters 3�5, do

not obey the scaling and superposition rules of linear models (to review these rules

see section 8.3.1.1 in van Drongelen, 2007). Examples of nonlinear higher-order

systems are y5 x2 (second-order system) and y5 51 x1 3x3 (third-order system).

At this point it is important to note that an expression such as y5 a1 bx1 cx3 can

still be considered linear, but with respect to its parameters a, b, and c. This is a

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00002-4

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00002-4

property that we will use when developing the regression procedure in

Section 2.4.1.

All of the examples earlier are static models (systems without memory), mean-

ing that their output depends only on present input. In neuroscience we usually

must deal with dynamical models, in which output depends on present and past

input (but not on future input); these systems are also called causal. Static models

are represented by algebraic equations (such as the ones in the previous paragraph),

whereas dynamical systems are modeled by differential equations (for continuous

time models) or difference equations (for discrete time models). General examples

of linear dynamical systems with input x and output y are:

An

dnyðtÞ
dtn

1An21

dn21yðtÞ
dtn21

1?1A0yðtÞ

5Bm

dmxðtÞ
dtm

1Bm21

dm21xðtÞ
dtm21

1?1B0xðtÞ

for continuous time systems and:

Anyðk2 nÞ1An21yðk2 n1 1Þ1?1A0yðkÞ
5Bmxðk2mÞ1Bm21xðk2m1 1Þ1?1B0xðkÞ

for discrete time systems (for details see chapter 8 in van Drongelen, 2007). If one

of the terms in a differential or difference equation is of a higher order, we have a

nonlinear dynamical system. For example, y2 4ðdy=dtÞ2 5 2x represents a second-

order dynamical system.
Time invariance is a critical condition for the development of the convolution

formalism (see section 8.3.1.1 in van Drongelen, 2007). This property allows us to

state that a system’s response to identical stimuli at different points in time is

always the same (provided that the system is in the same state, of course). Just as

we have linear time invariant systems, we also have nonlinear time invariant sys-

tems (usually abbreviated as LTI or NLTI systems).

Models of real systems can be generated according to two major methodological

approaches. One might follow a deductive path and start from (physical) assump-

tions about the system, generating a hypothetical model to create predictions that

can be empirically tested. These empirical measurements can be used to establish

the parameters of the hypothetical model, and therefore this type of representation

is often called a parametric model. An alternative to this procedure, the inductive

path, is followed if one starts from the measurements of a system’s input and out-

put. This data-driven method uses measurements, rather than assumptions about the

system, to mathematically relate input and output. Here, we can consider the sys-

tem as a black box, modeled by a mathematical relationship that transforms input

into output. This type of model is often referred to as nonparametric (note, how-

ever, that nonparametric does not refer to the absence of parameters; in many cases,

22 Signal Processing for Neuroscientists, A Companion Volume

these models will have more parameters than parametric models). The method of

induction is appropriate when dealing with complex systems that resist a reduction

to a simpler parametric model. It can also be a starting point in which a system is

first characterized as a black box and in subsequent steps parts with physical mean-

ing replace pieces of the black box. In this combined approach, parts of the model

may still be part of the black box, whereas other parts may be associated with a

physical interpretation. In this case, the distinction between parametric and non-

parametric models may become a bit fuzzy.

2.3 Examples of Parametric and Nonparametric Models

A parametric model usually has relatively few parameters. A simple example of a

parametric model of a dynamical LTI system is the ordinary differential equation

(ODE) for a filter. For example, x5RCðdy=dtÞ1 y describes input x and output y of

a simple RC circuit (Fig. 2.1A). The only parameters in this case are the values of

the resistor R and the capacitor C in the equation. Subsequently, the value for these

parameters can be determined experimentally from observing the system’s

behavior.

Note: See van Drongelen (2007) for further details about determining these

parameters from measurements: in section 11.2.1 it is shown how RC can be

obtained from the filter’s unit step response (equation (11.8)), and in section

12.3, RC is determined from the �3 dB point of the filter’s frequency charac-

teristic (equation (12.5)).

A very famous parametric model in neuroscience is the Hodgkin and Huxley

(1952) formalism using four variables to describe the action potential generated in

the squid’s giant axon: the membrane potential V and three other variables m, h,

and n describe the membrane potential-dependent characteristics of sodium and

potassium conductivity. In the following it is assumed you are somewhat familiar

with the Hodgkin and Huxley model; if you need to review the details, chapter 2 in

Izhikevich (2007) provides an excellent overview.

Initially in the 1950s, the formalism was entirely hypothetical, and it was not

until after the molecular basis for Na1 and K1 ion channels was elucidated that a

physical interpretation of large parts of the model could be made. The gating vari-

able m characterizes the depolarization process caused by increased conductance of

sodium ions (causing an influx of positively charged sodium ions) that occurs dur-

ing the action potential generation. The variables h and n are recovery variables

that represent the inactivation of sodium ion conductance (reduced Na1 influx) and

the activation of potassium conductance (causing an outward flux of positively

charged potassium ions).

23Modeling

Hodgkin and Huxley’s model relates all these variables in an equivalent circuit

of the excitable biomembrane (Fig. 2.1C) by setting the sum of all membrane cur-

rents equal to zero according to Kirchhoff’s first law (see appendix 1.1 in van

Drongelen, 2007). By applying this law to the node indicated with the arrow in the

membrane model in Fig. 2.1C we obtain:

C
dV

dt|fflffl{zfflffl}
Capacitive

current

5 IC

1
V 2ENa

RNa|fflfflfflfflffl{zfflfflfflfflffl}
Sodium

current

5 INa

1
V 2EK

RK|fflfflfflfflffl{zfflfflfflfflffl}
Potassium

current

5 IK

1 IL|{z}
Leak

current

5 0 ð2:1Þ

In this expression we have several parameters: membrane capacitance C; the resis-

tance values for sodium and potassium ions, RNa and RK, respectively; ENa and EK

d
d

–IC INa

Na

IK

EK EL

RNA
RK

RL

IL

IC + INa + IK + IL = 0

Figure 2.1 (A) Example of a parametric model of a dynamical linear system (a low-pass

filter) and its input and output (x and y respectively). (B) The black box, nonparametric

equivalent of the same system is the white curve representing the (sampled) unit impulse

response (UIR). Both models permit us to predict the output resulting from an arbitrary input

such as the unit step function. The parametric model has two parameters (R and C) with

physical meaning. The nonparametric model consists of many parameters (the samples

making up the UIR) without a direct physical meaning. (C) Hodgkin and Huxley’s electronic

equivalent circuit for the biomembrane. The model consists of the membrane capacitance

(C) and three parallel ion channels: one for sodium, one for potassium, and a leakage

channel. According to Kirchhoff’s first law the sum of all currents at the node (arrow) must

be zero. (D) Model for gating variable m in the Hodgkin and Huxley formalism.

24 Signal Processing for Neuroscientists, A Companion Volume

are the equilibrium potentials for sodium and potassium ions computed with the

Nernst equation (appendix 1.1 in van Drongelen, 2007); and IL is a constant leak-

age current attributed to Cl2 ions. The sodium and potassium currents are deter-

mined with Ohm’s law (appendix 1.1 in van Drongelen, 2007): each ion species

experiences a potential drop equal to the difference between the membrane poten-

tial V and its equilibrium potential (e.g., for sodium: V 2ENa), and this potential

drop divided by the resistance is the ion current (e.g., for sodium the current is

ðV 2ENaÞ=RNa). In addition to Equation (2.1), Hodgkin and Huxley (1952)

described the dynamics for RNa and RK with the nonlinear relationships

gNa 5 1=RNa 5 �gNam3h and gK 5 1=RK 5 �gKn4; where �gNa and �gK are the maximum

conductivity values for sodium and potassium. Furthermore, the gating variable m

is modeled by a reversible process between the open (m) and closed (1�m) states

(Fig. 2.1D), which can be represented by the following ODE:

dm

dt
5αmðVÞð12mÞ2βmðVÞm ð2:2Þ

The rate parameters αm and βm that govern this process depend on the membrane

potential V in a nonlinear fashion. The two other gating variables h and n follow

the same formalism with membrane potential-dependent rate constants αh, βh, αn,

and βn. Hodgkin and Huxley determined these nonlinear relationships between the

rate parameters and membrane potential from voltage clamp experiments.

Over time, other ion channels were introduced into the model using the same

formalism as for the sodium and potassium channels. Since the development of

computer technology, the Hodgkin and Huxley formalism has been widely used in

simulations of neural systems ranging from very detailed models of single neurons

(e.g., De Schutter and Bower, 1994a, b) to large-scale networks of neocortex (e.g.,

Traub et al., 2005; van Drongelen et al., 2006).

Although Hodgkin and Huxley’s model only contains four variables (V, m, h, n),

it is still too complex to approach analytically. Several authors solved this problem

by reducing the 4D model to a 2D one; the Fitzhugh�Nagumo model (Fitzhugh,

1961) is an example of such a reduction. In these models, the gating variable m of

the Hodgkin and Huxley model is removed by considering sodium activation to be

instantaneous; subsequently, h and n are combined into a single recovery variable w.

Fitzhugh used the following pair of coupled differential equations:

dV

dt
5Vða2VÞðV 2 1Þ2w1 I and

dw

dt
5 bV2 cw ð2:3Þ

in which a, b, and c are parameters; I is a term representing injected current. The

equations are coupled because w occurs in the expression for dV/dt and V in the

expression for dw/dt. The remaining two variables in these models are the mem-

brane potential V and a single recovery variable w, generating a 2D model that is

amenable to mathematical analysis (for an excellent discussion of simplified ver-

sions of the Hodgkin and Huxley model, see Izhikevich, 2007).

25Modeling

Nonparametric models describe a system’s input�output relationship, usually

by using a large number of parameters, and these parameters do not necessarily

have a physical interpretation. Generally speaking, a nonparametric model is gener-

ated from a procedure in which we relate a system’s input x(t) and output y(t). Just

as we can relate two variables with a function, we can link two time series with an

operator. An example of such a nonparametric model would be the characteriza-

tion of an LTI dynamical system with its (sampled) unit impulse response (UIR)

(Fig. 2.1B). The operator in this case would be convolution, since convolution of

the input time series x(t) with the system’s UIR h(t) generates the system’s output

time series y(t): yðtÞ5 hðtÞ � xðtÞ (see section 8.3.1.1 in van Drongelen, 2007).

Although one might point out that such a nonparametric description does not neces-

sarily provide direct insight into the system’s components or the mechanisms

underlying the system’s operation, the curve of the UIR permits us to predict the

system’s response to any input, such as the unit step function (Fig. 2.1B).

2.4 Polynomials

For static systems, both linear and nonlinear, one can use algebraic expressions to

describe their input�output characteristic, and polynomials are often used for this

purpose. Polynomials are sums of monomials, which are expressions that consist of

a constant multiplied by one or more variables; the exponent of the variable is its

degree. For example, zðtÞ5 axðtÞ4yðtÞ3 is a monomial with a constant (parameter) a

and a degree of 4 for x and 3 for y. We can see that this expression represents a static

process because at any time t, output z depends only on the present values of inputs

x and y. It is important to note that although the relationship between z and x, y is

nonlinear, the expression can be considered a linear function of the parameter a.

2.4.1 Describing Discrete Time Data Sets

Applying the above to the characterization of nonlinear systems, we could describe

the relationship between input x(t) and output y(t) of a static nonlinearity (a nonlin-

ear system without memory) with a polynomial such as the following power series:

yðtÞ5 a0 1 a1xðtÞ1 a2xðtÞ2 1 a3xðtÞ3 1?1 aixðtÞi 1?5
XN
i50

aixðtÞi ð2:4Þ

In principle, power series are infinite; however, in our applications they will always

consist of a finite number of monomials. The fact that Equation (2.4) is linear with

respect to its parameters ai can be used to fit the series by using a technique

called least squares minimization. Using this approach of fitting polynomials to

recorded data sets is often called regression analysis. This procedure works as fol-

lows. Suppose we have two sets of N measurements: a system’s input xn and asso-

ciated output yn. If we model our system as a second-order static system, we can

26 Signal Processing for Neuroscientists, A Companion Volume

truncate the expression in Equation (2.4) above the second power and estimate the

output y as a0 1 a1xn 1 a2x
2
n: Subsequently we can define the error of our estimate

ε2 as:

ε2 5
XN
n51

½yn 2 ða0 1 a1xn 1 a2x
2
nÞ� 2 ð2:5Þ

By following the same approach we used to find the coefficients in Lomb’s algo-

rithm (Section 1.2.1), we can find the minimum associated with the best choice for

parameters a0, a1, and a2 by setting the partial derivatives of ε2 (with respect to

these three parameters a0, a1, and a2) equal to zero:

@ε2

@ai
5
XN
n51

2 yn 2 ða0 1 a1xn 1 a2x
2
nÞ

� � @½yn 2 ða0 1 a1xn 1 a2x
2
nÞ�

@ai
5 0

for i5 0; 1; 2

ð2:6aÞ

and we get what are called the normal equations:

@ε2

@a0
5 2 2

XN
n51

½yn 2 a0 2 a1xn 2 a2x
2
n�5 0

-a0 N|{z}XN
n51

1

1 a1
XN
n51

xn 1 a2
XN
n51

x2n 5
XN
n51

yn

@ε2

@a1
5 2 2

XN
n51

½yn 2 a0 2 a1xn 2 a2x
2
n�xn 5 0

-a0
XN
n51

xn 1 a1
XN
n51

x2n 1 a2
XN
n51

x3n 5
XN
n51

ynxn

@ε2

@a2
5 2 2

XN
n51

½yn 2 a0 2 a1xn 2 a2x
2
n�x2n 5 0

-a0
XN
n51

x2n 1 a1
XN
n51

x3n 1 a2
XN
n51

x4n 5
XN
n51

ynx
2
n ð2:6bÞ

Note that in Equation (2.6b) all summation (Σ) expressions are numbers that can

be computed from the observations; therefore, there are three linear equations with

three unknown parameters a0, a1, and a2 to compute (this should be no problem

provided, of course, that the set of equations can be solved). Note that if we had

truncated Equation (2.4) at a1, the normal equations that we would have obtained

would have been the well-known equations for linear regression.

27Modeling

It is a bit tedious to solve the three equations in (2.6b); therefore, one might prefer

to solve the coefficients by using the matrix notation XA5 Y for the three equations:

N
XN
n51

xn
XN
n51

x2n

XN
n51

xn
XN
n51

x2n

XN
n51

x3n

XN
n51

x2n

XN
n51

x3n

XN
n51

x4n

2
6666666664

3
7777777775

|ffl{zffl}
X

a0

a1

a2

2
66664

3
77775

|fflfflffl{zfflfflffl}
A

5

XN
n51

yn

XN
n51

ynxn

XN
n51

ynx
2
n

2
6666666664

3
7777777775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Y

ð2:6cÞ

The coefficients can be found by solving (Equation (2.6c)): that is, A5X21Y: In
MATLAB we can use the \ operator to obtain this result: A5X\Y . An example

(Pr2_1.m) for approximating an exponential function y5 ex is available on http://

www.elsevierdirect.com/companions/9780123849151.

2.4.2 Describing Analytic Functions

The previous example works with discrete time data such as a set of digitized

recordings of a system’s input and output. In other applications, one might deal with

a parametric model and consequently have access to analytic functions that describe

some nonlinear system under investigation (recall that an analytic function is

smooth and differentiable and that this is not the same as the analytic signal we

introduced for the Hilbert transform in Chapter 1). In this case, the so-called

Maclaurin or Taylor series approaches, which will be explained in Sections 2.4.2.1

and 2.4.2.2, may be applied to convert the function into a power series. Such a power

series approach can also be helpful for creating a linear approximation of a nonlinear

function in the neighborhood of a point of interest. Because linear relationships are

easier to analyze than nonlinear ones, this technique of linearization of nonlinear

functions can help us understand the behavior of complex nonlinear processes.

Like the polynomials discussed in the previous section, the Maclaurin and Taylor

series describe static systems. To describe dynamical systems, we can use the

Volterra series, which is discussed in detail in Chapter 3. In Section 2.5, we will

show that the Taylor series can be considered the static version of a Volterra series.

2.4.2.1 Maclaurin Series

A famous power series describing a function about the origin is the Maclaurin

series. Let us consider an example with the exponential function and use the power

series approach in Equation (2.4) to represent this function:

f ðtÞ5 et 5 a0 1 a1t1 a2t
2 1 a3t

3 1?1 ait
i 1?5

XN
i50

ait
i ð2:7Þ

28 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

The task at hand is to determine the values of the coefficients ai for function et. We

can use the following approach to perform this task. First we determine the deriva-

tives of f.

f ðtÞ5 et 5 a0 1 a1t1 a2t
2 1 a3t

3 1?1 ait
i 1?

df ðtÞ
dt

5 et 5 a1 1 2a2t1 3a3t
2 1?1 iait

i21 1?

d2f ðtÞ
dt2

5 et 5 2a2 1 ð23 3Þa3t1?1 ði3 ði2 1ÞÞaiti22 1?

d3f ðtÞ
dt3

5 et 5 ð23 3Þa3 1?1 ði3 ði2 1Þ3 ði2 2ÞÞaiti23 1?

^

ð2:8Þ

The second step is to consider f(t)5 et about the origin. As we approach the origin

(i.e., t becomes 0), Equation (2.8) simplifies to:

f ð0Þ5e0515 ½a01a1t1a2t
21a3t

31?1ait
i1?�t505a0

df ð0Þ
dt

5e0515 ½a112a2t13a3t
21?1 iait

i211?�t505a1

d2f ð0Þ
dt2

5e0515 ½2a21 ð233Þa3t1?1 ði3 ði21ÞÞaiti221?�t5052a2

d3f ð0Þ
dt3

5e0515 ½ð233Þa31?1 ði3 ði21Þ3 ði22ÞÞaiti231?�t50

5 ð233Þa3
^

ð2:9Þ

With the results obtained in Equation (2.9), we can see that for the function, the

values for the coefficients ai are:

ai 5
1

i!
ð2:10Þ

Combining this result in Equation (2.10) with Equation (2.7), we have found the

well-known power series expansion of the exponential function:

f ðtÞ5 et 5 11
1

1!
t1

1

2!
t2 1

1

3!
t3 1?1

1

i!
ti 1?5

XN
i50

1

i!
ti ð2:11Þ

29Modeling

In the last expression
PN
i50

ð1=i!Þ ti; we use the definition 0!� 1. Note that by using

this approach, we include only values of t—there are no previous or future values

(t6τ) included in the power series; therefore, this approach is static (or memory-

less). An example of this approximation is implemented in MATLAB script Pr2_1.m

(http://www.elsevierdirect.com/companions/9780123849151).
In the above example we used the exponential exp(t) for f(t); if we consider the

development of Equation (2.4) for any function that can be differentiated, we get:

f ð0Þ 5 ½a01a1t1a2t
21a3t

31?1ait
i1?�t505a0-a05 f ð0Þ

df ð0Þ
dt

5 ½a112a2t13a3t
21?1 iait

i211?�t505a1-a15 f 0ð0Þ

d2f ð0Þ
dt2

5 ½2a21 ð233Þa3t1?1 ði3 ði21ÞÞaiti221?�t5052a2-a25
f 00ð0Þ
2

d3f ð0Þ
dt3

5 ½ð233Þa31?1 ði3 ði21Þ3 ði22ÞÞaiti231?�t50

5 ð233Þa3-a35
f 000ð0Þ
ð233Þ

^
ð2:12Þ

Here the notation f 0ð0Þ; f 00ð0Þ; f 000ð0Þ; . . . are not functions but represent the numbers

computed as the value of the 1st, 2nd, 3rd, . . . derivatives of f at t5 0. From this more

general notation we obtain the expression for the so-called Maclaurin series of f(t):

f ðtÞ5 f ð0Þ1 1

1!
t f 0ð0Þ1 1

2!
t2 f 00ð0Þ1 1

3!
t3 f 000ð0Þ1? ð2:13Þ

2.4.2.2 Taylor Series

In the above example, we developed the power series for a function about the ori-

gin. The development of the Taylor series follows a similar approach but now

about any point α. For a power series of power N this becomes:

f ðtÞ5 a0 1 a1ðt2αÞ1 a2ðt2αÞ2 1 a3ðt2αÞ3 1?1 aiðt2αÞi 1?

5
XN
i50

aiðt2αÞi
ð2:14Þ

We will now use a similar approach for the development of this series about α as

we used in the Maclaurin series about the origin—except in this case we set t5α

30 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151

(instead of t5 0) so that all terms in Equation (2.14) with ðt2αÞi vanish. By fol-

lowing this procedure we get:

f ðαÞ5 ½a01a1ðt2αÞ1a2ðt2αÞ21a3ðt2αÞ31?1aiðt2αÞi1?�t5α

5a0-a05 f ðαÞ
df ðαÞ
dt

5 ½a112a2ðt2αÞ13a3ðt2αÞ21?1 iaiðt2αÞi211?�t5α

5a1-a15 f 0ðαÞ
d2f ðαÞ
dt2

5 ½2a21 ð233Þa3ðt2αÞ1?1 ði3 ði21ÞÞaiðt2αÞi221?�t5α

52a2-a25
f 00ðαÞ
2

d3f ðαÞ
dt3

5 ½ð233Þa31?1 ði3 ði21Þ3 ði22ÞÞaiðt2αÞi231?�t50

5 ð233Þa3-a35
f 000ðαÞ
ð233Þ

^

ð2:15Þ

Similar to the notation used in the previous section, the notation f 0ðαÞ; f 00ðαÞ;
f 000ðαÞ; . . . does not refer to functions, but represents the numbers computed as the

value of the 1st, 2nd, 3rd, . . . derivatives of f at t5α. Substituting the findings in

Equation (2.15) into Equation (2.14) we obtain the Taylor series about t5α:

f ðtÞ5 f ðαÞ1 1

1!
ðt2αÞf 0ðαÞ1 1

2!
ðt2αÞ2f 00ðαÞ1 1

3!
ðt2αÞ3f 000ðαÞ1? ð2:16Þ

Comparing Equations (2.13) and (2.16), we can establish that the Maclaurin series is

the same as a Taylor series computed about the origin (i.e., α5 0). This approach can

be extended to higher-dimensional systems with multiple inputs; see Appendix 2.1

for examples of the 2D case. It must be noted that in many texts the distinction

between Maclaurin and Taylor series is not always made and it is not uncommon to

use the term Taylor series for both, a habit we will adopt in the following.

The number of terms in a Taylor series may be infinite. However, if we evaluate

a system close to an equilibrium at the origin or α, the value of t or (t2α) is a

small number {1; therefore, one can ignore higher-order terms in the power series

tn or (t2α)n because they become increasingly smaller. Thus, in general we can

approximate any function close to α with a linear expression obtained from a

Taylor series in which higher-order terms are ignored f ðtÞ � f ðαÞ1 ðt2αÞf 0ðαÞ; or,
in the case where we evaluate the expression about the origin, we obtain the

approximation f ðtÞ � f ð0Þ1 tf 0ð0Þ: This technique of linearizing a nonlinear func-

tion plays an important role in the analysis of nonlinear systems. A system’s

31Modeling

behavior in a restricted part of its domain can be understood and approximated by

a linear version of its characteristic. Sometimes, with the more complex systems, a

piecewise approximation with linear functions is the best option for their analysis.

For example, if we wanted to evaluate sin(t) around the origin, we can apply

Equation (2.13) and find the series:

sinðtÞ5 sinð0Þ|fflfflffl{zfflfflffl}
0

1 t cosð0Þ|fflfflffl{zfflfflffl}
1

2
t2

2
sinð0Þ|fflfflffl{zfflfflffl}

0

2
t3

6
cosð0Þ|fflfflffl{zfflfflffl}

1

1?

For small values of t (around 0) we may ignore all higher-order terms and we find

that sinðtÞ � t: In general, such an approach may be useful if one studies a system

close to an equilibrium. For example, if one examines a neuron’s subthreshold

behavior, one must describe the membrane potential close to the resting potential; in

this case it makes sense to linearize the nonlinear equations that govern the cell’s

electrical activity around resting potential. An example of this approach, where the

nonlinear Hodgkin and Huxley equations are linearized, can be found in Chapter 10

in Koch (1999).

When fitting a truncated power series to an analytic function, one could truncate

the Taylor series at the desired order. However, due to the error introduced by trunca-

tion, one may actually obtain a better fit by using a linear regression approach. An

example is if one wants to approximate et with a second-order power function over a

limited interval. The truncated Taylor series (see Equation (2.11)) is 11 t1 0:5t2; but
with a regression approach over the interval [�1,1] one obtains a better fit with

0:99631 1:1037t1 0:5368t2: This can be seen by running MATLAB script Pr2_1

(available on http://www.elsevierdirect.com/companions/9780123849151) where the

original exponential function (red), the Taylor series (blue), and the regression result

(black) are superimposed. The regression approach for obtaining a power series

approximation is also a valid solution if the Taylor series cannot be applied, as in the

case of a function that is nonanalytic, such as y5 jxj (no [unique] derivative at x5 0).

2.5 Nonlinear Systems with Memory

In the above examples, the output y(t) of the nonlinear systems could be described

with a polynomial of x(t) because there was a direct relationship between x and y;

that is, in these examples there was no memory in the system. However, nonlinear

systems with memory do exist, and for these systems we must describe how the

output y(t) depends on both the present and the past input: x(t2τ) with τ$ 0.

In the following chapter, we will consider the details of the so-called Volterra

series for the characterization of dynamical nonlinear systems (nonlinear systems

that do have a memory). Here we will demonstrate the similarities between the

Volterra and Taylor series. With the Taylor series we can link output value y5 f(x)

to input value x in the following manner:

y5 f ðαÞ1 1

1!
ðx2αÞf 0ðαÞ1 1

2!
ðx2αÞ2f 00ðαÞ1 1

3!
ðx2αÞ3f 000ðαÞ1? ð2:17Þ

32 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151

In the example below, we will approximate a nonlinearity with a series truncated at

the second order:

yðtÞ5 a0 1 a1xðtÞ1 a2xðtÞ2 ð2:18Þ

Before we introduce the Volterra series, we generalize the procedure in which

we relate two values x and y into a slightly altered procedure in which we relate a pair

of time series x(t) and y(t). Just as we can relate two values x and y with a function f:

y5 f ðxÞ ð2:19aÞ

we can link two time series x(t) and y(t) with an operator F:

yðtÞ5FfxðtÞg ð2:19bÞ

Note: In some texts on Volterra series F will be called a functional. Because

F connects two functions x(t) and y(t), it is better to use the term “operator”

because strictly speaking, a functional maps a function onto a value, whereas

an operator maps one function to another function.

A Volterra series can perform such an operation:

yðtÞ5 h0|{z}
0th order term

1

ðN
2N

h1ðτ1Þxðt2 τ1Þdτ1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st order term

1

ðN
2N

ðN
2N

h2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2
|ffl{zffl}

2nd order term

1?

1

ðN
2N

ðN
2N

?
ðN

2N

hnðτ1; τ2;?; τnÞxðt2τ1Þxðt2τ2Þ?xðt2τnÞdτ1 dτ2?dτn

|ffl{zffl}
nth order term

ð2:20Þ

Do not be intimidated by this first appearance of the expression for the Volterra

series. In the following text and Chapter 3 we will discuss and explain the different

components of this representation. At this point it is worthwhile to mention that the

Volterra series is essentially the convolution integral extended to nonlinear sys-

tems. We could simplify the notation in Equation (2.20) with the commonly used

symbol for convolution � (chapter 8 in van Drongelen, 2007), and we get:

y5 h0 1 h1 � x1 h2 � x� x1?1 hn �x�?� x|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n copies of x

33Modeling

In the Volterra series (Equation 2.20), input function x(t) determines the output

function y(t). The expression is analogous to the Taylor series except that the dif-

ferentials of the Taylor series are replaced by integrals. The symbols h0, h1, h2, and

hn represent the so-called Volterra kernels. The term “kernel” is uniquely defined

for this type of series and should not be confused with the use of this term in com-

puter science or other areas in mathematics. Note that the first-order componentÐN
2N

h1ðτ1Þxðt2 τ1Þdτ1 in the Volterra series is the convolution integral (see section

8.3.1.1 in van Drongelen, 2007) and the higher-order components in Equation

(2.20) are convolution-like integrals. Thus for a linear system, kernel h1 is the UIR.

Representations that utilize Volterra series are usually nonparametric—that is, one

can predict system output when the input is known, but one cannot necessarily

intuit the system’s components or underlying mechanisms. In the following we will

examine examples of the relationship between Volterra and Taylor series. See also

Chapter 3 for further details on the Volterra series.

Despite the similarities between the Taylor series in Equation (2.17) and the

Volterra series in Equation (2.20) discussed above, it may not be immediately obvi-

ous that they are related. Therefore, we will discuss the similarities for a simple

dynamical nonlinear system, which we will subsequently transform into a static

nonlinear one. Let us consider a dynamical second-order system that consists of

a cascade of a dynamical linear component and a static nonlinear module

(Fig. 2.2A). Such a cascade approach with the dynamics in the linear component

combined with static nonlinearities is frequently applied in dynamical nonlinear

system analysis. In this example, we have the linear component’s UIR h(t) and the

static second-order nonlinear component a0 1 a1y1 a2y
2 (Equation (2.18)). From

Fig. 2.2A we can establish that the output y of the linear module can be obtained

from the convolution of the input x and the linear module’s UIR h:

yðtÞ5
ðN

2N

hðτÞxðt2 τÞdτ ð2:21Þ

Second-order dynamical nonlinear system

Second-order static nonlinear system

Second-order static
nonlinearity

Second-order static
nonlinearity

Figure 2.2 (A) Diagram of a

second-order dynamical nonlinear

system consisting of a cascade of a

dynamical LTI system and a

second-order static nonlinearity.

(B) A similar system for which the

dynamical linear component is

replaced by a static one.

34 Signal Processing for Neuroscientists, A Companion Volume

The cascade’s final output z can be obtained from the static nonlinearity character-

istic by substituting the output of the linear component (Equation (2.21)) into the

input of the static nonlinearity (Equation (2.18)):

zðtÞ5 a0 1 a1

ðN
2N

hðτÞxðt2 τÞdτ1 a2

ðN
2N

hðτÞxðt2τÞdτ
2
4

3
52

ð2:22Þ

This can be rewritten as:

zðtÞ5 a0 1 a1

ðN
2N

hðτÞxðt2 τÞdτ

1 a2

ðN
2N

hðτ1Þxðt2 τ1Þdτ1

0
@

1
A ðN

2N

hðτ2Þxðt2 τ2Þdτ2

0
@

1
A

2
4

3
5

|ffl{zffl}ðN
2N

ðN
2N

hðτ1Þhðτ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

ð2:23Þ

This expression can be rearranged in the form of the Volterra series shown in

Equation (2.20):

zðtÞ5 a0|{z}z}|{
h0

0th order term

1

ðN
2N

a1hðτÞ|fflfflffl{zfflfflffl}
h1ðτÞ

xðt2 τÞdτ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1st order term

1

ðN
2N

ðN
2N

a2hðτ1Þhðτ2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
h2ðτ1;τ2Þ

xðt2 τ1Þxðt2 τ2Þdτ1 dτ2

zffl}|ffl{2nd order term

ð2:24Þ

Equation (2.24) shows that the system in Fig. 2.2A can be characterized by a

Volterra series for a second-order system with Volterra kernels h0, h1, and h2.

To demonstrate that the Taylor series is the static equivalent of the Volterra

series, we show the equivalence of Equation (2.24) to the power series in Equation

(2.18). To accomplish this, we consider the case where our dynamical component

in the cascade becomes static; the linear component is now replaced by the static

function yðtÞ5 xðtÞ: In other words, the linear module’s UIR is the unit impulse δ

35Modeling

itself, indicating that for this linear component output equals input (Fig. 2.2B).

Therefore, we can substitute δ(t) for h(t) in Equation (2.24):

zðtÞ5 a0 1 a1

ðN
2N

δðτÞxðt2 τÞdτ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xðtÞ

1 a2

ðN
2N

ðN
2N

δðτ1Þδðτ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2
|ffl{zffl}

xðtÞxðtÞ5 xðtÞ2

ð2:25Þ

5 a0 1 a1xðtÞ1 a2xðtÞ2

Thus, in the static case, we can use the Volterra series to recover

zðtÞ5 a0 1 a1xðtÞ1 a2xðtÞ2; which is the original expression of the power series in

Equation (2.18).

Note: The integrals in Equation (2.25) are evaluated using the property of the

unit impulse δ (see section 2.2.2 in van Drongelen, 2007):
ÐN

2N
xðτÞδðτÞdτ5

xð0Þ and accordingly
ÐN

2N
xðt2 τÞδðτÞdτ5 xðtÞ:

Appendix 2.1

Taylor Series for a 2D Function

We can extend the Taylor series in Equation (2.16) to a function f ðτ;σÞ of two

variables τ and σ. In the case where we can subdivide the function into two sepa-

rate ones (e.g., f ðτ;σÞ5 f ðτÞ1 f ðσÞ or f ðτ;σÞ5 f ðτÞf ðσÞ), we can compute the

Taylor series for each function f ðτÞ and f ðσÞ and add or multiply the individual

series to obtain the expression for f ðτ;σÞ: Such an approach would work if, for

example, f ðτ;σÞ5 eτsinðσÞ:
Alternatively, one can approach the development of a 2D Taylor series more

generally, and consider f about point α, β.

f ðτ;σÞ5 a00 1 a10ðτ2αÞ1 a01ðσ2 βÞ1 a20ðτ2αÞ2 1 a11ðτ2αÞðσ2βÞ
1 a02ðσ2βÞ2 1 a30ðτ2αÞ3 1 a21ðτ2αÞ2ðσ2βÞ
1 a12ðτ2αÞðσ2βÞ2 1 a03ðσ2βÞ3 1 a40ðτ2αÞ4 1?

ðA2:1:1Þ

36 Signal Processing for Neuroscientists, A Companion Volume

Using a similar approach as the one for the single-variable Taylor series, we set τ
and σ to α and β and find f ðα;βÞ5 a00: To find the other coefficients we use par-

tial differentiation of f at point α, β:

@f ðα;βÞ
@τ

5 a10;
@f ðα;βÞ

@σ
5 a01;

@2f ðα; βÞ
@τ2

5 2a20;

@2f ðα;βÞ
@τ @σ

5 a11;
@2f ðα;βÞ

@σ2
5 2a02

ðA2:1:2Þ

This technique can be used to obtain the full power series of f. In most applications

we are interested in the linear approximation of the 2D series:

f ðτ;σÞ � f ðα;βÞ1 @f ðα; βÞ
@τ

ðτ2αÞ1 @f ðα; βÞ
@σ

ðσ2βÞ ðA2:1:3aÞ

The higher-order nonlinear terms are often not considered because we assume that

we only look at f closely around point α, β; therefore, τ2α and σ2β are very

small numbers, and higher powers of these small contributions are even smaller. In

other words, when f is in the neighborhood of point α, β, the function can be

approximated with the linear terms in Equation (A2.13a). In many cases, especially

in physics literature, you may encounter an alternative notation for the linear

approximation of a nonlinear system. The small fluctuations τ2α and σ2β around

α, β are indicated as perturbations δτ and δσ; and the notation for f ðα; βÞ;
ð@f ðα;βÞÞ=@τ; and ð@f ðα;βÞÞ=@σ is changed to ½f �α;β ; ½@f=@τ�α;β ; and ½@f=@σ�α;β :

f ðτ;σÞ � ½f �α;β 1
@f

@τ

2
4

3
5
α;β

δτ1
@f

@σ

2
4

3
5
α;β

δσ ðA2:1:3bÞ

Again, recall that in this notation ½f �α;β ; ½@f=@τ�α;β ; and ½@ f=@σ�α;β represent the

coefficients in the equation. They are numbers and not functions, since these repre-

sent the function and its derivatives when evaluated at point α, β. An example of

an application that linearizes the nonlinear Hodgkin and Huxley equations can be

found in Chapter 10 of Koch (1999).

37Modeling

3 Volterra Series

3.1 Introduction

Most physiological systems cannot be modeled successfully as linear systems. At

best, a linear model can be considered an approximation of physiological activity

in cases where the output of a physiological system behaves (almost) linearly over

a limited range of the input. In the following, we extend the convolution integral

that describes the behavior of linear devices to the convolution-like Volterra series,

which can be used to represent nonlinear systems. Because the expressions for

higher-order nonlinear terms require significant computational resources and

become very complex to deal with, we will demonstrate the general principles for

second-order systems. See Schetzen (2006) if you are interested in details of higher-

order systems.

In a linear time invariant (LTI) system, the convolution integral links output y(t)

and input x(t) by means of its weighting function h(t) (Fig. 3.1) (Chapter 8 in van

Drongelen, 2007):

yðtÞ5 hðtÞ � xðtÞ5
ðN

2N

hðτÞ xðt2 τÞdτ ð3:1Þ

Here � symbolizes the convolution operation and the system’s weighting func-

tion h(t) is its unit impulse response (UIR). This role of h(t) can be verified by

using a unit impulse δ(t) as the input. In this case we obtain (using the sifting

property):

ðN
2N

hðτÞδðt2 τÞdτ5 hðtÞ ð3:2Þ

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00003-6

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00003-6

Note: In the following we will use the sifting property of the unit impulse

repeatedly (for a discussion, see section 2.2.2 in van Drongelen, 2007). The sift-

ing property is defined as:

xðtÞ5
ðN

2N

xðτÞδðτ2 tÞdτ5
ðN

2N

xðτÞδðt2 τÞdτ

The unit impulse δ has properties of a function with even symmetry; there-

fore, the evaluation of the integral above is the same for δðt2 τÞ and δðτ2 tÞ:
You can also see that this must be the case since the outcome is δð0Þ for t5 τ
in both cases, δðt2 τÞ and δðτ2 tÞ:

Such an LTI system shows superposition and scaling properties. For instance, if we

introduce a scaled delta function Cδ(t) (C—constant) at the input, we get a scaled

UIR function Ch(t) at the output:

ðN
2N

hðτÞCδðt2 τÞdτ5C

ðN
2N

hðτÞδðt2 τÞdτ5ChðtÞ ð3:3Þ

h(t)

h2(τ1,τ2)x(t)

d

h2(τ1,τ2)x(t − τ1)x(t − τ2) dτ1 dτ2

h2(τ1,τ2)x(t − τ1)x(t − τ2) dτ1 dτ2+ τ ...

h1(τ1)x(t − τ1) dτ1

h2(τ1,τ2)

h2(τ1,τ2,τ3, ... ,τn)

h2(τ1,τ2, ...,τn)x(t − τ1)x(t − τ2)...x(t − τn) dτ1 dτ2 ...dτn

Figure 3.1 Example of LTI and NLTI systems. (A) A linear system. (B) A second-order

system and (C) a combined nth order system. The output of the first-order components is

determined by the convolution integral, and the output of higher-order components is

obtained from convolution-like integrals. The output of the nth order system is represented

by a Volterra series consisting of the sum of the individual components, each determined by

a convolution-like expression.

40 Signal Processing for Neuroscientists, A Companion Volume

Now consider a system that is governed by an equation that is convolution-like:

yðtÞ5
ðN

2N

ðN
2N

h2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2 ð3:4Þ

Unlike the convolution in Equation (3.1), this system works on two copies of input

x(t) instead of only one. As we discussed in Section 2.5, such a system is an exam-

ple of a so-called second-order Volterra system. Note that the double integral in

Equation (3.4) is identical to the last term in the expression in Equation (2.24). If

we determine the UIR for the system in Equation (3.4), we get:

h2ðt; tÞ5
ðN

2N

ðN
2N

h2ðτ1; τ2Þδðt2 τ1Þδðt2 τ2Þdτ1 dτ2 ð3:5Þ

Here we applied the sifting property twice: once for each of the delays τ1 and τ2.
The result h2(t,t) is the diagonal of kernel h2.

Note: You can see that in a second-order Volterra system, the UIR h2(t,t) does

not fully characterize the system (unlike the situation in an LTI system).

Instead it only characterizes the 2D function h2ðτ1; τ2Þ along the diagonal

τ1 5 τ2 in the τ1; τ2 plane. As we will see in Section 3.3 we need sets of

paired impulses to fully characterize h2.

The system in Equation (3.4) is nonlinear because scaling does not hold. For exam-

ple, the response to a scaled delta function Cδ(t) at the input is:

ðN
2N

ðN
2N

h2ðτ1; τ2ÞCδðt2 τ1ÞCδðt2 τ2Þdτ1 dτ2 5

C2

ðN
2N

ðN
2N

h2ðτ1; τ2Þδðt2 τ1Þδðt2 τ2Þdτ1 dτ2 5C2h2ðt; tÞ
ð3:6Þ

By comparing Equations (3.5) and (3.6) we can see that in this system the UIR

h2(t,t) scales with C2 instead of C. As we will show in Section 3.2.1, superposition

does not hold for this system either, but showing that scaling does not hold is suffi-

cient to negate linearity of the system. In the remainder of this chapter we will con-

tinue our introduction of Section 2.5 by studying the properties of the Volterra

series and applying it for the characterization of higher-order systems.

41Volterra Series

3.2 Volterra Series

The mathematician Vito Volterra used series of convolution-like expressions to

define the input�output relationship of NLTI systems:

yðtÞ5
ðN

2N

h1ðτ1Þxðt2 τ1Þdτ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1st order term

1

ðN
2N

ðN
2N

h2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

zffl}|ffl{2nd order term

1?

1

ðN
2N

ðN
2N

?
ðN

2N

hnðτ1; τ2; . . .; τnÞxðt2 τ1Þxðt2 τ2Þ. . .xðt2 τnÞdτ1 dτ2 . . . dτn
|ffl{zffl}

nth order term

ð3:7Þ
The output y(t) of an nth order system depends on multiple copies of the input and

is the sum of the 1st, 2nd, . . ., nth order convolution-like expressions. The func-

tions h1, h2, . . ., hn are called the 1st, 2nd, . . ., nth order Volterra kernels. In some

texts, a zero-order kernel (h0) representing a DC term, or offset, is added to

Equation (3.7). Just as in an LTI system, y(t) is the UIR if the input x(t) is a unit

impulse δ(t). In higher-order systems, the contribution of the nth order Volterra

kernel to the UIR is a so-called diagonal slice through the kernel, that is, a section

through the kernel with all delays τ1, τ2, . . ., τn equal. An example for a second-

order system (n5 2) is shown in Equation (3.5).

Note: We can refer to h1 as the UIR only if we deal with a first-order Volterra

system without a DC term—that is, a (linear) system where h1 is the only

term of y(t). In all other cases, the UIR is determined by the contributions of

all of the system’s Volterra kernels and not just by h1.

If we represent the 1st, 2nd, . . ., nth order convolution-like terms in Equation

(3.7) as H1, H2, . . ., Hn we get an alternative, simplified notation:

yðtÞ5H1½xðtÞ�1H2½xðtÞ�1?1Hn½xðtÞ� ð3:8Þ

Equation (3.8) can be generalized for an nth order system:

yðtÞ5
XN
n5 1

Hn½xðtÞ� ð3:9aÞ

42 Signal Processing for Neuroscientists, A Companion Volume

In some cases a DC term H0½xðtÞ�5 h0 (with h0 being a constant) is added. This

allows one to further generalize Equation (3.8) for the NLTI system to:

yðtÞ5
XN
n5 0

Hn½xðtÞ� ð3:9bÞ

Just as with any series, we should consider the convergence of the Volterra

series. In our case, we approach this by optimistically assuming that any system we

consider will be associated with a converging series. We can afford this optimism

because we will apply the Volterra series only to known, relatively low-order sys-

tems and because we would immediately notice if the output predicted by the

Volterra series would poorly match the measured output of the system it represents.
Recall that we can consider the Volterra series’ approximation of output as a

Taylor series with the addition of memory (Section 2.5). The Taylor series links

output with instantaneous input (no memory, Equation (2.16)), whereas the

Volterra series includes a memory component in the convolution-like integrals.

These integrals show that the output at time t depends not only on current input sig-

nal x(t), but on multiple copies of the delayed input, represented by

xðt2 τ1Þ; xðt2 τ2Þ; . . .; xðt2 τnÞ in the integrals in Equation (3.7).

3.2.1 Combined Input to a Second-Order Volterra System

In general, the input�output relationship of a second-order Volterra system without

lower-order components can be specified by Equation (3.4). We also demonstrated

above that a second-order Volterra system does not scale as an LTI system (com-

pare Equations (3.3) and (3.6)). We can next show that the superposition property

of an LTI system does not hold in the second-order Volterra system either. To

accomplish this, we will determine the system’s response to the sum of two inputs

xðtÞ5 x1ðtÞ1 x2ðtÞ relative to its responses to x1ðtÞ and x2ðtÞ individually. The

response to the combined inputs is:

yðtÞ5
ðN

2N

ðN
2N

h2ðτ1;τ2Þxðt2τ1Þxðt2τ2Þdτ1 dτ2

5

ðN
2N

ðN
2N

h2ðτ1;τ2Þ½x1ðt2τ1Þ1x2ðt2τ1Þ�½x1ðt2τ2Þ1x2ðt2τ2Þ�dτ1 dτ2

ð3:10Þ

In Equation (3.10) we have the following four terms:

H2½x1ðtÞ�5
ðN

2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ1Þx1ðt2 τ2Þdτ1 dτ2 ð3:11aÞ

43Volterra Series

H2½x2ðtÞ�5
ðN

2N

ðN
2N

h2ðτ1; τ2Þx2ðt2 τ1Þx2ðt2 τ2Þdτ1 dτ2 ð3:11bÞ

H2½x1ðtÞ; x2ðtÞ�5
ðN

2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ1Þx2ðt2 τ2Þdτ1 dτ2

H2½x2ðtÞ; x1ðtÞ�5
ðN

2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ2Þx2ðt2 τ1Þdτ1 dτ2

9>>>>>>=
>>>>>>;
cross-terms

ð3:11cÞ

Note that Equations (3.11a) and (3.11b) represent the expressions for the system’s

response when its input would be x1 and x2, respectively. The two cross-terms in

expression (3.11c) are determined by both x1 and x2 and can be considered equal

because the second-order kernel is symmetric—that is, hðτ1; τ2Þ5 hðτ2; τ1Þ:

Note: The symmetry of hðτ1; τ2; . . .; τnÞ : Recall that the kernel h of a linear

system is obtained from the system’s response to a unit impulse. As we will

see in the following section, h can be determined in higher-order systems

from the responses to multiple unit impulses. Since kernel h can be obtained

from responses to combinations of unit impulses, the symmetry assumption

makes sense. This is the case because there is no reason to assume that a sys-

tem would be able to distinguish (i.e., react differently) between unit impulse

1 followed by unit impulse 2 as compared to unit impulse 2 followed by unit

impulse 1 (the unit impulses are indistinguishable because they are identical).

For a formal explanation see chapter 3 in Schetzen (2006). If you have pro-

blems following this reasoning, you may come back to it after studying the

concrete example in Pr3_1.m and Section 3.3.

Based on the symmetry, we can rewrite the second equation in (3.11c) as:

ðN
2N

ðN
2N

h2ðτ2; τ1Þx1ðt2 τ2Þx2ðt2 τ1Þdτ2 dτ1 ð3:11dÞ

If we now interchange the dummy variables τ1 and τ2 this becomes:

ðN
2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ1Þx2ðt2 τ2Þdτ1 dτ2 ð3:11eÞ

44 Signal Processing for Neuroscientists, A Companion Volume

This result indicates that the two expressions in (3.11c) are equal, so we may

combine the cross-terms into:

2H2½x1ðtÞ; x2ðtÞ�5 2

ðN
2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ1Þx2ðt2 τ2Þdτ1 dτ2 ð3:11fÞ

By combining Equations (3.10), (3.11a), (3.11b), and (3.11f), we get the following

expression for the output y(t) for the sum of the inputs x1ðtÞ1 x2ðtÞ :

yðtÞ5H2½xðtÞ�5H2½x1ðtÞ1 x2ðtÞ�5H2½x1ðtÞ�1H2½x2ðtÞ�1 2H2½x1ðtÞ; x2ðtÞ�
ð3:12Þ

The cross-terms 2H2½x1ðtÞ; x2ðtÞ� in Equation (3.11f) represent the deviation of

the second-order Volterra system’s response from the response to x1ðtÞ1 x2ðtÞ
if superposition were to hold, that is, in the second-order Volterra system the total

response y(t) to x1ðtÞ1 x2ðtÞ is not equal to the sum (superposition) of the responses

to x1ðtÞ and x2ðtÞ individually: H2½x1ðtÞ�1H2½x2ðtÞ�:

3.3 A Second-Order Volterra System

As we discussed in Chapter 2, we can create a dynamical nonlinear system by

combining a dynamical linear system (L) and a static nonlinear (N) one (Figs. 2.2

and 3.2A); the type of system that emerges from this combination is often indicated

as an LN cascade. In the example in Fig. 3.2A, the dynamical linear system is a

simple low-pass filter consisting of a resistor (R) and capacitor (C)

ðhRC 5 1=ðRCÞe2t=RCÞ: If you need to refresh your basic knowledge about RC fil-

ters, see chapters 10 and 11 in van Drongelen (2007). The static nonlinear compo-

nent in Fig. 3.2A relates an input to the square of the output, that is, output y(t) is

the square of its input f ðtÞ : yðtÞ5 f ðtÞ2: From this relationship, the static nonlinear

component is considered a squarer. Following the procedure described in

Section 2.5, we can establish that this cascade is a second-order Volterra system

with a second-order kernel:

h2ðτ1;τ2Þ5hRCðτ1ÞhRCðτ2Þ5
1

RC
e2τ1=RC

� �
1

RC
e2τ2=RC

� �
5

1

RC

� �2

e2ðτ11τ2Þ=RC

ð3:13Þ

45Volterra Series

e

e

H

H

H

H

H

H

H1 + H2

H1 + H2

H1 + H2

−1

e

Figure 3.2 (A) Nonlinear system consisting of a cascade of a linear filter (a dynamical system)

and a squarer (a static system). (B) Procedure to compute H2 following Equation (3.12). This

procedure is one of the approaches used to determine kernel h2 in Pr3_1.m . (C) A general

second-order Volterra system with a first-order (H1) and second-order (H2) operator. (D) The

same procedure as in (B) applied to the second-order system with a first-order component. This

procedure is followed in script Pr3_2.m .

46 Signal Processing for Neuroscientists, A Companion Volume

The following MATLAB code (the first part of Pr3_1.m available on http://
www.elsevierdirect.com/companions/9780123849151) will create an image of the
2D Volterra kernel (Fig. 3.3) based on the known structure of the nonlinear cas-
cade (Equation (3.13)).

% Linear component is a low-pass RC circuit

% we use R=10k and C=3.3uF

R=10e3;

C=3.3e-6;

RC=R*C;

% Timing parameters

sample_rate=1000;

dt=1/sample_rate;

time=0.1;

A=RC/dt;

T=100; % The setting for timing and the length of correlation

% calculations for both Volterra and Wiener kernels

% Step 1. The analog continuous time approach using the square of

% the unit impulse response of the filter: h(t)=(1/RC)*exp(-t/RC)

% to compare with discrete time approach (in the following Steps) we assume

% the discrete time steps (dt) and interval (time)

j=1;

for tau1=0:dt:time;

i=1;

r1(j)=(1/RC)*exp(-tau1/RC); % 1st-order response in the cascade

for tau2=0:dt:time

y(i,j)=((1/RC)*exp(-tau1/RC))*((1/RC)*exp(-tau2/RC));

% Output y is h2 (=2nd order Volterra kernel)

% which is the square of the filter response

i=i+1;

end;

j=j+1;

end;

% plot the surface of h2

y=y*dt^2; % scale for the sample value dt

figure; surf(y);

axis([0 T 0 T min(min(y)) max(max(y))])

view(100,50)

title(‘2nd order Volterra kernel (h2) of an LN cascade’)

xlabel(‘tau1’);ylabel(‘tau2’);zlabel(‘h2’);

Now we validate our (nonparametric) approach with the Volterra series by using a

parametric model, the Wiener cascade, depicted in Fig. 3.2A. So far we assumed that the

internal structure of the second-order system is known. In this example we study the LN

47Volterra Series

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

cascade system in Fig. 3.2A but we pretend to know only that it is a second-order

Volterra system and that we do not know that it is a cascade or what its components are.

Now we can use Equation (3.12) and the procedure described in Steps 1�6 below to find

the second-order kernel h2. Finally we will compare this result with the one we can obtain

analytically (Equation (3.13)), which is shown in Fig. 3.3.

(1) Using the approach in the example in Section 3.2.1, we use a pair of unit impulses

occurring at times T1 (δ(t2T1)) and T2 (δ(t2T2)) as inputs x1(t) and x2(t), respectively.

(2) We determine the system’s response to each of the inputs individually: the response to

x1(t)5 δ(t2 T1) is H2[δ(t2T1)] and the response to x2(t)5 δ(t2 T2) is H2[δ(t2 T2)])

(Fig. 3.2B).

(3) We determine the response to the sum of both impulses x1(t)1 x2(t)5 δ(t2T1)1 δ
(t2 T2), which is y(t)5H2[δ(t2T1)1 δ(t2 T2)] and according to Equation (3.12):

yðtÞ5H2½δðt2 T1Þ�1H2½δðt2 T2Þ�1 2H2½δðt2 T1Þ; δðt2 T2Þ�:

(4) From the responses obtained in Steps 2 and 3 above, we can solve for H2:

H2 δðt2 T1Þ; δðt2 T2Þ½ �5 yðtÞ2H2½δðt2 T1Þ�2H2½δðt2 T2Þ�
2

ð3:14Þ

(5) We use Equation (3.11f) (divided by two) and substitute δ(t2T1) for x1(t) and δ(t2 T2)

for x2(t):

H2½δðt2T1Þ;δðt2T2Þ�5
ðN

2N

ðN
2N

h2ðτ1;τ2Þδðt2T12τ1Þδðt2T22τ2Þdτ1 dτ2

Using the sifting property twice, the double integral evaluates to:

ðN
2N

ðN
2N

h2ðτ1; τ2Þδðt2 T1 2 τ1Þδðt2 T2 2 τ2Þdτ1 dτ2 5 h2ðt2 T1; t2 T2Þ ð3:15Þ

This is the second-order Volterra kernel we are looking for.

0

40

80

100806040200
0

0.4

0.8

×10–3

τ2

τ1

h 2

Figure 3.3 Example of a second-

order Volterra kernel h2ðτ1; τ2Þ
determined by Equation (3.13) in

MATLAB script Pr3_1.m .

48 Signal Processing for Neuroscientists, A Companion Volume

(6) To relate Equations (3.14) and (3.15) to the definition of the second-order kernel

h2ðτ1; τ2Þ; we set τ1 5 t2 T1 and τ2 5 t2T2: By using the common variable t, we can

relate the delays by: τ1 1 T1 5 τ2 1 T2-τ2 5 τ1 1 T1 2 T2: In the τ12 τ2 plane, this

represents a line at 45� with an intercept at T12T2.

Therefore, the response obtained in Equation (3.15) is a slice of the second-order

kernel along the line τ2 5 τ1 1 T1 2T2:
Following this procedure, we can obtain the second-order kernel by repeatedly

probing the system with pairs of unit impulses at different times T1 and T2. By varying

the timing of the impulses, we can determine h2 in both dimensions τ1 and τ2, that is,
we fill in the plane in Fig. 3.4.

3.3.1 Discrete Time Implementation

Now we are ready to implement the procedure described in Steps 1�6 above for the

cascade in Fig. 3.2A. A diagram of this procedure is shown in Fig. 3.2B. Because in

this example we know the parameters of the LN cascade, we can compare the result

we obtain following Steps 1�6 with the earlier analytically derived result based on

our knowledge of the system (depicted in Fig. 3.3).

Recall that for the discrete time solution in the MATLAB file below it is assumed

that the sample interval dt is much smaller than the time constant of the filter, that is,

RC/dt » 1 (see section 11.2.2 in van Drongelen, 2007). If this assumption is violated

too much, the approximation of the differential equation by the difference equation

will be compromised.

Equation (3.14) can be used to determine the second-order kernel of the system.

The following MATLAB code (the second part in Pr3_1.m available on http://www.

elsevierdirect.com/companions/9780123849151) will create an image of the 2D ker-

nel shown in Fig. 3.5.

i=1; j=0;

delay1=1;

for delay2=delay1:1:length(x);

j=j+1;

x1=zeros(1,100);x1(delay1)=1; % unit impulse train with delay 1

x2=zeros(1,100);x2(delay2)=1; % unit impulse train with delay 2

% The summed input xs, containing two unit impulses

τ2 = τ1+ T1 − T2

T1 − T2

τ1

τ2
Figure 3.4 The τ12 τ2 plane and the section represented

by τ2 5 τ1 1 T1 2 T2:

49Volterra Series

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

if (delay1==delay2);

xs=zeros(1,100);xs(delay1)=2; % delays are equal

else

xs=zeros(1,100);xs(delay1)=1;xs(delay2)=1;

% sum of two unit impulses if delays

% are NOT equal

end;

% Compute the system outputs to individual and combined unit impulses

y1_previous=0;

y2_previous=0;

ys_previous=0;

for n=1:length(x);

% response to delay1

y1(n)=(A*y1_previous+x1(n))/(A+1); % the linear component

y1_previous=y1(n);

z1(n)=y1(n)^2; % the squarer

% response to delay2

y2(n)=(A*y2_previous+x2(n))/(A+1); % the linear component

y2_previous=y2(n);

z2(n)=y2(n)^2; % the squarer

% response to the sum of both delays

ys(n)=(A*ys_previous+xs(n))/(A+1); % the linear component

ys_previous=ys(n);

zs(n)=ys(n)^2; % the squarer

end;

h=(zs-z1-z2)/2; % A slice of the kernel h2

% in the tau1-tau2 plane this is a line

% at 45 degrees with intersection

% delay1-delay2

tau1=delay2:1:length(x);

tau2=tau1+(delay1-delay2);

h=h(delay2:length(h));

plot3(tau1,tau2,h);

end;

axis([0 T 0 T])

view(100,50)

% Only half is shown because kernel h2 is symmetric

title(‘half of 2nd order Volterra kernel (h2) of an LN cascade’)

xlabel(‘tau1’);ylabel(‘tau2’);zlabel(‘h2’);

grid on

50 Signal Processing for Neuroscientists, A Companion Volume

3.4 General Second-Order System

The example of the cascade in Fig. 3.2A has a second-order operator only.

Generally a second-order system consists of both a first- and second-order operator

(assuming again that there is no H0 component). Following the notation in

Equation (3.9a) with N5 2 we get:

yðtÞ5H1½xðtÞ�1H2½xðtÞ� ð3:16Þ
An example of such a system where the H2 operator (representing an LN cascade)

is extended with a first-order component H1 is shown in Fig. 3.2C.

3.4.1 Determining the Second-Order Kernel

For determining h2 in a system such as that described by Equation (3.16), we can

still use the procedure discussed in Steps 1�6 (Section 3.3) and depicted in

Fig. 3.2D. The method still works because superposition holds for the contribution

of the first-order operator—that is, for input x(t)5 x1(t)1 x2(t), the contribution of

the first-order operator is simply the sum of the contributions for x1(t) and x2(t)

separately:

τ2

τ1

h 2

0

40

80

100806040200
0

0.4

0.8

×10 –3

Figure 3.5 By following the procedures in the first and second parts in script Pr3_1.m we

can compare the second-order Volterra kernels obtained from the parametric LN cascade

model (Fig. 3.3, based on Equation (3.13)) and the one obtained using the nonparametric

approach in which we determined h2 by the procedure outlined in Steps 1�6 (Section 3.3)

and represented in Fig. 3.2B. The result of the latter procedure (obtained in the second part

of Pr3_1) is shown here. As can be seen by comparing this result with the earlier one in

Fig. 3.3, both approaches agree. Because of the symmetry in h2, only half of the kernel is

depicted.

51Volterra Series

ðN
2N

h1ðτÞxðt2 τÞdτ5
ðN

2N

h1ðτÞ½x1ðt2 τÞ1 x2ðt2 τÞ�dτ

5

ðN
2N

h1ðτÞx1ðt2 τÞdτ1
ðN

2N

h1ðτÞx2ðt2 τÞdτ
ð3:17aÞ

or in a more compact notation:

H1½xðtÞ�5H1½x1ðtÞ1 x2ðtÞ�5H1½x1ðtÞ�1H2½x2ðtÞ� ð3:17bÞ
If we apply the same procedure (as shown in Fig. 3.2B) to a system that obeys

yðtÞ5H1½xðtÞ�1H2½xðtÞ� (e.g., the system in Fig. 3.2C), the contribution of the first-

order kernel will cancel because of the superposition property (Equations (3.17a) and

(3.17b)). Just as in the previous example, the output will be 2H2½x1ðtÞ; x2ðtÞ�; allowing
us to find the second-order kernel by dividing the output of the procedure by 2 (see

Equation (3.14)). In program Pr3_2.m (available on http://www.elsevierdirect.com/

companions/9780123849151), the procedure depicted in Fig. 3.2D is followed for the

second-order system shown in Fig. 3.2C.

3.4.2 Determining the First-Order Kernel

After we determined the system’s second-order kernel, we can also find its first-order

kernel via the system’s UIR. The UIR of the system in Fig. 3.2C will consist of a

first- and second-order component (Fig. 3.6). Therefore, if we determine the system’s

UIR and subtract its second-order component, we have the first-order Volterra kernel

h1. The second-order component of the system’s UIR is the slice through h2 for

τ1 5 τ2 (i.e., the diagonal of the second-order kernel). This approach is now feasible,

since we determined h2 in the previous procedure. To summarize, we find h1 by:

1200

1000

800

600

400

200

0
0 10 20 30 40 50 60 70 80 90 100

Time

A
m

pl
itu

de

Figure 3.6 An example of a UIR (red

dots, upper curve) of a second-order

system such as in Fig. 3.2C. The

response consists of a first-order

component (black triangles, lower

curve) and a second-order part (green

triangles, middle curve). This result

was obtained with MATLAB

script Pr3_2.m , albeit with different

parameters than the version available

on http://www.elsevierdirect.com/

companions/9780123849151.

52 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

h1 5UIR2 h2ðτ1; τ2Þ for τ1 5 τ2 ð3:18Þ

3.5 System Tests for Internal Structure

Nonlinear systems are usually complex, and to facilitate their characterization, one

may attempt to simplify their structure by presenting it as a cascade of basic mod-

ules. As we discussed in this chapter and in Section 2.5, we often represent dynam-

ical nonlinear systems with cascades of dynamical linear systems and static

nonlinearities. In neuroscience, such cascades are frequently used to model neurons

and their networks. For example, the integrate-and-fire neuronal model (e.g.,

Izhikevich, 2007) combines a linear low-pass filter (RC circuit) to mimic sub-

threshold integration of the biological membrane combined with a static nonlinear-

ity that generates an action potential when the membrane potential exceeds a

threshold. Models for neuronal networks also frequently use the cascade approach.

For example, in a model to explain the EEG’s alpha rhythm, Lopes da Silva et al.

(1974) model synaptic function in the thalamo-cortical network with linear filters

and a static nonlinearity to model action potential generation (see their fig. 7).

Examples of systems that are frequently used to represent nonlinear systems are

depicted in Fig. 3.7; in this section we will discuss how these basic configurations

may be recognized by examination of their Volterra kernels.

3.5.1 The LN Cascade

The LN cascade (linear system followed by a nonlinear system, Fig. 3.7A), also

called a Wiener system (not to be confused with the Wiener series we will discuss

in Chapter 4), was also used in Section 2.5 when we demonstrated that the system’s

input�output relationship fits the Volterra series representation (Equation (2.24)).

This result is repeated here:

zðtÞ5 a0 1

ðN
2N

a1hðτÞxðt2 τÞdτ1
ðN

2N

ðN
2N

a2hðτ1Þhðτ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

5 h0 1

ðN
2N

h1ðτÞxðt2 τÞdτ1
ðN

2N

ðN
2N

h2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

ð3:19Þ
From Equation (3.19) we can see that the second-order Volterra kernel h2 is related

to the first-order kernel h1. The first-order kernel is proportional with the UIR of

the Wiener system’s linear component: h1ðτÞ5 a1hðτÞ; while the second-order ker-

nel is given by h2ðτ1; τ2Þ5 a2hðτ1Þhðτ2Þ: If we keep one of the variables τ1 or τ2
constant, we obtain a section (slice) through the second-order kernel, which is also

proportional with the linear component’s UIR h. Let us keep τ2 constant so that

hðτ2Þ is a constant value b; we then obtain the expression for a slice through the

second-order kernel parallel to the τ1 axis: h2ðτ1Þ5 ba2hðτ1Þ: It is straightforward

53Volterra Series

to show that the ratio between the first-order kernel and a slice (parallel to the

τ1 axis) of the second-order kernel is the constant a1=ba2: It is important to note

here that this constant may be negative or positive; this should be taken into

account when looking for proportionality. A similar result can be obtained for a

slice parallel to the τ2 axis when we hold τ1 constant. It should be noted that this

condition must be satisfied for a Wiener system but there are other configurations

that may show the same property. Therefore, strictly speaking, the condition of pro-

portionality of first-order kernels and second-order slices can be used only to

exclude the Wiener structure of a nonlinear system. Optimistically, one might say

that if the condition is satisfied for a particular nonlinear system, we may use the

Wiener structure to model the system.

3.5.2 The NL Cascade

The cascade shown in Fig. 3.7B, also called a Hammerstein system, is a cascade of

a nonlinear static component followed by a linear dynamic one. The output y of the

first (nonlinear) component becomes the input of the linear dynamical system. The

output from this final dynamical component is then the system’s output z:

LN cascade / Wiener system

NL cascade / Hammerstein system

LNL cascade / Wiener–hammerstein system

2nd order static
nonlinearity

2nd order static
nonlinearity

2nd order static
nonlinearity

Dynamical LTI
system

Dynamical LTI
system

Dynamical LTI
system

Dynamical LTI
system

Figure 3.7 Frequently used cascade models to analyze nonlinear dynamical systems. (A)

Cascade of a dynamical linear system followed by a static nonlinearity. (B) A similar

cascade, but compared with (A) the order has changed: first the static nonlinearity followed

by the linear component. (C) A static nonlinearity sandwiched in between two dynamical

linear systems.

54 Signal Processing for Neuroscientists, A Companion Volume

zðtÞ5
ðN

2N

hðτÞyðt2 τÞdτ5
ðN

2N

hðτÞ½a0 1 a1xðt2 τÞ1 a2xðt2 τÞ2�dτ ð3:20Þ

If we separate the three terms in Equation (3.20), we can identify the three Volterra

kernels h0, h1, and h2.

First term:

ðN
2N

hðτÞa0 dτ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

h0

ð3:21aÞ

Second term:

ðN
2N

hðτÞa1|fflfflffl{zfflfflffl}
h1ðτÞ

xðt2 τÞ dτ ð3:21bÞ

Third term:

ðN
2N

hðτÞa2xðt2 τÞ2 dτ

5

ðN
2N

ðN
2N

hðτ1Þa2δðτ1 2 τ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h2ðτ1;τ2Þ

xðt2 τ1Þxðt2 τ2Þdτ1 dτ2

ð3:21cÞ
To obtain the Volterra formalism, we rewrote the single integral expression in

Equation (3.21c) as a double integral by separating the product xðt2 τÞ2 into

xðt2 τ1Þxðt2 τ2Þ: To make sure this product is only nonzero for τ1 5 τ2; we added

the δðτ1 2 τ2Þ function. The diagonal slice in the τ1 2 τ2 plane of the Hammerstein’s

second-order kernel ðhðτÞa2Þ is proportional to the UIR of the cascade’s linear com-

ponent ðhðτÞÞ: It can be seen in Equation (3.21b) that the first-order Volterra kernel

ðhðτÞa1Þ is also proportional to the linear component’s impulse response.

Consequently, the diagonal slice of the second-order kernel is proportional with the

first-order kernel. Both characteristics discussed above (nonzero second-order kernel

along the diagonal and its proportionality with the first-order kernel) may be used to

test an unknown nonlinear system for an underlying Hammerstein structure.

3.5.3 The LNL Cascade

A combination of both the cascades discussed above is shown in Fig. 3.7C. Such a

system is an LNL cascade, also called a Wiener�Hammerstein model. We obtain

the output z(t) of the static nonlinearity inside the cascade by following the same

procedure we used to determine the Wiener system’s output (see Equations (2.24)

and (3.19)):

55Volterra Series

zðtÞ 5 a0 1 a1yðtÞ1 a2yðtÞ2

5 a0 1 a1

ðN
2N

gðτÞxðt2 τÞdτ1 a2

ðN
2N

ðN
2N

gðτ1Þgðτ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

ð3:22Þ
The LNL cascade’s final output v is then the convolution of the expression above

with the UIR k of the second linear system vðtÞ5 ÐN
2N

kðλÞzðt2λÞdλ (we use λ

here for the delay). Using Equation (3.22) for zðt2λÞ gives:

vðtÞ5a0

ðN
2N

kðλÞdλ1a1

ðN
2N

ðN
2N

kðλÞgðτÞxðt2τ2λÞdτ dλ. . .

1a2

ðN
2N

ðN
2N

ðN
2N

kðλÞgðτ1Þgðτ2Þxðt2τ12λÞxðt2τ22λÞdτ1 dτ2 dλ
ð3:23Þ

To simplify, the first-order part of this expression can be rewritten using

ω5λ1 τ :

a1

ðN
2N

ðN
2N

kðλÞgðω2λÞxðt2ωÞdω dλ5
ðN

2N

a1

ðN
2N

kðλÞgðω2λÞdλ
2
4

3
5

|ffl{zffl}
h1ðωÞ

xðt2ωÞdω

ð3:24aÞ

Similarly, using υ5λ1 τ1 and ω5λ1 τ2; the second-order part becomes:

a2

ðN
2N

ðN
2N

ðN
2N

kðλÞgðυ2λÞgðω2λÞxðt2 υÞxðt2ωÞdυ dω dλ

5

ðN
2N

ðN
2N

a2

ðN
2N

kðλÞgðυ2λÞgðω2λÞdλ
2
4

3
5

|ffl{zffl}
h2ðυ;ωÞ

xðt2 υÞxðt2ωÞdυ dω
ð3:24bÞ

We can see that the second-order kernel is the integral expression in between the

brackets: a2
ÐN
2N kðλÞgðυ2λÞgðω2λÞdλ: From this expression we can obtain the

so-called second-order marginal kernel Km
2 (the sum of all kernel slices over one of

the variables). If we integrate this expression with respect to one of its variables,

say υ; we get:

56 Signal Processing for Neuroscientists, A Companion Volume

Km
2 5 a2

ðN
2N

ðN
2N

kðλÞgðυ2λÞgðω2λÞdλ dυ ð3:25aÞ

Now we make a change of timing variables again, ξ5 υ2λ; dξ5 dυ; and rear-

range the integral operation:

a2

ðN
2N

ðN
2N

kðλÞgðυ2λÞgðω2λÞdλ dυ5a2

ðN
2N

kðλÞ
ðN

2N

gðξÞdξ
2
4

3
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A

gðω2λÞdλ

5a2 A|{z}
I

ðN
2N

kðλÞgðω2λÞdλ
2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

ð3:25bÞ

In the first step, we regrouped the integral operations and defined the outcome of

the integral with respect to dξ as a number A. Subsequently we separated the

expression into two parts. Part I is equal to A and Part II is proportional with the

expression for the first-order kernel; this relationship can be seen by comparing

Part II with the expression for h1 in Equation (3.24a): a1
ÐN
2N kðλÞgðω2λÞdλ: This

latter term is simply Part II scaled by a1. Of course, we would have obtained a sim-

ilar outcome had we integrated the second-order kernel with respect to ω. This rea-
soning leads us to conclude that in an LNL sandwich, the marginal kernel Km

2 (the

summation [integral] of all slices of the second-order kernel h2 parallel to one of

the axes) is proportional with the first-order kernel h1. We can use the above pro-

portionality between the marginal second-order kernel and the first-order one to

test for a potential underlying sandwich structure of an unknown system. Because

other types of cascade may show a similar property, this will allow us to exclude

an LNL sandwich structure or to make it likely that we are dealing with one.

3.6 Sinusoidal Signals

When we use a sinusoidal signal as the input to a linear system, we get a sinusoidal

signal at its output. At the output, the amplitude of the sinusoidal signal may be

amplified/attenuated and the waveform may have a changed phase, but the frequen-

cies of the input and output of an LTI system are identical. We can use this property

to completely characterize an LTI system, such as the RC filter, with a set

of sinusoidal inputs (see section 10.3 in van Drongelen, 2007). Since the frequency

at the output does not change relative to the input frequency, we can describe

the LTI system by depicting change of amplitude and phase for each frequency with

a Bode plot or an Nyquist plot (see section 12.3, fig. 12.4 in van Drongelen, 2007).

As you may have guessed, this simple relationship between input and output fre-

quency is not valid for nonlinear systems. Let us investigate the response of the

second-order nonlinear system introduced in Equation (3.5) by feeding it a cosine

57Volterra Series

with amplitude A and angular frequency ω0. Further, let us use Euler’s relationship

ðe6jφ 5 cos φ6j sin φÞ to express the input in terms of two complex exponentials:

xðtÞ5A cos ω0t5
A

2
ejω0t|fflfflffl{zfflfflffl}
x1ðtÞ

1
A

2
e2jω0t|fflfflfflffl{zfflfflfflffl}
x2ðtÞ

ð3:26Þ

Note that the two components of input x (x1 and x2) are complex conjugates. Now

we can treat this input as we did in Section 3.2.1 and repeat the result from

Equation (3.10) for the system’s output y:

yðtÞ5
ðN

2N

ðN
2N

h2ðτ1;τ2Þ½x1ðt2τ1Þ1x2ðt2τ1Þ�½x1ðt2τ2Þ1x2ðt2τ2Þ�dτ1 dτ2

ð3:27Þ
In short notation we can write:

yðtÞ5H2½x1ðtÞ�1H2½x2ðtÞ�1H2½x1ðtÞ; x2ðtÞ�1H2½x2ðtÞ; x1ðtÞ� ð3:28Þ

The only difference between Equation (3.28) and the Equation (3.12)

obtained in Section 3.2.1 is that we did not use the symmetry property

H2½x1ðtÞ; x2ðtÞ�5H2½x2ðtÞ; x1ðtÞ�: Let us then evaluate each of the four terms in

Equation (3.28). The first term is:

H2½x1ðtÞ�5
ðN

2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ1Þx1ðt2 τ2Þdτ1 dτ2

5
A

2

0
@

1
A2 ðN

2N

ðN
2N

h2ðτ1; τ2Þejω0ðt2 τ1Þ ejω0ðt2 τ2Þ dτ1 dτ2

ð3:29Þ

Combining both exponential expressions we get:

A

2

� �2

ej2ω0t

ðN
2N

ðN
2N

h2ðτ1;τ2Þe2jω0τ1 e2jω0τ2 dτ1 dτ2

|ffl{zffl}
Ψ

5
A

2

� �2

ej2ω0t Ψð2jω0;2jω0Þ

ð3:30aÞ

Here we use the variable Ψ to symbolize the double integral, a complex function of ω0.

Note: Comparing the function Ψ above (symbolizing the double integral) with

equation (6.4) in van Drongelen (2007), it can be seen that the expression is

58 Signal Processing for Neuroscientists, A Companion Volume

the 2D Fourier transform of the second-order kernel.

Similarly, substituting the exponential expression for x2, the second term H2½x2ðtÞ�
in Equation (3.28) becomes:

A

2

� �2

e2j2ω0t

ðN
2N

ðN
2N

h2ðτ1; τ2Þejω0τ1 ejω0τ2 dτ1 dτ2 5
A

2

� �2

e2j2ω0t Ψðjω0; jω0Þ

ð3:30bÞ
Note that both Equations (3.30a) and (3.30b) include an exponent in which

the frequency is doubled (2ω0 instead of ω0).

The third term in Equation (3.28) is:

H2½x1ðtÞ; x2ðtÞ�5
ðN

2N

ðN
2N

h2ðτ1; τ2Þx1ðt2 τ1Þx2ðt2 τ2Þdτ1 dτ2

5
A

2

0
@

1
A2 ðN

2N

ðN
2N

h2ðτ1; τ2Þejω0ðt2 τ1Þ e2jω0ðt2 τ2Þ dτ1 dτ2

ð3:31Þ

Combining the exponentials in the expression above, we get:

A

2

� �2 ðN
2N

ðN
2N

h2ðτ1; τ2Þe2jω0τ1 ejω0τ2 dτ1 dτ2 5
A

2

� �2

Ψð2jω0; jω0Þ ð3:32aÞ

Using the same approach the fourth term becomes:

A

2

� �2 ðN
2N

ðN
2N

h2ðτ1; τ2Þejω0τ1 e2jω0τ2 dτ1 dτ2 5
A

2

� �2

Ψðjω0;2jω0Þ ð3:32bÞ

Substituting the results for all four terms obtained in (3.30a), (3.30b), (3.32a), and

(3.32b) into Equation (3.28) we now have:

yðtÞ 5
A

2

0
@

1
A2

ej2ω0t Ψð2jω0; 2jω0Þ1
A

2

0
@

1
A2

e2j2ω0t Ψðjω0; jω0Þ
2
4

3
5

1
A

2

0
@

1
A2

Ψð2jω0; jω0Þ1 A

2

0
@

1
A2

Ψðjω0;2jω0Þ
2
4

3
5

ð3:33Þ

It can be seen that the first two terms and the second two terms (grouped by brack-

ets) are the complex conjugates of each other. Therefore, we may conclude that the

expression in Equation (3.33) is real since the sum of two complex conjugates is

59Volterra Series

real (the sum of imaginary numbers a1 jb and a2 jb is 2a). Consequently we get

the following result:

yðtÞ5 2
A

2

� �2

Reðej2ω0tΨð2jω0;2jω0ÞÞ1 2
A

2

� �2

ReðΨð2jω0; jω0ÞÞ ð3:34Þ

in which Re(. . .) denotes the real component. Using Euler’s relationship again, we

can see that the output contains a sinusoid:

yðtÞ52
A

2

� �2

Re ðcos 2ω0t1 j sin 2ω0tÞΨð2jω0;2jω0Þ½ �12
A

2

� �2

Re Ψð2jω0; jω0Þ½ �

ð3:35Þ
The output contains a constant (the second term in Equation (3.35)) and a sinusoid

with a frequency 2ω0 (the first term).

The expression in Equation (3.35) is an important result for the analysis of

higher-order systems: a certain frequency at the system’s input may result in

a higher-frequency component at the output. When we digitize the output of a

higher-order system as the result of some input signal, it is important to esti-

mate the highest frequency at the output to avoid aliasing (Section 2.2.2 in van

Drongelen, 2007). With a linear system, this problem does not occur; the highest

frequency of the input is the highest frequency possible at the output. But with non-

linear systems, the maximum output frequency may be a multiple (as shown above,

in a second-order system it is a factor of two, and in an nth order system it is a fac-

tor of n) of the input’s highest frequency value. A practical approach here is to first

sample the system’s output at a much higher sample rate than would be used rou-

tinely (one to a few orders of magnitude higher) and then compute a power spec-

trum to estimate the highest frequency component. The outcome of this

preliminary experiment can be used to establish an appropriate sample rate.

60 Signal Processing for Neuroscientists, A Companion Volume

4 Wiener Series

4.1 Introduction

Determining the Volterra kernels of an unknown system faces several practical pro-

blems: (1) the order of the system underlying the signal being investigated is usu-

ally unknown, and (2) the contributions of the individual components (of different

order) of the Volterra series are not independent. The first problem is generally an

issue if one wants to characterize a system with any type of series approximation,

and the second problem can sometimes be resolved by the use of a series with

orthogonal components. An example of the latter procedure is the development of

the Fourier series; by having orthogonal terms, there are no dependencies between

terms and one can determine the coefficients ai and bi of the Fourier series sequen-

tially (Chapter 5, van Drongelen, 2007). To address the dependence between com-

ponents in a series approximation for nonlinear systems, Norbert Wiener

developed an approach where each component in his Volterra-like series is

orthogonal to all lower-order ones. Although within the Wiener series approach

one cannot predetermine the order of the system being studied either (problem (1)

above), the orthogonality between the terms in the series allows one to determine

the Wiener kernels sequentially. Subsequently one can determine their contribution

to the signal, and stop the kernel-estimation process at the order where the signal is

sufficiently approximated. For practical reasons most studies limit their kernel esti-

mates at either the second order or (less often) at the third order. The third- and

higher-order kernels require significant computation and they are difficult to

depict.

In this chapter we will first discuss the main differences between the Wiener

and Volterra series, after which we will derive the expressions for the zero-, first-,

and second-order Wiener kernels, and then finally we will discuss practical methods

for determining Wiener kernels for simulated and recorded time series. Applications

of these methods will be presented in the form of MATLAB scripts. The last part

of this chapter and Fig. 4.6 summarize the mathematical procedures we use to deter-

mine the Wiener series. For an extended background on this topic, see Marmarelis

and Marmarelis (1978) and the reprint of Schetzen’s book (Schetzen, 2006), and for

recent engineering-oriented overviews see Westwick and Kearney (2003) and

Marmarelis (2004).

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00004-8

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00004-8

4.2 Wiener Kernels

Similar to the Volterra series, the Wiener series characterizes the output z of a

nonlinear system as the sum of a set of operators Gn dependent on kernels kn and

input x:

zðtÞ5
XN
n5 0

Gn½kn; xðtÞ�

This equation is similar to the ones for the Volterra series (Equations (3.9a) and

(3.9b)), but although there are many similarities between Volterra and Wiener

series, there are also a few crucial differences that allow Wiener operators to be

mutually independent. For clarity we first summarize the three major differences
between the Volterra and Wiener series and then explain further details in the

remainder of this chapter (e.g., the exact relationship between Volterra and Wiener

kernels is discussed in Section 4.5).

The first major difference is that although a Volterra series usually does not

include a zero-order term (see Equation (3.9)), we may define such a term as a

constant:

H0½xðtÞ�5 h0 ð4:1aÞ

In contrast, the Wiener series always includes a zero-order term. This term is

defined as the average output (the DC component) equal to k0:

G0½k0; xðtÞ�5 k0 ð4:1bÞ

In this equation, k0 is the zero-order Wiener kernel. We use kn for the Wiener ker-

nels to distinguish them from the Volterra kernels hn.

The second major difference is that while individual Volterra operators are

homogeneous (see, e.g., Equation (3.6) for a second-order one) (i.e.,

Hn½cxðtÞ�5 cnHn½xðtÞ�), the Wiener operators are nonhomogeneous—for example,

the first-order Wiener operator has a first-order and a derived zero-order

component:

G1½k1; xðtÞ�5 g1½k1; k0ð1Þ; xðtÞ�5K1½xðtÞ�1K0ð1Þ½xðtÞ�

5

ðN
2N

k1ðτ1Þxðt2 τ1Þdτ1 1 k0ð1Þ
ð4:2Þ

The subscript 0(1) in K0ð1Þ and k0ð1Þ indicates that these are zero-order members of

a first-order nonhomogeneous operator. Specifically, k1 is the first-order Wiener

kernel and k0ð1Þ is the so-called derived Wiener kernel from operator G1: In general,

the Wiener kernels of the type kn(m) with n,m are called derived Wiener kernels

62 Signal Processing for Neuroscientists, A Companion Volume

because, as we will see below, they must be derived from Wiener kernel km. The

notation with the capital G indicates that the operator includes both the kernel and

input, while the lower-case notation g differs by explicitly also indicating all of the

derived kernels.

The second-order Wiener operator is:

G2½k2; xðtÞ�5 g2½k2; k1ð2Þ; k0ð2Þ; xðtÞ�5K2½xðtÞ�1K1ð2Þ½xðtÞ�1K0ð2Þ½xðtÞ�

5

ðN
2N

ðN
2N

k2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1dτ2

1

ðN
2N

k1ð2Þðτ1Þxðt2 τ1Þdτ1 1 k0ð2Þ

ð4:3Þ

The subscripts 0(2) and 1(2) indicate that these are zero- and first-order members

(derived Wiener kernels) of the second-order nonhomogeneous operator G2; respec-
tively. Kernel k2 is the second-order Wiener kernel, while k1ð2Þ and k0ð2Þ are derived
Wiener kernels from operator G2: As we will demonstrate below, the rationale for

using nonhomogeneous operators relates to their orthogonality.

The third and final major difference is that in the case of a Wiener series we use

a special input signal, usually in the form of zero mean Gaussian white noise

(GWN) (alternative input signals are discussed in Section 4.7 and Chapter 5).

Selection of a special input is critical because it allows us to create a series in

which the operators are orthogonal (uncorrelated) to the lower-order opera-

tors. As we will see in Section 4.3, this property contributes to creating indepen-

dence between the operators in the series, which will allow us to determine the

Wiener kernels sequentially without having to worry about dependency issues.

The first-order Wiener operator is defined so that it is orthogonal to the zero-

order Volterra operator:

EfH0½xðtÞ�g1½k1; k0ð1Þ; xðtÞ�g5 hH0½xðtÞ�g1½k1; k0ð1Þ; xðtÞ�i5 0 ð4:4aÞ

In the expression after the equal sign, h. . .i indicates the time average.

Note: hxðtÞi represents the time average of a signal x(t) over a time interval T.

This is an alternative notation for the integral notation: ð1=TÞ ÐT
0

xðtÞdt:

Equation (4.4a) indicates that we assumed ergodicity so that we may use a time

average H0½xðtÞ�g1½k1; k0ð1Þ; xðtÞ�
� �

to determine the Expectation E{. . .} of the prod-

uct of H0 and g1. If you need to review the concepts of Expectation and time

averages, see section 3.2 and appendix 3.1 in van Drongelen (2007). Details about

time averages for GWN are reviewed in Appendix 4.1.

63Wiener Series

Similarly, the second-order Wiener operator is defined as orthogonal to zero-

and first-order Volterra operators:

hH0½xðtÞ�g2½k2; k1ð2Þ; k0ð2Þ; xðtÞ�i5 0 ð4:4bÞ

hH1½xðtÞ�g2½k2; k1ð2Þ; k0ð2Þ; xðtÞ�i5 0 ð4:4cÞ

To characterize any nonlinear system of order N, this approach is generalized for

all Wiener operators; that is, for zero mean GWN input, operator Gn½kn; xðtÞ�5
gn½kn; kn21ðnÞ; . . . ; k0ðnÞ; xðtÞ� is defined such that it is orthogonal to any Volterra

operator of a lower order:

hHm½xðtÞ�gn½kn; kn21ðnÞ; . . . ; k0ðnÞ; xðtÞ�i5 0 for m, n ð4:4dÞ

In the following sections we will achieve orthogonality between the G operators and

lower-order Volterra operators by using the so-called Gram�Schmidt technique (for

details of this technique, see, e.g., Arfken and Weber, 2005). By defining the Wiener

kernels according to this technique, we can determine the kernels of nonlinear sys-

tems from lower to higher order without knowledge of the system’s components.

This procedure is similar to approximating a function or signal with a Fourier series

(van Drongelen, 2007, Chapter 5) or a polynomial (Section 2.4). For each kernel

(for each order) we can determine its contribution to the output and we can continue

to add higher-order terms until we are satisfied with our approximation of the system

at hand. The procedure for determining the Wiener kernels as sketched above and

their independence to lower-order kernels is summarized in Fig. 4.1. In the follow-

ing sections we derive the expressions for the first- and second-order Wiener ker-

nels. If you are interested in higher-order components, see Schetzen (2006).

Input signal
any

Nonlinear system

Vollerra series = H0 + H1 + H2 + ...

Wiener series = G0 + G1 + G2 + ...

Measured
output signal

Estimated
output signalGWN

Comparison

Determine terms
sequentially

Figure 4.1 Representation of a nonlinear system by Volterra and Wiener series. In contrast

to the Volterra operators Hn, the operators Gn in the Wiener series are independent from

lower-order operators (stippled arrows). This allows one to determine the Wiener operators

and their kernels sequentially and compute their contribution to the estimated output. The

comparison with the measured output signal can be used to determine at what order the

output is sufficiently approximated.

64 Signal Processing for Neuroscientists, A Companion Volume

4.2.1 Derivation of the First-Order Wiener Operator

In the previous section we already identified the zero-order kernel as the signal’s

DC component in Equation (4.1b). Now we can use orthogonality defined in

Equation (4.4) to derive the Wiener kernels k1 and k2. Starting with the first-order

kernel, we substitute Equations (4.1a) and (4.2) in Equation (4.4a) and find that the

following condition must be satisfied:

hH0½xðtÞ�g1½k1;k0ð1Þ;xðtÞ�i50-

h0

ðN
2N

k1ðτ1Þxðt2τ1Þdτ11k0ð1Þ

2
4

3
5* +

5h0

ðN
2N

k1ðτ1Þ xðt2τ1Þ
� �

dτ11k0ð1Þ

2
4

3
550

ð4:5Þ

Note that in the expression after the equal sign we took all constants ðh0; k1ðτ1Þ;
k0ð1ÞÞ out of the time average operation, such that only the (time-dependent) input

time series x remains within the time average brackets h. . .i. Now you will see how

convenient it is to have zero mean GWN as input. Because input x is zero mean

GWN, the time average hxðt2 τ1Þi is zero. Therefore the integral in Equation (4.5)

evaluates to zero and (since h0 is generally not zero) we find that the orthogonality

condition in Equation (4.5) is satisfied when:

k0ð1Þ 5 0 ð4:6Þ

Combining this result with Equation (4.2), we find that the first-order Wiener oper-

ator is:

G1½k1; xðtÞ�5 g1½k1; xðtÞ�5
ðN
2N

k1ðτ1Þxðt2 τ1Þdτ1 ð4:7Þ

Note that for a first-order system (without a DC component) k1 is the UIR (van

Drongelen, 2007, Chapter 8). Further, if the input x is zero mean GWN, the output

of the first-order (linear) operator G1 will also be zero mean GWN. Because

hxðt2 τ1Þi5 0; the Expectation or the time average of G1 is zero: that is,

EfG1g5 hG1i5 0: Therefore G1 is indeed orthogonal to any constant, such as zero-

order operators G0 and H0.

4.2.2 Derivation of the Second-Order Wiener Operator

We can obtain the expression for the second-order operator g2 using a procedure

similar to the one we developed for the first-order one. Here we must deal sepa-

rately with the independence between the second-order Wiener operator and the

two lower-order Volterra operators H0 and H1, respectively.

65Wiener Series

4.2.2.1 Orthogonality Between H0 and g2

Using Equations (4.1a), (4.3), and (4.4b) we get:

hH0½xðtÞ�g2½k2; k1ð2Þ; k0ð2Þ; xðtÞ�i

5 h0

ðN
2N

ðN
2N

k2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

2
4*

1

ðN
2N

k1ð2Þðτ1Þxðt2 τ1Þdτ1 1 k0ð2Þ

#+
5 0

5 h0

ðN
2N

ðN
2N

k2ðτ1; τ2Þ xðt2 τ1Þxðt2 τ2Þ
� �

dτ1 dτ2

2
4

1

ðN
2N

k1ð2Þðτ1Þ xðt2 τ1Þ
� �

dτ1 1 k0ð2Þ

#
5 0 ð4:8Þ

As we did in Equation (4.5), we took the constants out of the time average h. . .i such
that only the time series x remains within it. Because the input is zero mean GWN with

variance σ2, the average hxðt2 τ1Þi5 0 and the averaged product of both copies of

input x is the autocorrelation Rxx (see van Drongelen, 2007, section 8.4.1):

hxðt2 τ1Þxðt2 τ2Þi5Rxxðτ2 2 τ1Þ5σ2δðτ2 2 τ1Þ:

Again we can see how convenient the zero mean GWN input is: the time aver-

age hxðt2 τ1Þi vanishes and time average hxðt2 τ1Þxðt2 τ2Þi can be simplified to

the expression for the autocorrelation. (See also Appendix 4.1 for further details

on averages of products of Gaussian variables.) Therefore Equation (4.8) becomes:

h0

ðN
2N

ðN
2N

k2ðτ1; τ2Þ hxðt2 τ1Þxðt2 τ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rxx τ2 2 τ1ð Þ

dτ1 dτ2 1 h0k0ð2Þ

5σ2h0

ðN
2N

ðN
2N

k2ðτ1; τ2Þδðτ2 2 τ1Þdτ1 dτ2 1 h0k0ð2Þ

The double integral on the right-hand side can be evaluated by using the sifting

property while evaluating the integral for one of the time constants; here we inte-

grate with respect to τ2 and get:

σ2h0

ðN
2N

k2ðτ1; τ1Þdτ1 1 h0k0ð2Þ 5 0- k0ð2Þ 52σ2

ðN
2N

k2ðτ1; τ1Þdτ1 ð4:9Þ

66 Signal Processing for Neuroscientists, A Companion Volume

In this expression we can see that k0(2) is indeed a derived Wiener kernel because it

is directly derived from Wiener kernel k2.

4.2.2.2 Orthogonality Between H1 and g2

Subsequently we substitute expression for the first-order Volterra operator (see

Equation (3.7)) and Equation (4.3) for the second-order Wiener operator in the

orthogonality condition in Equation (4.4c):

hH1½xðtÞ�g2½k2; k1ð2Þ; k0ð2Þ; xðtÞ�i

5

ðN
2N

h1ðυÞxðt2 υÞdυ
2
4

3
5 ðN

2N

ðN
2N

k2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

2
4*

1

ðN
2N

k1ð2Þðτ1Þxðt2 τ1Þdτ1 1 k0ð2Þ

#+
ð4:10Þ

The above expression contains three terms. We will first show that the first and

third terms always evaluate to zero if the input is zero mean GWN.

The first term:

ðN
2N

h1ðυÞxðt2υÞdυ
2
4

3
5 ðN

2N

ðN
2N

k2ðτ1;τ2Þxðt2τ1Þxðt2τ2Þdτ1 dτ2

2
4

3
5* +

5

ðN
2N

ðN
2N

ðN
2N

h1ðυÞk2ðτ1;τ2Þhxðt2υÞxðt2τ1Þxðt2τ2Þidυ dτ1 dτ250

ð4:11aÞ

evaluates to zero because of our choice of zero mean GWN as input and the odd

product hxðt2 υÞxðt2 τ1Þxðt2 τ2Þi5 0 (Appendix 4.1)—again taking advantage

of our choice of GWN as the input.

The third term in Equation (4.10):

ðN
2N

h1ðυÞhxðt2 υÞidυ
2
4

3
5k0ð2Þ 5 0 ð4:11bÞ

also evaluates to zero because hxðt2 υÞi5 0:
The second term in Equation (4.10) is:

ðN
2N

h1ðυÞxðt2 υÞdυ
2
4

3
5 ðN

2N

k1ð2Þðτ1Þxðt2 τ1Þdτ1

2
4

3
5* +

5

ðN
2N

ðN
2N

h1ðυÞk1ð2Þðτ1Þhxðt2 υÞxðt2 τ1Þidυ dτ1

ð4:11cÞ

67Wiener Series

This second term is the only one that contains an even product of x(t) and can be fur-

ther evaluated using (again) the autocorrelation Rxx for the zero mean GWN with

variance σ2; that is, hxðt2 υÞxðt2 τ1Þi5Rxxðτ1 2 υÞ5σ2δðτ1 2 υÞ: This gives us:

σ2

ðN
2N

ðN
2N

h1ðυÞk1ð2Þðτ1Þδðτ1 2 υÞdυ dτ1 5σ2

ðN
2N

h1ðτ1Þk1ð2Þðτ1Þdτ1

In the above we evaluate the integral with respect to υ by using the sifting property.

Because the first and third terms already evaluate to zero, the second term must be

zero in order to satisfy the orthogonality condition in Equation (4.4c). We accom-

plish this by setting:

k1ð2Þ 5 0 ð4:12Þ

Substituting the results we obtained from the orthogonality conditions (in

Equations (4.9) and (4.12)) into Equation (4.3), we find the second-order Wiener

operator G2:

G2½k2; xðtÞ�5 g2½k2; k1ð2Þ; k0ð2Þ; xðtÞ�

5

ðN
2N

ðN
2N

k2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2 2 σ2

ðN
2N

k2ðτ1; τ1Þdτ1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k0ð2Þ

ð4:13Þ

Note that just as the Expectation for G1 is zero, the expected output of G2 is also

zero:

E

ðN
2N

ðN
2N

k2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2 2σ2

ðN
2N

k2ðτ1; τ1Þdτ1

8<
:

9=
;

5

ðN
2N

ðN
2N

k2ðτ1; τ2ÞEfxðt2 τ1Þxðt2 τ2Þgdτ1 dτ2 2σ2

ðN
2N

k2ðτ1; τ1Þdτ1
ð4:14Þ

As for the time average of an even product of Gaussian variables, once again

the Expectation is the autocorrelation: Efxðt2 τ1Þxðt2 τ2Þg5σ2δðτ1 2 τ2Þ:
Substituting this into Equation (4.14) gives:

ðN
2N

ðN
2N

k2ðτ1; τ2Þσ2δðτ1 2 τ2Þdτ1 dτ2 2σ2

ðN
2N

k2ðτ1; τ1Þdτ1

5σ2

ðN
2N

k2ðτ1; τ1Þdτ1 2σ2

ðN
2N

k2ðτ1; τ1Þdτ1 5 0

ð4:15Þ

68 Signal Processing for Neuroscientists, A Companion Volume

Here we evaluated the term with the double integral using the sifting property.

Because the Expectation is zero, G2 (just as G1) is orthogonal to any constant inclu-

ding G0. Even without knowledge about our derivation above, using the same

approach, it is straightforward to show that operator G2 is also designed to be orthog-

onal to G1. This orthogonality can be evaluated via the Expectation of the product

EfG1;G2g; which contains odd products of the random input variable x(t). The odd

products evaluate to zero (Appendix 4.1), causing the Expectation to vanish.

In the above we showed that the first-order Wiener operator is orthogonal to the

zero-order one, and that the second-order operator is orthogonal to the first- and

zero-order ones. We will not elaborate on this here, but in general the Wiener

operators are constructed in a way that they are orthogonal to all lower-order ones.

Higher-order Wiener kernels will not be derived here, but the derivation follows a

similar procedure as described for the zero- to second-order kernels above. Details

for these derivations can be found in Schetzen (2006).

4.3 Determination of the Zero-, First- and Second-Order
Wiener Kernels

Now that we know how the expressions for the terms in the Wiener series are

developed, it is time to examine how we might determine the terms from measured

and simulated data sets. Recall also that we can determine the kernels sequentially

because of the orthogonality property. The best-known method to establish Wiener

kernels from measurements is the cross-correlation method first described by Lee

and Schetzen (1965). If we deal with a nonlinear system of order N, and we present

a zero mean GWN x at its input, we obtain output z as the sum of the Wiener

operators Gn:

zðtÞ5
XN
n5 0

Gn½kn; xðtÞ� ð4:16Þ

4.3.1 Determination of the Zero-Order Wiener Kernel

As we extend our results for the first- and second-order operators to all higher-order

ones, we find that the Expectation of all Wiener operators Gn, except the zero-order

operator G0, is zero (see the last paragraph in Sections 4.2.1 and 4.2.2.2). Therefore,

assuming an ergodic process (allowing the use of time averages for estimating

Expectations), we find that the average of output signal z is:

hzðtÞi5
XN
n5 0

hGn½kn; xðtÞ�i5G0½k0; xðtÞ�5 k0 ð4:17Þ

Thus the zero-order Wiener kernel is obtained from the mean output (i.e., the out-

put’s DC component).

69Wiener Series

4.3.2 Determination of the First-Order Wiener Kernel

Here we show that we can get the first-order Wiener kernel of a system from the

cross-correlation between its input x and output z:

hzðtÞxðt2 υ1Þi5 hG0½k0; xðtÞ�xðt2 υ1Þi1 hG1½k1; xðtÞ�xðt2 υ1Þi
1 hG2½k2; xðtÞ�xðt2 υ1Þi1?

5
XN
n5 0

hGn½kn; xðtÞ�xðt2 υ1Þi
ð4:18Þ

Recall that Wiener kernels are defined to be orthogonal to lower-order Volterra ker-

nels. This property may be generalized to all lower-order Volterra kernels. Since the

delay operator xðt2 υ1Þ can be presented as a first-order Volterra operator (Appendix

4.2), all Wiener operators Gn with n$ 2 are orthogonal to xðt2 υ1Þ according to

Equation (4.4d). Let us check this property by examining the outcome for

hzðtÞxðt2 υ1Þi by determining the outcome for the individual operators G0, G1, G2, . . .
Using Equation (4.1b) for n5 0:

hG0½k0; xðtÞ�xðt2 υ1Þi5 k0 hxðt2 υ1Þi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

5 0 ð4:19aÞ

Using Equation (4.7) for n5 1:

hG1 k1; xðtÞ½ �xðt2 υ1Þi5
ðN
2N

k1ðτ1Þ hxðt2 τ1Þxðt2 υ1Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðτ1 2 υ1Þ

dτ1

5σ2

ðN
2N

k1ðτ1Þδðτ1 2 υ1Þdτ1 5 σ2k1ðυ1Þ
ð4:19bÞ

For the second-order kernel we already know that hG1½k1; xðtÞ�xðt2 υ1Þi is zero

because xðt2 υ1Þ can be considered a lower-order Volterra operator (Appendix 4.2).

However, let us check the outcome of the cross-correlation anyway.

Using Equation (4.13) for n5 2:

hG2½k2; xðtÞ�xðt2 υ1Þi

5

ðN
2N

ðN
2N

k2ðτ1; τ2Þ hxðt2 τ1Þxðt2 τ2Þxðt2 υ1Þi|ffl{zffl}
0

dτ1 dτ2

2σ2

ðN
2N

k2ðτ1; τ1Þ hxðt2 υ1Þi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

dτ1 5 0 ð4:19cÞ

70 Signal Processing for Neuroscientists, A Companion Volume

The above integrals evaluate to zero because they contain time average of odd pro-

ducts of the GWN input x. We now state (without further checking) that the remain-

ing averaged products ðhGn½kn; xðtÞ�xðt2 υ1Þi; n$ 3Þ are zero by using the property

of Equation (4.4d). From the three expressions in Equations (4.19a) and (4.19c) we

conclude that only the term for n5 1 is nonzero; therefore, we can determine the

first-order Wiener kernel by combining Equations (4.18) and (4.19b):

hzðtÞxðt2 υ1Þi5σ2k1ðυ1Þ- k1ðυ1Þ5
1

σ2
hzðtÞxðt2 υ1Þi ð4:20Þ

Thus the first-order Wiener kernel can be found by the cross-correlation between

input x and output z weighted by the variance of the input.

4.3.3 Determination of the Second-Order Wiener Kernel

Using an analogous procedure for the higher-order Wiener kernels, we can find the

second-order kernel by using a (second-order) cross-correlation between output z

and now two copies of input x:

hzðtÞxðt2 υ1Þxðt2 υ2Þi
5 hG0½k0; xðtÞ�xðt2 υ1Þxðt2 υ2Þi1 hG1½k1; xðtÞ�xðt2 υ1Þxðt2 υ2Þi

1 hG2½k2; xðtÞ�xðt2 υ1Þxðt2 υ2Þi1?5
XN
n5 0

hGn½kn; xðtÞ�xðt2 υ1Þxðt2 υ2Þi

ð4:21Þ

Because xðt2 υ1Þxðt2 υ2Þ can be presented as a second-order Volterra operator

(Appendix 4.2), all Wiener operators Gn with n$ 3 are orthogonal to

xðt2 υ1Þxðt2 υ2Þ according to Equation (4.4d).

Using Equation (4.1b) for n5 0:

hG0½k0; xðtÞ�xðt2 υ1Þxðt2 υ2Þi5 k0 hxðt2 υ1Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðυ1 2 υ2Þ

5 k0σ2δðυ1 2 υ2Þ

ð4:22aÞ
Using Equation (4.7) for n5 1:

hG1½k1;xðtÞ�xðt2υ1Þxðt2υ2Þi5
ðN
2N

k1ðτ1Þ hxðt2τ1Þxðt2υ1Þxðt2υ2Þi|ffl{zffl}
0

dτ150

ð4:22bÞ

71Wiener Series

Using Equation (4.13) for n5 2:

hG2½k2; xðtÞ�xðt2 υ1Þxðt2 υ2Þi

5

ðN
2N

ðN
2N

k2ðτ1; τ2Þ hxðt2 τ1Þxðt2 τ2Þxðt2 υ1Þxðt2 υ2Þi|ffl{zffl}
A

dτ1 dτ2

zffl}|ffl{I

2 σ2

ðN
2N

k2ðτ1; τ1Þ hxðt2 υ1Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðυ1 2 υ2Þ

dτ1

zffl}|ffl{II

ð4:22cÞ

Using Wick’s theorem (a theorem that relates higher-order moments to lower-order

ones; Appendix 4.1), the average indicated by A in Equation (4.22c) (fourth-order

correlation) can be written as:

A5 hxðt2 τ1Þxðt2 τ2Þxðt2 υ1Þxðt2 υ2Þi

5 hxðt2 τ1Þxðt2 τ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðτ1 2 τ2Þ

hxðt2 υ1Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðυ1 2 υ2Þ

1 hxðt2 τ1Þxðt2 υ1Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðτ1 2 υ1Þ

hxðt2 τ2Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðτ2 2 υ2Þ

1 hxðt2 τ1Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðτ1 2 υ2Þ

hxðt2 τ2Þxðt2 υ1Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2δðτ2 2 υ1Þ

This allows us to separate Part I of the expression in Equation (4.22c) into the fol-

lowing three terms:

(1) σ4
ÐN

2N

ÐN
2N

k2ðτ1; τ2Þδðτ1 2 τ2Þδðυ1 2 υ2Þdτ1 dτ2 5σ4
ÐN

2N
k2ðτ1; τ1Þδðυ1 2 υ2Þdτ1

(2) σ4
ÐN

2N

ÐN
2N

k2ðτ1; τ2Þδðτ1 2 υ1Þδðτ2 2 υ2Þdτ1 dτ2 5σ4k2ðυ1;υ2Þ

(3) σ4
ÐN

2N

ÐN
2N

k2ðτ1; τ2Þδðτ1 2 υ2Þδðτ2 2 υ1Þdτ1 dτ2 5σ4k2ðυ2;υ1Þ5σ4k2ðυ1; υ2Þ

The three integrals above are evaluated using the sifting property. Furthermore, by

using the same symmetry property of the Volterra kernels (Section 3.2.1), we have

concluded that k2 is symmetrical and that the terms in 2 and 3 above are identical.

72 Signal Processing for Neuroscientists, A Companion Volume

Combining the results for 1�3 in Part I and the integral term Part II in Equation

(4.22c) we get:

G2½k2; xðtÞ�xðt2 υ1Þxðt2 υ2Þ
� �

5 2σ4k2ðυ1; υ2Þ1σ4

ðN
2N

k2ðτ1; τ1Þδðυ1 2 υ2Þdτ1

zffl}|ffl{I

2 σ2

ðN
2N

k2ðτ1; τ1Þ xðt2 υ1Þxðt2 υ2Þ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

σ2δðυ1 2 υ2Þ

dτ1

zffl}|ffl{II

ð4:22dÞ

The integral terms in the expression above cancel so that the final result becomes:

hG2½k2; xðtÞ�xðt2 υ1Þxðt2 υ2Þi5 2σ4k2ðυ1; υ2Þ ð4:22eÞ
According to Equation (4.4d) all Wiener operators for n. 2 are defined so that

their contributions will be zero. This allows us to combine Equations (4.21) with

(4.22a), (4.22b), and (4.22e):

hzðtÞxðt2 υ1Þxðt2 υ2Þi5 k0σ2δðυ1 2 υ2Þ1 2σ4k2ðυ1; υ2Þ ð4:23Þ
Now we decide to ignore the case when υ1 5 υ2 and assume that υ1 6¼ υ2 so that

δðυ1 2 υ2Þ5 0: In this case the first term on the right-hand side of Equation (4.23)

evaluates to zero. Therefore, for the off-diagonal part ðυ1 6¼ υ2Þ of the second-order
Wiener kernel we have:

k2ðυ1; υ2Þ5
1

2σ4
hzðtÞxðt2 υ1Þxðt2 υ2Þi for υ1 6¼ υ2 ð4:24Þ

The second-order Wiener kernel is the second-order cross-correlation between out-

put and input weighted by 2σ4. Our trick to ignore the diagonally located terms

may seem a bit strange but in practical applications, the limitation imposed by

υ1 6¼ υ2 does not present a problem because we can compute k2 for delays that

are arbitrarily close to υ1 5 υ2:

4.4 Implementation of the Cross-Correlation Method

In this section we present a practical application for finding Wiener kernels associ-

ated with a given nonlinear system (Fig. 4.2). MATLAB implementations of this

approach are in Pr4_1.m and Pr4_2.m . In principle we can use Equations (4.17),

(4.20), and (4.24) to determine the Wiener kernels. However, since our input of

random noise is necessarily finite, the subsequent kernels may not be exactly

orthogonal. To mitigate the effects of this problem, it is common practice to

73Wiener Series

determine the kernels from low to higher orders sequentially while at each step

subtracting the contribution of the lower-order kernels from the output (�1, 1
operations in Fig. 4.2). For example, before computing k1, it is common practice to

subtract k0 (the DC component) from the output to obtain a zero-order residue v0.

This residue v0 ð5 z2 k0Þ; instead of the output z, is then cross-correlated with the

input to obtain the first-order kernel k1 (recall Equation (4.20)):

k1ðυ1Þ5 1

σ2
hv0ðtÞxðt2 υ1Þi ð4:25Þ

To estimate the first-order kernel’s contribution (y1) to the output, the first-order

kernel k1 is convolved with the input x: y1 5 x� k1: This first-order contribution y1
is then subtracted from the zero-order residue v0 to obtain the first-order residue v1.

Figure 4.2 Lee�Schetzen cross-correlation method for obtaining the zero-, first-, second-

order Wiener kernels of a nonlinear system. Zero mean GWN is used as the input (xw) of

a nonlinear system. The average of the output (zzw) is used to estimate the zero-order

kernel k0 . The residue v0 (5 zzw-k0) is then cross-correlated with the input to estimate

the first-order kernel k1 . Subsequently, the contribution y1 of the first-order kernel is

determined by convolving it with the input. Finally, the residue v1 (5 v0-y1) is correlated

with two copies of the input (2D cross-correlation) for the estimation of k2 .

74 Signal Processing for Neuroscientists, A Companion Volume

The residue v1 ð5 z2 k0 2 y1Þ is now cross-correlated with two copies of the input

to estimate the second-order kernel k2:

k2ðυ1; υ2Þ5
1

2σ4
hv1ðtÞxðt2 υ1Þxðt2 υ2Þi ð4:26Þ

Note that as in Equation (4.24), the above expression is valid only for off-diagonal

values with υ1 6¼ υ2: This procedure is followed in the MATLAB programs and is

depicted in Fig. 4.2. The input is variable xw ; the output is zzw . The zero- and first-

order residues are v0 and v1 , respectively. The Wiener kernels are k0 , k1 , and k2 .

An example of a MATLAB implementation can be found in Pr4_1.m
and Pr4_2.m . A snippet of the latter is shown here.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Estimation of the Wiener kernel estimation using

%%%%%%%%%%%%%%%% the Lee, Schetzen cross-correlation method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% First create a set of input output using random noise

xw=randn(10000,1); % create array with Gaussian white noise

xw=xw-mean(xw);

N=length(xw);

st=std(xw);

figure;subplot(2,1,1),plot(xcorr(xw),‘k’);

title(‘Autocorrelation of the Input Shows a Random Noise Characteristic’);

subplot(2,1,2);hist(xw);

title(‘Amplitude Distribution of the Input –> Gaussian’);

yw_previous1=0;

yw_previous2=0;

for n=1:length(xw);

ywh1(n)=(A1*yw_previous1+xw(n))/(A1+1); % the 1st order operator

yw_previous1=ywh1(n);

ywh2(n)=(A2*yw_previous2+xw(n))/(A2+1); % the linear component of

% the 2nd order operator

yw_previous2=ywh2(n);

zzw(n)=ywh1(n)+ywh2(n)^2; % 1st order component+the squarer

end;

figure; hold;

plot(xw,‘k’);plot(zzw,‘r’)

title(‘Input (black) and Output (red) of a Wiener System’)

xlabel(‘Time (ms)’);ylabel(‘Amplitude’)

75Wiener Series

%%%%%% The Lee Schetzen Cross-correlation Method

%———————————————————————————————

% Step 1 (Fig. 4.1): Determine 0-order Wiener kernel

%——————————————————————————————

k0=mean(zzw)

y0=ones(1,length(xw))*k0;

% Step 2 (Fig. 4.1): Subtract k0 from the response to find residue % v0——

%——————————————————————————————

v0=zzw-k0;

% Step 3 (Fig. 4.1): Estimate k1 by first-order

% cross-correlation of v0 and input

%——————————————————————————————

for i=0:T-1

temp=0;

for n=i+1:N

temp=temp+v0(n)*xw(n-i);

end;

k1(i+1)=temp/(N*st^2);

end;

figure; plot(k1);

title(‘first-order Wiener kernel’)

% Step 4 (Fig. 4.1): Compute the output of the first-order

% Wiener kernel using convolution

%——————————————————————————————

for n=1:N;

temp=0;

for i=0:min([n-1 T-1]);

temp=temp+k1(i+1)*xw(n-i);

end;

y1(n)=temp;

end;

% Step 5 (Fig. 4.1): Compute the first-order residue

%——————————————————————————————

v1=v0-y1;

% Step 6 (Fig. 4.1): Estimate k2 by second-order cross-correlation

% of v1 with the input

%——————————————————————————————

for i=0:T-1

for j=0:i

temp=0;

for n=i+1:N

76 Signal Processing for Neuroscientists, A Companion Volume

temp=temp+v1(n)*xw(n-i)*xw(n-j);

end;

k2(i+1,j+1)=temp/(2*N*st^4);

k2(j+1,i+1)5 k2(i+1,j+1);

end;

end;

figure; surf(k2(1:T,1:T));

title(‘second-order Wiener Kernel’);

view(100,50);

The MATLAB script Pr4_2.m computes the Wiener kernels for a combined sys-

tem such as the cascade discussed in the previous chapter (Fig. 3.2C). In this exam-

ple we use low-pass filters for the linear components and a squarer for the

nonlinear one (Fig. 4.3).

In the example in Fig. 4.3, the Lee�Schetzen method is used to determine the

Wiener kernels (Fig. 4.3C). Here the kernels are used to predict the output by

convolving the input with the kernels and adding up the contributions from each

kernel (Fig. 4.3D). It can be seen that the predicted and recorded output match very

well; this can be further confirmed when we compute the % variance that is

accounted for (VAF) as:

VAF5 (1-(std(zzw-est)^2)/(std(zzw)^2))*100

Here zzw and est are the measured and estimated output, respectively, and std is

the MATLAB command to compute the standard deviation.

4.5 Relation between Wiener and Volterra Kernels

To summarize the preceding sections, a principal problem with the Volterra series

is the dependence between the convolution-like terms (operators) in the series. This

dependence prevents us from determining each term separately; this problem is

resolved by Wiener’s approach. To achieve the independence between terms,

Wiener modified the individual terms in the series (Wiener operators are nonhomo-

geneous) and adapted the input (zero mean GWN). Volterra operators Hn have

Volterra kernels (h0, h1, h2, . . .), whereas Wiener operators Gn have Wiener kernels

(k0, k1, k2, . . .) as well as derived Wiener kernels (k0(1), k0(2), k1(2), . . .).
Both Wiener and Volterra kernels are equivalent in the sense that the Wiener ker-

nels can be determined from the Volterra kernels and vice versa. In our examples

above we considered the zero- to the second-order kernels; let us assume that we are

77Wiener Series

looking into a second-order system so that these are the only kernels available (all

higher-order kernels are zero). In this case we have the following kernel components:

k0, k0(1), k0(2), k1, k1(2), and k2. In this example the Volterra kernels h0�h2 are:

h0 5 k0 1 k0ð1Þ 1 k0ð2Þ 5 k0 1 k0ð2Þ
h1 5 k1 1 k1ð2Þ 5 k1
h2 5 k2

ð4:27Þ

The above equations for h0�h2 simplify because k0(1) and k1(2) are zero (see

Equations (4.6) and (4.12)). So in a second-order system the relationship between

the Wiener and Volterra kernels is fairly straightforward. Had we looked into a

higher-order system, for example in a third-order system, we would add k1(3) to h1
in Equation (4.27). The expressions for h0 and h2 remain unaltered because the

other derived third-order kernels k0(3) and k2(3) are zero (Schetzen, 2006). Again,

Figure 4.3 Wiener kernels of a second-order system similar to the one depicted in

Fig. 3.2C; the example is computed with Pr4_2.m . (A) The input signal xw is GWN. (B)

The output signal is zzw . (C) zero-, first- and second-order Wiener kernels computed by the

MATLAB script using the procedure depicted in Fig. 4.2. (D) The predicted output est on

the basis of the Wiener kernels approximates the measured output well: the variance

accounted for VAF is 98.4%.

78 Signal Processing for Neuroscientists, A Companion Volume

the rationale for this redistribution of kernel components is to create independence

between the operators in the series (the condition in Equation (4.4d)). For example,

by moving the term k0(2) from the zero-order expression (h0) to the second-order

Wiener operator, we satisfy the independence between the second-order Wiener

operator and H0 (Equation (4.8)). Considering the relationships in Equation (4.27),

it is unsurprising that a comparison between our findings for the Wiener kernels k1
and k2, obtained with Pr4_2.m (depicted in Fig 4.3C), and the Volterra kernels h1
and h2, found in Pr3_2.m from the previous chapter, reveals a close resemblance.

From this chapter we can deduce that to obtain the Volterra kernels, we must

know the system’s order as well as all the Wiener kernels. In an experimental situa-

tion one usually does not know the system’s order; at best one could estimate the

order by establishing the number of Wiener kernels required to (sufficiently)

approximate the system’s output signal. In most experimental studies the Wiener

kernels (up to the second or third order) and their contributions to the system’s out-

put are determined without any further attempt to identify the Volterra kernels.

4.6 Analyzing Spiking Neurons Stimulated with Noise

When studying intracellular or extracellular recordings of a spiking neuron while

stimulating it with noise, one might (of course) use the raw output trace (including

the action potentials) and relate this to the input as we have done previously

(Fig. 4.2). However, instead of using the neuron’s raw output signal, we can use

alternative methods to represent the action potential activity. In the following discus-

sion we assume that timing is the only relevant information associated with a neuro-

nal spiking event. Methods that consider only spike timing can be applied to both

intracellular and extracellular recordings of single cells. When dealing with high

levels of spike activity it is common to represent the cell’s output as the instanta-

neous spike rate (defined as (interspike interval)21) plotted vs. time; this procedure is

shown in Fig. 1.1. Another frequently used technique is to bin the spike train and

plot the number of spikes per bin against the time-stamp of the bin. However, if spike

rates are low, both of these methods are impractical because we obtain time series

that are either extremely unevenly sampled or too sparsely populated with values

other than zeros and ones. In general, if one is interested only in the spike train, it

seems reasonable to present the output time series of N spikes occurring at times ti as

a series of delta functions, thereby ignoring small subthreshold fluctuations of the

neuronal response or noise in the recordings (chapter 14 in van Drongelen, 2007).

With a little bit of work, the Schetzen correlation method can be adapted to ana-

lyze spiking neurons stimulated by GWN. An example for the auditory system was

described by Recio-Spinoso et al. (2005). In this study, the auditory system is stim-

ulated by auditory noise and the authors represent the neuron’s output y (a spike

train of N spikes) as a series of Diracs at times ti:

yðtÞ5
XN
i5 1

δðt2 tiÞ ð4:28Þ

79Wiener Series

Following our result in Equation (4.17), the zero-order Wiener kernel is the time

average of the system’s output:

k0 5 hyðtÞi5
XN
i5 1

δðt2 tiÞ
* +

ð4:29aÞ

The time average h. . .i can be written as an integral over the interval [0,T], divided

by epoch length T ðthat is ð1=TÞ ÐT
0

?Þ :

1

T

ðT
0

XN
i5 1

δðt2 tiÞdt5 1

T

XN
i5 1

ðT
0

δðt2 tiÞdt ð4:29bÞ

Here we interchanged the integration and summation operation. The timing ti for each

spike i is between 0 and T, so consequently the Dirac δðt2 tiÞ is located within the

[0,T] integration interval and the integral
ÐT
0

δðt2 tiÞdt evaluates to 1 (see Section 2.2.2

in van Drongelen, 2007). Therefore, the expression in Equation (4.29) simply counts

the number N of action potentials divided by the time epoch T. Thus the zero-order

Wiener kernel evaluates to N/T, which is the neuron’s mean firing rate N0:

k0 5
N

T
5N0 ð4:30Þ

The first-order Wiener kernel is given by Equation (4.20):

k1ðτ1Þ5
1

σ2
hyðtÞxðt2 τ1Þi ð4:31Þ

If we rewrite the time average h. . .i as an integral and substitute the output z in

Equation (4.20) with the spike time series y (given in Equation (4.28)), we get:

k1ðτ1Þ5 1

σ2

1

T

ðT
0

XN
i5 1

δðt2 tiÞ
 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

output

xðt2 τ1Þ|fflfflfflfflffl{zfflfflfflfflffl}
input

dt

zffl}|ffl{Time average
2
66664

3
77775

5
1

σ2

1

T

ðT
0

XN
i5 1

δðt2 tiÞxðt2 τ1Þ
 !

dt

2
4

3
5 ð4:32Þ

80 Signal Processing for Neuroscientists, A Companion Volume

In the above we included input x in the summation. Now we again interchange the

summation and integration operations:

k1ðτ1Þ5
1

σ2

"
1

T

XN
i51

ðT
0

δðt2 tiÞxðt2τ1Þdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xðti2τ1Þ

#
5

1

σ2

1

T
N|{z}
N0

1

N

XN
i51

xðti2τ1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
R1ðτ1Þ

ð4:33Þ

Here we evaluated the integral using the sifting property and multiplied the

expression by N/N to allow substitution of R1(τ1), the reverse-correlation func-

tion (see section 14.5 in van Drongelen, 2007). The reverse-correlation function

is also known as the revcor, which can be determined by averaging the stimulus

time course that precedes each spike (spike-triggered average). If we think of

the zero-order kernel as the time average (mean firing rate) of the system’s out-

put, we can conceptualize the first-order Wiener kernel as the average stimulus

value some time τ1 before spike i occurs (i.e., xðti 2 τ1Þ). Simplifying notation,

we finally get:

k1ðτ1Þ5 N0

σ2
R1ðτ1Þ ð4:34Þ

The second-order Wiener kernel, on the other hand, represents the mean of

the product of two copies of the input x (at two times τ1 and τ2) before the occur-

rence of a spike. The second-order Wiener kernel as given by Equation (4.24)

becomes:

k2ðτ1; τ2Þ5
1

2σ4
hyðtÞxðt2 τ1Þxðt2 τ2Þi ð4:35Þ

In Recio-Spinoso et al. (2005), the above equation is corrected by subtracting

the zero-order kernel k0 from the output. This makes sense for the following

reasons. As discussed above, subtracting the contribution of lower-order kernels

from the output is common practice (Fig. 4.2). In Equation (4.32) we did not

correct the output for the first-order kernel estimate because theoretically its

contribution should be independent from the zero-order one (k0(1) is zero,

Equation (4.6)). However, we do correct for the DC (constant) term in the sec-

ond-order estimate because a nonzero zero-order component k0(2) does exist (see

Equation (4.9)). We will not correct y for the first-order contribution to k2
because theoretically k1(2) is zero (Equation (4.12)). Therefore, y in Equation

81Wiener Series

(4.35) can simply be corrected for the zero-order contribution N0 by using the

output y minus the zero-order kernel:

yðtÞ2 k0 5
XN
i5 1

δðt2 tiÞ2N0 ð4:36Þ

By doing this we get:

k2ðτ1; τ2Þ5
1

2σ4

XN
i5 1

δðt2 tiÞ2N0

" #
xðt2 τ1Þxðt2 τ2Þ

* +
ð4:37aÞ

Writing the time average in the integral notation, we get:

5
1

2σ4

1

T

ðT
0

XN
i5 1

δðt2 tiÞ2N0

" #
xðt2 τ1Þxðt2 τ2Þdt

8<
:

9=
; ð4:37bÞ

We can write the expression as two separate integral terms:

5
1

2σ4

1

T

ðT
0

XN
i5 1

δðt2 tiÞxðt2 τ1Þxðt2 τ2Þdt2
1

T

ðT
0

N0xðt2 τ1Þxðt2 τ2Þdt
8<
:

9=
;
ð4:37cÞ

By changing the integration and summation order in the first term and applying the

sifting property for the Dirac, we get the following expression for the first term:

1

2σ4

1

T

XN
i5 1

ðT
0

δðt2 tiÞxðt2 τ1Þxðt2 τ2Þdt
|ffl{zffl}

xðti 2 τ1Þxðti 2 τ2Þ

5
1

2σ4

1

T

XN
i5 1

xðti 2 τ1Þxðti 2 τ2Þ

ð4:38aÞ

As we did with the first-order kernel earlier, we can multiply by N/N to simplify

notation by using the expression for the second-order reverse correlation

R2ðτ1; τ2Þ5 ð1=NÞ PN
i5 1

xðti 2 τ1Þxðti 2 τ2Þ: Finally, the first term in Equation (4.37c)

simplifies to:

1

2σ4

1

T
N|ffl{zffl}
N0

1

N

XN
i5 1

xðti 2 τ1Þxðti 2 τ2Þ|ffl{zffl}
R2ðτ1;τ2Þ

5
N0

2σ4
R2ðτ1; τ2Þ ð4:38bÞ

82 Signal Processing for Neuroscientists, A Companion Volume

The second term in Equation (4.37c) is:

5
1

2σ4

1

T

ðT
0

2N0xðt2 τ1Þxðt2 τ2Þdt

5 2
N0

2σ4

1

T

ðT
0

xðt2 τ1Þxðt2 τ2Þdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

φðτ2 2 τ1Þ

5 2
N0

2σ4
φðτ2 2 τ1Þ ð4:39Þ

The expression ð1=TÞ ÐT
0

xðt2 τ1Þxðt2 τ2Þdt is the autocorrelation φðτ2 2 τ1Þ of the

input noise. Note that unlike the variable ti (representing the spike times) in the

expression for the reverse correlation R2, the time variable t is continuous in φ.
Combining the results for the first and second terms we finally get:

k2ðτ1; τ2Þ5
N0

2σ4
R2ðτ1; τ2Þ2φðτ2 2 τ1Þ½ � ð4:40aÞ

The above approach was used by Recio-Spinoso et al. (2005) to determine the first-

and second-order Wiener kernels of different types of auditory nerve fibers. An

example of the second-order kernel for a so-called low-characteristic frequency

nerve fiber is shown in Fig. 4.4. If the input is zero mean GWN, we have

φðτ2 2 τ1Þ5 σ2δðτ2 2 τ1Þ: Then, because we decided to ignore values where

τ1 5 τ2; as we did in Equation (4.24), we get:

k2ðτ1; τ2Þ5 N0

2σ4
R2ðτ1; τ2Þ for τ1 6¼ τ2 ð4:40bÞ

Time (ms)

Time (ms)

Time (ms)

10864200
2

4
6

8
10

–1.5
–1

–0.5
0

0.5
1

1.5
×107

A
m

pl
itu

de
 (

sp
ik

es
/s

.(
s.

v)
–2

)

T
im

e
(m

s)

(A)

10

8

6

4

2

0
0 2 4 6 8 10

(B)

Figure 4.4 Example of a second-order kernel of an auditory low-characteristic frequency

nerve fiber. (A) A 2D color-coded presentation of k2. (B) The corresponding 3D plot of k2.

(Panel A color in electronic version.) (From Recio-Spinoso et al., 2005)

83Wiener Series

4.7 Nonwhite Gaussian Input

Zero mean GWN was selected as input signal for the determination of the Wiener

series. In real applications, however, this is not feasible because the bandwidth of

the noise is limited. In some cases, the bandwidth of the noise at the input may be

wide enough relative to the bandwidth that is relevant for the system under investi-

gation that we may consider the noise as white. However, there are situations

where such an assumption is not valid. In these cases the input noise is band-

limited (colored). The effect of using colored noise as input will be analyzed and

discussed in the following paragraphs.

Recall that in Equation (4.40a) we left the noise autocorrelation term ϕ ðτ2 2 τ1Þ
in the expression. In Equation (4.40b), under the condition that the input is zero

mean GWN, we ignored the correlation term because σ2δ ðτ2 2 τ1Þ evaluates to

zero for τ1 6¼ τ2: In general, when we consider systems, the noise presented at the

input may be zero mean and Gaussian, but nonwhite (Gaussian colored noise

[GCN]). The term “white” indicates that all frequencies are equally present in the

noise signal, while in colored noise not all frequencies are equally present (i.e., we

are dealing with filtered white noise). The filter effect has a direct consequence on

the autocorrelation of the noise input (Fig. 4.5A and B). However, both colored

and white noise may be Gaussian, a property that is related to their amplitude dis-

tribution (Fig. 4.5C and D).

In the following we assume that we have determined the zero-order kernel as

the mean output and that we deal only with demeaned signals for input and out-

put. Under this assumption, the cross-correlation ϕxz between GCN input x

and output z can be developed similar to the procedure shown in Equations

(4.18)�(4.20):

φxzðυ1Þ5 hzðtÞxðt2 υ1Þi5
XN
n5 0

hGn½kn; xðtÞ�xðt2 υ1Þi

5

ðN
2N

k1ðτ1Þhxðt2 τ1Þxðt2 υ1Þidτ1 5
ðN
2N

k1ðτ1Þφxxðτ1 2 υ1Þdτ1
ð4:41Þ

The above shows that the cross-correlation φxz is the convolution of the first-order

kernel k1 with the input autocorrelation ϕxx:

φxz 5 k1 � φxx ð4:42aÞ

Therefore k1 can be obtained from the associated deconvolution. In the frequency

domain convolution and deconvolution can be simplified to multiplication and divi-

sion, respectively (section 8.3.2 in van Drongelen, 2007). The equivalent of

Equation (4.42a) in the frequency domain therefore is:

Φxz 5K1Φxx-K1 5Φxz=Φxx ð4:42bÞ

84 Signal Processing for Neuroscientists, A Companion Volume

Here ΦXZ, ΦXX, and K1 are the Fourier transforms of φXZ, φXX, and k1, respectively.

Now recall that the cross- and autocorrelation in the frequency domain can also be

expressed as products (section 8.4.2 in van Drongelen, 2007) X*Z and X*X (where

X and Z are the Fourier transforms of x and z, respectively, and * indicates the

complex conjugate). Substituting these expressions for cross- and autocorrelation

we get:

K1 5X*Z=X*X ð4:42cÞ

In real applications we can use this expression to determine K1 by averaging ΦXZ

(X*Z) and ΦXX (X*X) for each frequency f over a number of epochs:

K1ðf Þ5 hXðf Þ*Zðf Þi=hXðf Þ*Xðf Þi ð4:42dÞ

Here the angle brackets h. . .i indicate the average procedure in the frequency

domain. Note the similarities and differences between this expression and the one

for coherence (section 8.5 in van Drongelen, 2007). The inverse Fourier transform

of K1 in Equation (4.42d) gives k1 for a nonlinear system with GCN input. A simi-

lar development for the second-order kernel gives us:

K2ðf1; f2Þ5
hXðf1Þ*Xðf2Þ*Zðf1 1 f2Þi

2hXðf1Þ*Xðf1ÞihXðf2Þ*Xðf2Þi
ð4:43Þ

and taking the inverse Fourier transform of the above expression then gives k2.

Figure 4.5 Autocorrelations

(A and B) and amplitude

distributions (C and D) of

sampled Gaussian noise

signals. The cases for GWN

are depicted in (A) and (C).

The same properties for

colored (filtered) noise are

shown in (B) and (D).

85Wiener Series

4.8 Summary

As we demonstrated in this chapter, the determination of the Wiener kernels can be

obtained from input�output correlation. These scenarios for GWN input are

depicted in Fig. 4.6, both for the case with continuous output (Fig. 4.6A and B)

and for spike train outputs (Fig. 4.6C�F).

Panels (A) and (B) in Fig. 4.6 show first- and second-order correlation proce-

dures: the multiplication of zðtÞxðt2 τ1Þ and zðtÞxðt2 τ1Þxðt2 τ2Þ; respectively.

Because the cross-correlations are determined by the integration of these products,

one may envision moving the multiplications over the signal while summing

Figure 4.6 Summary diagrams of the characterization

of a system with GWN input. Diagrams of the cross-

correlation procedures for systems with a continuous

output (A, B) or spike train output (C�F). (A), (C),

and (E) show the first-order case and (B), (D), and (F)

represent the second-order procedure. (C) and (E)

depict two alternative visualizations for obtaining the

first-order cross-correlation for systems with spiking

output. In (C), the input is shifted by amount τ,
whereas in (E), x(t2 τ) at time t5 ti is directly

determined without shifting x (represented by the left-

pointing arrow). For the spike output case, this

procedure in (E) can be followed (as an alternative to

the standard procedure in C) since the cross-

correlation product is zero when there is no spike at

time ti. The analogous alternatives for determining the

second-order correlation is shown in (D) and (F). See

text for further explanation.

86 Signal Processing for Neuroscientists, A Companion Volume

(integrating) the resulting products. The delays τ; τ1; τ2 can be visualized by shift-

ing input x relative to output z (Fig. 4.6A and B).

If the system’s output z is a spike train, as shown in (C) and (D), the correlations

required to compute the kernels are identical: that is, the input can be shifted rela-

tive to the output to obtain xðt2 τÞ; xðt2 τ1Þ; and xðt2 τ2Þ: However, this proce-

dure can also be depicted as reverse correlations of each spike at time ti, as shown

in (E) and (F). Instead of shifting the input as we have just depicted, the reverse-

correlation procedure is shown here with left-pointing arrows. Note that this is just

another way of representing the shifts τ; τ1; τ2; and that it is not essentially differ-

ent from the visualization in (C) and (D). However, the fact that we only consider

the products zðtÞxðt2 τÞ and zðtÞxðt2 τ1Þxðt2 τ2Þ at ti is essentially different from

the case when we have a system with continuous output (as depicted in (A) and

(B)) and is caused by the fact that we model the spike train with a series of Diracs.

In between the spikes (i.e., in between the unit-impulse functions), the output z(t) is

considered zero and the products zðtÞxðt2 τÞ and zðtÞxðt2 τ1Þxðt2 τ2Þ vanish.
From the examples in this and the previous chapter, it may be clear that comput-

ing the kernels in the series can be a demanding task computationally. Recently,

Franz and Schölkopf (2006) described an alternative method to estimate Volterra

and Wiener series. Details of their approach are beyond the scope of this text, but

the essence is to consider discrete systems only (which is not really a limitation if

one wants to compute the series). In this case, the Volterra or Wiener series opera-

tors can be replaced by functions for which the parameters (the kernel parameters)

can be estimated with regression techniques (see Section 2.4.1 for an example of a

regression procedure). This approach is computationally more efficient than the

Lee and Schetzen (1965) cross-correlation method (described here in Sections 4.3

and 4.4) and makes the estimation of high-order kernels feasible. An example of an

application of this method to EEG is described in Barbero et al. (2009).

Appendix 4.1

Averages of Gaussian Random Variables

In this appendix we discuss averages of GWN variables because their properties

are important for the development of the Wiener series approach (especially in

demonstrating that the operators are orthogonal to lower-order operators). Because

it is beyond the scope of this text to provide a detailed proof of all properties pre-

sented here, for further background see appendix A of Schetzen (2006). The rela-

tionship between higher- and lower-order moments, which we will discuss below,

is also known as Wick’s theorem (see, e.g., Zinn-Justin, 2002).

Let us consider ergodic and zero mean GWN represented by variable x: that is,

the expected value of x can be replaced by its time average, which is zero (zero

mean):

Efxðt2 τÞg5 hxðt2 τÞi5 0 ðA4:1:1Þ

87Wiener Series

The product hxðt2 τ1Þxðt2 τ2Þi is equal to the autocorrelation and also to the auto-

covariance (because the noise is zero mean):

hxðt2 τ1Þxðt2 τ2Þi5σ2δðτ1 2 τ2Þ ðA4:1:2Þ

Because this may not be immediately apparent, let us define t2 τ1 5 T and

τ2 2 τ1 5 τ: We can now rewrite the autocorrelation in Equation (A4.1.2) as

hxðTÞxðT 2 τÞi: In the case where τ5 0 ðτ2 5 τ1Þ; we get the expression

hxðTÞxðTÞi5 hxðTÞ2i5EfxðTÞ2g: For GWN with zero mean, this is the definition of

the variance σ2 of signal x (see section 3.2 in van Drongelen, 2007, on statistical

moments). Again, since we are dealing with GWN (which gives us a random signal

x), two different samples of x are uncorrelated; that is, for τ 6¼ 0 ðτ2 6¼ τ1Þ; xðTÞ is
not correlated with xðT 2 τÞ: This means that:

hxðTÞxðT 2 τÞi5EfxðTÞxðT 2 τÞg5 0 for τ 6¼ 0:

Combining the above findings for τ2 5 τ1 and τ2 6¼ τ1 we can use the expression

in Equation (A4.1.2) with the Dirac delta function. Let us look into an example in

which we scale the correlation coefficient between 61. A scatter plot showing cor-

relation for a GWN signal is shown in Fig. A4.1.1. The plot of the signal against

itself with zero lag ðτ5 0Þ is depicted in Fig. A4.1.1A and obviously all points lie

on the y5 x line, corresponding to a correlation coefficient of one. An example for

a delay of τ5 1 is shown in Fig. A4.1.1B; here the points are distributed in all

directions corresponding to the absence of correlation (correlation coefficient of

zero). This behavior is confirmed in a plot of the autocorrelation of GWN: we have

a correlation coefficient of one for a lag τ of zero and a correlation coefficient of

zero otherwise (see also Fig. 4.5A).

The findings from the paragraph above can be generalized to evaluate higher-

order products between GWN signals (Schetzen, 2006). All averages of odd pro-

ducts evaluate to zero (e.g., hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þi5 0), while it can be shown

Figure A4.1.1 Correlation for y(t), a digitized GWN signal of 1000 points. (A) A plot of

y(t) vs. y(t). (B) A plot of y(t1 1) vs. y(t).

88 Signal Processing for Neuroscientists, A Companion Volume

that higher-order even products are equal to the sum of all distinct pair-wise pro-

ducts. For example:

hxðt2τ1Þxðt2τ2Þxðt2τ3Þxðt2τ4Þi5hxðt2τ1Þxðt2τ2Þihxðt2τ3Þxðt2τ4Þi
1hxðt2τ1Þxðt2τ3Þihxðt2τ2Þxðt2τ4Þi1hxðt2τ1Þxðt2τ4Þihxðt2τ2Þxðt2τ3Þi

ðA4:1:3Þ

If you are interested in the formal proof of the above generalizations for the odd

and even products, please see Appendix A in Schetzen (2006).

Appendix 4.2

Delay System as Volterra Operator

We used a specific delay operator earlier for creating the Hilbert transform in

Chapter 1. Here we will comment on delay operators in general. Creation of a

delay υ1 in xðtÞ is an operation by which we obtain xðt2 υ1Þ; this operation can be

considered a 1D, first-order Volterra operator (Fig. A4.2.1A). Higher-dimensional

(2D and 3D) delay systems can be represented by second- and third-order Volterra

systems (Fig. A4.2.1B and C), etc. The 1D operator D1 can be characterized by the

notation:

D1½xðtÞ�5 xðt2 υ1Þ ðA4:2:1Þ

Because this is a first-order system, this operation can be represented by a

convolution:

D1½xðtÞ�5 xðt2 υ1Þ5
ðN
2N

hðτÞxðt2 τÞdτ ðA4:2:2Þ

Figure A4.2.1 Examples of delay systems as Volterra operators.

89Wiener Series

From Equation (A4.2.2) we may conclude that the weighting function (the UIR) of

the 1D system is hðτÞ5 δðτ2 υ1Þ; thus resulting in:

xðt2 υ1Þ5
ðN
2N

δðτ2 υ1Þxðt2 τÞdτ ðA4:2:3Þ

Similarly, the delay operators for 2D operator D2 and 3D operator D3 can be

defined as D2½xðtÞ�5 xðt2 υ1Þxðt2 υ2Þ and D3½xðtÞ�5 xðt2 υ1Þxðt2 υ2Þxðt2 υ3Þ;
respectively. In Fig. A4.2.1B and C we can see that each of the delays in the

higher-dimensional system is a first-order operator. In the second-order (2D) sys-

tem the UIRs are δðτ2 υ1Þ and δðτ2 υ2Þ; in the third-order delay system, the UIRs

are δðτ2 υ1Þ; δðτ2 υ2Þ; and δðτ2 υ3Þ: Similar to Equation (A4.2.3), these opera-

tions can be represented with the convolution-like integrals of the Volterra series

(see Equation (3.4)); for example, in the 2D case:

xðt2υ1Þxðt2υ1Þ5
ðN
2N

ðN
2N

δðτ12υ1Þδðτ22υ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd order Volterra kernel h2ðυ1;υ2Þ

xðt2τ1Þxðt2τ2Þdτ1 dτ2

ðA4:2:4Þ

where the second-order Volterra kernel is:

h2ðυ1; υ2Þ5 δðτ1 2 υ1Þδðτ2 2 υ2Þ ðA4:2:5Þ

In the 3D case the third-order Volterra kernel for a delay system is:

h3ðυ1; υ2; υ3Þ5 δðτ1 2 υ1Þδðτ2 2 υ2Þδðτ3 2 υ3Þ ðA4:2:6Þ

Similarly, we can extend this approach to an n-dimensional delay operator:

hnðυ1; υ2; . . . ; υnÞ5 δðτ1 2 υ1Þδðτ2 2 υ2Þ. . .δðτn 2 υnÞ ðA4:2:7Þ

90 Signal Processing for Neuroscientists, A Companion Volume

5 Poisson�Wiener Series

5.1 Introduction

In the previous chapter we considered systems with continuous input signals. One

such continuous input is Gaussian white noise (GWN), which allows us to create a

series with orthogonal terms that can be estimated sequentially with the

Lee�Schetzen cross-correlation method (also shown in the previous chapter). This

approach can be adapted when the system’s natural input consists of impulse trains

such as a spike train. Identifying a system with an impulse train as input will be the

topic of this chapter. We will elaborate on the approach that was described by

Krausz (1975) and briefly summarized in Marmarelis (2004).1 Our task at hand is

to develop a Wiener series-like approach that describes the input�output relation-

ship of a nonlinear system when an impulse train is at its input. To create random-

ness at the input, we use an impulse sequence that follows a Poisson process (see

Section 14.2 in van Drongelen, 2007).

5.2 Systems with Impulse Train Input

The approach is to create a set of operators that are orthogonal to all lower-order

Volterra operators, which is analogous to the development of the Wiener series

with a GWN input. We will call these operators “Poisson�Wiener operators” to

distinguish our current development of operators (using impulses as input) from

that of Chapter 4 (using GWN as input). For each order n, we will symbolize these

Poisson�Wiener operators as Pn. Similar to the Wiener series, we define the output

z of a nonlinear system as the sum of a set of these operators, each depending on

kernel pn and impulse train input x. For a system of order N we have:

zðtÞ5
XN
n50

Pn½pn; xðtÞ�

This equation for the Poisson�Wiener series is similar to the ones for the Volterra

and Wiener series, but as we will see there are important differences.

As we described in the previous chapter, the approach of the Wiener series

works so well because of the specific characteristics of the GWN input signal:

hxðt2 τ1Þi5 0; hxðt2 τ1Þxðt2 τ2Þi5σ2δðτ2 2 τ1Þ; etc. (see Appendix 4.1). When

1 If you compare the following with Krausz’ original work, please note that the derivation in Krausz

(1975) contains minor scaling errors (as was also noted by Marmarelis, 2004).

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00005-X

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00005-X

the system’s input changes to a series of impulses, these relationships no longer

hold and we can no longer apply the equations we derived previously. To resolve

this, we must start from scratch and first determine expressions for the averaged

products hxðt2 τ1Þi; hxðt2 τ1Þxðt2 τ2Þi; . . . for the Poisson process. Subsequently

we must use these new results to redo the Gram�Schmidt procedure for the deriva-

tion of our series’ orthogonal terms, as was done in Section 4.2. Finally we must

redevelop Lee�Schetzen’s cross-correlation method in a similar fashion as the pro-

cedure described in Section 4.3.

A schematic overview of the procedures we develop in this chapter is depicted

in Fig. 5.1. Similar to the properties of Wiener series, the output z of a nonlinear

system can be described by a (Poisson�Wiener) series in which:

(1) Operators Pn are heterogeneous (top-right in Fig. 5.1)

(2) Each operator is orthogonal to all lower-order Volterra operators

(3) Except for P0, the Expectation (or time average) of all operators will vanish

(4) Except for p0, the kernels can be determined from the cross-correlation of input and

output (see also the Lee�Schetzen method introduced in Chapter 4).

In each of the above properties, it is important to know the Expectation or time

average for the input and its cross products (see Input properties in Fig. 5.1).

Therefore we will first determine these time averages associated with the input in

Section 5.2.1 before we derive the Poisson�Wiener kernels in Section 5.2.2 and

adapt Lee�Schetzen’s cross-correlation method for determining the kernels from

recorded data in Section 5.3.

5.2.1 Product Averages for the Poisson Impulse Train

Let us use signal χ, a train of Diracs with amplitude A that follows a Poisson

process with rate ρ (Fig. 5.2A). The first moment or mean μ of impulse train χ can

be established by a time average over a sufficiently long interval T. In such

Figure 5.1 Diagram of the procedures used here to develop the Poisson�Wiener series,

the properties of its operators, and the method to determine the kernels. Just as for the

Wiener series, the input signal’s properties play a crucial role in the development of

the Poisson�Wiener approach.

92 Signal Processing for Neuroscientists, A Companion Volume

an interval we expect to find N5 ρT impulses in the input signal χ5
PN5ρT

i51

Aδðt2 tiÞ: The time average of the input signal is hχi5 ð1=TÞ ÐT
0

PN5ρT

i51

Aδðt2 tiÞdt:
Assuming we can interchange summation and integration we get:

μ5 hχi5 A

T

XN5ρT

i51

ðT
0

δðt2 tiÞdt
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

51

5
A

T
ρT 5 ρA ð5:1aÞ

The integral in Equation (5.1a) evaluates to one if the delta function is located

within the interval T (i.e., 0# ti # T). We could have done the computation of

the mean in a simpler way because we know how many impulses we expect in

epoch T and the amplitude of each impulse. The number of impulses (each with

amplitude A) during this interval is ρT; resulting in the following expression for

the first moment:

μ5 hχi5 1

T

ðT
0

ρT|{z}
I

AδðtÞ|fflffl{zfflffl}
II

dt5
1

T
ρTA5 ρA ð5:1bÞ

Figure 5.2 Impulse train inputs following a Poisson process can be used to identify

nonlinear systems. A standard impulse train χ with amplitude A is shown in (A). A

demeaned version of this time series x is depicted in (B). The signal in (C) is the same

demeaned series x but is now presented as a series of weighted unit impulses (each

impulse is represented by a vertical line). The procedure depicted in (D) shows the steps

we use to identify a nonlinear system with such a train of impulses. First we pretend

that the input is demeaned by part of the system (subsystem S1) by subtracting ρA, the
mean of χ. This demeaned series x is then used as input to subsystem S2. We actually

determine the operators Pn and kernels for S2 instead of the whole system S11 S2, but if

we can characterize S2 we have characterized the whole system, since S1 is a simple

subtraction. (E) depicts the output z of the system to the impulse input.

93Poisson�Wiener Series

Part I in the equation above is the number of expected impulses over interval T and

Part II is the amplitude for each impulse. Unlike the first moment for the GWN sig-

nal we used in the previous chapter, this result is not zero. The following step is

therefore critical for the rest of our approach: because the nonzero result for the

first moment would complicate matters, we create a new signal x, which is the

demeaned version of χ (Fig. 5.2B):

xðtÞ5χðtÞ2 ρA ð5:1cÞ

We can check that this generates a zero first moment for time series x(t):

hxi5 1

T

ðT
0

XN5ρT

i51

Aδðt2 tiÞ2ρA

" #
dt5

1

T

XN5ρT

i51

ðT
0

Aδðt2 tiÞdt
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

2

ðT
0

ρA dt

0
BBBBB@

1
CCCCCA

5
1

T
ρAT2 ½ρAt�T0
� �

5
1

T
ðρAT2ρATÞ50

ð5:1dÞ

Here we interchanged the integration and summation operations. Subsequently, we

evaluate the integral with the delta function and find that it is equal to the constant

A if the delta function falls within epoch T. Alternatively, we can also approach the

estimation of hxi a bit differently. As you can see in Fig. 5.2C, we can consider the

demeaned signal as a series of Diracs (a sampled version of the signal) with ampli-

tude A2Aρ for each spike, and amplitude 2Aρ in between the spikes. Over inter-

val T the number of spike occurrences is again ρT and the number of nonspike

occurrences is ð12 ρÞT:

hxi5 1

T

ðT
0

½ρT|{z}
I

ðA2AρÞδðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
II

1 ð12 ρÞT|fflfflfflfflffl{zfflfflfflfflffl}
III

ð2AρÞδðtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
IV

�dt

5
1

T

ðT
0

½ρAT 2 ρ2AT 2 ρAT 1 ρ2AT�|ffl{zffl}
0

δðtÞdt5 0

ð5:1eÞ

Parts I and III above are the expected number of spiking and nonspiking events,

respectively, and Parts II and IV are their respective amplitudes. We will use the

approach in Equation (5.1e) to compute the higher-order products in the following.

The bottom line is that by using the impulse series x as input, we have (just as for

GWN) zero for the first moment m1:

m1 5 hxi5 0 ð5:1fÞ

94 Signal Processing for Neuroscientists, A Companion Volume

The next expression we must evaluate is the cross-correlation hxðt2 τ1Þxðt2 τ2Þi:
To start, we can look into the second moment hx2i of the impulse train in Fig. 5.2C.

As shown above in Equation (5.1e), the number of events N is the event probability

ρ times the interval T, and the nonevent probability equals ð12 ρÞT (Parts I and III,

respectively). For the second-order moment, we will square the associated amplitudes

(Parts II and IV):

hx2i5 1

T

ðT
0

½ρT|{z}
I

ðA2AρÞ2δðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
II

1 ð12 ρÞT|fflfflfflfflffl{zfflfflfflfflffl}
III

ð2AρÞ2δðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
IV

�dt ð5:2aÞ

Note that by squaring the amplitudes we weight the unit impulse function δ(t), but
we do not need to square the delta function itself. It is relatively simple to see why

this is not required. Imagine the input as the series of Dirac deltas weighted with

different amplitudes shown in Fig. 5.2C. The sum of all amplitudes x divided by

the epoch length T is the first moment, the sum of all x2 divided by T is the second

moment, the sum of all x3 divided by T is the third moment, and so on (see Section

3.2 in van Drongelen, 2007). To sample the amplitudes of x, x2, x3, . . . we only

have to weight a single Dirac with the desired amplitude (if you need to review the

properties of the Dirac δ, see section 2.2.2 in van Drongelen, 2007). Simplifying

Equation (5.2a), we get:

5
1

T

ðT
0

½ρA2T 2 2ρ2A2T 1 ρ3A2T 1 ρ2A2T 2 ρ3A2T�|ffl{zffl}
ρA2T 2 ρ2A2T

δðtÞdt

5
1

T

ðT
0

TρA2ð12 ρÞδðtÞdt5 1

T
TρA2ð12 ρÞ� �

Finally, the expression for the second moment m2 becomes:

m2 5 hx2i5 ρA2ð12 ρÞ ð5:2bÞ

The next step is to determine the second-order cross-correlation using a time

average of the product xðt2 τ1Þxðt2 τ2Þ :

hxðt2 τ1Þxðt2 τ2Þi5
1

T

ðT
0

½ρT|{z}
I

ðA2AρÞ2δðt2 τ1Þδðt2 τ2Þ|ffl{zffl}
II

1 ð12 ρÞT|fflfflfflfflffl{zfflfflfflfflffl}
III

ð2AρÞ2δðt2 τ1Þδðt2 τ2Þ|ffl{zffl}
IV

�dt
ð5:3aÞ

95Poisson�Wiener Series

Parts I�IV are similar to the ones in Equation (5.2a). The product of I and II, the

first term in the integral in Equation (5.3a), evaluates to:

1

T
ρTðA2AρÞ2� �

δðτ1 2 τ2Þ

and the product of III and IV, the second term in Equation (5.3a), becomes:

1

T
ð12 ρÞTA2ρ2
� �

δðτ1 2 τ2Þ

Combining the two terms above, we get the result for the second-order cross-

correlation:

hxðt2 τ1Þxðt2 τ2Þi5 ρA2ð12 ρÞδðτ1 2 τ2Þ5m2δðτ1 2 τ2Þ ð5:3bÞ

This result is not unexpected since Equation (5.3b) becomes the expression we

derived for the second moment m2 (Equation (5.2b)) when we have the case

τ1 5 τ2: Just as was the case for GWN, this expression will evaluate to zero

otherwise.

For computing the third moment m3, we can use the same approach as in

Equation (5.2a):

hx3i5 1

T

ðT
0

½ρT|{z}
I

ðA2AρÞ3δðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
II

1 ð12 ρÞT|fflfflfflfflffl{zfflfflfflfflffl}
III

ð2AρÞ3δðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
IV

�dt ð5:4aÞ

If you do the algebra, you will find that this results in:

m3 5 hx3i5 ρA3ð12 ρÞð12 2ρÞ ð5:4bÞ

The third-order cross-correlation is:

hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þi

5
1

T

ðT
0

½ρT|{z}
I

ðA2AρÞ3δðt2 τ1Þδðt2 τ2Þδðt2 τ3Þ|ffl{zffl}
II

1 ð12 ρÞT|fflfflfflfflffl{zfflfflfflfflffl}
III

ð2AρÞ3δðt2 τ1Þδðt2 τ2Þδðt2 τ3Þ|ffl{zffl}
IV

�dt

ð5:5aÞ

96 Signal Processing for Neuroscientists, A Companion Volume

in which Parts I�IV can be evaluated similarly to the ones in Equation (5.3a).

Accordingly, the result becomes:

hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þi5 ρA3ð12 ρÞð12 2ρÞδðτ1 2 τ2Þδðτ1 2 τ3Þ

Combined with Equation (5.4b), we get:

hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þi5m3δðτ1 2 τ2Þδðτ1 2 τ3Þ ð5:5bÞ

for the third-order cross-correlation. As you can see, due to the presence of two

Diracs, the third-order product is only nonzero for τ1 5 τ2 5 τ3:
In the above cases, things are relatively simple because we set the first moment

to zero by demeaning the input impulse train. This approach ensures that any prod-

uct that contains Efxg or hxi (the Expectation or time average of x) vanishes (see

Appendix 5.1). Appendix 5.1 explains that for the fourth moment m4, we have to

deal with additional terms that include Efx2g: If you are mainly interested in how we

will next make Poisson�Wiener operators orthogonal, you can accept the results for

m4 and the fourth-order product below and skip the appendix. The expression for m4

is obtained in the same manner as the lower-order moments above.

m4 5 hx4i5 ρA4½ρð12 ρÞ2 1 ð12 ρÞð12 2ρÞ2� ð5:6aÞ

The time averaged fourth-order cross-correlation critically depends on the

values of the delays τ1 2 τ4 in a piece-wise manner (see Appendix 5.1, Equation

(A5.1.5)):

hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þxðt2 τ4Þi
τ1 5 τ2 5 τ3 5 τ4 : m4δðτ1 2 τ2Þδðτ1 2 τ3Þδðτ1 2 τ4Þ
τ1 5 τ2 and τ3 5 τ4 : m2

2δðτ1 2 τ2Þδðτ3 2 τ4Þ
τ1 5 τ3 and τ2 5 τ4 : m2

2δðτ1 2 τ3Þδðτ2 2 τ4Þ
τ1 5 τ4 and τ2 5 τ3 : m2

2δðτ1 2 τ4Þδðτ2 2 τ3Þ
0 otherwise

8>>>>><
>>>>>:

ð5:6bÞ

5.2.2 Orthogonal Terms of the Poisson�Wiener Series

In this section we use the same procedure (Gram�Schmidt orthogonalization, see

Arfken and Weber, 2005) as in Chapter 4 to derive the orthogonal series that can

characterize a nonlinear system given our impulse input. As depicted in Fig. 5.2D,

the Poisson�Wiener series represents an output signal z consisting of the sum of

operators Pn:

zðtÞ5P0½p0; xðtÞ�1P1½p1; xðtÞ�1P2½p2; xðtÞ�1?1Pn½pn; xðtÞ� ð5:7aÞ

97Poisson�Wiener Series

in which the heterogeneous operator Pn is defined as:

Pn½pn;xðtÞ�

5

ðN
2N

ðN
2N

:::

ðN
2N|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

pnðτ1;τ2; . . .;τnÞxðt2τ1Þxðt2τ2Þ. . .xðt2τnÞdτ1 dτ2. . .dτn

n3

1

ðN
2N

ðN
2N

:::

ðN
2N|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

pn21ðnÞðτ1;τ2; . . .;τn21Þxðt2τ1Þxðt2τ2Þ. . .xðt2τn21Þdτ1 dτ2. . .dτn21

ðn21Þ3

1

ðN
2N

ðN
2N

:::

ðN
2N|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

pn2 iðnÞðτ1;τ2; . . .;τn2 iÞxðt2τ1Þxðt2τ2Þ. . .xðt2τn2 iÞdτ1 dτ2. . .dτn2 i1p0ðnÞ

ðn2 iÞ3

ð5:7bÞ

Here we have Poisson�Wiener kernel pn and derived Poisson�Wiener kernels pn2 i(n)

(i5 1, 2, . . ., n). In Sections 5.2.2.1�5.2.2.3, we will derive the expressions for the

Poisson�Wiener operators in a similar fashion we did for the Wiener series in

Chapter 4.

5.2.2.1 The Zero-Order Poisson�Wiener Operator

Similar to the zero-order Wiener operator, we define the zero-order

Poisson�Wiener operator P0 as the output’s DC component p0:

P0½p0; xðtÞ�5 p0 ð5:8Þ

In this equation, we use p0 to symbolize the zero-order Poisson�Wiener kernel to

distinguish it from the zero-order Volterra and Wiener kernels h0 and k0,

respectively.

5.2.2.2 The First-Order Poisson�Wiener Operator

Now we use the orthogonality between Poisson�Wiener operators and lower-order

Volterra operators to derive the expression for the first-order Poisson�Wiener

kernel p1. Similar to Equation (4.5), we have:

98 Signal Processing for Neuroscientists, A Companion Volume

hH0½xðtÞ�P1½p1; xðtÞ�i5 h0

ðN
2N

p1ðτ1Þxðt2 τ1Þdτ1 1 p0ð1Þ

2
4

3
5

|ffl{zffl}
P1

* +
5 0

5 h0

ðN
2N

p1ðτ1Þ xðt2 τ1Þ
� �

dτ1 1 p0ð1Þ

2
4

3
5

|ffl{zffl}
hP1i

5 0

ð5:9Þ

The subscript 0(1) indicates that p0(1) is a derived kernel: a zero-order member of

the first-order operator P1. Note that we took all constants out of the time average

operation, and only the (time dependent) input time series x remains within the

time average brackets h:::i: Since input x is a demeaned impulse train following a

Poisson process, we know that hxðt2 τ1Þi5 0 (see Equation (5.1f)). Consequently

the integral evaluates to zero, and we therefore conclude that the orthogonality

requirement demands that:

p0ð1Þ 5 0 ð5:10Þ

Substituting this result in the general expression for our first-order

Poisson�Wiener operator P1½p1; xðtÞ�5
ÐN

2N
p1ðτ1Þxðt2 τ1Þdτ1 1 p0ð1Þ; we obtain:

P1½p1; xðtÞ�5
ðN
2N

p1ðτ1Þxðt2 τ1Þdτ1 ð5:11Þ

Note that this result is very similar to the first-order Wiener operator (Equation

(4.7)). Furthermore, we see that EfPg5 hP1i5 0 : that is, the Expectation or time

average of P1; h
ÐN

2N
p1ðτ1Þxðt2 τ1Þdτ1i; evaluates to zero because hxðt2 τ1Þi5 0:

You can also see in Fig. 5.2D that this kernel is not the first-order kernel

for our system but for the subsystem indicated by S2 (the whole system is

S11 S2). Because we know that the other part, subsystem S1, is a simple subtrac-

tion ð2ρAÞ; we have effectively characterized the first-order component of the sys-

tem under investigation.

5.2.2.3 The Second-Order Poisson�Wiener Operator

To establish the expression for the second-order operator we follow the same proce-

dure as for the Wiener kernels: we demand both orthogonality between the second-

order Poisson�Wiener operator and a zero-order Volterra operator plus orthogonality

between the second-order operator and a first-order Volterra operator.

99Poisson�Wiener Series

First, for orthogonality between H0 and P2: using the orthogonality condition

we get:

hH0½xðtÞ�P2½p2; xðtÞ�i5 0

That is:

5

*
h0|{z}
H0

ðN
2N

ðN
2N

p2ðτ1;τ2Þxðt2τ1Þxðt2τ2Þdτ1dτ21
ðN

2N

p1ð2Þðτ1Þxðt2τ1Þdτ11p0ð2Þ

2
4

3
5

|ffl{zffl}
P2

+
50

5h0

" ðN
2N

ðN
2N

p2ðτ1;τ2Þhxðt2τ1Þxðt2τ2Þidτ1dτ2

1

ðN
2N

p1ð2Þðτ1Þhxðt2τ1Þidτ11p0ð2Þ

#
50 ð5:12Þ

Similar to the composition of the Wiener operator G2, the components p0(2) and p1

(2) are derived zero-order and first-order members of operator P2. As we did in

Equation (5.9), we took all constants out of the time average h:::i and only kept the

time series x within it. Again, because the input is a zero mean impulse train fol-

lowing a Poisson process, the term with the single integral in the expression above

is zero (since hxðt2 τ1Þi5 0; Equation (5.1f)). The term with the double integral is

dictated by the averaged product of both inputs hxðt2 τ1Þxðt2 τ2Þi; which is given

by Equation (5.3b). Therefore the above expression becomes:

h0

ðN
2N

ðN
2N

p2ðτ1; τ2Þ xðt2 τ1Þxðt2 τ2Þ
� �

dτ1 dτ2 1 h0p0ð2Þ

5m2h0

ðN
2N

ðN
2N

p2ðτ1; τ2Þδðτ1 2 τ2Þdτ1 dτ2 1 h0p0ð2Þ 5 0

This equation can be evaluated by using the sifting property for one of the time

constants; here we integrate with respect to τ2 and get:

m2h0

ðN
2N

p2ðτ1; τ1Þdτ1 1 h0p0ð2Þ 5 0- p0ð2Þ 5 2m2

ðN
2N

p2ðτ1; τ1Þdτ1 ð5:13Þ

As you can see, the kernel p0(2) is derived from p2.

100 Signal Processing for Neuroscientists, A Companion Volume

To further express our second-order Poisson�Wiener operator, we will next

demand orthogonality between second-order operator P2 and first-order Volterra

operator H1. Similar to Equation (4.10), we have:

hH1½xðtÞ�P2½p2; xðtÞ�i5 0;

which can be written as:

ðN
2N

h1ðυÞxðt2υÞdυ
2
4

3
53

ðN
2N

ðN
2N

p2ðτ1;τ2Þxðt2τ1Þxðt2τ2Þdτ1 dτ21
ðN

2N

p1ð2Þðτ1Þxðt2τ1Þdτ11p0ð2Þ

2
4

3
5

* +
50

ð5:14Þ

Equation (5.14) contains three terms that we will consider separately.

The first term is:

ðN
2N

h1ðυÞxðt2 υÞdυ
2
4

3
5 ðN

2N

ðN
2N

p2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

2
4

3
5* +

5

ðN
2N

ðN
2N

ðN
2N

h1ðυÞp2ðτ1; τ2Þ xðt2 υÞxðt2 τ1Þxðt2 τ2Þ
� �|ffl{zffl}

m3δðυ2 τ1Þδðυ2 τ2Þ

dυ dτ1 dτ2

In the Wiener series development, for systems with GWN input, the odd product

hxðt2 υÞxðt2 τ1Þxðt2 τ2Þi5 0: Here, however, the odd product is given by

Equation (5.5b). This gives:

m3

ðN
2N

ðN
2N

ðN
2N

h1ðυÞp2ðτ1; τ2Þδðυ2 τ1Þδðυ2 τ2Þdυ dτ1 dτ2

5m3

ðN
2N

h1ðυÞp2ðυ; υÞdυ
ð5:15aÞ

The second term in Equation (5.14) is:

ðN
2N

h1ðυÞxðt2 υÞdυ
2
4

3
5 ðN

2N

p1ð2Þðτ1Þxðt2 τ1Þdτ1

2
4

3
5* +

5

ðN
2N

ðN
2N

h1ðυÞp1ð2Þðτ1Þ hxðt2 υÞxðt2 τ1Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2δðυ2 τ1Þ

dυ dτ1

101Poisson�Wiener Series

Using the expression for the second-order correlation in Equation (5.3b) we can

simplify to:

m2

ðN
2N

ðN
2N

h1ðυÞp1ð2Þðτ1Þδðυ2 τ1Þdυ dτ1 5m2

ðN
2N

h1ðυÞp1ð2ÞðυÞdυ ð5:15bÞ

Note that we used the sifting property of the Dirac to simplify the double integral.

Finally, the third term in Equation (5.14) is:

ðN
2N

h1ðυÞxðt2 υÞdυ
2
4

3
5p0ð2Þ

* +
5

ðN
2N

h1ðυÞhxðt2 υÞidυ
2
4

3
5p0ð2Þ 5 0 ð5:15cÞ

This evaluates to zero because hxðt2 υÞi5 0 (Equation (5.1f)).

Substituting the results from Equations (5.15a), (5.15b), and (5.15c) into

Equation (5.14), we have:

m3

ðN
2N

h1ðυÞp2ðυ; υÞdυ1m2

ðN
2N

h1ðυÞp1ð2ÞðυÞdυ5 0

From this we may conclude that the derived first-order member of the second-order

operator is:

p1ð2ÞðυÞ5 2
m3

m2

p2ðυ; υÞ ð5:16Þ

Again, you can see that the derived kernel p1(2) is indeed derived because it fully

depends on p2. Using the results in Equations (5.13) and (5.16), we get the expres-

sions for the second-order Poisson�Wiener operator in terms of the second-order

Poisson�Wiener kernel p2:

P2½p2; xðtÞ�5
ðN

2N

ðN
2N

p2ðτ1; τ2Þxðt2 τ1Þxðt2 τ2Þdτ1 dτ2

2
m3

m2

ðN
2N

p2ðτ; τÞxðt2 τÞdτ
|ffl{zffl}

1
Ð
p1ð2Þxðt2 τÞdτ

2m2

ðN
2N

p2ðτ; τÞdτ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1 p0ð2Þ

ð5:17Þ

102 Signal Processing for Neuroscientists, A Companion Volume

Note that the above result for the second-order Poisson�Wiener operator differs

from the second-order Wiener operator (Equation (4.13)) (here p1(2) is nonzero).

This difference is due to the fact that the cross-correlation results for a demeaned

train of impulses following a Poisson process are different from a GWN signal (see

Section 5.2.1 and compare Appendices 4.1 and 5.1). Using the expressions for

hxðt2 τ1Þi and hxðt2 τ1Þxðt2 τ2Þi; it is straightforward to show that

EfP2g5 hP2i5 0:

5.3 Determination of the Zero-, First- and Second-Order
Poisson�Wiener Kernels

In this section we will compute the Poisson�Wiener kernels using the same cross-

correlation method first described for the Wiener kernels (Lee and Schetzen, 1965).

If we deal with a nonlinear system of order N, and we present a demeaned impulse

train x following a Poisson process at its input, we obtain output z as the sum of

the Poisson�Wiener operators (Fig. 5.2D):

zðtÞ5
XN
n50

Pn½pn; xðtÞ� ð5:18Þ

In the following example we will describe how to determine the zero-, first- and

second-order Poisson�Wiener kernels.

5.3.1 Determination of the Zero-Order Poisson�Wiener Kernel

Similar to the Wiener operators, the Expectation of all Poisson�Wiener operators

Pn; except the zero-order operator P0; is zero. Therefore, assuming an ergodic pro-

cess (time averages are allowed for estimating the Expectations), we find the aver-

age of output signal z:

hzðtÞi5
XN
n50

hPn½pn; xðtÞ�i5P0½p0; xðtÞ�5 p0 ð5:19Þ

Thus the zero-order Poisson�Wiener kernel is equal to the mean output hzðtÞi:

5.3.2 Determination of the First-Order Poisson�Wiener Kernel

Similar to the procedure for the Wiener kernels depicted in Fig. 4.2, the first-order

Poisson�Wiener kernel of a system can be obtained from the cross-correlation

between its input and output:

103Poisson�Wiener Series

hzðtÞxðt2 υ1Þi5 hP0½p0; xðtÞ�xðt2 υ1Þi1 hP1½p1; xðtÞ�xðt2 υ1Þi
1 hP2½p2; xðtÞ�xðt2 υ1Þi1?

5
XN
n50

hPn½pn; xðtÞ�xðt2 υ1Þi
ð5:20Þ

Recall that Poisson�Wiener kernels are defined to be orthogonal to lower-order

Volterra kernels, and recall that the delay operator xðt2 υ1Þ can be presented as a

first-order Volterra operator (see Appendix 4.2). Therefore, all Poisson�Wiener

operators Pn with n$ 2 are orthogonal to xðt2 υ1Þ; and we only have to deal with

operators of order n5 0 and 1.

For n5 0:

hP0½p0; xðtÞ�xðt2 υ1Þi5 p0 hxðt2 υ1Þi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

5 0 ð5:21aÞ

For n5 1:

hP1½p1; xðtÞ�xðt2 υ1Þi5
ðN

2N

p1ðτ1Þ hxðt2 τ1Þxðt2 υ1Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2δðτ1 2 υ1Þ

dτ1

5m2

ðN
2N

p1ðτ1Þδðτ1 2 υ1Þdτ1 5m2p1ðυ1Þ ð5:21bÞ

Here we used Equation (5.3b) to simplify xðt2 τ1Þxðt2 υ1Þ
� �

and then used the

sifting property of the Dirac to evaluate the above integral. From the results in

Equation (5.21b), we conclude that the only nonzero part in Equation (5.20) is the

term for n5 1; therefore, the first-order Poisson�Wiener kernel becomes:

hzðtÞxðt2 υ1Þi5m2p1ðυ1Þ- p1ðυ1Þ5
1

m2

zðtÞxðt2 υ1Þ
� �

ð5:22aÞ

Therefore, the first-order Poisson�Wiener kernel is the cross-correlation between

input and output weighted by the second moment m2 of the input.

We can use the properties of the Dirac to rewrite the cross-correlation expres-

sion, because the input is an impulse train. If we substitute the expression for the

input in Equation (5.22a) with a sum of Diracs and present the time average h:::i
with an integral notation ð1=TÞ ÐT

0

?; we get:

p1ðυ1Þ5 1

m2

1

T

ðT
0

zðtÞ A
XN5ρT
i51

δðt2 ti 2 υ1Þ2 ρA

" #zffl}|ffl{input: xðt2 υ1Þ

dt

|ffl{zffl}
Time average

104 Signal Processing for Neuroscientists, A Companion Volume

Assuming we may interchange the integration and summation and separating the

terms for the impulse train (the Diracs) and the DC correction (ρA), this evaluates
into two integral terms:

p1ðυ1Þ5
A

m2

1

T

XN5ρT

i51

ðT
0

zðtÞδðt2 ti 2 υ1Þdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

zðti 1 υ1Þ

2
ρA
m2

1

T

ðT
0

zðtÞdt
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

hzi

When using the sifting property it can be seen that the first term is a scaled average

of zðti 1 υ1Þ and may be rewritten as:

A

m2

ρT
T

1

ρT

XN5ρT

i51

zðti 1 υ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Czxðυ1Þ

5
ρA
m2

Czxðυ1Þ5
μ
m2

Czxðυ1Þ

Note that we used the first moment μ5 ρA of the original train of impulses χ here

(Equation (5.1a)). Combining the above we get:

p1ðυ1Þ5
μ
m2

Czxðυ1Þ2 hzi½ � ð5:22bÞ

The average ð1=ρTÞ PN5ρT

i51

zðti 1 υ1Þ is the cross-correlation Czxðυ1Þ between the input

impulse train x and the system’s output z. Unlike the reverse correlation we dis-

cussed in section 14.5 in van Drongelen (2007) and applied in Section 4.6,

we deal with the forward-correlation here (see Fig. 5.5E). In the examples in

Chapter 4, we used reversed correlation because the impulse train was the output

caused by the input and we had to go back in time to reflect this causality. In this

case the role is reversed: the impulse train is the input causing the output.

5.3.3 Determination of the Second-Order Poisson�Wiener Kernel

Using a procedure analogous to that developed for the Wiener kernel in

Section 4.3.3, we find the second-order Poisson�Wiener kernel by using a second-

order cross-correlation between output and input:

hzðtÞxðt2 υ1Þxðt2 υ2Þi5 hP0½p0; xðtÞ�xðt2 υ1Þxðt2 υ2Þi
1 hP1½p1; xðtÞ�xðt2 υ1Þxðt2 υ2Þi
1 hP2½p2; xðtÞ�xðt2 υ1Þxðt2 υ2Þi1?

5
XN
n50

hPn½pn; xðtÞ�xðt2 υ1Þxðt2 υ2Þi

ð5:23Þ

105Poisson�Wiener Series

Since xðt2 υ1Þxðt2 υ2Þ can be presented as a second-order Volterra operator (see

Appendix 4.2), all Poisson�Wiener operators Pn with n$ 3 are orthogonal to

xðt2 υ1Þxðt2 υ2Þ (because all Poisson�Wiener operators are orthogonal to lower-

order Volterra operators). Furthermore, since we use a Poisson process as input, we

will not allow impulses to coincide. Therefore, we neglect all results for equal delays

υ1 5 υ2 in the evaluation of Equation (5.23). Taking into account the considerations

above, we now analyze the second-order cross-correlation for n5 0, 1, 2, and υ1 6¼ υ2:
For n5 0:

hP0½p0; xðtÞ�xðt2 υ1Þxðt2 υ2Þi5 p0 hxðt2 υ1Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2δðυ1 2 υ2Þ

5m2p0δðυ1 2 υ2Þ

ð5:24aÞ

We can neglect this term because, due to the Dirac, it evaluates to zero for

υ1 6¼ υ2:
For n5 1:

hP1½p1; xðtÞ�xðt2 υ1Þxðt2 υ2Þi5
ðN

2N

p1ðτ1Þ hxðt2 τ1Þxðt2 υ1Þxðt2 υ2Þi|ffl{zffl}
m3δðτ1 2 υ1Þδðτ1 2 υ2Þ

dτ1

5m3p1ðυ1Þδðυ1 2 υ2Þ ð5:24bÞ

Due to the Dirac, this expression also evaluates to zero for υ1 6¼ υ2 and can there-

fore be ignored.

For n5 2, we compute hP2½p2; xðtÞ�xðt2 υ1Þxðt2 υ2Þi using Equation (5.17) and

we get:

ðN
2N

ðN
2N

p2ðτ1; τ2Þ hxðt2 τ1Þxðt2 τ2Þxðt2 υ1Þxðt2 υ2Þi|ffl{zffl}
Equation ð5:6bÞ

dτ1 dτ2

zffl}|ffl{I

2
m3

m2

ðN
2N

p2ðτ1; τ1Þ hxðt2 τ1Þxðt2 υ1Þxðt2 υ2Þi|ffl{zffl}
m3δðτ1 2 υ1Þδðτ1 2υ2Þ

dτ1

zffl}|ffl{II

2 m2

ðN
2N

p2ðτ1; τ1Þ hxðt2 υ1Þxðt2 υ2Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2δðυ1 2 υ2Þ

dτ1

zffl}|ffl{III

ð5:24cÞ

106 Signal Processing for Neuroscientists, A Companion Volume

Term I in Equation (5.24c) is the most complex one and potentially consists of

four terms (Equation (5.6b)). Given that we have four delays τ1; τ2; υ1; υ2 and

taking into account the condition υ1 6¼ υ2; there are only two combinations that

remain to be considered: τ1 5 υ1 and τ2 5 υ2 and τ1 5 υ2 and τ2 5 υ1: The first

term can now be rewritten as:

ðN
2N

ðN
2N

p2ðτ1; τ2Þ hxðt2 τ1Þxðt2 τ2Þxðt2 υ1Þxðt2 υ2Þi|ffl{zffl}
m2

2
δðτ1 2 υ1Þδðτ2 2 υ2Þ1m2

2
δðτ1 2 υ2Þδðτ2 2 υ1Þ

dτ1 dτ2

5

ðN
2N

ðN
2N

p2ðτ1; τ2Þ½m2
2δðτ1 2 υ1Þδðτ2 2 υ2Þ1m2

2δðτ1 2 υ2Þδðτ2 2 υ1Þ�dτ1 dτ2

5m2
2

ðN
2N

ðN
2N

p2ðτ1; τ2Þδðτ1 2 υ1Þδðτ2 2 υ2Þdτ1 dτ2
|ffl{zffl}

p2ðυ1;υ2Þ

1m2
2

ðN
2N

ðN
2N

p2ðτ1; τ2Þδðτ1 2 υ2Þδðτ2 2 υ1Þdτ1 dτ2
|ffl{zffl}

p2ðυ2;υ1Þ

The double integral above can be evaluated by sifting for τ1 and τ2: Because we

assume that the kernel is symmetric around its diagonal, we can use

p2ðυ1; υ2Þ5 p2ðυ2; υ1Þ; and the above evaluates to:

2m2
2p2ðυ1; υ2Þ ð5:24dÞ

Term II in Equation (5.24c) can be written as:

2
m3

m2

ðN
2N

p2ðτ1;τ1Þm3δðτ12υ1Þδðτ12υ2Þdτ152
m2

3

m2

p2ðυ1;υ1Þδðυ12υ2Þ

ð5:24eÞ

Due to the delta function δðυ1 2 υ2Þ; this part can be neglected since it is zero for

υ1 6¼ υ2:
Term III in Equation (5.24c) evaluates to:

2m2

ðN
2N

p2ðτ1; τ1Þm2δðυ1 2 υ2Þdτ1 5 2m2
2

ðN
2N

p2ðτ1; τ1Þδðυ1 2 υ2Þdτ1

ð5:24fÞ

107Poisson�Wiener Series

This term can also be ignored because it equals zero for υ1 6¼ υ2:
To summarize Equation (5.24), the only nonzero term for υ1 6¼ υ2 is the result in

Equation (5.24d). Substituting this result into Equation (5.23), we get an expression

for our second-order Poisson�Wiener kernel p2:

hzðtÞxðt2 υ1Þxðt2 υ2Þi5 2m2
2p2ðυ1; υ2Þ-

p2ðυ1; υ2Þ5 1

2m2
2

hzðtÞxðt2 υ1Þxðt2 υ2Þi for υ1 6¼ υ2
ð5:25aÞ

Using the fact that the input x is a train of impulses, we can employ the same treat-

ment as for Equation (5.22a) and rewrite Equation (5.25a) as:

p2ðυ1; υ2Þ5 1

2m2
2

1

T

ðT
0

zðtÞ A
XN5ρT

i51

δðt2 ti 2 υ1Þ2 ρA

" #zffl}|ffl{1st copy of the input: xðt2 υ1Þ

3

A
XN5ρT

j51

δðt2 tj 2 υ2Þ2 ρA

" #zffl}|ffl{2nd copy of the input: xðt2 υ2Þ

dt

This expression generates four terms:

I :
A2

2m2
2

1

T

ðT
0

zðtÞ
XN5ρT

i51

δðt2 ti 2 υ1Þ
" # XN5ρT

j51

δðt2 tj 2 υ2Þ
" #

dt

II : 2
ρA2

2m2
2

1

T

ðT
0

zðtÞ
XN5ρT

i51

δðt2 ti 2 υ1Þdt5 μ2

2m2
2

Czxðυ1Þ; with:

Czxðυ1Þ5
1

ρT

XN5ρT

i51

zðti 1 υ1Þ and μ5 ρA

III : 2
ρA2

2m2
2

1

T

ðT
0

zðtÞ
XN5ρT

j51

δðt2 tj 2 υ2Þdt5
μ2

2m2
2

Czxðυ2Þ; with:

Czxðυ2Þ5
1

ρT

XN5ρT

j51

zðtj 1 υ2Þ and μ5 ρA

IV :
ρ2A2

2m2
2

1

T

ðT
0

zðtÞdt5 μ2

2m2
2

hzi

108 Signal Processing for Neuroscientists, A Companion Volume

Terms II�IV were evaluated in a similar fashion as in the first-order case in

Equation (5.22). After changing the order of the integration and summations, term

I above evaluates to:

A2

2m2
2

1

T

XN5ρT

i51

XN5ρT

j51

ðT
0

zðtÞ½δðt2 ti 2 υ1Þ�½δðt2 tj 2 υ2Þ�dt
|ffl{zffl}

zðti 1 υ1Þδðti 2 tj 1 υ1 2 υ2Þ

5
A2

2m2
2

ρ2T2

T

1

ρ2T2

XN5ρT

i51

XN5ρT

j51

zðti 1 υ1Þδðti 2 tj 1 υ1 2 υ2Þ|ffl{zffl}
Czxxðυ1;υ2Þ

5
μ2

2m2
2

TCzxxðυ1; υ2Þ

In the above expression we substituted μ for ρA (Equation (5.1a)); this is the first

moment of the original impulse train χ. Combining the results from the four terms

I�IV above, we have:

p2ðυ1;υ2Þ5 μ2

2m2
2

fTCzxxðυ1;υ2Þ2 Czxðυ1Þ1Czxðυ2Þ2hzi½ �g forυ1 6¼ υ2 ð5:25bÞ

The second-order correlation Czxxðυ1; υ2Þ is the average of ð1=ρ2T2ÞPN5ρT

i51

PN5ρT

j51

zðti 1 υ1Þ under the condition set by the Dirac δðti 2 tj 1 υ1 2 υ2Þ: This

condition is equivalent to sampling the values of output signal z when

ti 2 tj 1 υ1 2 υ2 5 0: This indicates that:

(1) The delay between the copies of the input is Δ5 υ2 2 υ1 5 ti 2 tj; which means that the

delays under consideration for creating the averages are equal to the differences Δ
between spike times ti; tj:

(2) There is a relationship between the individual delays given by υ2 5 ti 2 tj 1 υ1; which
represents a line in the υ1; υ2 plane at 45� and with an intercept at ti 2 tj:

This conditional average is therefore a slice through p2ðυ1; υ2Þ defined by this line.

The delays we consider are strictly given by ti 2 tj and the input to the averaging

procedure is zðti 1 υ1Þ: A representation of Czxx is shown in Fig. 5.5F. To keep

Fig. 5.5F compatible with the symbols in the other panels in this figure, the delay

υ1 is replaced by τ1 in the diagram.

5.4 Implementation of the Cross-Correlation Method

Because there is no standard command in MATLAB to create a series of ran-

domly occurring impulses following a Poisson process, we include an example

function Poisson.m to create such an impulse train (for details see Appendix

5.2). In MATLAB script Pr5_1.m , we use this function to create the input (in

109Poisson�Wiener Series

this example, impulses with amplitude of 2 units) to a nonlinear system consisting

of a first-order component (a low-pass filter) and a second-order component (a

low-pass filter amplifier with 53 amplification plus a squarer), similar to the sys-

tem in Fig. 3.2C. Typical traces for input and output are shown in Fig. 5.3. By

following the same steps depicted in Fig. 4.2 for the Wiener kernels, but now

using Equations (5.19), (5.22b), and (5.25b), we find the Poisson�Wiener kernels

for the system. Note that the cross-correlations are impulse-triggered averages in

this case.

The following MATLAB code is part of script Pr5_1.m and shows the compu-
tation of the first-order cross-correlation and first-order kernel p1 according to
Equation (5.22b) (Step 3 of the Lee�Schetzen method depicted in Fig. 4.2).

% Step 3. Create the first order average (see Fig. 4.2)

%

Czx5zeros(T,1);

for i51:length(time)-10 % to avoid problems by ignoring last

% 10 impulses

Czx5Czx+v0(time(i):time(i)+T-1);

end;

% Now we scale Czx by the # of spikes (i.e. length(time) 2 10, which is the

% # of trials in the average. Using Equation (5.22b):

p15(u1/m2)*((Czx/(length(time)-10))-mean(v0)); % Note that all scaling

% parameters

% u1, m2, and mean(v0)

% are at the ms - scale !

figure;

plot(p1)

title(‘first order Poisson-Wiener kernel’)

xlabel(‘Time (1 ms)’)

ylabel(‘Amplitude’)

20 ms

1 AU

Figure 5.3 Example of input (pulses,

lower line (black)) and output (dashed line

(red)) traces. The (green) line, following

the output closely, is the output

contribution from the Poisson�Wiener

kernels. The vertical scale is in arbitrary

units (AU). The VAF by the model output

in this example was 97.6%. All traces

were generated by Pr5_1.m .

110 Signal Processing for Neuroscientists, A Companion Volume

The percentage of variance accounted for (VAF, see Section 4.4 for its defini-

tion) by the output from the Poisson�Wiener kernels in this example is typically in

the high 90 s. This VAF number is fairly optimistic because, as can be seen in the

output trace in Fig. 5.3, a large number of points with a good match between output

(dashed red line) and predicted output (green line) are zero or close to zero; the

predicted output we mainly care about is (of course) the activity caused by the

input (impulses) and not the rest state.

5.5 Spiking Output

In Chapter 4, we considered continuous input to nonlinear systems with both contin-

uous and spiking output. So far in this chapter, we have analyzed nonlinear systems

with spike train input and continuous output. The possible cases one might encoun-

ter in neuroscience are summarized in Fig. 5.4. As you can see, the only case

remaining for our discussion is a nonlinear system with both spike input and output

(Fig. 5.4D). We can compute the Poisson�Wiener kernels by using the previously

found expressions (Equations (5.19), (5.22b), and (5.25b)). In this case, kernel p0
can be determined by the time average of the spike output. Just as in Equation (4.30)

p0 evaluates to the mean firing rate of the output. In Equations (5.22b) and (5.25b)

Stimulus

(A)

(B)

(C)

(D)

Presynaptic
current
injection

Presynaptic
current
injection

Incoming
spike
train

Incoming
spike
train

Response
Presynaptic
potential

Spike train

Presynaptic
potential

Outgoing
Spike
Train

Analog Analog

Analog Discrete

Discrete Analog

Discrete Discrete

Figure 5.4 Types of signals one may encounter for a system’s input and output in

neuroscience. In this example a synapse is used to symbolize the four different possibilities

(A�D). The incoming signal may be a GWN signal (analog�presynaptic current injection) or

a train of impulses following a Poisson process (discrete�incoming spike train). The output

can be a postsynaptic potential (analog) or a spike train (discrete). (Fig. 11.1 from Marmarelis

and Marmarelis (1978). With kind permission of Springer Science and Business Media.)

111Poisson�Wiener Series

we can see that computing first- and second-order kernels require first- and second-

order cross-correlations Czx and Czxx (in this case spike-triggered averages). The

procedures for obtaining these cross-correlations are depicted in Fig. 5.5G and H.

The first-order cross-correlation is a spike-triggered average; we use the input spikes

as the trigger (Fig. 5.5G). The second-order cross-correlation is triggered by coincid-

ing spikes of two copies from the input, one of which is shifted by amount Δ
(Fig. 5.5H). The procedures for obtaining these cross-correlation functions are very

similar to the ones discussed for a system with a spike input and continuous output,

as you can see by comparing panels E with G and F with H in Fig. 5.5.

5.6 Summary

The procedures for determining the first- and second-order cross-correlations for

the four scenarios in Fig. 5.4 are summarized in Fig. 5.5. The part of this

Figure 5.5 Summary of the procedures for determining first- and second-order

cross-correlation for the different scenarios depicted in Fig. 5.4. In all panels, x (green) is the

input and z (red) is the output. The panels for GWN input (A�D) are identical to Fig. 4.6A,

B, E, F. Panels E�H show the procedures for impulses as input. See text for further

explanation.

112 Signal Processing for Neuroscientists, A Companion Volume

figure for GWN input is identical to the overview in Fig. 4.6. The panels for

spike input show the procedures discussed in this chapter. In practice, the cross-

correlations required for computation of the Poisson�Wiener kernels can all be

obtained from spike-triggered averages (Fig. 5.5E�H). As such it is very similar

to the procedure we followed for nonlinear systems with GWN input and spike

output in Chapter 4 (Fig. 5.5C and D). The difference is that here we use the

input spikes, instead of the output spike train, to trigger the average; hence, we

determine forward cross-correlation instead of reversed correlation. This reflects

that the systems are considered causal (output is caused by input). Thus, a sys-

tem’s output shows reversed correlation with the input (Fig. 5.5C and D) and its

input is forward-correlated with its output (Fig. 5.5E�H). The procedures fol-

lowed to obtain the cross-correlations for systems with both continuous input

and output are depicted in Fig. 5.5A and B. Here the correlation products are

not spike-triggered and the delays of the copies of the input are determined for

each sample of the output z(t) (Chapter 4).

Appendix 5.1

Expectation and Time Averages of Variables Following a Poisson Process

The results for time averages of GWN are well known and were briefly summarized

in Appendix 4.1. For the application of impulse trains we use a different input signal,

the Poisson process (see section 14.2 in van Drongelen, 2007). Products of variables

following a Poisson process are important for determining the Poisson�Wiener

kernels when impulse trains are used as input to a nonlinear system. A similar deri-

vation was described by Krausz (1975) in his appendix A.2 Assuming that x(t)

follows a Poisson process, we can define the first moment as the Expectation of

x: Efxg: Because the signal is ergodic, we may replace this with a time average

hxi5 ð1=TÞ ÐT
0

xðtÞdt (see section 3.2 in van Drongelen, 2007, if you need to review

ergodicity and time averages). To simplify things further down the road, we start

from a demeaned impulse train so that (see Equation (5.1)):

Efxg5 hxi5 0 ðA5:1:1Þ

The Expectation of the second-order product, or cross-correlation, of variable

x is Efxðt2 τ1Þxðt2 τ2Þg (for cross-correlation, see section 8.4 in van Drongelen,

2007). Note that the expression we use here is slightly different from Equation

(8.13) in van Drongelen (2007): we substituted t2 τ1 and t2 τ2 for t1 and t2,

respectively. Because x follows a Poisson process, the factors xðt2 τ1Þ and

2 Please note that the derivation by Krausz contains minor errors for the moments m2 and m3, leading to

differences in the scaling of several of the derived expressions.

113Poisson�Wiener Series

xðt2 τ2Þ are independent if τ1 6¼ τ2; in this case we may replace the Expectation

with two separate ones—that is:

Efxðt2 τ1Þxðt2 τ2Þg5Efxðt2 τ1ÞgEfxðt2 τ2Þg5 0 for τ1 6¼ τ2

The above product evaluates to zero, because the first moment of our impulse train

is zero. The expression Efxðt2 τ1Þxðt2 τ2Þg is only nonzero if τ1 5 τ2; and (again)

because x is ergodic we may apply a time average hxðt2 τ1Þxðt2 τ2Þi: In

Section 5.2.1 you can see that the final result for the Expectation/time average of

the second-order product becomes:

Efxðt2 τ1Þxðt2 τ2Þg5 hxðt2 τ1Þxðt2 τ2Þi5m2δðτ1 2 τ2Þ ðA5:1:2Þ

The Expectation of the third-order product Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þg
equals zero by independence if τ1 6¼ τ2 6¼ τ3; since in this case we can rewrite the

expression as:

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þg5Efxðt2 τ1ÞgEfxðt2 τ2gEfxðt2 τ3Þg5 0

for τ1 6¼ τ2 6¼ τ3

If only one pair of τ’s is equal (i.e., τ1 5 τ2 6¼ τ3 or τ1 6¼ τ2 5 τ3), we can make

the substitutions τ1 5 τ2 or τ2 5 τ3 and then separate the Expectation into two

factors:

Efxðt2τ1Þxðt2τ2Þxðt2τ3Þg5Efxðt2τ1Þxðt2τ1Þxðt2τ3Þg
5Efxðt2τ1Þ2xðt2τ3Þg
5Efxðt2τ1Þ2gEfxðt2τ3Þg50

for τ15 τ2 6¼ τ3

and,

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þg5Efxðt2 τ2Þ2gEfxðt2 τ1Þg5 0 for τ1 6¼ τ25 τ3

In all of the above cases, the expressions evaluate to zero because Efxg5 0;
and the only instance where the Expectation of the third-order product is nonzero

is for τ1 5 τ2 5 τ3: In this case (due to ergodicity), it may be replaced by

hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þi (see Equation (5.5b)). The final nonzero result is:

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þg5 hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þi
5m3δðτ1 2 τ2Þδðτ1 2 τ3Þ ðA5:1:3Þ

114 Signal Processing for Neuroscientists, A Companion Volume

The Expectation of the fourth-order product Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þ
xðt2 τ4Þg is zero by independence if:

I: τ1 6¼ τ2 6¼ τ3 6¼ τ4

and nonzero if all delays are equal:

II: τ1 5 τ2 5 τ3 5 τ4

Using the time average approach we use in Section 5.2, we find the following for

the fourth moment:

m4 5 hx4i5 1

T

ðT
0

½ρTðA2AρÞ4δðtÞ1 ð12 ρÞTð2AρÞ4δðtÞ�dt

This can be written as:

m4 5 hx4i5 ρA4ð12 4ρ1 6ρ2 2 3ρ3Þ5 ρA4½ρð12 ρÞ2 1 ð12 ρÞð12 2ρÞ2�

Including the condition τ1 5 τ2 5 τ3 5 τ4; we find that the averaged product is:

hxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þxðt2 τ4Þi5m4δðτ1 2 τ2Þδðτ1 2 τ3Þδðτ1 2 τ4Þ
ðA5:1:4Þ

in which the δ functions represent the condition that all delays must be equal for a

nonzero result. Three alternatives with three equal delays are:

III: τ1 6¼ τ2 5 τ3 5 τ4
IV: τ1 5 τ2 6¼ τ3 5 τ4
V: τ1 5 τ2 5 τ3 6¼ τ4

In all three cases III�V, the Expectation of the fourth-order product evaluates to

zero. For instance in case V we have:

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þxðt2 τ4Þg5Efxðt2 τ1Þ3xðt2 τ4Þg
5 Efxðt2 τ1Þ3g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

m3

Efxðt2 τ4Þg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

5 0

for τ1 5 τ2 5 τ3 6¼ τ4

Finally, we have three cases in which delays are equal in pairs:

VI: τ1 5 τ2 and τ3 5 τ4
VII: τ1 5 τ3 and τ2 5 τ4
VIII: τ1 5 τ4 and τ2 5 τ3

115Poisson�Wiener Series

These cases evaluate to a nonzero value. For instance, in case VI we get:

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þxðt2 τ4Þg5Efxðt2 τ1Þ2xðt2 τ3Þ2g

5 Efxðt2 τ1Þ2g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m2

Efxðt2 τ3Þ2g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m2

5m2
2

for τ1 5 τ2 and τ3 5 τ4

If we represent the conditions τ1 5 τ2 and τ3 5 τ4; with Dirac delta functions, we

get the final result for case VI:

m2
2δðτ1 2 τ2Þδðτ3 2 τ4Þ

To summarize the results for the Expectation of the fourth-order product:

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þxðt2 τ4Þg
τ1 5 τ2 and τ3 5 τ4 : m4δðτ1 2 τ2Þδðτ1 2 τ3Þδðτ1 2 τ4Þ
τ1 5 τ2 and τ3 5 τ4 : m2

2δðτ1 2 τ2Þδðτ3 2 τ4Þ
τ1 5 τ3 and τ2 5 τ4 : m2

2δðτ1 2 τ3Þδðτ2 2 τ4Þ
τ1 5 τ4 and τ2 5 τ3 : m2

2δðτ1 2 τ4Þδðτ2 2 τ3Þ
0 otherwise

8>>>>><
>>>>>:

ðA5:1:5Þ

In Section 5.3.3 we have to evaluate a case where we know that one pair of

delays cannot be equal. Note that in such a case we have to combine from

alternatives VI�VIII. For example if τ2 6¼ τ3; we have two possibilities for pair

forming:

(a) τ1 5 τ2 and τ3 5 τ4 in which pair τ1; τ2 is independent from pair τ3; τ4
(b) τ1 5 τ3 and τ2 5 τ4 in which pair τ1; τ3 is independent from pair τ2; τ4:

Now we can write the Expectation for τ2 6¼ τ3 as the sum of (a) and (b):

Efxðt2 τ1Þxðt2 τ2Þxðt2 τ3Þxðt2 τ4Þg τ2 6¼τ3

5Efxðt2 τ1Þ2xðt2 τ3Þ2g1Efxðt2 τ1Þ2xðt2 τ2Þ2g

5 Efxðt2 τ1Þ2g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m2

Efxðt2 τ3Þ2g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m2

zffl}|ffl{case a

1 Efxðt2 τ1Þ2g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m2

Efxðt2 τ2Þ2g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m2

zffl}|ffl{case b

5m2
2δðτ1 2 τ2Þδðτ3 2 τ4Þ1m2

2δðτ1 2 τ3Þδðτ2 2 τ4Þ ðA5:1:6Þ

116 Signal Processing for Neuroscientists, A Companion Volume

Appendix 5.2

Creating Impulse Trains Following a Poisson Process

For the generation of a series of random numbers following a Gaussian or a uni-

form distribution, we use MATLAB commands randn and rand , respectively. A

standard MATLAB command for generating a series of intervals according to a

Poisson process does not exist. Therefore, we will apply a Monte Carlo technique

to create such an impulse train according to a Poisson process. Our target is to fol-

low a Poisson process characterized by probability density function (PDF) ρe2ρx

(see Chapter 14 in van Drongelen, 2007). This works as follows. First we generate

pairs of independent random numbers x,y with the MATLAB rand command.

Because the rand command generates numbers between 0 and 1, x is multiplied

with the maximal epoch value we want to consider, in order to rescale it between 0

and the maximum interval. Second, for each trial we compute p5 ρe2ρx; which is

the probability p for interval x to occur according to the Poisson process. So far we

will generate intervals x where all intervals have an equal probability because the

MATLAB rand command is uniformly distributed. The second random number y

associated with the randomly generated interval will also be evenly distributed

between 0 and 1. We now only include pairs x,y in our series if y, p and discard

all others (Fig. A5.2.1); by following this procedure, the accepted intervals x obey

the Poisson process because the probability that they are retained is proportional

with ρe2ρx; which is the desired probability. This procedure can, of course, be used

for other distributions as well; it is known as the accept�reject algorithm.

Figure A5.2.1 The Poisson process PDF can be used to create series of intervals obeying a

Poisson process. Pairs of random uniformly distributed numbers x,y are generated: x is

scaled between 0 and the maximum epoch length (1000 in this example) and y between 0

and 1. Each pair is then plotted in the X�Y plane. If y, ρe2ρx the point is accepted (green);

otherwise it is rejected (red). If sufficient numbers are evaluated, the result is that epochs are

retained according to the PDF describing the Poisson process.

117Poisson�Wiener Series

The following MATLAB snippet of the function Poisson.m shows an imple-
mentation of the procedure to generate a series of intervals following a Poisson
process. This function is applied in pr5_1.m . Note that this routine also avoids
intervals that are smaller than one bin because we do not allow for superimposed
impulses.

i=1;

while (i, len)

x=rand;y=rand; % two random numbers scaled 0-1

x=x*epoch; % the interval x is scaled 0-epoch

p=rate*exp(-rate*x); % the probability associated with the interval

% using the second random number using the

% Poisson process PDF

if (y, p); % Is the probability below the random # ?

if x. 1; % Avoid intervals that are too small (, 1 bin)

series(i)=x; % else the interval is included

i=i+1;

end;

end;

end;

118 Signal Processing for Neuroscientists, A Companion Volume

6 Decomposition of
Multichannel Data

6.1 Introduction

In the previous chapters we mainly focused on the analysis of single-input/single-

output systems, single-channel data, or single images. Even when we worked with

images, we worked with one row or column of pixels at a time. At most, we con-

sidered pairs of signals when we determined cross-correlation or coherence, or

when we looked into input�output relationships. Although these techniques form a

basis for analysis in neuroscience research, current studies usually collect multiple

channels and/or movies of neural activity.

Examples of commonly encountered multichannel data sets are electroencepha-

lograms (EEG), electrocorticograms (ECoG), recordings with multi-electrode

arrays, a sequence of functional magnetic resonance images (fMRI), or movies

made from neural tissue with voltage-sensitive or calcium indicator dyes. In these

examples we deal not just with two or three simultaneously recorded signals, but

with potentially overwhelming numbers of channels consisting of both spatial and

temporal components. In the ECoG, each channel is at a certain location recording

signals evolving over time; in both an fMRI sequence and a movie, the neural sig-

nals are represented by the intensity of each pixel as a function of time. Suppose

we digitized an fMRI set with 128 samples in time where each image is 1283 128

pixels, we would now have a huge data set consisting of 12835 2,097,152 points.

Say we sample ECoG at a rate of 400 samples per channel per second and we

record 128 channels for 60 s, resulting in a 1-min data set of 1283 4003 605
3,072,000 data points. Examples of a small part of a 128-channel ECoG recording

and a 21-channel EEG are shown in Fig. 6.1.

Typical goals for multichannel data processing are data reduction, decomposi-

tion, or investigation of the causal structure within the data. In the case of data

reduction, we attempt to find the signal and noise components, and in the case of

decomposition, our goal is to find the basic signal components that are mixed into

the multichannel data set. Of course, both of these approaches are related. Suppose

we have a measurement of brain activity during a task, and the activity associated

with the task is signal while the remaining activity can be considered noise. If we

can decompose our measured brain activity into these basic components, we have

effectively used decomposition as a tool for data reduction.

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00006-1

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00006-1

Although we will discuss multichannel analysis of data sets with large numbers

of signals, we will introduce examples with strongly reduced data sets of two or

three channels. The idea is to illustrate principles that are valid in high-dimensional

data space with 2D or 3D examples. Throughout this chapter, we will demonstrate

principles rather than formally prove them. First, we will show the general princi-

ple of mixing and unmixing of signals (Section 6.2), and then we will go into the

details of specific strategies: principal component analysis (PCA; Section 6.3) and

independent component analysis (ICA; Section 6.4). If you are interested in proofs,

see texts on this topic (e.g., Bell and Sejnowski, 1995; Stone, 2004), on linear

algebra (e.g., Jordan and Smith, 1997; Lay, 1997), and on information theory (e.g.,

Cover and Thomas, 1991; Shannon and Weaver, 1949).

6.2 Mixing and Unmixing of Signals

The underlying model of decomposition is that the signals of interest are mixtures

of sources. For instance, our ear detects sounds from different sources

Figure 6.1 (A) Part of an intracranial 128-channel recording from a patient with epilepsy.

Only a limited number of channels are shown: 15 channels of a right parietal grid (RPG), 7

channels from a right anterior temporal strip (RAT), and 7 from a right superior temporal strip

(RST). The activity associated with a seizure onset starts with rapid oscillations in channel

RST1 and eventually results in a spread of oscillatory activity in almost all channels. (B) A

21-channel scalp EEG recording from a different patient with epilepsy. The large-amplitude

waveforms in this recording are epileptic spikes. The interval in between the asterisks

(highlighted in yellow) is used for further analysis in Fig. 6.15.

120 Signal Processing for Neuroscientists, A Companion Volume

simultaneously, such as someone talking to us, the noise of a fan, and music from a

radio. Another example is an EEG electrode that picks up electrical activity from

several parts of the brain. In other words, a set of measured signals Yn consists of

channels that are mixtures from a number of sources Xn. For now we assume that

the number of sources is equal to or smaller than the number of signals we record.

In this case the problem of mixing and unmixing can be defined mathematically.

Let us consider a concrete example where we have three sources X1�X3 and three

sensors Y1�Y3 (Fig. 6.2). The sensors pick up the signal from each source, but the

signal is attenuated when traveling from source to sensor and the attenuation is pro-

portional with distance. The level of attenuation in Fig. 6.2 is indicated by the

width of the arrows: the signal from the source closest to the sensor attenuates

least, only by a factor of 0.8. The signals from the other sources attenuate more,

depending on distance, by a factor of 0.6 or a factor of 0.2 respectively. If we look

at sensor Y1 we can see that it will pick up 0.83 the signal from source X1 plus

R

Figure 6.2 A mix of signals originating from three sources X (X1�X3) is recorded by three

sensors Y (Y1�Y3). The signal from source to sensor is attenuated with distance. The amount

of attenuation is symbolized by the width of the arrows (there are only three widths in this

example: 0.8, 0.6, or 0.2). The mixing process can be represented by the matrix multiplication

Y5AX, in which A is the mixing matrix. The unmixing process can be represented by

X5A21Y, in which the unmixing matrix A21 is the inverse of A.

121Decomposition of Multichannel Data

0.63 the signal from source X2 plus 0.23 the signal from source X3. Similar rules

can be found for the other sensors Y2 and Y3. The measurements at the three sensors

in Fig. 6.2 can be represented by a linear system of three equations:

Y1 5 0:8X1 1 0:6X2 1 0:2X3

Y2 5 0:6X1 1 0:8X2 1 0:6X3

Y3 5 0:2X1 1 0:6X2 1 0:8X3

Because this system has three equations with three unknowns X1�X3 (note that

Y1�Y3 are known because they are measured), we can solve the system of equa-

tions above for the source signals X1�X3. We can put the equations in matrix form:

Y 5AX ð6:1aÞ

in which,

Y 5
Y1
Y2
Y3

2
4

3
5; X5

X1

X2

X3

2
4

3
5; and the mixing matrix A5

0:8 0:6 0:2
0:6 0:8 0:6
0:2 0:6 0:8

2
4

3
5

represents the attenuation coefficients for the setup in Fig. 6.2. The fact that

A(i,j)5A(j,i) (i.e., the mixing matrix A is symmetric) is due to the symmetric setup

of the example in Fig. 6.2; this is not necessarily the case for a generic mixing

matrix. Now suppose that we have recorded a time series of four samples from the

three sensors and we want to know the signals from the individual sources.

Because we know that Y 5AX we can compute X by X5A21Y; where A21 is the

inverse of A (here we assume that the inverse of A exists). If we take an example

where the sources emit the following signals at times t1�t4 (indicated as source sig-

nals in the right panel in Fig. 6.2):

t1 t2 t3 t4
X1 : 24:1667 1:6667 33:3333 17:5000
X2 : 232:5000 0:0000 255:0000 222:5000
X3 : 20:8333 3:3333 41:6667 17:5000

Our sensors will pick up:

Y 5AX5
0:8 0:6 0:2
0:6 0:8 0:6
0:2 0:6 0:8

2
4

3
5 24:1667 1:6667 33:3333 17:5000

232:5000 0:0000 255:0000 222:5000
20:8333 3:3333 41:6667 17:5000

2
4

3
5

5
4:0 2:0 2:0 4:0
1:0 3:0 1:0 3:0
2:0 3:0 7:0 4:0

2
4

3
5

122 Signal Processing for Neuroscientists, A Companion Volume

So our measurement (indicated as recorded signals in the left panel in Fig. 6.2)

will be:

t1 t2 t3 t4
Y1 : 4 2 2 4

Y2 : 1 3 1 3

Y3 : 2 3 7 4

Because we know mixing matrix A, we compute its inverse (if you want to check

this example in MATLAB, the inverse of a matrix can be obtained with the inv

command) so that we can estimate the source activity X̂ from the measurements:

X̂5A21Y ð6:1bÞ

That is:

24:1667 1:6667 33:3333 17:5000

232:5000 20:0000 255:0000 222:5000

20:8333 3:3333 41:6667 17:5000

2
64

3
75

|ffl{zffl}
X̂

5

5:8333 27:5000 4:1667

27:5000 12:5000 27:5000

4:1667 27:5000 5:8333

2
64

3
75

|ffl{zffl}
A21

4:0 2:0 2:0 4:0

1:0 3:0 1:0 3:0

2:0 3:0 7:0 4:0

2
64

3
75

|ffl{zffl}
Y

As you can see, our estimate X̂ for X is perfect (except for any precision errors due to

computation). Although this example clarifies the mixing and unmixing process, it is

not very helpful in practical applications (even if we ignore the effects of noise that

would be present in any real recording) because the mixing matrix is unknown and/or

the number of sources outnumbers the number of sensors. In the remainder of this

chapter we will focus on what one can do if the mixing matrix is unknown. In this

case, we want to separate the sources while we are “blind” with respect to the mixing

process; therefore, these procedures are called blind source separation (BSS). We

will specifically focus on two of these techniques: PCA and ICA.

6.3 Principal Component Analysis

In this section we introduce the concept of decomposing multichannel data into its

principal components. With PCA of a multidimensional measurement, one can find

the directions of maximal and minimal variance in the multidimensional measure-

ment space. We will see that these directions are orthogonal, indicating that the

123Decomposition of Multichannel Data

components extracted with PCA are uncorrelated. We will introduce the technique

by analyzing a concrete 3D example of four measurements S1�S4, each observation

Sn having three values or signals s1, s2, and s3 (one for each of the three dimensions):

S1 5
4

1

2

2
4

3
5 S2 5

2

3

3

2
4

3
5 S3 5

2

1

7

2
4

3
5 S4 5

4

3

4

2
4

3
5 ð6:2aÞ

The mean vector of these four observations, M, contains the mean for each of the

three signals m1, m2, and m3:

M5
1

4
S11S21S31S4f g51

4

4

1

2

2
4

3
51 2

3

3

2
4

3
51 2

1

7

2
4

3
51 4

3

4

2
4

3
5

8<
:

9=
;5

m1

m2

m3

2
4

3
55 3

2

4

2
4

3
5 ð6:2bÞ

A 3D plot of the observations and their mean is shown in Fig. 6.3A. If we now

demean our four observations—that is, we subtract M from S1 to S4 (as we gener-

ally do with our signals before processing them)—and we group the demeaned

observation in matrix B, we have:

B5
42 3 22 3 22 3 42 3

12 2 32 2 12 2 32 2

22 4 32 4 72 4 42 4

2
4

3
55

1 21 21 1

21 1 21 1

22 21 3 0

2
4

3
5 ð6:3Þ

In statistics, a data set from multichannel observations such as the concatenated

matrix S5 S1 S2 S3 S4
� �

or matrix B is called multivariate data. A scatter

plot of the demeaned observations is shown in Fig. 6.3B. Note that the new mean

value is now at the origin, and so we have in effect translated the axes of our coor-

dinate system. From B, we can compute the covariance matrix C. Since we have

three variables (s1, s2, s3) in each observation, the covariance matrix is 3 3 3. If

we have N observations, each entry in the matrix can be computed by

Cði; jÞ5 1=ðN2 1Þ PN
n5 1

ðsi 2miÞnðsj 2mjÞn: In this example, C is a 3 3 3 matrix, i

and j range from 1 to 3, and N is the number of observations, in this example

N5 4 (since we have observations S1�S4). In matrix notation this notation can be

simplified to:

C5
1

N2 1
BBT 5

1

3

1 21 21 1

21 1 21 1

22 21 3 0

2
4

3
5 1 21 22

21 1 21

21 21 3

1 1 0

2
664

3
775

5
1:33 0 21:33

0 1:33 20:67
21:33 20:67 4:67

2
4

3
5

ð6:4Þ

124 Signal Processing for Neuroscientists, A Companion Volume

The superscript “T” indicates the transpose of matrix B (in the transpose rows and

columns are interchanged such that B(i,j) - B(j,i)). Each value in the diagonal of C

represents the variance of the b1, b2, and b3 values of observation vectors Bn. So the

sum of the diagonal elements, the trace of C written as trðCÞ; is the total variance.

Each off-diagonal element is a covariance value—for example, C(2,3) is the covari-

ance between the b2 and b3 coordinates. Of course, C(3,2) is the same value because

it is the covariance between the b3 and b2 coordinates. Therefore a covariance matrix

is always a symmetric matrix (see the example in Equation (6.4)). A more formal

way to establish symmetry for covariance matrices is to show that interchanging the

rows and columns (transposition) of covariance matrix C results in the same matrix:

that is, C5CT: From Equation (6.4) we can establish that C is proportional with

BBT (by a factor of 1/(N2 1)) and the transposing operation on C can be represented

by ðBBTÞT 5BTTBT (recall that the multiplication order of matrices switches when

taking their transpose). Because the transpose of a transposed matrix is the original

matrix again, we may simplify this outcome BTTBT 5BBT; which shows that

ðBBTÞT 5BBT—that is, the transpose of BBT is BBT again.

If C(i,j) for i6¼j is zero, there is no covariance or correlation between bi and bj. It

may be clear that analysis of multivariate data is simpler when all signals are uncor-

related—that is, a covariance matrix that is diagonal, which means that all off-diag-

onal elements are zero. This is exactly the goal of the decomposition with PCA.

Note: Correlation (ρxy) between two variables x and y is a normalized version of

the covariance (Cov(x,y)) between x and y—that is, ρxy 5Covðx; yÞ=σxσy— with

standard deviations σx and σy for x and y, respectively. The effect of this normal-

ization is that the correlation coefficient ρxy is scaled between 2 1 and 1.

5

0

5
5 0 5 0 5

S

S
S

V

V

V
V

5

0

5
5 0 5 0

5

B

B

B
BS

Figure 6.3 (A) A 3D plot of four observation vectors S1�S4 (Equation (6.2a)) and their mean

valueM (Equation (6.2b)). (B) The same points, now indicated as B1�B4 because they are

plotted against axes that are translated so that the meanM becomes the new origin. (C) Finally

we plot the same points (now indicated as V1�V4) against axes that are also rotated to reflect

the directions of the three principal components. The first principal component is indicated by

the double arrow (red). This illustration was made with MATLAB script Pr6_1.m (available on

http://www.elsevierdirect.com/companions/9780123849151); the numerical values can be found

in Table 6.1.

125Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151

6.3.1 Finding Principal Components

To summarize the above, the strategy of PCA is to manipulate our demeaned obser-

vations Bn (b1, b2, b3)n for which correlations between bi and bj may exist into

transformed data Vn (v1, v2, v3)n such that all correlations between vi and vj vanish.

Again, mathematically this means that the covariance matrix C of B may contain

nonzero off-diagonal elements (see, e.g., Equation (6.4)), but the covariance matrix

Σ of V must be a diagonal matrix (all off-diagonal elements are zero). Let us con-

tinue with our example and use the PCA approach to find the components. We first

introduce and apply the method; later we justify the procedure in the context of the

above strategy.

Continuing the numerical example above, we will show that the 3 3 3 covari-

ance matrix C in Equation (6.4) can be diagonalized by applying a linear transfor-

mation. To accomplish this, we first define a 3 3 3 matrix of orthogonal column

vectors U5 U1 U2 U3

� �
and a 3 3 3 diagonal matrix Σ with diagonal entries

λ1�λ3, and group our demeaned observations Bn in matrix B (Equation (6.3)). We

can compute:

CU5 CU1 CU2 CU3 �
� ð6:5aÞ

and

UΣ5 U1 U2 U3

� � λ1 0 0

0 λ2 0

0 0 λ3

2
4

3
55 λ1U1 λ2U2 λ3U3 �

� ð6:5bÞ

Note that Σ is a diagonal matrix. Now let us assume that our covariance matrix C

is diagonalizable such that:

C5UΣU21 and Σ5U21CU ð6:5cÞ

(note that we also assumed that U is invertible). If we right-multiply the first

expression in Equation (6.5c) by U we get:

CU5UΣ ð6:5dÞ

This result indicates that if C is diagonalizable, then the expressions in Equations

(6.5a) and (6.5b) must be equal. If we equate the individual columns in the matri-

ces in Equation (6.5d), we get:

CU1 5λ1U1; CU2 5λ2U2; and CU3 5λ3U3 ð6:5eÞ

The result in Equation (6.5e) shows that λ1�λ3 and U1�U3 must be the eigenva-

lues and corresponding eigenvectors of the covariance matrix C. See Appendix 6.1

if you need to review the concept of eigenvalues and eigenvectors; if you need

126 Signal Processing for Neuroscientists, A Companion Volume

more than a quick review, see a text on linear algebra such as the first part of

Jordan and Smith (1997) or Lay (1997).

Because C is a symmetric matrix, its eigenvectors are orthogonal vectors. We

can show this property of symmetric matrices by considering a simple 2D case

where we have two distinct eigenvalues (λ1 and λ2) with two corresponding eigen-

vectors (U1 and U2). To show that these vectors are orthogonal, we show that their

scalar product equals zero.

Note: Recall that the inner product (also called scalar product or dot product)

of two vectors -a and -
b is given by ab cos φ; where a and b are the lengths of

the vectors and φ is the angle between them. If the vectors are orthogonal, φ
equals 90� and the outcome of the dot product is zero.

We can show that the dot product U1UU2 5 0 by computing the following

expression:

λ1U1UU2 5 ðλ1U1ÞTU2 5 ðCU1ÞTU2 5UT
1C

TU2 ð6:6aÞ

Here we changed the vector dot product notation into vector notation

U1UU2 5U1
TU2 (note the presence of the dot in the far-left expression), and we

used the definition of the eigenvalue/eigenvector of C : λ1U1 5CU1 (Appendix

6.1). We know that C is a covariance matrix that must be symmetric; therefore,

C5CT: Using this property for symmetric matrices, we get:

UT
1C

TU2 5UT
1 ðCU2Þ5UT

1 ðλ2U2Þ5λ2U
T
1U2 5λ2U1UU2 ð6:6bÞ

Note the dot in the last expression. Combining Equations (6.6a) and (6.6b), we

may conclude that for the symmetric covariance matrix:

λ1U1UU2 5λ2U1UU2-ðλ1 2λ2ÞU1UU2 5 0 ð6:6cÞ

Because we deal with two distinct eigenvalues, we know that ðλ1 2λ2Þ 6¼ 0 and

therefore the scalar product U1UU2 5 0; indicating that the angle between the two

eigenvectors of a symmetric matrix must be 90�. Thus the two vectors are orthogo-

nal (perpendicular):

U1\U2 ð6:6dÞ

So if we need an orthogonal matrix, we can use the orthogonal eigenvectors of the

covariance matrix to create the matrix U to transform the observed demeaned data.

Let us apply the results from the above paragraphs to our numerical example

(Equations (6.2)�(6.4)). First we must find a 3 3 3 matrix of orthogonal eigenvectors

vectors U5 U1 U2 U3 �
�

to transform the demeaned data—that is, B5UV:

127Decomposition of Multichannel Data

Matrix V contains the transformed vectors V1�V4. This means that for each demeaned

observation Bn we want to identify an orthogonal change of variable Vn such that:

Bn 5UVn-
b1
b2
b3

2
4

3
5
n

5 ½U1 U2 U3 �
v1
v2
v3

2
4

3
5
n

ð6:7Þ

Recall that in the above U1�U3 are column vectors so that U is a 3 3 3 matrix

ui,j, that is, b1 5 u1;1 3 v1 1 u1;2 3 v2 1 u1;3 3 v3; etc. Assuming again that U is

invertible, we can write the relationship in Equation (6.7) as Vn 5U21Bn: Since
U is an orthogonal matrix, its inverse is equal to its transpose (see a linear alge-

bra text such as Lay, 1997, if you need to review this), so we may write

U21Bn 5UTBn: Recalling how we computed the covariance matrix C from B and

its transpose (Equation (6.4)), we can now find the covariance matrix Σ for V:

Σ 5
1

N2 1
VVT 5

1

N2 1
ðUTBÞðUTBÞT since V 5UTB

5
1

N2 1
UTBBTU since ðUTBÞT 5BTU

5UT 1

N2 1
BBT

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C: Equation ð6:4Þ

U5UTCU

ð6:8aÞ

So the orthogonal matrix U can relate C to Σ:

Σ5UTCU5U21CU ð6:8bÞ

In the above we used again U21 5UT to obtain a result for Σ that is the same as the

second expression in Equation (6.5c). Thus the covariance matrix for transformed

observations Vn is the diagonal matrix Σ. Because the off-diagonal elements (the

covariance values) of Σ are zero, v1, v2, and v3 of the transformed observations are

uncorrelated. The diagonal elements of Σ, eigenvalues λ1�λ3, are the variance values
for the transformed observations v1�v3. Convention for PCA is that the eigenvalues

and associated eigenvectors are sorted from high to low eigenvalues (variance).

6.3.2 A MATLAB Example

If we compute the eigenvalues and eigenvectors for covariance matrix C, we can

transform our demeaned observations depicted in Fig. 6.3B. In MATLAB this can

be easily accomplished with the eig command—that is, [UU,SIGMA]5 eig(C) .

In our example, we obtain three eigenvectors that form a rotated set of axes relative

to the translated axes in Fig. 6.3B. This is because the eigenvectors are orthogonal

(i.e., perpendicular) (Equation (6.6d)). If we arrange the eigenvectors according to

128 Signal Processing for Neuroscientists, A Companion Volume

the magnitude of their associated eigenvalues (variance), we get the first, second,

and third principal components (note then that the first principal component is

along the direction of greatest variance). In Fig. 6.3C the first component is indi-

cated by a double arrow (red) and the remaining two components by lines (black);

in this example it is easy to see that the first component is in the direction of maxi-

mal variance. The covariance matrix C and its eigenvectors and eigenvalues

(grouped in Σ and sorted for the eigenvalues in descending order) are:

C5
1:3333 0 21:3333

0 1:3333 20:6667
21:3333 20:6667 4:6667

2
4

3
5

(See also Equation (6.4))

U5
20:3192 0:4472 0:8355
20:1596 20:8944 0:4178
0:9342 0 0:3568

2
4

3
5

and

Σ5
5:2361 0 0

0 1:3333 0

0 0 0:7639

2
4

3
5

Note: If you do this example in MATLAB, the eig command sorts the eigen-

values from low to high. This is in ascending order, which is contrary to con-

vention for PCA. Therefore, the order of the diagonal entries in SIGMA and

Σ and the order of the associated eigenvectors (columns) in UU and U are

reversed.

Suppose we want to find the coordinates of our observations S1�S4 on the

translated-and-rotated set of axes (Fig. 6.3C)—in other words, the projections of

the observations on the eigenvectors. Let us look into our numerical example how

this can be accomplished by computing the projection of the first observation on

the first principal component. First, we take point B1 (corresponding to a demeaned

version of the first observation S1 in Equation (6.2a) and depicted in Fig. 6.3B),

which is the first column of B in Equation (6.3):

B1 5
1

21

22

2
4

3
5

129Decomposition of Multichannel Data

Now let us take the first eigenvector, which is the first column of matrix U:

U1 5
20:3192
20:1596
0:9342

2
4

3
5

The projection of the first point (black in Fig. 6.3) on this eigenvector can be deter-

mined by the scalar product of the two vectors:

B1UU1 5BT
1U1 5 ½ 1 21 22 �

20:3192
20:1596
0:9342

2
4

3
5522:0279

The above can easily be checked in MATLAB after running the example program Pr6_1.

m (available on http://www.elsevierdirect.com/companions/9780123849151). Use B(:,1)

and U(:,1) for B1 and U1 respectively; the scalar product can be computed with B

(:,1)’*U(:,1) (note the ’ for transposing B(:,1)). The outcome is 2 2.0279, the projection

of the first point on the first eigenvector. The projection of the first point on the second

and third eigenvectors will be scalar products B1UU2 and B1UU3 (note the dots). For the

second point B2 (red in Fig. 6.3) we can repeat the procedure: B2UU1; B2UU2; and
B2UU3: The same, of course, is true for the third (blue, Fig. 6.3) and the fourth (green,

Fig. 6.3) points. We can compute all the scalar products V at once with the matrix multi-

plication BTU: This will generate the coordinates of all four points on the three eigenvec-
tors. The results for our numerical example are summarized in Table 6.1.

Table 6.1 Principal Component Analysis: Numerical Example

S5 [S1 S2 S3 S4] Original observations

s1 4.0000 2.0000 2.0000 4.0000 Fig. 6.3A

s2 1.0000 3.0000 1.0000 3.0000

s3 2.0000 3.0000 7.0000 4.0000

B5 [B1 B2 B3 B4] Demeaned observations

b1 1.0000 21.0000 21.0000 1.0000 Fig. 6.3B

b2 21.0000 1.0000 21.0000 1.0000

b3 22.0000 21.0000 3.0000 0

V5 [V1 V2 V3 V4] Projections on eigenvectors

v1 22.0279 20.7746 3.2812 20.4787 Fig. 6.3C

v2 1.3416 21.3416 0.4472 20.4472

v3 20.2959 20.7746 20.1829 1.2533

Summary of PCA on four observations S1�S4. These data points are plotted in Fig. 6.3A. First the data are demeaned
in B1�B4 so that a new set of axes with its origin in the point of gravity of all points is obtained (Fig. 6.3B). Finally
the axes are rotated using the PCA (Fig. 6.3C). Note that the first component axis (double arrow, red in Fig. 6.3C)
indicates the direction of largest variance, easily appreciated when looking at the position of the first (V1, black) and
third (V3, blue) points in Fig. 6.3C. For clarity, these extreme values for the first component v1 are indicated in bold in
the table (v1 in vectors V1 and V3).

130 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151

Note: In some texts the projection on the first eigenvector (row v1 in

Table 6.1) is indicated as the first principal component, the projections v2 on

the second eigenvector is then the second principal component, etc. To sum-

marize, depending on the text, the principal components can be the eigenvec-

tors U1�U3 or the projections of the observations on these vectors v1�v3, and

in some texts the term “principal component” is used for both.

The variance in each direction (i.e., for each component v1, v2, and v3) is easily

calculated in MATLAB after running the program Pr6_1.m with the std com-

mand: std(Vu).^2 . The outcome of this calculation is 5.2361, 1.3333, 0.7639; as

expected, these values correspond to the eigenvalues in Σ. Because the origin of

the axes in Fig. 6.3C is the same as in panel B, the mean of the components v1�v3
remains zero (mean(Vu)). Further we can test for zero covariance—that is, testing

that the off-diagonal entries of the covariance matrix (1/3)*V*Vu are indeed zero.

The result is:

5.2361 0.0000 20.0000

0.0000 1.3333 0.0000

20.0000 0.0000 0.7639

The outcome is as expected: the diagonal elements are again the variances for

v1�v3 and all covariance values are zero.

6.3.3 Singular Value Decomposition

A common technique to compute the eigenvalues and eigenvectors of the covari-

ance matrix directly from the demeaned observations is singular value decomposi-

tion. This technique is based on the fact that any rectangular matrix, such as the

demeaned observation matrix B, can be decomposed as:

B5UΘWT ð6:9Þ

Note that this expression looks similar to the first expression in Equation (6.5c). In

Equation (6.9) U and W are orthogonal matrices, and Θ is a matrix that includes a

matrix Σ for which the diagonal entries are the so-called singular values σ1, σ2, σ3,
. . ., σr. In our numerical example above where B is a 33 4 matrix (Equation (6.3)),

U is a 33 3 matrix of eigenvectors, W is a 43 4 matrix of eigenvectors, and Θ is

the same size as B, a 33 4 matrix in which the first 33 3 diagonal entries are the

singular values σ1�σ3. In this example:

131Decomposition of Multichannel Data

B5
1 21 21 1

21 1 21 1

22 21 3 0

2
4

3
5 U5

20:3192 0:4472 0:8355
20:1596 20:8944 0:4178
0:9342 20:0000 0:3568

2
4

3
5

Θ5
3:9634 0 0 0

0 2:0000 0 0

0 0 1:5139 0

2
4

3
5

W 5

20:5117 0:6708 20:1954 0:5000
20:1954 20:6708 20:5117 0:5000
0:8279 0:2236 20:1208 0:5000

20:1208 20:2236 0:8279 0:5000

2
664

3
775

While the eigenvectors (columns of U) we find here correspond with those found

for the covariance matrix above, you may be surprised that the singular values in Θ
do not correspond with those in Σ above. This is because (unlike the eigenvalues

λ1�λ3 of the covariance matrix C) the singular values σi are the standard devia-

tions and not the variance. Furthermore, the singular values are based on BBT while

the eigenvalues λi are based on the normalized version: BBT divided by (N2 1). So

if we compute ΘΘT and divide by N2 15 3, we get the same values as the diago-

nal entries in Σ:

Σ5
ΘΘT

N2 1
5

ΘΘT

3
5

5:2361 0 0

0 1:3333 0

0 0 0:7639

2
4

3
5

This result is identical to the values we obtained for covariance matrix Σ we

obtained earlier. If we use Equation (6.9) to compute BBT :

BBT 5 ðUΘWTÞðUΘWTÞT 5 ðUΘWTÞðWΘTUTÞ5UΘWTW|fflfflffl{zfflfflffl}
I

ΘTUT

5UΘΘT|fflffl{zfflffl}
Σ}

UT 5UΣvUT ð6:10Þ

In the above we used WTT 5W: Since W is orthogonal, WT 5W21; so we may

state that WTW 5 I; where I is the identity matrix. Finally, because Θ’s only non-

zero entries are on the diagonal, we may state: ΘΘT 5 ðN2 1ÞΣ5Σv: Recalling
that BBT divided by (N2 1) is the covariance matrix C, the outcome of Equation

(6.10) is (with the exception of the normalization 1/(N2 1), reflected by the use of

Σv instead of Σ) the same as the left expression in Equation (6.5c). Restating this

here for convenience: C5U Σ U21 (recall that UT 5U21 because U is an orthog-

onal matrix).

We can use standard MATLAB functions to compute the eigenvalues and eigenvec-
tors from the covariance matrix using the eig command, or directly from the demeaned

132 Signal Processing for Neuroscientists, A Companion Volume

observations using singular value decomposition with the svd command. A part
of Pr6_1.m (available on http://www.elsevierdirect.com/companions/9780123849151)
shows the use of these commands.

% Two Methods to Perform PCA using MATLAB standard functions eig and svd

% 1. Eigenvalues and Eigenvectors (eig) of Covariance Matrix C

% [=(1/(N-1)*B*Bu]
[ei_vectors1,ei_values1]=eig(C)

[‘NOTE that the eigenvalues above are sorted in ASCENDING order’]

% 2. Singular Value Decomposition (svd) of DEMEANED Observation Matrix B

[ei_vectors2,singular_values,vv]=svd(B)

[‘NOTE that the eigenvalues above are sorted in DESCENDING order’]

% IMPORTANT NOTE

% singular_values is the sqrt of the eigenvalues of the non-normalized

% covariance B*Bu [i.e. sqrt(eig(B*Bu))]

As a final note, you can see that the PCA would do a bad job distinguishing source

signals from a mixture, since PCA separates components based purely on variance. In

our computations above, our S matrix was the same as the measured signals Y in the

example of Fig. 6.2 in Section 6.2. However, the temporal sequences in the decom-

posed results in V (Table 6.1) do not even come close to unmixing the source signals

X in that example. In the following section we will see how PCA can be used with

more success as a tool to separate signal(s) from noise.

6.3.4 Using PCA as a Filter

The PCA technique detects uncorrelated components with decreasing variance. One

application that uses this property is to remove noisy components from mixtures of sig-

nals. The reasoning for this application is that signal components should display high

variance, while the added noise components have smaller variance. Of course, the truth

of this assumption depends on the type of signal and may not always be valid.

In the MATLAB script Pr6_2.m (available on http://www.elsevierdirect.com/

companions/9780123849151) we explore this technique by purposely corrupting an image

(Lena) with random noise to examine how well we can clean up the mess using PCA.

Subsequently we use singular value decomposition to define the principal components.

The program displays a series of 30 figures each with four panels: the original image, its

noisy contaminated version, the image reflecting the nth principal component, and the

image reflecting the sum of components 1 to n. It can be seen that the PCA cannot retrieve

the original image, but it certainly can improve the noisy contaminated version. At some

point (around component 10�15 in this example) the higher components do not seem to

further improve image quality in the sum of the components 1 to n. This is due to the fact

that the higher components indeed contain more of the noisy aspect of the corrupted image,

thus decreasing corrupted image quality when added to the sum of components.

133Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

6.4 Independent Component Analysis

In the previous section we introduced PCA, a technique to decompose multichan-

nel data into uncorrelated components. If we use PCA to decompose x and y into

variables a and b, we have shown that the covariance between decomposed vari-

ables a and b is zero and the covariance matrix of these transformed observations

is entirely determined by variance. ICA moves beyond the constraint of decorrela-

tion and looks for components that are statistically independent. When two signals

a and b are statistically independent, they are each drawn from an independent

probability density function (pdf), and the joint pdf of [a b] is simply the product

of the individual pdfs:

pabð½ab�Þ5 paðaÞpbðbÞ ð6:11Þ
The joint and individual pdfs are symbolized by pab, pa, and pb, respectively.

Suppose we have two processes a and b, with probability distributions

pa 5 0:1 0:2 0:2 0:4 0:1
� �

and pb 5 0:1 0:3 0:3 0:2
�

0:1�; then, if they
are independent, we may use Equation (6.11) to compute the joint probability pab
(Fig. 6.4). Note that the probability functions in Fig. 6.4 all add up to 1

(
P5

i5 1 pai 5 1;
P5

i5 1 pbi 5 1; and
P5

i5 1

P5
j5 1 paibj 5 1). Statistical independence

between a and b means that all the moments and central moments (moments about

the mean) of the distributions for a and b must also be independent:

Efapbqg5EfapgEfbqg ð6:12aÞ

Here E{. . .} denotes the Expectation (see section 3.2 in van Drongelen, 2007, if

you need to refresh your knowledge about Expectation). If a and b are demeaned,

the first central moment (exponents p5 1 and q5 1 in Equation (6.12a)) of the

0.2

0.3

0.5

0.5

0.5

0.5

0.51 2 3 4 5

0.1

0.06

0.02

0
1 2 3 4 5

4
3

2
1

0.1
1 2 3 4 5

Figure 6.4 An example of a 2D joint probability density function pab (in the green panel) and

its marginal distributions pa and pb. The graphs show the individual, marginal distributions of

a (top graph) and b (left graph). In the 3D graph on the right, the joint probability is plotted on

the vertical axis against the variables a and b.

134 Signal Processing for Neuroscientists, A Companion Volume

joint pdf Efa bg is the covariance. If a and b are uncorrelated (as in the decom-

posed result from PCA), we have:

Efabg5 Efag|fflffl{zfflffl}
0

Efbg|fflffl{zfflffl}
0

5 0 ð6:12bÞ

You can see that demanding that a and b are uncorrelated (Equation (6.12b)) is not

as strong a condition as asking for statistical independence of a and b (Equation

(6.12a)). There is an exception when PCA does generate statistically independent

components: this is the case when the extracted signals are normally distributed.

Normally distributed signals are determined by their first two moments; once these

are known, all higher-order moments are determined. To summarize: two signals

that are statistically independent are also uncorrelated, but uncorrelated sig-

nals are not statistically independent except when the signals are normally

distributed.

In real cases, signal mixtures tend to be normally distributed due to the central limit

theorem. To put it informally, the central limit theorem states that the sum or a mix-

ture (5weighted sum) of multiple variables tends to be normally distributed even

when individual components are not drawn from a normal distribution. An example of

this theorem at work is shown in Fig. 6.5. In this example we study a mixture of vari-

ables that are each uniformly distributed (Fig. 6.5A). Interestingly, the mixture of only

five such variables already shows a tendency toward a normal distribution (Fig. 6.5B).

This shows that the practical application of PCA for extracting statistically indepen-

dent components will be fairly limited because (unlike signal mixtures) it is less likely

that individual signal components are normally distributed. Because ICA demands sta-

tistical independence of the individual components, ICA is much better at extracting

components that are not normally distributed. To visualize the difference in compo-

nent distributions, we can look at the distribution of observations from a uniform dis-

tribution (Fig. 6.5A), where we observe that the points are scattered more or less

evenly over a line in the 1D case (Fig. 6.5C) or a plane in the 2D case (Fig. 6.5E). On

the other hand, normally distributed (Gaussian) mixtures are concentrated around the

mean value of the distribution (Fig. 6.5B, D, and F).

6.4.1 Entropy of Sources and Mixtures

Recall that the entropy S(X) of a random variable X (see van Drongelen, 2007,

chapter 14, section 14.3) depends on the probability distribution of X. It can be

defined as the sum (in the case of a discrete variable) or the integral (in case of a

continuous variable) of the product pðxÞlog21=ðpðxÞÞ52pðxÞlog2pðxÞ over all x:

SðXÞ52
X
All x

pðxÞlog2 pðxÞ ð6:13Þ

In this case we defined S for a discrete variable and we use log2, a base 2 loga-

rithm, so that S is in units of bits.

135Decomposition of Multichannel Data

Let us consider a very simple case, a coin toss. If we have the usual situation,

we have probability p5 1
2

for both outcomes heads and tails (scenario III,

Fig. 6.6A), and the entropy according to Equation (6.13) is:

SðXÞ52
1

2
log2

1

2
1

1

2
log2

1

2

� �
5 1 bit

This is a reasonable result, because we have an outcome that fits in a single bit: either

heads (1) or tails (0). Now suppose we have a “faulty” (deterministic) coin that always

lands on one side, either heads or tails. In these scenarios (I and V, Fig. 6.6A) we have

p5 0 for one outcome and p5 1 for the other; now the entropy is:

Figure 6.5 (A) Histogram of a variable x1 that is uniformly distributed between 0 and 1.

(B) The sum of only five of these uniformly distributed variables x5 tends to be almost normally

distributed. (A) and (B) were made with script Pr6_3.m (available on http://www.elsevierdirect.

com/companions/9780123849151). A series of one-dimensional observations from uniform (x1)

and (almost) Gaussian (x5) distributions are shown in (C) and (D), respectively. The scatter plots

in (E) and (F) are examples of a series of 2D observations: two variables x1 y1 for the uniform

case, and two variables x5 y5 for the Gaussian one. As expected, the uniform distribution results

in a scatter of points throughout the plane, whereas the Gaussian case shows a concentration of

points around a center (the mean). Consequently, the entropy of the uniformly distributed points

is higher than the entropy for the Gaussian distributed observations.

136 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

SðXÞ52 0 log201 1 log21
� �

5 0 bit

Note that we use 0 log205 0: This outcome of zero bit also seems reasonable since

there is no surprise (information) with each outcome: it will always be heads in one

scenario and always tails in the other. If our coin is biased and we get heads or tails

in 75% of the cases (scenarios II and IV in Fig. 6.6A), we have probabilities

p5 0.75 and p5 0.25 and the associated entropy is:

SðXÞ52
1

4
log2

1

4
1

3

4
log2

3

4

� �
5 0:81 bit

Thus, for every probability distribution, we find a specific entropy (see the graph in

Fig. 6.6A). We find that the maximum entropy for tossing a coin is when probabil-

ity is equal (1
2
) for heads and tails, which occurs when the probability distribution is

uniform (scenario III, Fig. 6.6A).

Without further proof, we state that the above result may be generalized to any

probability distribution: variables show maximum entropy when they are uniformly

distributed. Thus, in the example in Fig. 6.5, the variable in the left panel with a uni-

form distribution has higher entropy than the variable with a Gaussian distribution.

In panels E and F in Fig. 6.5, we consider a 2D distribution where the observa-

tions are represented by dots in a plane. In this example we have a joint distribution

Figure 6.6 Statistics of a coin toss and entropy. (A) Five scenarios of probability

distributions of heads (ph) and tails (pt). The graph depicts that each scenario is associated

with a specific entropy value. (B) Statistics of coin tosses. The numbers in the tables show the

idealized outcomes for 16 tosses. Two coins are used for each observation and in the upper

diagram the outcomes of each toss is completely independent. In the two lower diagrams,

there (magically) is some dependence between the two tosses in each observation—there is

either a full dependence (bottom diagram; the pair of outcomes in each observation are

identical) or a partial dependence (middle diagram).

137Decomposition of Multichannel Data

similar to the one for variables a and b shown in Fig. 6.4 (where each random vari-

able has five possible outcomes). To compute the entropy associated with such a

joint probability distribution, we follow the same approach as for the 1D case: we

summate 2 pðxÞlog2pðxÞ over the domain of x, which leads us to actually have two

sums:

Sða; bÞ52
X5
i5 1

X5
j5 1

paibj log2paibj

The entropy S(a,b) of the joint distribution (the table in Fig. 6.4) is:

2 ½0:01 log20:011 0:03 log20:031 0:03 log20:031?1 0:03 log20:03

1 0:02 log20:021 0:01 log20:01�5 4:29 bits

The entropy for the individual variables a and b can be obtained from the marginal

distributions (i.e., the five probabilities corresponding to each outcome, given one

random variable). Using the distribution for a (see marginal distribution [red] in

Fig. 6.4), we find that entropy S(a) is:

2 ½0:1 log20:110:2 log20:210:2 log20:210:4 log20:410:1 log20:1�52:12 bits

and for b (marginal distribution [black] in Fig. 6.4) we find that S(b) is:

2 ½0:1 log20:110:3 log20:310:3 log20:310:2 log20:210:1 log20:1�52:17 bits

Now we see that S(a)1 S(b)5 2.121 2.175 4.29, which is equal to S(a,b). This is

not so surprising because the probability distributions for a and b were independent

such that pabð½ab�Þ5 paðaÞpbðbÞ: If our distribution in Fig. 6.4 had been uniform,

we would have found different values for the entropies. If this were the case, the

five probabilities of pa and pb would be 0:2 0:2 0:2 0:2 0:2 ��
and the joint

distribution would also be uniform, with all 25 probabilities equal to 0.04. The

associated entropies would now be:

Sða; bÞ52253 0:043 log2ð0:04Þ5 4:64 bits

and

SðaÞ and SðbÞ are both2 53 0:23 log2ð0:2Þ5 2:32 bits

In all cases the entropies are higher (because of the uniform distribution), but,

SðaÞ1 SðbÞ5 Sða; bÞ ð6:14aÞ

still holds.

138 Signal Processing for Neuroscientists, A Companion Volume

If there were dependence between the two distributions of a and b, we would

have found a different result. Let us explore the effect of dependence with an even

simpler example by getting back to our coin toss. Assuming that we toss two coins

16 times, and in one case we have the usual situation where the tosses are indepen-

dent (the idealized outcome is shown in Fig. 6.6B, top diagram). However, in the

other case there is a “magical” full dependence between the two coins: if one coin

lands on heads or tails, the other coin will too (the idealized outcome is shown in

Fig. 6.6B, bottom diagram).

When tossing two coins, we have four alternative outcomes: heads/heads, heads/

tails, tails/heads, and tails/tails. Assuming we have equal probability for heads and

tails, we get in the independent case that the probability for each outcome is
1
2
3 1

2
5 1

4
: In the fully dependent case, however, the probabilities for heads/tails

and tails/heads are zero because one coin will magically copy the outcome of the

other (we imagine this just for the sake of this example; do not worry about how

you would actually do such a thing). The probabilities for heads/heads and tails/

tails are therefore each 1
2
: Regardless of independence or dependence, we can first

compute entropies S1 and S2 for each individual coin toss from the marginal distri-

butions, finding that S1 and S2 are both:

223 0:53 log2ð0:5Þ5 1 bit

As was the case for S(X) computed earlier in this chapter, it makes sense that

the entropies S1 and S2 should be equal to 1 bit, since the outcome of each individ-

ual coin toss can fit in 1 bit (0 for heads, 1 for tails).

In the independent case (top diagram in Fig. 6.6B), we find for the joint entropy,

S1,2,

243 0:253 log2ð0:25Þ5 2 bits

Here we see that just as in the case for the independent distribution in Fig. 6.4, the

sum of the individual entropies equals the joint entropy:

S1 1 S2 5 S1;2

We can also see that the result we get for S1,2 is reasonable since the possible joint

outcomes fill four possible states, or 2 bits.

Now we compute the joint entropies for the two other scenarios in Fig. 6.6B. In the

fully dependent case (the bottom diagram in Fig. 6.6B), the joint entropy S1,2 is:

2 23 0:53 log2ð0:5Þ1 23 03 log2ð0Þ
� �

5 1 bit

It should be unsurprising that the joint entropy (S1,2) in this case is identical to the

entropy of an individual coin toss (S1 or S2); since there is total dependence, no

additional information is provided by the flipping of a second coin.

139Decomposition of Multichannel Data

The (idealized) outcomes for a case with partial dependence between the two

coins are shown in the middle diagram in Fig. 6.6B. Note that due to the partial

dependence, in most but not all cases, the outcomes of the first and second coin

toss are identical. This results in a joint entropy of:

2 23 0:1253 log2ð0:125Þ1 23 0:3753 log2ð0:375Þ
� �

5 1:8 bits

In both cases where there is (full or partial) dependence between the tosses of the

coins, we find that S11 S2. S1,2, and the more dependence that exists between the

tosses, the larger the difference between S11 S2 and S1,2. Accordingly, we need to

adapt Equation (6.14a) to account for the possibility of dependence between the

two variables by including a term that reflects this dependence. This term is com-

monly indicated by mutual information (MI), which is an indication of the level of

dependence between variables. In other words, MI quantifies the amount of infor-

mation that variable 1 provides about variable 2. In case of the dependence

between coin tosses, the outcome of one coin toss determines the outcome of the

other. In the normal, fair tosses the outcome of one toss does not provide any infor-

mation about the other since they are independent.

To summarize, we find:

Independent

(bit)

Slightly

dependent (bit)

Fully

dependent (bit)

Entropy coin 1, S1 1.0 1.0 1.0

Entropy coin 2, S2 1.0 1.0 1.0

Sum, S11 S2 2.0 2.0 2.0

Joint entropy, S1,2 2.0 1.8 1.0

Difference (S11 S2)2 S1,2 (5MI) 0.0 0.2 1.0

It can be seen in this example that the MI variable is indeed proportional to the

level of dependence. Without further proof, we assume that we may generalize our

findings and state that for any two random processes X and Y, we can compute the

entropy for each of the individual processes S(X) and S(Y) such that their joint

entropy S(X,Y) is the sum of the individual entropy values when X and Y are inde-

pendent (Equation (6.14a)), and otherwise:

SðX;YÞ5 SðXÞ1 SðYÞ2MIðX;YÞ ð6:14bÞ

in which MI(X,Y) is the mutual information between X and Y. Note that Equation

(6.14b) holds even when X and Y are independent, since then MI(X,Y) merely

becomes zero. We could define joint entropy S(X,Y) as the total information of the

joint process X,Y. To summarize, it can be concluded from the above that for any

given pair of processes X and Y, maximal independence occurs at maximal

joint entropy (or joint information) S(X,Y) and minimal mutual information

140 Signal Processing for Neuroscientists, A Companion Volume

MI(X,Y) of the joint process. This is a basis for the ICA technique: independence

of separated sources is evaluated by joint entropy (joint information) and MI. For

the separation of independent sources, their joint information S(X,Y) must be maxi-

mized (therefore, this ICA technique is also called infomax), which is the same as

minimizing their mutual information MI(X,Y).

6.4.2 Using the Scalar Product to Find Independent Components

After we obtain the criteria for unmixing a mixture of signals (e.g., decorrelation,

statistical independence, maximizing joint entropy), the procedure for separating

components from mixtures in ICA is essentially the same as was outlined for PCA

in Section 6.2: source signals are found from the product of the unmixing matrix

and the recorded signals (Fig. 6.2). The unmixing matrix contains the vectors along

which the components are extracted. The difference between ICA and PCA is

the strategy for finding the directions of the vectors in the unmixing matrix. In
PCA we found directions of maximal variance (Fig. 6.3C) while the compo-

nents were decorrelated. For ICA we demand statistical independence.

To illustrate an ICA-type extraction procedure, let us consider a 2D case: two

sources x1 and x2 creating two mixtures s1 and s2. Scatter plot representations of

the sources and the mixtures are shown in Fig. 6.7; the sources are plotted in panel

A and the resulting mixtures in panel B. Assuming that we know the mixing matrix

A in this example,

A5
0:2 0:8
0:7 0:4

� �

we can determine the orientation of the original axes X1 and X2 from the source

scatter plot (depicted in Fig. 6.7A) in the mixture scatter plot (shown in Fig. 6.7B).

x 2

s 2

s
1

x
1

Figure 6.7 (A) Scatter plot of two source signals x1 and x2. (B) Scatter plot of two mixtures

s1 and s2 that were created from the source signals. The transformed source axes (X1, indi-

cated by 1�4 [dark blue], and X2, indicated by 2�3 [red]) are indicated in this mixture plot.

141Decomposition of Multichannel Data

The first axis X15 [1 0], so the transformed version of source axis X1 in the

scatter plot of the mixtures is:

A|{z}
Mixing

matrix

1

0

� �
|ffl{zffl}

X1

5
0:2 0:8
0:7 0:4

� �
1

0

� �
5

0:23 1 1 0:83 0

0:73 1 1 0:43 0

� �
5

0:2
0:7

� �

This is the first column of mixing matrix A. Similarly, the transformed second

source axis X2 in the mixture plot is the second column of A. The axes X1 and X2

from the scatter plot in Fig. 6.7A are also depicted, after transformation with mix-

ing matrix A, in Fig. 6.7B. After this transformation, X1 becomes the axis 1�4

(dark blue) and X2 becomes axis 2�3 (red).

For the following explanation it helps to look at the plot of the mixtures in

Fig. 6.7B and the orientation of axes and vectors in Fig. 6.8A. First we establish

that we know there are two sources, and that we have two mixtures. If we know

the orientation of axes X1 and X2, we can find the contribution of x1 to the mixtures

by excluding all contributions of x2. Because the contributions of x2 are in the

direction of axis X2, we can use the scalar product of (1) the observation vectors of

the mixture (all points in Fig. 6.7B) and (2) a vector X\
2 perpendicular to axis X2

(Fig. 6.8A). All components parallel to X2, which we will indicate by X5
2 ; will can-

cel since the inner product X\
2 UX

5
2 5 0: Therefore, the only component remaining

in the scalar product of each observation in the mixture plot [s1 s2] with X\
2 will be

independent of x2, and thus must be from x1.

Note: Summarizing the above approach in a few words, all components inde-
pendent of X2, the axis for source x2, can only be a component of x1.
Furthermore, we found that we can use the inner product to remove x2
components and only keep the ones independent from X2.

Figure 6.8 (A) and (B) show the strategy for unmixing. In (A) we have a 2D case: if we

cancel all components in the direction of axis X2 (by using the inner product with vector X\
2

perpendicular to X2), the remainder must be a component of the X1 axis. This approach can

be extended to higher-dimensional cases (B): by canceling components for X2 and X3 (by

using the inner product with vector X\
2;3 perpendicular to X2 and X3), we keep the ones for

X1.

142 Signal Processing for Neuroscientists, A Companion Volume

We can use a similar reasoning for mixtures from three or more sources. Let us

consider a three-source and three-mixture case, creating a 3D space (Fig. 6.8B). If

we want to find the components for x1, we need to remove the components for x2
and x3. So if we construct a plane through the axes for x2 and x3, we can come up

with X\
2;3 (Fig. 6.8B). The inner product of observation [s1 s2 s3] with X\

2;3 (perpen-

dicular to the X2�X3 plane) removes all components associated with x2 and x3, and

must therefore be the contribution of x1. With a higher number of dimensions (that

is, with more sources and mixtures), we can always construct a hyperplane through

all-but-one selected axis (i.e., the axis of one selected source) and find a vector per-

pendicular to this hyperplane. This vector (analogous to X\
2;3 in Fig. 6.8B) can then

be used to remove the contributions from all directions embedded in the hyperplane

(analogous to the X2�X3 plane in Fig. 6.8B) so that the remainder must be the con-

tribution from the selected source.

6.4.3 A MATLAB Example

We have now set the stage for an example with two sources and two mixtures. To

extract sources from the mixtures, we will follow the strategy below:

(1) We find that our mixtures are Gaussian-like distributed, but we assume that our source

signals have a uniform distribution (Fig. 6.5).

(2) We use entropy to evaluate independence of the sources (Fig. 6.6).

(3) If we know the axes associated with the sources, we know how to extract a component

from a mixture by using the inner product (Fig. 6.8).

Now we must deal with the fact that we (pretend that we) do not know the trans-

formed axes for the sources in the scatter plot of the mixture (Fig. 6.7B). We will

solve this problem by applying a brute force iterative approach—that is, we system-

atically evaluate a series of angles for source axes X1 and X2 and for each pair of

angles we use the inner product to compute the associated sources x1 and x2. For

every solution of x1 and x2 (i.e., for each direction associated with axes X1 and X2),

we determine the level of independence of x1 and x2 (while we assume each satis-

fies a uniform distribution). We can do this in multiple ways, but for now we will

evaluate how independent x1 and x2 are by looking at the level of mutual informa-

tion MIðx1; x2Þ between x1 and x2 (Equation (6.14b)). The more independent x1 and

x2 are estimated to be, the lower their MI. So by following this brute force proce-

dure, we get a series of angles for the axes X1 and X2 each with an associated value

for MIðx1; x2Þ. Finally we complete our procedure by selecting the angles for axes

X1 and X2 that correspond to the minimal value of MIðx1; x2Þ:
The brute force iterative procedure is followed in MATLAB script Pr6_4

(available on http://www.elsevierdirect.com/companions/9780123849151). The fol-
lowing is a snippet from this script showing the iteration loops. Each iteration loop
goes through a range of angles: 0�2π rad. For each loop (i.e., for each angle in
the brute force search), the entropy (H) and mutual information (MI) are deter-
mined using function entropy_2D.m (which must be in the same directory). Due
to the large number of loops in the brute force search, running this script may
take B30 min.

143Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151

% ——————————————————————————————

% rotate the unmixing vector and determine the mutual information of result

% ——————————————————————————————

MI_min=100000000000000; % set minimum of the

% mutual-information to

% large number

phi_min1=0;phi_min2=0; % set the angles for axes X1 and X2

% to zero

ct_phi1=0; % initialize counter 1

for phi1=0:2*pi/precision:2*pi; % LOOP for rotating axis X1

ct_phi1=ct_phi1+1; % update counter 1

ct_phi2=0; % initialize counter 2

for phi2=0:2*pi/precision:2*pi; % LOOP for rotating axis X2

ct_phi2=ct_phi2+1; % update counter 2

v1=[cos(phi1) sin(phi1)]; % unit vector along X1 with angle

% phi1

ic1=v1*S; % unmix mixture S

ic1=ic1-mean(ic1);sigma=std(ic1); % demean and determine standard

% deviation

v2=[cos(phi2) sin(phi2)]; % unit vector along X2 with angle

% phi2

ic2=v2*S; % unmix mixture S

ic2=ic2-mean(ic2);sigma=std(ic2); % demean and determine standard

% deviation

% Use 2D entropy estimate function entropy_2D to compute mutual

% information (MI) and entropy (H) as a function of the

% position of axes X1 (counter for phi1) and X2 (counter for phi2)

[H(ct_phi1,ct_phi2), MI(ct_phi1,ct_phi2)]=entropy_2D(ic1,ic2);

if MI(ct_phi1,ct_phi2),MI_min; % TEST: current MI , current

% minimum of MI ?

MI_min=MI(ct_phi1,ct_phi2); % if so a new minimum (minimum

% for MI) is found

imin=ct_phi1;jmin=ct_phi2; % the indices for the new minimum

% are saved

phi_min1=phi1; % and so are the other relevant data

v_min1=v1; % the angles, the vectors &

% components

ic1_min=ic1;

phi_min2=phi2;

v_min2=v2;

ic2_min=ic2;

144 Signal Processing for Neuroscientists, A Companion Volume

end;

end;

end;

Running the script Pr6_4.m (available on http://www.elsevierdirect.com/companions/

9780123849151; also available in a low-resolution version if you are in a hurry) will show

you the source and mixed signals plus their scatter plots. The scatter plot of the mixture gen-

erated by the script resembles the detail in Fig. 6.9B. The rhomboid shape of the scattered

dots indicates that we are dealing with a mix of uniformly distributed source signals. For a

range of combinations of hypothetical directions for axes X1 (indicated by 1�4 in Fig. 6.9)

and X2 (indicated by 2�3 in Fig. 6.9), the MI is computed.

Note: This is a rather computationally intensive procedure associated with our

brute force approach, because we (pretend that) we do not know the directions

for X1 and X2 and just compute the MI for all directions with a precision of 1�

for each axis, resulting in 3602 combinations. In the low-resolution version of

script Pr6_4 we compute MI every 10� for each axis (362 combinations),

which greatly reduces the run time for the program.

For illustration purposes in Fig. 6.9, we kept the angle for MI associated with

axis X1 at its minimum and plotted the MI associated with axis X2 for each angle

(from 0� to 360�, incremented in steps of 1�) as a single dot and connected the dots

with a line. The minima of the MI and the line connecting them are indicated in

the detailed plot in Fig. 6.9B. It is obvious that the line between these minima (the

double arrow indicated by X\
2 in Fig. 6.9B) is a very good estimate of the vector

perpendicular to axis X2 (indicated by 2�3). The script Pr6_4 also has the option

of computing the principal components; the first principal component is also indi-

cated in Fig. 6.9B (indicated as “PCA: axis-1”; light-blue line). It is obvious that

this line is in the direction of maximal variance, but it would not do a good job sep-

arating the sources in this example.

6.4.4 What If Sources Are Not Uniformly Distributed?

For the ICA examples so far, we assumed that the sources were characterized by a

uniform distribution (e.g., Fig. 6.5A, C, and E) and we used entropy estimates to

determine the level of independence (e.g., Fig. 6.6) of the separated candidate

sources. So what should we do if we know that our sources are not uniformly

distributed—take for example a human voice or a chirp—in a recording of a sound

mixture? Such sources usually show a distribution with many values around zero

145Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

s1

s1

s 2
s 2

Figure 6.9 An example of an application of the ICA unmixing procedure; (B) is a detail of

(A). This example shows a mixture where the sources are uniformly distributed. By iteration,

we determine the MI of the candidate sources for each unmixing angle and plot this result

(dots [red] in A and B). The best choice of angle is obtained when MI is minimal (“Minimum

MI value” in B). Since we know, for this example, the orientation of source axis X2 (the axis

labeled at its ends by 2�3, red), we can see that our estimate for X\
2 (dashed, double arrow,

red) running through the minima we found for MI is indeed perpendicular to X2. This

estimate for X\
2 will therefore perform a good unmixing operation. The axis labeled “PCA:

axis-1” (light blue) in (B) indicates the direction of the eigenvector associated with the

largest eigenvalue (the first principal component). As you can see, the principal component

is not perpendicular to any of our source axes (1�4 or 2�3) and consequently would not

achieve a good unmixing result for our two mixtures. The graph in (B) can be obtained with

MATLAB script Pr6_4.m (available on http://www.elsevierdirect.com/companions/

9780123849151).

146 Signal Processing for Neuroscientists, A Companion Volume

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

(Fig. 6.10). In such a case one could look for another function to maximize or mini-

mize (instead of using entropy or MI). In this example of a peaky distribution

(Fig. 6.10B), one could maximize for peakyness of the distribution (kurtosis, a

measure for how peaky a pdf is, might do the job in such a case). Alternatively,

one could transform the non-uniform distribution into a uniform one and subse-

quently apply the same procedures that are available for separating sources with a

uniform distribution. This approach is depicted in Fig. 6.11. The example in

Fig. 6.11 shows the transformation of a Gaussian distribution into a uniform one.

The function used for the transformation is the cumulative probability density func-

tion (cdf). For a normally distributed variable x with zero mean, the cdf is
1
2
11 erfðx=σ

ffiffiffi
2

p
Þ� �
; in which erf is the error function (available in MATLAB) and

σ is the standard deviation of x. This shows that it is plausible that for any pdf, the

cdf is the optimal transformation to obtain a uniform distribution. The cdf will

have the steepest slope where the probability is highest (and where you will there-

fore collect most observations), and this steeper slope will distribute the more

densely packed observations over a wider area (see the area in between the [red]

dotted lines in Fig. 6.11A�C). In contrast, at low probabilities (where fewer obser-

vations occur), the slope of the cdf will be less steep, and consequently the obser-

vations will be distributed over a smaller area. The overall effect of the

transformation is thus to spread out observations more uniformly, exactly what we

want for our purpose. After we transform our unmixed result into a uniform distri-

bution, we can apply exactly the same procedure for separating mixtures (from uni-

formly distributed sources) we followed earlier.

The approach of transforming the source data is demonstrated in Pr6_5.m
(available on http://www.elsevierdirect.com/companions/9780123849151). The fol-
lowing part, with the iteration loops (similar to the ones shown above for script
Pr6_4), shows the transformation from the Gaussian distributed signals ic1 and
ic2 to the uniformly distributed T_ic1 and T_ic2 .

Figure 6.10 (A) Plot of a chirp (available in MATLAB by load chirp). (B) The

amplitude distribution of the chirp signal compared to Gaussian (red) and uniform (blue)

distributions. Note that the histogram of the chirp signal shows a peaky distribution, which

is typical for many audio signals.

147Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151

% ——————————————————————————————

% rotate the unmixing vector and determine the mutual information of result

% ——————————————————————————————

MI_min=100000000000000; % set minimum of the

% mutual-information

% to large number

phi_min1=0;phi_min2=0; % set the angles for X1 and X2 to

% zero

ct_phi1=0; % initialize counter 1

for phi1=0:2*pi/precision:2*pi; % LOOP for X1

ct_phi1=ct_phi1+1; % update counter 1

ct_phi2=0; % initialize counter 2

for phi2=0:2*pi/precision:2*pi; % LOOP for X2

ct_phi2=ct_phi2+1; % update counter 2

v1=[cos(phi1) sin(phi1)]; % unit vector along X1 with

% angle phi1

ic1=v1*S; % unmix mixture S

Figure 6.11 A uniform distribution (A) can be obtained from a non-uniform distribution by

a transformation. This example shows a transformation of a histogram of observations drawn

from a Gaussian distribution (C) using the cumulative probability density of the Gaussian

distribution shown in (B). It can be seen that the majority of observations of the Gaussian

distribution are located around zero in between the (red) dotted lines. Following these dotted

lines from (C) to (A), it can be seen that the transformation of the Gaussian data (C) with

the function in (B) distributes these points more evenly (A). Accordingly, if such a

transformation is applied to a 2D scatter plot of a Gaussian variable (E), we get a scatter plot

of uniformly distributed points (D).

148 Signal Processing for Neuroscientists, A Companion Volume

ic1=ic1-mean(ic1);sigma1=std(ic1); % demean and determine standard

% deviation

v2=[cos(phi2) sin(phi2)]; % unit vector alongX2with angle

% phi2

ic2=v2*S; % unmix mixture S

ic2=ic2-mean(ic2);sigma2=std(ic2); % demean and determine standard

% deviation

% TRANSFORMATION to make the estimates uniformly distributed

% Transform ic1 and ic2 to a uniform distribution using erf to

% transform the demeaned ic1 and ic2

T_ic1=0.5*(1+erf((ic1)/(sigma1*sqrt(2))));

T_ic2=0.5*(1+erf((ic2)/(sigma2*sqrt(2))));

% Use custom estimate function entropy_2D to compute mutual

% information (MI) and entropy (H)

[H(ct_phi1,ct_phi2), MI(ct_phi1,ct_phi2)]=entropy_2D(T_ic1,T_ic2);

% Sum of the variances should max at independence

sum_var(ct_phi1,ct_phi2)=std(ic1)^2+std(ic2)^2;

if MI(ct_phi1,ct_phi2),MI_min; % TEST: current MI, current

% minimum of MI ?

MI_min=MI(ct_phi1,ct_phi2); % if so a new minimum (maximum

% for MI) is found

imin=ct_phi1;jmin=ct_phi2; % the indices for the new minimum

% are saved

phi_min1=phi1; % and so are the other relevant data

v_min1=v1; % the angles, the vectors &

% components

ic1_min=ic1;

phi_min2=phi2;

v_min2=v2;

ic2_min=ic2;

end;

end;

end;

Because script Pr6_5.m is also computationally demanding, there is a low-resolution

version available as well (both available on http://www.elsevierdirect.com/companions/

9780123849151). Running the script will show you the source signals and the mixtures

with their associated scatter plots. The scatter plot of the mixtures will resemble Fig. 6.12

and will also show the transformed axes X1 (dark blue, indicated by 1�4 in Fig. 6.12)

and X2 (red, indicated by 2�3 in Fig. 6.12) plus the estimated MI values associated with

each axis (red and dark-blue dots interconnected with lines in Fig. 6.12). The

149Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

program Pr6_5.m also allows us to compute the principal components (the first compo-

nent, “PCA: axis-1,” is indicated in Fig. 6.12) and the variance associated with each angle

(the 8-shaped contour, light blue in Fig. 6.12). Note again how the first PCA component

is not orthogonal to any of the source axes X1 and X2.

The implicit underlying thought of the algorithm in Pr6_5.m is that by trans-

forming the unmixed sources into a uniform distribution, we can follow the same

procedure as earlier without affecting the information content. This assumption

may seem like a bit of a stretch, but if we transform the data using an invertible

function (such as our cumulative probability density function in Fig. 6.11B), we do

not affect the mutual independence of the signals (see Stone, 2004).

An invertible function is defined as a function that creates a unique new data

point for each original data point and (because the function is invertible) this

transformation can also be reversed. This means that if we have several inde-

pendent data sets, they will remain independent after transformation with the

invertible function into the other domain and vice versa.

gr

Figure 6.12 The example in this figure is the same as in Fig. 6.9, except now the source

signals are normally distributed. As in the previous examples in Figs. 6.7�6.9, the two

source axes are X1 (labeled at its ends by 1�4, dark blue) and X2 (labeled 2�3, red). The

dashed, double arrows X\
1 (dark blue) and X\

2 (red) indicate the directions for minimal MI

found by iteration. The MI values we computed by iteration are indicated by the dots

interconnected by lines: dark blue for X\
1 and red for X\

2 : The axis labeled “PCA: axis-1”

(light blue) is the direction of the eigenvector associated with the largest eigenvalue (the first

principal component). The 8-shaped contour (light-blue dots) denotes the variance for each

direction. Further details can be found in the text.

150 Signal Processing for Neuroscientists, A Companion Volume

6.4.5 Can We Apply Smarter Approaches Than the Brute Force Technique?

In the above brute force approach we looked into a 2D case. We determined the source

axes X1 and X2 with a precision of 1�; this corresponds to 360 computations for each

axis. For the 2D case this evaluates to 36025 129,600 iterations. In other words, for

each iteration, we guess candidate sources and we compute their MI. For more dimen-

sions and/or higher precisions, the number of iterations grows rapidly—for example,

if we wanted a 1
2

�
precision in a six-source case we have 7206�1.4 3 1017 iterations.

As you can see, we need a more efficient procedure to find the best angles for the

source axes; otherwise, source extraction very rapidly becomes a computational night-

mare. Let us look at the surface of the inverse of the MI. This is the approach we take

in MATLAB script Pr6_6.m , which is almost identical to Pr6_4.m , but now we use

the inverse of the MI instead of the MI itself for visualization reasons; minima in MI

are maxima in 1/MI, and maxima are easier to show in a 3D plot (both scripts are

available on http://www.elsevierdirect.com/companions/9780123849151). Such a plot

generated by Pr6_6.m for our two-mixtures/two-sources scenario is depicted in

Fig. 6.13. The horizontal axes are the angles for axes X1 and X2, and the vertical axis

is 1/MI. There are clearly eight maxima in the 1/MI landscape (again, corresponding

to minima of MI) present in the plot. These eight maxima are not surprising if we con-

sider the example of the source axes in the mixture scatter plot in Fig. 6.7B. Each

source axis is labeled at each end (1 and 4 for axis X1 and 2 and 3 for axis X2), since

each axis can be characterized twice: by its optimal angle φ or by the same angle plus

Figure 6.13 The inverse of the MI (1/MI) of two components extracted from two mixtures

as a function of the angles (phi1, phi2) of the two source axes. Minima for the MI show up

as maxima in 1/MI surface. The eight maxima correspond to a pair of angles of the axes that

extract sources with minimum MI from the mixtures. To find these two axes, we need to

identify only one of the eight maxima. Therefore, we can use the gradient in the landscape

to locate one of the maxima. This procedure is more efficient than a brute force computation

of the whole 1/MI surface. This graph was obtained with Pr6_6.m (available on http://www.

elsevierdirect.com/companions/9780123849151).

151Decomposition of Multichannel Data

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

180� (φ1 180�). An optimal combination (associated with a maximum 1/MI) is any

combination of the angles for which we can successfully unmix our mixture into its

source components. Using the labels in Fig. 6.9, we find that we have eight of these

combinations: 1,2 1,3 2,1 2,4 3,1 3,4 4,2 4,3. Note that the combinations 1,4 and 2,3

are not valid because they denote the same axis and not a pair of axes. The eight com-

binations correspond to the eight maxima in the 1/MI landscape in Fig. 6.13. Because

each of the eight combinations describes the optimal angles for the two axes, we only

need to find one pair (i.e., one maximum in the landscape in Fig. 6.13) for our unmix-

ing procedure. Since we find that the landscape of 1/MI has a clear-cut structure, we

can use this to our benefit and avoid a lengthy brute force computation. Instead of

computing the values for all angles from 0�360�, we apply the so-called simplex

method, which uses the gradient in the landscape to locate one of the maxima.

Globally, this procedure works as follows:

(1) We randomly pick an initial point in the 1/MI landscape (a pair of angles φ1 and φ2

associated with our pair of source axes X1 and X2) and determine its 1/MI value.

(2) Then we pick two neighboring points in the landscape, and determine 1/MI for these

points as well (now we have defined a triangle in the landscape).

(3) We determine which of the three points has the lowest 1/MI value and move it in the

direction where 1/MI is largest.

(4) We repeat Step 3 above until we cannot find a neighboring point with a low value of

1/MI, at which point we conclude that we have reached a peak in the landscape.

(5) Finally we will make our triangle of points smaller and repeat Steps 3 and 4 to locate

the maximum with optimal precision.

By using this method, we use the slope in the landscape to climb toward a maximum,

a procedure that is much faster than iteration and that scales much better when we

increase the number of sources in each mixture and the number of measurements of

mixtures. See Press et al. (2007) for the details of this and other parameter search

techniques.

6.4.6 An Example of ICA Applied to EEG Signals

The signals of brain electrical activity in Fig. 6.1 are recordings directly from the

cortex (ECoG) and from the scalp (EEG). In the context of this chapter, it is fairly

reasonable to assume that the signals generated at different locations separated by

several millimeters in the brain will be statistically independent. Another way of

saying the same thing is that since brain signals carry a lot of information, record-

ing sites that are relatively remote must have low levels of MI. When recording

directly from the cortex, we can indeed observe this principle. When we use ICA

to decompose an ECoG (Fig. 6.1A), our statistically independent components are

almost identical to the recorded channels, indicating that the different sites on the

cortex generate statistically independent signals. For the EEG (Fig. 6.1B), this rea-

soning does not hold because the skull and scalp have a tendency to smear (mix)

the contributions of the underlying sources, so ICA may be a good tool to find indi-

vidual sources in the signals.

152 Signal Processing for Neuroscientists, A Companion Volume

The procedure that is commonly applied to EEG analysis is to find source signals

that are temporally independent (because the EEG matrix has a temporal and spatial

component, we could also look for components that are spatially independent, but

this is usually not done). The underlying thought here is that source signals contrib-

ute to the signal at each EEG electrode. An example of two sources contributing to

Figure 6.14 ICA analysis in EEG, a two-source and two-channel example. (A) Electrodes

Y1 and Y2 record channels 1 and 2, each containing a mixture of sources X1 and X2. In each

mixture, the attenuation of the source signal is proportional with distance between source

and electrode (symbolized by the arrows). (B) shows the mathematics underlying the mixing

process that can be represented by matrix multiplication Y5AX, with A being the mixing

matrix (similar to the example in Fig. 6.2). The next step, (C), is to estimate the mixing

matrix and source components with the ICA procedure. The estimated source activity can

give an impression of the distribution of activities across the brain and the estimate of the

mixing matrix can be used to determine the effect for each source on the electrodes (D).

153Decomposition of Multichannel Data

two EEG electrodes/channels is depicted in Fig. 6.14A. The EEG data can therefore

be considered a linear mixture of the sources. Because the electrodes register the

fields of the locally generated activity traveling at the speed of light, the delays for

propagation between source and electrode are negligible. Our finding with the

ECoG (that the ICA components resemble the original time series) shows that if

sources are not too close, they will be independent. The simplified scenario in

Fig. 6.14A shows how two electrodes Y1 and Y2 each record a different mixture from

sources X1 and X2. Similar to the example in Fig. 6.2, we have that Y5AX, with A

being the mixing matrix. The first column in mixing matrix A (a and b, in the exam-

ple 0.8 and 0.4) indicate the coupling strength (proximity) of source X1 to electrodes

Y1 and Y2 (Fig. 6.14B). The second column in A (c and d, in the example 0.2 and

0.3) reflect the same coupling strength (proximity) of source X2 to electrodes Y1 and

Y2 (Fig. 6.14B). In this sense, mixing matrix A contains spatial information because

the values of its elements reflect the positions of sources and electrodes.

Now we can use ICA to estimate our source signals X̂ and the unmixing matrix

Â
21

(Fig. 6.14C). Assuming that Â
21

is invertible, we can determine an estimate Â

of the mixing matrix. Matrix Â contains the estimates for coupling strengths between

each of the sources and the electrodes. These estimates a, b, c, and d in Fig. 6.14C

and D can now be used to depict the coupling between sources and electrodes. For

Source 1 we find coupling strengths a and b for Electrode 1 and Electrode

2 (Fig. 6.14D1); for Source 2 we have strengths c and d for Electrode 1 and

Figure 6.15 Part of the EEG recording shown in Fig. 6.1B is shown in (A); the 21

independent components are shown in (B). Here it can be seen that the epileptic spike

waveforms are only represented in the first two independent components. Topographic maps

of the scalp potential associated with these two components are shown in (C) and (D). These

distributions are indicative for a source that is located right temporally. This figure was

prepared with eeglab software. This MATLAB-based package can be downloaded from the

Web site http://sccn.ucsd.edu/~scott/ica.html.

154 Signal Processing for Neuroscientists, A Companion Volume

http://www.sccn.ucsd.edu/~scott/ica.html

Electrode 2 (Fig. 6.14D2). As we will demonstrate in the following example

(because usually the EEG recording includes multiple channels), it is common prac-

tice to show the coupling strength for each component (source) at each electrode in

a color-coded fashion.

A detail of the EEG recording in Fig. 6.1 (the epoch in between the asterisks

in Fig. 6.1B) is shown in Fig. 6.15A. This EEG recording contains a high-amplitude

epileptic spike. The ICA of this 21-channel recording shows two components that

seem associated with this spike signal (Components 1 and 2 in Fig. 6.15B). Since each

electrode corresponds to a location, we can use the multichannel EEG to map our

independent components topographically (as we did in Fig. 6.14D). The topographic

maps of both these independent sources show a right temporal location (Fig. 6.15C

and D). It was confirmed clinically that the epileptic focus was indeed located in the

right temporal lobe in this patient. Although this confirmation is reassuring, it should

be noted here that the brain area where epileptic spikes are generated and the focus

where the epileptic seizures originate are not always the same location.

Appendix 6.1

Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a matrix play a role in multiple applications,

including the determination of principal components described in this chapter.

“Eigen” is a German word that, in this context, may be translated into “characteristic.”

Recall that a matrix can be used to efficiently represent a set of expressions—for

example,

x1 6y

5x1 2y

can be written as the product of a matrix A and vector v:

1 6

5 2

" #
|fflfflfflfflffl{zfflfflfflfflffl}

A

x

y

" #
|fflffl{zfflffl}

v

5Av

Vector v is an eigenvector of A if multiplication with matrix A scales it by a con-

stant λ without changing the direction of v (Fig. A6.1):

Av5λv ðA6:1:1Þ

The constant λ is the so-called eigenvalue of A. We can rewrite this expression as:

Av2λv5 0-

155Decomposition of Multichannel Data

ðA2λIÞv5 0

where I is the identity matrix.

This expression always has the trivial solution v5 0, while according to

Cramer’s rule (see, e.g., Jordan and Smith, 1997), non-trivial solutions (solutions

for which v 6¼0) can only exist if:

jA2λIj5 0 ðA6:1:2Þ

The j. . .j indicates the determinant of the matrix. If we go back to our numerical

example above, and apply the condition in Equation (A6.1.2), we have:

1 6

5 2

� �
|fflfflfflfflffl{zfflfflfflfflffl}

A

2λ 1 0

0 1

� �
|fflfflfflfflffl{zfflfflfflfflffl}

I

��������

��������5 0-

12λ 6

5 22λ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2λI

���������

���������
5 0 ðA6:1:3Þ

This leads to the characteristic equation:

ð12λÞ3 ð22λÞ2 53 65 0-λ2 2 3λ2 285 0-ðλ2 7Þðλ1 4Þ5 0

Thus, for our numerical example we find λ15 7 and λ25 2 4.

If we generalize the matrix, let us say,

A5
a b

c d

� �

Figure A6.1 Eigenvector v5 (1,1) of matrix A. Note that

the product Av does not change the direction of v; it only

scales it by the eigenvalue λ (7 in this example). This is

essentially the property associated with eigenvectors and

eigenvalues of a matrix A, here v and λ, respectively.

156 Signal Processing for Neuroscientists, A Companion Volume

the characteristic equation becomes:

ða2λÞðd2λÞ2 bc5 0-λ2 2 ða1 dÞλ1 ðad2 bcÞ5 0

The solutions for the eigenvalues are now:

λ1;2 5
ða1 dÞ6

ffi
ða1 dÞ2 2 4ðad2 bcÞ

q
2

Once the eigenvalues are known, we can compute an eigenvector for each eigen-

value. The only thing we need to determine is the direction of the eigenvector,

since the length is unimportant (the scalability, as shown in Fig. A6.1, holds for

any length of vector as long as the direction is correct). So we can set the value of

x in the eigenvector v arbitrarily to 1 and we substitute for the eigenvalue λ15 7 in

Equation (A6.1.1):

Av5λv- 1 6

5 2

� �
|fflfflfflfflffl{zfflfflfflfflffl}

A

1

y

� �
|ffl{zffl}

v

5 7|{z}
λ

1

y

� �
|ffl{zffl}

v

This results in two equations:

11 6y5 7

51 2y5 7y

Both have the same solution, y5 1. Therefore,

v5
x

y

� �
5

1

1

� �

is an eigenvector for eigenvalue 7; this is the eigenvector shown in Fig. A6.1. The

same approach can be followed for the other eigenvalue, 24.

157Decomposition of Multichannel Data

7 Causality

7.1 Introduction

In the previous chapters we decomposed multichannel data into its components and

we saw that this can be useful to detect structure in complex data sets. Another

question that is often posed concerns the causal structure between channels or com-

ponents: that is, does one channel generates another? In neuroscience the underly-

ing question is: does an area in the brain activate other ones? A typical example is

when an epileptologist examines multichannel recordings of brain electrical activity

and attempts to find the source (focus) of the epileptic seizures. Often this task is

accomplished by finding the signals that lead or lag; the leading signals are then

considered as causing the lagging ones. Cross-correlation or nonlinear equivalents

can be used to formalize and quantify timing differences between signal pairs in

multichannel data sets (see van Drongelen, 2007, chapter 8 to review cross-

correlation).

We have to start pessimistically by pointing out that translation from lead�lag

to causality is strictly not possible—the example in Fig. 7.1 demonstrates this. If

we record from areas A and B in Fig. 7.1A, our method of interpreting lead�lag as

a causal relationship A-B is correct. However, if we measure signals from A, B,

and C (Fig. 7.1B), we conclude that A-B, A-C, and B-C. We are only partly

correct: the two former relationships are correctly inferred but the latter is not. It

even would get worse if we had not recorded from A in this example: then we only

find B-C and we would be 100% incorrect. So equating lead�lag with causality/

connectivity can be incorrect. Having said this, in many studies in neuroscience

this is (conveniently) ignored, and timing in signals is frequently used as an argu-

ment for connectivity. Often, authors use terms such as “functional connectivity”

or “synaptic flow” to (implicitly) indicate the caveats above. Because we often

know the typical conduction velocity and delays caused by synaptic transmission,

we can (at least) recognize unrealistic delays. For example, if we know that areas

B and C in Fig. 7.1B are 10 cm apart and that conduction velocities of the fibers

between B and C are B1 m/s, we can expect delays B100 ms plus a few millise-

conds for each synapse involved. Now suppose that in this example the delay

between B and C ðΔt2 2Δt1Þ is B5 ms: such a value is far below the expected

delay of over 100 ms, which is an indication that direct connectivity does not play

a role in the observed lead�lag between B and C.

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00007-3

r 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00007-3

7.2 Granger Causality

In the 1950s, Norbert Wiener proposed that one signal causes another if your pre-

diction of the latter signal improves by including knowledge of the former. About a

decade later, Clive Granger (1969) formalized this concept for linear regression of

stochastic processes. To explain the principle, we consider an example of two sig-

nals x and y, and we suppose that we can characterize them with the following

autoregressive (AR) models:

xn 5 a1xn21 1 a2xn22 1?1 aixn2i 1?1 b1yn21 1?1 biyn2i 1?1 exn

ð7:1aÞ

yn 5 c1yn21 1 c2yn22 1?1 ciyn2i 1?1 d1xn21 1?1 dixn2i 1?1 eyn

ð7:1bÞ

Here a. . ., b. . ., c. . ., and d. . . are the coefficients and exn and eyn are error terms. If

the variance of error exn is reduced by including any value of y, yn2i (i.e., bi 6¼ 0),

then we say that y causes x. Similarly, if the variance of error eyn is reduced by

including any value of x, xn2i (i.e., di 6¼ 0), then we say that x causes y. In this

example, if bi 6¼ 0 and/or di 6¼ 0, we may use the term “Granger causality” to

describe the relationship between x and y; we add the qualification “Granger” to

indicate that we may not be dealing with a true causal relationship. Similar to the

examples given above and in Section 1.3 (where we used the Hilbert transform to

detect lead and lag between channels), there may be alternative explanations why x

helps to predict y or vice versa.

7.3 Directed Transfer Function

In the following we will link the Granger causality to the z-domain and frequency

domain approach of the directed transfer function (DTF), first described by

Kamiński and Blinowska (1991). The explanation here will be informal; a formal

proof of the relationship between Granger causality and DTF is presented in

Kamiński et al. (2001).

(A)

Δt

Δt1

Δt2

A B

A B

C

(B)

Figure 7.1 Example of areas in the brain A, B, C and their

connections, indicated by the arrows. The delays, due to conduction

velocity in the connections, between these areas are Δt, Δt1, Δt2
with Δt2.Δt1. (A) Due to the delay, activity in area B lags relative

to the activity in A. (B) Both B and C lag relative to A, but since

Δt2.Δt1, activity in C also lags relative to B.

160 Signal Processing for Neuroscientists, A Companion Volume

7.3.1 Autoregression in the Frequency Domain

To link time and frequency domains, we start from a 1D AR model and its fre-

quency domain presentation. Next, we extend the approach to a multidimensional

model and define the DTF. Because we want to follow the derivation by Kamiński

and Blinowska (1991), we start our explanation in the time domain and transform

our findings into the frequency domain via the z-transform.

7.3.1.1 1D Example

A one-channel model of order p can be represented by:

xn 5 a1xn21 1 a2xn22 1?1 aixn2i 1?1 apxn2p 1 en ð7:2aÞ

Here xn are the signal samples, ai are the AR model’s coefficients, and en is the

error term, which we represent by zero mean GWN.

Equation (7.2a) can be rewritten in the form:

xn 2 a1xn21 2 a2xn22 2?2 aixn2i 2?2 apxn2p 5 en ð7:2bÞ

Because we deal with a discrete time system, we can transform from the

time domain into the z-domain (to review the z-transform, see chapter 9 in

van Drongelen, 2007). We define the following transform pairs:

xn 2 XðzÞ
en 2 EðzÞ

Applying the z-transform to Equation (7.2b) we get:

XðzÞ2 a1z
21XðzÞ2 a2z

22XðzÞ2?2 aiz
2iXðzÞ2?2 apz

2pXðzÞ5EðzÞ
ð7:2cÞ

-XðzÞ½12 a1z
21 2 a2z

22 2?2 aiz
2i 2?2 apz

2p�5EðzÞ

-XðzÞ5 1

12 a1z21 2 a2z22 2?2 aiz2i 2?2 apz2p

� �
|ffl{zffl}

HðzÞ

EðzÞ5HðzÞEðzÞ

ð7:2dÞ

In Equation (7.2d), we defined H(z) as the transfer function of the system with

input noise en and output signal xn.

Recall that the z-transform is the Laplace transform applied to discrete time

series (chapter 9 in van Drongelen, 2007); the complex variable z for a time series

sampled with interval Δ is defined as z5 esΔ; where s is the complex variable of

161Causality

the Laplace transform. To get from the z-domain to the frequency domain, we now

use the imaginary part of exponent s5σ1 jω5σ1 j2πf of variable z—that is:

z21 5 e2sΔ 5 e2ðσ1 j2πf ÞΔ-z21 5 e2j2πfΔ

Using this, we can rewrite Equation (7.2d) as a function of frequency f:

Xðf Þ5Hðf ÞEðf Þ ð7:2eÞ

Now we have an expression in the frequency domain, where X(f) is the Fourier

transform of signal xn, E(f) is the Fourier transform of the noise input en, and H(f)

is the frequency response characterizing the system with input en and output xn.

Since X(f) is the discrete Fourier transform of xn, the unscaled power spectrum S

for xn (chapter 7 in van Drongelen, 2007) is:

Sðf Þ5Xðf ÞXðf Þ* ð7:3aÞ

The * indicates the complex conjugate. Equation (7.3a) combined with (7.2e)

gives:

Sðf Þ5 ½Hðf ÞEðf Þ�½Hðf ÞEðf Þ�*

Since this expression is the product of four complex numbers (for each frequency),

we may remove the brackets and rearrange the terms:

Sðf Þ5Hðf ÞEðf ÞEðf Þ*Hðf Þ* ð7:3bÞ

If the input process en is zero mean GWN, its unscaled power spectrum

Eðf ÞEðf Þ*5Nσ2; where N is the number of measurements of xn, and σ2 is the vari-

ance of the noise process.

Note: The equality Eðf ÞEðf Þ*5Nσ2 is directly related to Parseval’s theorem

(appendix 7.1 in van Drongelen, 2007), stating that the energy of a signal e in

the time domain equals the energy of its power spectrum:
PðEE*=NÞ5 P

e2:
If the signal has zero mean we may use the following (biased) expression for

variance: σ2 5 ð1=NÞP e2: Combining the two latter expressions, we get a

formula for the sum of the bins in the power spectrum:
PðEE*=NÞ5Nσ2:

Now, if signal e is GWN, the power is equally distributed across the N bins of

its spectrum—in other words, the power in each bin (the power for each

frequency f) of the normalized spectrum is Nσ2=N5σ2: Finally, for the
non-normalized spectrum EE* (instead of the normalized one EE*=N) we find
that the value for each frequency bin is N3 σ2 : Eðf ÞEðf Þ*5Nσ2:

162 Signal Processing for Neuroscientists, A Companion Volume

If we substitute this result in Equation (7.3b), we get:

Sðf Þ5Nσ2½Hðf ÞHðf Þ*�5Nσ2jHðf Þj2 ð7:3cÞ

Thus, in this case the spectrum Sðf Þ is proportional with the power of the frequency

response jHðf Þj2 5 ½Hðf ÞHðf Þ*�: Thus, in the frequency domain Hðf Þ relates input

with output—that is, the noise with the signal.

7.3.1.2 Multidimensional Example

The next step is to generalize the above from a one-channel pth-order AR process

to a k-channel one. As a first step let us consider a three-channel data set with a

pth-order AR process. For this system, the equivalent for Equation (7.2a) becomes:

xð1Þ
xð2Þ
xð3Þ

0
@

1
A

n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
-xn

5
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A1

xð1Þ
xð2Þ
xð3Þ

0
@

1
A

n21|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
-xn21

1
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

xð1Þ
xð2Þ
xð3Þ

0
@

1
A

n22|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
-xn22

1?1
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ai

xð1Þ
xð2Þ
xð3Þ

0
@

1
A

n2 i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
-xn2 i

1?

1
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

p|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ap

xð1Þ
xð2Þ
xð3Þ

0
@

1
A

n2p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
-xn2p

1
eð1Þ
eð2Þ
eð3Þ

0
@

1
A

n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
en

ð7:4Þ

or

-
xn 5A1

-
xn2 1 1A2

-
xn2 2 1?1Ai

-
xn2 i 1?1Ap

-
xn2 p 1

-
en

Here vector:

-
xn 5

xð1Þ
xð2Þ
xð3Þ

0
@

1
A

n

are the samples for the three channels x(1)�x(3), the 33 3 matrix:

Ai 5
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

i

163Causality

are AR model’s coefficients, and vector:

-
en 5

eð1Þ
eð2Þ
eð3Þ

0
@

1
A

n

are the errors for each channel. Note that we use arrows to indicate that x and e are

vectors instead of scalars now. A useful feature is that the AR coefficients Ai

relate the x values across time and more importantly (in this context) across

channels. For instance, for:

A2 5
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

2

we have (a11)23 x(1)n�2 relating past values of x(1) (i.e., the value of x(1) at sample

n�2) to the present value of x(1) (i.e., its value at sample n); (a12)23 x(2)n�2 relating

past values of x(2) (i.e., the value at sample n�2) to the present value of x(1) (i.e.,

the value at n); (a13)23 x(3)n�2 relating past values of x(3) (i.e., the value at n�2) to

the present value of x(1) (i.e., the value at n); (a21)23 x(1)n�2 relating past values of

x(1) (i.e., the value at n�2) to the present value of x(2) (i.e., the value at n), etc.

Here we can see the relationship between this approach and Granger causality: if

one of the coefficients aij 6¼ 0 (with i 6¼ j), there is a causal relationship (following

the definition of Granger causality as discussed in Section 7.2) between the channels

i and j, such that j-i. In the numerical example above, if (a12)2 6¼ 0, we find that

x(2)-x(1) (i.e., a causal relationship between channels 2-1).

Following our approach for Equation (7.2a), Equation (7.4) can be rewritten in

the form:

-
xn 2A1

-
xn2 1 2A2

-
xn2 2 2?2Ai

-
xn2 i 2?2Ap

-
xn2 p 5

-
en ð7:5aÞ

We now repeat the same procedure as we employed for the one-dimensional

case, and get to the frequency domain via the z-transform. First we define the fol-

lowing transform pairs:

-xn 2
-
XðzÞ

-
en 2

-
EðzÞ

The z-transform of Equation (7.5a) is:

-
X ðzÞ2A1z

21-XðzÞ2A2z
22-XðzÞ2?2Aiz

2i-XðzÞ2?2Apz
2p-XðzÞ5-

EðzÞ
ð7:5bÞ

164 Signal Processing for Neuroscientists, A Companion Volume

-
-
XðzÞ½I2A1z

212A2z
222?2Aiz

2i2?2Apz
2p�5-

EðzÞ

-
-
XðzÞ5 I

I2A1z212A2z222?2Aiz2i2?2Apz2p

� �
|ffl{zffl}

HðzÞ

-
EðzÞ5HðzÞ-EðzÞ ð7:5cÞ

In the above, I is the identity matrix and H(z) is defined as the transfer function

matrix between the input noise:

-
EðzÞ5

Eð1Þ
Eð2Þ
Eð3Þ

0
@

1
A

z

and output signal:

-
XðzÞ5

Xð1Þ
Xð2Þ
Xð3Þ

0
@

1
A

z

Similar to the procedure we followed in the 1D example above, we now use the

imaginary part of exponent s5σ1 jω5σ1 j2πf of variable z to get to the fre-

quency domain—that is:

z21 5 e2sΔ 5 e2ðσ1 j2πf ÞΔ-z21 5 e2j2πfΔ

We then rewrite Equation (7.5c) as a function of frequency f:

-
Xðf Þ5Hðf Þ-Eðf Þ ð7:5dÞ

The unscaled power spectrum S for -xn is:

Sðf Þ5-
Xðf Þ-Xðf Þ* ð7:6aÞ

The * indicates the adjoint, both the complex conjugate and the transpose. Note

that for each frequency f in Equation (7.6a) S is a 33 3 matrix. Equation (7.6a)

combined with Equation (7.5d) gives:

Sðf Þ5 ½Hðf Þ-Eðf Þ�½Hðf Þ-Eðf Þ�*5Hðf Þ-Eðf Þ-Eðf Þ*Hðf Þ* ð7:6bÞ

In the above, we used the identity ½Hðf Þ-Eðf Þ�*5-
Eðf Þ*Hðf Þ*: If the input noise pro-

cesses
-
en are independent white Gaussian with zero mean and variance σ2, we get

165Causality

-
Eðf Þ-Eðf Þ*5Nσ2I; where N is the number of measurements of -xn and I is the iden-

tity matrix. This generates:

Sðf Þ5Nσ2½Hðf ÞHðf Þ*� ð7:6cÞ
Thus, in this case the spectrum Sðf Þ is proportional with the power of the frequency

response ½Hðf ÞHðf Þ*�5 jHðf Þj2: Thus, in the frequency domain Hðf Þ relates input

with output, and it is by definition inversely proportional to A(f) (see Equation (7.5c)).

7.3.1.3 The Directed Transfer Function

Unlike in Equation (7.3c), H in the multichannel version in Equation (7.6c) is not a

single value but a matrix for each frequency f (in this example a 33 3 matrix).

Each element Hij in H represents a transfer value between channels j and i.

Again we can see the relationship between this approach and Granger causality: if

the transfer value between j and i is nonzero, there is an input�output (causal) rela-

tionship. Kamiński and Blinowska (1991) use a normalized version of H, which

they call the DTF, to study interrelationships between channels in their data sets.

They normalize each component Hij by dividing it by the sum of all elements of H

in the same row of the H matrix. Because Him represents the effect of channel m on

channel i, you can, in a K-channel recording, normalize by division by the contri-

butions from all channels:
PK
m5 1

Him: Therefore, the normalized version of transfer

function element Hij becomes Hij=
PK
m5 1

Him: Because Hij is usually a complex num-

ber, this ratio is further simplified to the squared magnitude, generating the com-

monly used definition of the DTF γij:

γij 5
jHijj2XK

m5 1

jHimj2
ð7:7Þ

Thus, the DTF can be determined from transfer matrix H, which can be determined

using the matrix of AR coefficients A (Equation (7.5c)). A recent study by Wilke

et al. (2009) describes how DTF can be combined with adaptive parameter estima-

tion; this adaptive version of DTF allows time-variant coefficients of the AR model

to deal with nonstationarity of the EEG signal.

7.3.2 Implementation

After obtaining the above results, it is appropriate to start thinking about an algo-

rithm to determine γij from measured data (e.g., a multichannel EEG recording).

One practical approach to find the transfer matrix H in a measured data set is to fit

an AR model to the data and determine matrix A of the AR coefficients

(Section 7.3.1.2). The inverse of A gives H (Equation (7.5c)). This is a parametric

166 Signal Processing for Neuroscientists, A Companion Volume

approach, because the basis is to fit parameters of an AR model to the data and the

DTF is derived from there. Fitting a multichannel AR model to a data set is an art

in itself that is beyond the scope of this chapter. If you want to play with fitting

models, there are several Web sites with MATLAB scripts available; one example

is the ARfit toolbox from http://www.gps.caltech.edu/~tapio/arfit/.
If you want to evaluate this arfit code you can create your AR model and evalu-

ate the performance of the estimator’s output with the known coefficients in your

model. The following script, Pr7_1.m , is an example of this procedure. Note that

this works only if you download and install the arfit toolbox! Recall to include

the arfit directory in the path by using “Set Path . . .” in the “File” menu.

% Pr7_1.m

% A test for identifying coefficients from a time series

% The program prints the coefficients we use (a and b)

% plus their estimates (vector A) obtained with the arfit function

% from the ARfit toolbox:http://www.gps.caltech.edu/~tapio/arfit/

clear;

close all;

% Set coefficients a and b

a=0.95;

b=-.55;

% Parameters & initial values for the time series

N=1000;

e=randn(1,N+3); % GWN input

x(1)=0;e(1)=0;

x(2)=0;e(2)=0;

% create the time series using autoregression

for i=3:N+3

x(i)=a*x(i-1)+b*x(i-2)+e(i);

end;

% Remove the 1st 2nd zero-valued-points from x

x=x(3:N+3);

% Make e the same length

e=e(3:N+3);

% normalize x & e

x=x-mean(x);

x=x/std(x)^2;

e=e-mean(e);

e=e/std(e)^2;

% arfit toolbox

[w,A,C,SBC,FPE,th]=arfit(xu,0,4); % arfit function

% Show the results

167Causality

http://www.gps.caltech.edu/~tapio/arfit/
http://www.gps.caltech.edu/~tapio/arfit/

(‘coefficients’)

(‘in’)

[a b]

(‘estimated’)

A

When you run the above script you will find that the arfit routine finds reasonable

estimates for the coefficients a and b (i.e., your estimates for a and b will be close

to 0.95 and �0.55, respectively).

For the implementation we can also go the nonparametric route by assuming

that the noise sources in our model are zero mean GWN signals. This gives us the

expression in Equation (7.6c), which shows us that the unscaled power spectrum

Sðf Þ is proportional to ½Hðf ÞHðf Þ*�5 jHj2: Under this assumption, we may deter-

mine the power spectrum directly from the data without having to estimate para-

meters by using the proportionality between S and jHj2 to estimate the DTF.

7.3.2.1 Examples

Let us simulate an example. First we create three signals S1, S2, and S3 with causal

relationships S1- S2 and S1- S3.

In MATLAB we accomplish this by creating a delay between S1 and S2 (in our
example 5 samples delay) and S1 and S3 (10 samples delay). The signal-to-noise
ratio (SNR) of our signal in S1 is determined by the variable SNR, and the strength
of the coupling of the signal in S1 to S2 and S3 is determined by K2 and K3, respec-
tively (see top diagram in Fig. 7.2).

function [S1 S2 S3]=Simulated_Signal(SNR, K2, K3);

% Output signals S1, S2, S3

% the signal-to-noise for S1 is determined by SNR

% the coupling from S1 to S2 and S3 are determined by K2 and K3

% Delay between S2 and S1 is dly2 and between S3 and S1 is dly3

% Linear vs. nonlinear coupling is determined by flag NL

% parameters

sample_rate=400; % sr in Hz

freq=30; % f in Hz

tim=40; % time in seconds

dly2=5; % # points delay and coupling strength signal 1 –>2

dly3=10; % # points delay and coupling strength signal 1 –>3

% Nonlinear Flag (coupling can be linear (0) or nonlinear (1))

NL=0;

168 Signal Processing for Neuroscientists, A Companion Volume

% derived parms

f_Nyq=sample_rate/2; % Nyquist

dt=1/sample_rate; % time step

N=tim*sample_rate; % no of points

t=0:dt:tim; % time axis

noise=randn(1,length(t)); % noise component

null=zeros(1,length(t)); % basline of zeros

% Source Signal

S1=sin(2*pi*freq*t).*SNR*std(noise);

% Create the derived signals S2 and S3

S2=null; S3=null;

for k=dly2+1:N

if (NL==0);

S2(k)=S1(k-dly2).*K2+randn; % linear coupling

else;

S2(k)=(S1(k-dly2).^2).*K2+randn; % nonlinear coupling

end;

end;

for k=dly3+1:N

if (NL==0);

S3(k)=S1(k-dly3).*K3+randn; % linear coupling

else;

S3(k)=(S1(k-dly3).^2).*K3+randn; % nonlinear coupling

end;

end;

% Noise added to S1

S1=S1+noise;

% Normalize all signals

S1=(S1-mean(S1))/std(S1);

S2=(S2-mean(S2))/std(S2);

S3=(S3-mean(S3))/std(S3);

In our example we run the above function by typing

[el1 el2 el3]=Simulated_Signal(3,0.1,0.001);

and the result is three traces simulating signals from electrodes 1�3 (el1,
el2, and el3) with causal relationships; we then save the result in a file
test.mat:

save test el1 el2 el3

Next, we use the file named test to investigate the causal relation between the sig-
nals with the script Pr7_2.m .

169Causality

% Pr7_2.m

% Demo DTF based on signals generated with function Simulated_Signal,

% These signals are saved in File test.mat

% !! the function regres must be in the directory to detrend the data !!

% This program steps with 20 s windows (duration) through

% each of three 40 s signals (el1, el2, el3).

% These 20 second windows move ahead with steps of 5 s (increment).

% So there is 15 s overlap between the 20 s analysis windows)

% Within each window of 20 seconds, the average (cross)spectra

% are computed from fft-analysis epochs of 128 points (step).

% NOTE: THIS PROGRAM IS NOT OPTIMIZED.

clear;

load test % load the data with 40 s input traces el1 - el3

% Parameters

cmd0=[‘N=length(el1)’]; % Determine the length of the signal

eval([cmd0 ‘;’])

sample_rate=400; % 400 Hz sample rate

duration=20; % duration of the total analysis window in

% seconds

step=128; % # of points in the FFT analysis window

increment=5; % steps of the analysis window in seconds

dt=1/sample_rate; % sample interval

fNyq=sample_rate/2; % Nyquist frequency

df=1/(step*dt); % Frequency step for the FFT

f=0:df:fNyq; % Frequency axis for the FFT

% Plot the three signals el1 - el3 in the top panels

figure

subplot(4,3,1);

plot(el1);hold;axis([0 N min(el1) max(el1)]);

t=[‘el1’];title(t);

axis(‘off’);

subplot(4,3,2);

plot(el2);hold;axis([0 N min(el2) max(el2)]);

t=[‘el2’];title(t);

axis(‘off’);

subplot(4,3,3);

plot(el3);hold;axis([0 N min(el3) max(el3)]);

t=[‘el3’];title(t);

axis(‘off’);

170 Signal Processing for Neuroscientists, A Companion Volume

% MAIN LOOP: STEPPING THROUGH THE DATA

% AND COMPUTING THE (CROSS)SPECTRA

count=0;

for w=1:increment*sample_rate:N-duration*sample_rate

% Move data window into x, y, z

x=el1(w:w+duration*sample_rate-1);

y=el2(w:w+duration*sample_rate-1);

z=el3(w:w+duration*sample_rate-1);

% Initialize the Cross-Spectral arrays for averaging

Sxx=zeros(1,step);

Syy=Sxx;

Szz=Sxx;

Sxy=Sxx;

Sxz=Sxx;

Syz=Sxx;

% SECOND LOOP TO COMPUTE AVERAGE (CROSS)SPECTRA

xtemp=0:step-1;

for i=1:step:sample_rate*duration-step;

% pre-processing x

[m,b,r]=regres(xtemp,x(i:i+step-1)); % Use regression to compute trend

trend=m*xtemp+b;

x(i:i+step-1)=x(i:i+step-1)-trend; % detrend

x(i:i+step-1)=x(i:i+step-1)-mean(x(i:i+step-1)); % demean

fx=fft(x(i:i+step-1).*hann(step)’); % windowed fft

% pre-processing y

[m,b,r]=regres(xtemp,y(i:i+step-1));

trend=m*xtemp+b;

y(i:i+step-1)=y(i:i+step-1)-trend;

y(i:i+step-1)=y(i:i+step-1)-mean(y(i:i+step-1));

fy=fft(y(i:i+step-1).*hann(step)’);

% pre-processing z

[m,b,r]=regres(xtemp,z(i:i+step-1));

trend=m*xtemp+b;

z(i:i+step-1)=z(i:i+step-1)-trend;

z(i:i+step-1)=z(i:i+step-1)-mean(z(i:i+step-1));

fz=fft(z(i:i+step-1).*hann(step)’);

% compute all 9 spectra which are proportinal with jHj^2, Eq (7.6c)

Sxx=Sxx+fx.*conj(fx);

Syy=Syy+fy.*conj(fy);

Szz=Szz+fz.*conj(fz);

Sxy=Sxy+fx.*conj(fy);

171Causality

Sxz=Sxz+fx.*conj(fz);

Syz=Syz+fy.*conj(fz);

Syx=conj(Sxy);

Szx=conj(Sxz);

Szy=conj(Syz);

end;

% Compute the power

S11=abs(Sxx).^2;

S12=abs(Sxy).^2;

S13=abs(Sxz).^2;

S21=abs(Syx).^2;

S22=abs(Syy).^2;

S23=abs(Syz).^2;

S31=abs(Szx).^2;

S32=abs(Szy).^2;

S33=abs(Szz).^2;

% Normalize

NS11=S11./max(S11); % on diagonal the normalized power spectrum

NS12=S12./(S11+S12+S13); % Eq (7.7)

NS13=S13./(S11+S12+S13); % Eq (7.7)

NS21=S21./(S21+S22+S23); % Eq (7.7)

NS22=S22./max(S22); % on diagonal the normalized power spectrum

NS23=S23./(S21+S22+S23); % Eq (7.7)

NS31=S31./(S31+S32+S33); % Eq (7.7)

NS32=S32./(S31+S32+S33); % Eq (7.7)

NS33=S33./max(S33); % on diagonal the normalized power spectrum

count=count+1;

% Plot the results in the corresponding panels and

% superimpose the results for different epochs

% Titles for the panels

ttle1=[‘ ’ num2str(count) ‘ ’ ‘Spectrum el1’];

ttle2=‘ el2 -. el1’;

ttle3=‘ el3 -. el1’;

ttle4=‘ el1 -. el2’;

ttle5=‘ Spectrum el2’;

ttle6=‘ el3 -. el2’;

ttle7=‘ el1 -. el3’;

ttle8=‘ el2 -. el3’;

ttle9=‘ Spectrum el3’;

172 Signal Processing for Neuroscientists, A Companion Volume

% Draw a red horizontal line for each 20 s analysis window

Y=[0 0];

X=[w w+duration*sample_rate];

XP=[w+1-increment*sample_rate w];

subplot(4,3,1);plot(X,Y,‘r’);if (count. 1);plot(XP,Y);end;

subplot(4,3,2);plot(X,Y,’r’);if (count. 1);plot(XP,Y);end;

subplot(4,3,3);plot(X,Y,’r’);if (count. 1);plot(XP,Y);end;

% Plot the (cross)spectral information in the lower 33 3 panels

subplot(4,3,4);hold on; plot(f(1:step/4),NS11(1:step/4),’k’);axis([0 60 0 1]);

title(ttle1);

subplot(4,3,5);hold on; plot(f(1:step/4),NS12(1:step/4),’k’);axis([0 60 0 1]);

title(ttle2);

subplot(4,3,6);hold on; plot(f(1:step/4),NS13(1:step/4),’k’);axis([0 60 0 1]);

title(ttle3);

subplot(4,3,7);hold on; plot(f(1:step/4),NS21(1:step/4),’k’);axis([0 60 0 1]);

title(ttle4);

subplot(4,3,8);hold on; plot(f(1:step/4),NS22(1:step/4),’k’);axis([0 60 0 1]);

title(ttle5);

subplot(4,3,9);hold on; plot(f(1:step/4),NS23(1:step/4),’k’);axis([0 60 0 1]);

title(ttle6);

subplot(4,3,10);hold on; plot(f(1:step/4),NS31(1:step/4),’k’);axis([0 60 0 1]);

title(ttle7);

subplot(4,3,11);hold on; plot(f(1:step/4),NS32(1:step/4),’k’);axis([0 60 0 1]);

title(ttle8);

subplot(4,3,12);hold on; plot(f(1:step/4),NS33(1:step/4),’k’);axis([0 60 0 1]);

title(ttle9);

% Force the script to draw the plots and pause for 1 second

drawnow;

pause(1);

% END MAIN LOOP

end;

The final result of running the above scripts is a plot as depicted in Fig. 7.2. The top

row of plots in Fig. 7.2 shows the three signals in the time domain and the bottom

part (33 3 matrix of panels) shows the spectral plus “causal” information. The diag-

onal panels are the spectra of each of the three channels and the off-diagonal plots

show the DTF. It can be seen that, as expected, the first columns shows a consistent

energy peak around 30 Hz (the frequency of the test signal in el1) in the DTF,

reflecting the causal relationships between el1 and the other two electrodes (el2 and

el3). The spectral panels show superimposed traces because spectra and DTFs were

determined a number of times for five subsequent epochs of the signals.

173Causality

Figure 7.2 Test of the nonparametric DTF algorithm on simulated data. The top diagram

shows how three signals el1, el2, and el3 relate to each other. The source el1 contains a

30 Hz sinusoidal signal that is coupled with delays to the other two electrode signals el2 and

el3. Noise is added to all three channels. The top panels el1, el2, and el3 show the signals

plus their noise components in the time domain and the bottom 33 3 panels are the result of

the DTF analysis. These panels show multiple traces, the results from analyzing five

overlapping epochs superimposed. Each epoch is 20 s and the overlap between subsequent

epochs is 15 s (the red horizontal lines in the three upper panels represent the 20 s analysis

windows used for the last of the five epochs). The diagonal panels in the 33 3 arrangement

show the power spectra scaled between 0 and 1 of each electrode and the off-diagonal panels

show the DTF according to Equation (7.7). It is clear that the first column contains energy

around 30 Hz, confirming that el1 is a source for el2 and el3. The graphs were prepared with

MATLAB scripts Simulated_Signal.m and Pr7_2.m ; if you repeat this procedure your

results may slightly differ (due to the effects of the added noise components).

174 Signal Processing for Neuroscientists, A Companion Volume

Recording of brain electrical activity from the scalp (EEG) or the cortex

(ECoG) is the clinical basis for the evaluation of patients with epilepsy. These

recordings can capture interictal spikes and the epileptic seizures and they can be

used to determine the temporal and spatial characteristics of these activity patterns.

For surgical candidates, a precise localization of the region where seizures originate

is highly significant because it determines the target for surgical resection.

Therefore, it is clinical practice to monitor surgical candidates for several days. In

such clinical recordings, even if we assume that the electrodes sufficiently cover

the brain areas of interest, the determination of the origin of the ictal activity can

be far from simple. First, the epileptologist must detect all seizures occurring in a

large data set; second, within each seizure the origin of the epileptiform discharges

must be determined. To determine the epileptic focus, the epileptologist will use

multiple data sets reflecting brain structure and function (EEG, MRI, PET, etc.).

The DTF analysis is a natural fit into this set of clinical data because it provides an

indicator where activity may originate.

7.4 Combination of Multichannel Methods

Finally we discuss how several of the multichannel techniques can be employed to

investigate brain activity. Gómez-Herrero et al. (2008) developed and applied a

novel methodology based on multivariate AR modeling and ICA to determine the

temporal activation of the intracerebral EEG sources as well as their approximate

locations. First these authors used PCA to remove noise components (similar to our

example with Lena’s image in Pr6_2.m) and ICA to identify the EEG sources (as

in our example in Fig. 6.15). The direction of synaptic flow between these EEG

sources is then estimated using DTF (as we did in the example of Fig. 7.2). The

reliability of their approach is assessed with simulations and evaluated by analyzing

the EEG-alpha rhythm. Their results suggest that the major generation mechanism

underlying EEG-alpha oscillations consists of a strong bidirectional feedback

between thalamus and posterior neocortex. Altogether, the study suggests that the

combined application of PCA, ICA, and DTF is a promising noninvasive approach

for studying directional coupling between neural populations.

175Causality

References

Arfken, G.B., Weber, H.J., 2005. Mathematical Methods for Physicists, sixth ed. Academic

Press, Elsevier, Burlington, MA.

Barbero, A., Franz, M., Van Drongelen, W., Dorronsoro, J.R., Scholköpf, B., Grosse-

Wentrup, M., 2009. Implicit Wiener series analysis of epileptic seizure recordings.

Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 5304�5307.

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind separation

and blind deconvolution. Neural Comput. 7, 1129�1159.

Boas, M.L., 1966. Mathematical Methods in the Physical Sciences, second ed. John Wiley &

Sons.

Cover, T.M., Thomas, J.A., 1991. Elements of Information Theory, John Wiley & Sons,

New York.

De Schutter, E., Bower, J.M., 1994a. An active membrane model of the cerebellar Purkinje

cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71, 375�400.

De Schutter, E., Bower, J.M., 1994b. An active membrane model of the cerebellar Purkinje

cell. II. Simulation of synaptic responses. J. Neurophysiol. 71, 401�419.

Fitzhugh, R.A., 1961. Impulses and physiological states in theoretical models of nerve mem-

brane. Biophys. J. 1, 445�466.

Franz, M.O., Schölkopf, B., 2006. A unifying view of Wiener and Volterra theory and poly-

nomial kernel regression. Neural Comput. 18, 3097�3118.

Gómez-Herrero, G., Atienza, M., Egiazarian, K., Cantero, J.L., 2008. Measuring directional

coupling between EEG sources. Neuroimage 43, 497�508.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-

spectral methods. Econometrica 37 (3), 424�438.

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its

application to conduction and excitation in the nerve. J. Physiol. 117, 500�544.

Izhikevich, E.M., 2007. Dynamical Systems in Neuroscience: The Geometry of Excitability

and Bursting, MIT Press, Cambridge, MA.

Jordan, D.W., Smith, P., 1997. Mathematical Techniques. Oxford University Press, Oxford.

Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L., 2001. Evaluating causal relations in

neural systems: Granger causality, directed transfer function and statistical assessment

of significance. Biol. Cybern. 85, 145.

Kamiński, M.J., Blinowska, K.J., 1991. A new method of the description of the information

flow in the brain structures. Biol. Cybern. 65, 203.

Koch, C., 1999. Biophysics of Computation: Information Processing in Single Neurons,

Oxford University Press, New York.

Krausz, H.I., 1975. Identification of nonlinear systems using random impulse train inputs.

Biol. Cybern. 19, 217�230.

Lay, D.C., 1997. Linear Algebra and its Applications, Addison-Wesley, New York.

Lee, Y.W., Schetzen, M., 1965. Measurement of the kernels of a nonlinear system by cross-

correlation. Int. J. Contr. 2, 237�254.

Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys.

Space Sci. 39, 447�462.

Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H., 1974. Model of Brain

Rhythmic Activity: The Alpha-Rhythm of the Thalamus. Kybernetik 15, 27�37.

Marmarelis, P.Z., Marmarelis, V.Z., 1978. Analysis of Physiological Systems: The White

Noise Approach, Plenum Press, New York.

Marmarelis, V.Z., 2004. Nonlinear Dynamic Modeling of Physiological Systems, IEEE

Press, John Wiley & Sons Inc., Hoboken, NJ.

Martell, A., Lee, H., Ramirez, J.M., Van Drongelen, W., 2008. Phase and frequency synchro-

nization analysis of NMDA-induced network oscillation. P142, CNS 2008 Annual

Meeting. http://www.biomedcentral.com/content/pdf/1471-2202-9-s1-p142.pdf.

Pikovsky, A., Rosenblum, M., Kurths, J., 2001. Synchronization: A Universal Concept in

Nonlinear Sciences, Cambridge University Press, Cambridge, UK.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes in C,

third ed. Cambridge University Press, Cambridge, MA.

Recio-Spinoso, A., Temchin, A.N., van Dijk, P., Fan, Y-H., Rugero, M.A., 2005. Wiener-

kernel analysis of responses to noise of chinchilla auditory-nerve fibers. J. Neurophysiol.

93, 3615�3634.

Scargle, J.D., 1982. Studies in astronomical time series analysis. II. Statistical aspects of

spectral analysis of unevenly spaced data. Astrophys. J. 263, 835�853.

Schetzen, M., 2006. The Volterra & Wiener Theories of Nonlinear Systems, second reprint ed.

Krieger Publishing Company, Malabar, FL.

Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication, University

of Illinois Press, Urbana, IL.

Stone, J.V., 2004. Independent Component Analysis: A Tutorial Introduction, MIT Press,

Cambridge, MA.

Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A.,

et al., 2005. Single-column thalamocortical network model exhibiting gamma oscilla-

tions, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194�2232.

Van Drongelen, W., 2007. Signal Processing for Neuroscientists: An Introduction to the

Analysis of Physiological Signals, Academic Press, Elsevier, Amsterdam.

Van Drongelen, W., Koch, H., Elsen, F.P., Lee, H.C., Mrejeru, A., Doren, E., et al., 2006.

The role of persistent sodium current in bursting activity of mouse neocortical networks

in vitro. J. Neurophysiol. 96, 2564�2577.

Van Drongelen, W., Williams, A.L., Lasky, R.E., 2009. Spectral analysis of time series of

events: effect of respiration on heart rate in neonates. Physiol. Meas. 30, 43�61.

Westwick, D.T., Kearney, R.E., 2003. Identification of Nonlinear Physiological Systems,

IEEE Press, John Wiley & Sons Inc., Hoboken, NJ.

Wilke, C., Van Drongelen, W., Kohrman, M., He, B., 2009. Identification of epileptogenic

foci from causal analysis of ECoG interictal spike activity. Clin. Neurophysiol. 120,

1449�1456.

Zinn-Justin, J., 2002. Quantum Field Theory and Critical Phenomena, Oxford University

Press, New York.

178 References

http://www.biomedcentral.com/content/pdf/1471-2202-9-s1-p142.pdf

	Front matter
	Copyright
	Preface
	Lomb’s Algorithm and the Hilbert Transform
	Introduction
	Unevenly Sampled Data
	Lomb’s Algorithm
	A MATLAB Example

	The Hilbert Transform
	The Hilbert Transform in the Frequency Domain
	The Hilbert Transform in the Time Domain
	Examples

	Appendix 1.1
	Appendix 1.2
	Appendix 1.3

	Modeling
	Introduction
	Different Types of Models
	Examples of Parametric and Nonparametric Models
	Polynomials
	Describing Discrete Time Data Sets
	Describing Analytic Functions
	Maclaurin Series
	Taylor Series

	Nonlinear Systems with Memory
	Appendix 2.1
	Taylor Series for a 2D Function

	Volterra Series
	Introduction
	Volterra Series
	Combined Input to a Second-Order Volterra System

	A Second-Order Volterra System
	Discrete Time Implementation

	General Second-Order System
	Determining the Second-Order Kernel
	Determining the First-Order Kernel

	System Tests for Internal Structure
	The LN Cascade
	The NL Cascade
	The LNL Cascade

	Sinusoidal Signals

	Wiener Series
	Introduction
	Wiener Kernels
	Derivation of the First-Order Wiener Operator
	Derivation of the Second-Order Wiener Operator
	Orthogonality Between H0 and g2
	Orthogonality Between H1 and g2

	Determination of the Zero-, First- and Second-Order Wiener Kernels
	Determination of the Zero-Order Wiener Kernel
	Determination of the First-Order Wiener Kernel
	Determination of the Second-Order Wiener Kernel

	Implementation of the Cross-Correlation Method
	Relation between Wiener and Volterra Kernels
	Analyzing Spiking Neurons Stimulated with Noise
	Nonwhite Gaussian Input
	Summary
	Appendix 4.1
	Averages of Gaussian Random Variables

	Appendix 4.2
	Delay System as Volterra Operator

	Poisson–Wiener Series
	Introduction
	Systems with Impulse Train Input
	Product Averages for the Poisson Impulse Train
	Orthogonal Terms of the Poisson–Wiener Series
	The Zero-Order Poisson–Wiener Operator
	The First-Order Poisson–Wiener Operator
	The Second-Order Poisson–Wiener Operator

	Determination of the Zero-, First- and Second-Order Poisson–Wiener Kernels
	Determination of the Zero-Order Poisson–Wiener Kernel
	Determination of the First-Order Poisson–Wiener Kernel
	Determination of the Second-Order Poisson–Wiener Kernel

	Implementation of the Cross-Correlation Method
	Spiking Output
	Summary
	Appendix 5.1
	Expectation and Time Averages of Variables Following a Poisson Process

	Appendix 5.2
	Creating Impulse Trains Following a Poisson Process

	Decomposition of Multichannel Data
	Introduction
	Mixing and Unmixing of Signals
	Principal Component Analysis
	Finding Principal Components
	A MATLAB Example
	Singular Value Decomposition
	Using PCA as a Filter

	Independent Component Analysis
	Entropy of Sources and Mixtures
	Using the Scalar Product to Find Independent Components
	A MATLAB Example
	What If Sources Are Not Uniformly Distributed?
	Can We Apply Smarter Approaches Than the Brute Force Technique?
	An Example of ICA Applied to EEG Signals

	Appendix 6.1
	Eigenvalues and Eigenvectors

	Causality
	Introduction
	Granger Causality
	Directed Transfer Function
	Autoregression in the Frequency Domain
	1D Example
	Multidimensional Example
	The Directed Transfer Function

	Implementation
	Examples

	Combination of Multichannel Methods

	References

