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Outline

1 Debugging Model
Hypothesis Evaluation

2 Generalization Error
Expected Label
Learned Hypothesis
Expected Test Error
Expected Classifier

Expected Error of A
3 Test Error Decomposition

Decomposition of Expected Test Error
4 Model Selection

Understanding error
Optimum model complexity
Dealing with error

5 Tasks
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Reference Books

Reference books for this Module:

Chapter 3: Pattern Recognition, Theodoridis et al., Academic Press, 4th Edition or
latest edition.

Chapter 3: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.
Chapter 2: The Elements of Statistical Learning, Hastie et al., Springer Books, 2nd

edition.
Chapter 5: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

How to select ML model

Is it enough to know / understand how different machine learning algorithms work?
How can we gain insight on whether selected model will perform adequately on unseen
data i.e. generalization capabilities?
What if model training error was within predefined bounds, but it makes
unacceptably large error on unseen data?
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How to select ML model

What if model training error was within predefined bounds, but it makes unacceptably
large error on unseen data?

1 Get more training examples

2 Try smaller sets of features <curse of dimensionality>
3 Try getting additional features <blessing of dimensionality>
4 Try adding polynomial features
5 Try hyper-parameter tuning (tree depth, k in k −NN , degree of polynomial in

regression, c in SVM etc.)

How to evaluate hypothesis
Usually ML practitioners select any of a/m items randomly (gut feeling) to improve
performance of ML algorithm, which most of the time do not give desired results.
In this module we will tackle this aspect in scientific manner.
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Hypothesis Evaluation

Hypothesis Evaluation

Consider example of “Regression”, where we are trying to fits a linear or nonlinear
relationship between independent variable x and the dependent variable y.

1 Dataset Dataset (blue points a) created by
drawing sample from Sinusoidal curve (adding
some noise)

2 k = 0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)

3 k = 1 Straight Line (Linear regression, not a
good fit. Under-fitting)

aImages from Bishop’s book

Under-fitting
Linear regression is under-fitting the data (high-bias).
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Hypothesis Evaluation

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = θ0 + θ1x
can be transformed to h = θ0 + θ1x+ θ2x

2(x − squared) *1

1 k = 2 Parabola

2 k = 3 Cubic (3rd degree Polynomial function,
fits nicely)

3 k = 9 9th degree polynomial
General form for Polynomial Regression:

h(θ) = θ0 + θ1x+ θ2 x2︸︷︷︸
x·x

+θ3 x3︸︷︷︸
x·x·x

+ · · ·+ θkx
k (1)

1Beware, its different from multi-variate regression. Its not dimension of feature vector.
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 8 / 44
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Hypothesis Evaluation

Polynomial Regression

- 9th degree polynomial fitted curve (shown in red)
goes to all the datapoints but otherwise its off by large
margin in between points. Ideally fitted curve shape
should look like curve shown in green.

- It’s not surprise to see test error increase
exponentially for 9th degree polynomial curve. It
shows that despite very low train error, it’s
generalization capability is very low. It’s a perfect
example of over-fitting.

Over-fitting
9th degree polynomial fitted curve is over-fitting the data (high-variance).
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Section Contents

1 Debugging Model
Hypothesis Evaluation

2 Generalization Error
Expected Label
Learned Hypothesis
Expected Test Error
Expected Classifier

Expected Error of A
3 Test Error Decomposition

Decomposition of Expected Test Error
4 Model Selection

Understanding error
Optimum model complexity
Dealing with error
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Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Generalization Error

Is it enough to know / understand how different machine learning algorithms work?
How can we gain insight on whether selected model / hypothesis will perform
adequately on unseen data i.e. generalization capabilities?
What if model training error was within predefined bounds, but it makes
unacceptably large error on unseen data?
In this module we will analyze generalization error and decompose it to understand
where it comes from.
Understanding generalization error will give insight to select robust algorithm for a
given problem.

Bias-Variance tradeoff
One of the most important topic for machine learning experts.
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Formalizing Generalization Error

Setup
Given dataset D = {(~x1, y1), . . . , (~xn, yn)}
D drawn from some distribution P (X,Y ) in i.i.d (independent and identically
distributed) manner , same supposition for all machine learning algorithms.
Assume regression setting yi ∈ R (regression setting is easier for derivation)
Given input x there might not exist a unique label y i.e. if ~x describes features of a
house (e.g. no. of bedrooms, square footage, · · · ) and the label y its price, imagine
two houses with identical description selling for different prices.
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Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Expected Label

Expected Label : given ~x ∈ Rd

Given ~x ∈ Rd:

ȳ(x) = Ey|x [Y ] =
∫
y

y Pr(y|x)∂y (2)

- The expected label denotes the label expected to obtain, given a feature vector ~x

- Pr(y|x) : Probability of y given ~x
- There could be same feature vector ~x (attributes of a house) but different respective label
y (price of a house).

- Equation 2 : expected label is average value of infinite many drawn samples (houses) or
integrate over all possible y and weight by probability of observing that y given x
(Pr(y|x)).
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Expected Label : given ~x ∈ Rd
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Learned Hypothesis

Hypothesis on dataset D

- We draw our training set D, consisting of n inputs, i.i.d. from the distribution P .

- Then call some machine learning algorithm A on this dataset to learn a hypothesis (aka
classifier).

- Formally, we denote this process as:

hD = A(D) (3)

Where A is machine learning algorithm i.e. Perceptron, DT or SVM etc., D training
dataset and hD is learned hypothesis (a function that takes input ~x and outputs y).
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Expected Test Error

Expected Test Error : given hD

- For a given hD (learned / specific classifier), learned on data set D with algorithm A, we
need to compute expected generalization error (error on unseen data points).
- Using sum of squared errors (generally used in regression setting)

E(x,y)∼P

[
(hD(x)− y)2

]
(4)

where E(x,y)∼P is theoretical test error calculated using test point (x, y) drawn from
distribution P

E(x,y)∼P

[
(hD(x)− y)2

]
=
∫
x

∫
y

(hD(x)− y)2 Pr(x, y)∂y∂x (5)

This is what we would like to understand and analyze
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Expected Classifier

Expected Classifier : given A

- Equation 5 is true for a given training set D. However, remember that D itself is drawn
from Pn (n samples drawn from P ), and is therefore a random variable. Further, hD is a
function of D, and is therefore also a random variable.

- Draw different distribution of D, then you will get slightly different h.

- Expected Classifier (given A):

h̄ = ED∼P n [A(D)] =
∫
D

hD Pr(D)∂D (6)

How to estimate h̄?
Make different D (many (infinite many) training sets) by drawing Pn every time and
calculate hD, then average all of them to get h̄ (weak law of large numbers).
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Expected Error of A

Expected Test Error : given A

- Earlier we computed expected test error of h (refer Equation 5) or specifically hD. This
is not generalizing well as it only gives expected error for one particular output, but we
need to compute how well algorithm do generally.

E(x,y)∼P
D∼P n

[
(hD(x)− y)2

]
(7)

- This is same as Equation 4 but now we integrate over all possible dataset as well.

Explanation
First draw dataset D from P , then train algorithm to get hD, then take test point
(x, y) drawn from distribution P and compute the error.
Do it many times (thousands of time, thousand different hD and test points (x, y) ) to
calculate average generalization error of an algorithm A.

E(x,y)∼P
D∼P n

[
(hD(x)− y)2

]
=
∫

D

∫
x

∫
y

(hD(x)− y)2 Pr(x, y)Pr(D)∂x∂y∂D (8)
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Expected Error of A

Expected Test Error : given A

- We are interested in exactly this expression, because it evaluates the quality of a machine
learning algorithm A with respect to a data distribution P (X,Y ).

- We will pick the algorithm with lowest such error.

E(x,y)∼P
D∼P n

[
(hD(x)− y)2

]
=
∫

D

∫
x

∫
y

(hD(x)− y)2 P(x, y)P(D)∂x∂y∂D

- Note: x, y are test point drawn from distribution P , and is independent of dataset D.
Although D is also dawn from P .

- Next, we will decompose this expression to see from where error creeps in to the system.
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Section Contents

1 Debugging Model
Hypothesis Evaluation

2 Generalization Error
Expected Label
Learned Hypothesis
Expected Test Error
Expected Classifier

Expected Error of A
3 Test Error Decomposition

Decomposition of Expected Test Error
4 Model Selection

Understanding error
Optimum model complexity
Dealing with error

5 Tasks
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Decomposing this equation, refer Equation 7:

E(x,y)∼P
D∼P n

[
(hD(x)− y)2

]
- Trick 1: Add and subtract h̄(x)

Ex,y,D

[
[hD(x)− y]2

]
= Ex,y,D

[[(
hD(x)− h̄(x)

)
+
(
h̄(x)− y

)]2] (9)

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:

Ex,D

[
(h̄D(x)− h̄(x))2]+ 2 Ex,y,D

[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]
+Ex,y

[(
h̄(x)− y

)2] (10)
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

Refer Equation 10:

Ex,D

[
(h̄D(x)− h̄(x))2]+ 2 Ex,y,D

[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]
+ Ex,y

[(
h̄(x)− y

)2]

- Middle term (2ab) is zero?

Ex,y,D

[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]
= Ex,y

[
ED

[
hD(x)− h̄(x)

] (
h̄(x)− y

)]
= Ex,y

[(
ED [hD(x)]− h̄(x)

) (
h̄(x)− y

)]
= Ex,y

[(
h̄(x)− h̄(x)

) (
h̄(x)− y

)]
= Ex,y [0]
= 0

(11)

- Expected value (over D) of hD(x) is exactly equal to h̄(x)
- This is trick 2 i.e. making term 2ab = 0.
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Returning to the earlier expression (refer Equation 10), we’re left with just two terms
corresponding to a2 and b2. We just showed expected test of an algorithm A consists of
these two terms (note: point x and dataset D are independent):

Ex,y,D

[
(hD(x)− y)2

]
= Ex,D

[(
hD(x)− h̄(x)

)2]+ Ex,y

[(
h̄(x)− y

)2] (12)

- What is this term highlighted in red?

Variance
This is variance and it measures how far a set of numbers is spread out from their mean
value (deviation of random variable from mean). h̄(x) is mean function value and hD(x) is
a one of the classifier and when we squared their difference we get variance. So it’s
variance of prediction / classifier.
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Ex,y,D

[
(hD(x)− y)2

]
= Ex,D

[(
hD(x)− h̄(x)

)2]+ Ex,y

[(
h̄(x)− y

)2]

- Now do the same trick again i.e. add and subtract the mean ȳ and make term 2ab = 0.

Ex,y

[(
h̄(x)− y

)2]
= Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2] (13)

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 23 / 44



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Ex,y,D

[
(hD(x)− y)2

]
= Ex,D

[(
hD(x)− h̄(x)

)2]+ Ex,y

[(
h̄(x)− y

)2]
- Now do the same trick again i.e. add and subtract the mean ȳ and make term 2ab = 0.
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h̄(x)− y

)2]
= Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2] (13)

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:
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)2] (13)

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 23 / 44



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Refer Equation 12, and analyze / decompose second term (highlighted in red) as first
term is variance.

Ex,y,D

[
(hD(x)− y)2

]
= Ex,D

[(
hD(x)− h̄(x)

)2]+ Ex,y

[(
h̄(x)− y

)2]
- Now do the same trick again i.e. add and subtract the mean ȳ and make term 2ab = 0.
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Expected Test Error of Algorithm A

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:

Ex,y

[(
h̄(x)− y

)2] = Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2]
= Ex,y

[
(ȳ(x)− y)2

]
+ Ex

[(
h̄(x)− ȳ(x)

)2]+ 2 Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

] (14)

- Before analyzing terms highlighted in red and green, it is argued that last term
corresponding to 2ab = 0 (i.e. expected value of y is ȳ, thus making the term 0).
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)
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:

Ex,y

[(
h̄(x)− y

)2] = Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2]
= Ex,y

[
(ȳ(x)− y)2

]
+ Ex

[(
h̄(x)− ȳ(x)

)2]+ 2 Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

] (14)

- Before analyzing terms highlighted in red and green, it is argued that last term
corresponding to 2ab = 0 (i.e. expected value of y is ȳ, thus making the term 0).

Noise
There is a data point with label y but expected label is ȳ, it means there is a data point
with different label than expected label. Classifier can’t do better than ȳ(x). So it’s a
noise. For example, same feature vector but with different labels (noisy data). In
regression, same house attributes but one cost 10k$ and the other 1M$.
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Its (a+ b)2 = a2 + 2ab+ b2, expand it to analyze each term:

Ex,y

[(
h̄(x)− y

)2] = Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2]
= Ex,y

[
(ȳ(x)− y)2

]
+ Ex

[(
h̄(x)− ȳ(x)

)2]+ 2 Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

] (14)

- Before analyzing terms highlighted in red and green, it is argued that last term
corresponding to 2ab = 0 (i.e. expected value of y is ȳ, thus making the term 0).

Bias2

How much error will I get from average classifier (trained from infinite many datasets) and
expected label. Here noise is not a issue. This term captures how biased is classifier
towards some explanation which is not present in the data. For example data is non linear
but I am fitting a line to it. No matter how big is the data, classifier will always make
mistakes due to the reason that classifier is biased towards some specific solution. More
data will not help. It is bias of the model.
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Decomposition of Expected Test Error

Expected Test Error of Algorithm A

- Plugging back values from Equation 14 to Equation 12 , we get:

Ex,y,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(15)

- In Summary 2 :

2Credits: Prof. Kilian, Cornell, USA
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- Plugging back values from Equation 14 to Equation 12 , we get:

Ex,y,D

[
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]
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Expected Test Error

= Ex,D

[(
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[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(15)

- In Summary 2 :

Variance
Captures how much classifier changes if trained on a different training set. How
“over-specialized” is classifier to a particular training set (overfitting)?

2Credits: Prof. Kilian, Cornell, USA
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- Plugging back values from Equation 14 to Equation 12 , we get:

Ex,y,D

[
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]
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[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(15)

- In Summary 2 :

Bias
What is the inherent error of the classifier is, even with infinite training data? This is due
to your classifier being “biased” to a particular kind of solution (e.g. linear classifier). In
other words, bias is inherent to model.

2Credits: Prof. Kilian, Cornell, USA
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Expected Test Error of Algorithm A

- Plugging back values from Equation 14 to Equation 12 , we get:

Ex,y,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
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+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
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(15)

- In Summary 2 :

Noise
How big is the data-intrinsic noise? This error measures ambiguity due to data
distribution and feature representation.

2Credits: Prof. Kilian, Cornell, USA
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Section Contents

1 Debugging Model
Hypothesis Evaluation

2 Generalization Error
Expected Label
Learned Hypothesis
Expected Test Error
Expected Classifier

Expected Error of A
3 Test Error Decomposition

Decomposition of Expected Test Error
4 Model Selection

Understanding error
Optimum model complexity
Dealing with error

5 Tasks

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 26 / 44



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Understanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Ex,y,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(16)
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Understanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Ex,y,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(16)

Variance (error from sensitivity to small fluctuations in training data)
Captures how much classifier changes if trained on a different training set. How
“over-specialized” is classifier to a particular training set (over-fitting)?
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Understanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Ex,y,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(16)

Bias (error from wrong model assumptions)
What is the inherent error of the classifier is, even with infinite training data? This is due
to your classifier being “biased” to a particular kind of solution (e.g. linear classifier). In
other words, bias is inherent to model and relates to (under-fitting)
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Understanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Ex,y,D
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]
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= Ex,D
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hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)
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(16)

Noise
How big is the data-intrinsic noise? This error measures ambiguity due to data
distribution and feature representation.
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Understanding error

Bias, Variance & Noise

Machine learning algorithm’s generalization error is usually decomposed in:

Ex,y,D

[
(hD(x)− y)2

]
︸ ︷︷ ︸

Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]
︸ ︷︷ ︸

Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

(16)

Insight
By knowing whether its a bias or variance error or both, will significantly help in
improving performance of ML algorithm. The beauty is that terms contributing in the
error are quadratic (power of 2) and most probably one term dominants the others. So it
is possible to reduce that dominating term without exploding other terms.
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Understanding error

Bias- Variance : Graphical Representation

3
3Source: http://scott.fortmann-roe.com/docs/BiasVariance.html
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Understanding error

Bias-Variance : Graphical Representation

How high bias and high variance looks like?

Note4

4slide from Andrew Ng
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Understanding error

Error type detection

Demo available

As model gets complex, training error
reduces (it corresponds to overfitting).
When model is simple, it corresponds to
underfitting.

Generalization error is high
Is it a bias problem or a variance problem?

Is it a bias problem or a variance problem
High bias (under-fit): When training error
and validation error, both are high.
High variance (over-fit): When training error
is low, while validation error is very high.
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Understanding error

Error type detection : Finding the balance

Bias and variance contributing to total error

Understanding the illustration:
1 At its root, dealing with bias and

variance is really about dealing
with over- and under-fitting.

2 Bias is reduced and variance is
increased in relation to model
complexity.

3 As more and more parameters are
added to a model, the complexity
of the model rises and variance
becomes our primary concern
while bias steadily falls.
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Optimum model complexity

Model Evaluation

To find that optimum complexity, we can use:
1 Data Partitioning / splitting
2 Early stopping (Stop optimization after M (>= 0) number of gradient steps, even if

optimization has not converged yet.)
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Optimum model complexity

Model Evaluation : Data Partitioning

How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.

The above issue can be handled by evaluating the performance (generalization
capability) of a trained model model on unseen data, separated from available dataset.
Following are few dataset partitioning techniques:

Hold out
k − fold Cross validation
Bootstrap
Leave-one-out cross-validation

More training data gives better generalization.
More test data gives better estimate for the classification error probability.
Never evaluate performance on training data. The conclusion would be biased.
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Optimum model complexity

Model Evaluation: Hold out - Data Split

Dataset:

Experience (Yrs) Salary
1 30k
1.3 33k
1.8 36k
2 45k
3.3 65k
2.2 46k
4 66k
5 70k
6.5 72k
6.2 72k

Hold out cross validation:
- The goal of cross-validation is to define a dataset to
test the model, in order to limit problems like
overfitting, give an insight on how the model will
generalize to an independent dataset.

- Randomly divide data into two: Training and Test
set i.e. a hold-out set (30%).
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Optimum model complexity

Model Evaluation

Learn parameter θ from training data (minimizing training error J(θ)).
Compute test-set error:
For Regression:

J(θ) = 1
2n

ntest∑
i=i

(ŷi − yi)2 (17)

For Classification:

err(i) =
{

1, if yi 6= ŷi

0, otherwsie

Errortotal = 1
ntest

ntest∑
i=i

err(i) (18)

Where ŷi = predicted value on test sample, yi is actual value and ntest is total number of
test samples.
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 35 / 44



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Optimum model complexity

Model Evaluation: Hold out - Data Split

Drawback of test / train split: Error found in the test dataset can highly depend on the
observations included in the train and test dataset. Actually, we are fitting learned
parameters from train data to test data, by choosing hypothesis that gives best result on
test-set. Thus, its an optimistic estimate of generalization error. This method is also not
effective for comparing multiple models and tuning hyper-parameters.

Improvement: Splitting of dataset into three separate
sets i.e. train, (cross) validation & test. Model /
hypothesis is selected that has minimum validation
error. Estimate of generalization error is then
calculated using test-set.
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Optimum model complexity

Model Evaluation: Hold out - Data Split

1 Train Data: it is used to initially machine learning model train and make predictions.
Model will run on this set of data exhaustively (mostly iteratively). It’s the largest
part of your overall dataset, comprising around 60-70% of total data used in the
project.

2 Validation Data: Trained model uses this data to see whether it can correctly identify
relevant new examples. So, used to discover new values that are impacting the process
/ hyper-parameter tuning. Another common problem often identified during
validation is overfitting. Often, after validation, data scientists will often go back to
the training data and run through it again, tweaking values and hyper-parameters to
make the model more accurate.

3 Test Data: comes into play after a lot of improvement and validation. This data is
used by the model to make predictions to test whether it will work in the real world.
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Optimum model complexity

Model Evaluation: k − fold Cross validation - Data Split

In k-fold cross validation, dataset is divided into k equal subsets. k-1 subsets are used for the training while a
single set is retained for testing. The process is repeated k times (k-folds), with each of the k subsets used exactly
once for testing. Then, the k estimations (accuracy) from k-folds are averaged to produce final estimated value.
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Optimum model complexity

Model Evaluation: Bootstrap - Data Split

The bootstrap (also called bagging1 ) uses sampling with replacement to form the training set.

Given: the training set T consisting of n entries.
Bootstrap generates m new datasets Ti each of size n′ < n by sampling T uniformly with replacement. The
consequence is that some entries can be repeated in Ti.
The m statistical models (e.g., classifiers, regressors) are learned using the above m bootstrap samples.

1Proposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123–140.
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 39 / 44
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Optimum model complexity

Model Evaluation: LOOCV - Data Split

Leave-One-Out Cross-Validation (LOOCV)
1 Do N experiments. In each experiment, use N − 1 samples for training, and leave only 1

sample for testing.

2 Compute the testing error Ei, i = 1, 2, . . . , N .
3 After N experiments, compute the overall estimated error:

E = 1
N

N∑
i=1

Ei (19)
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Debugging Model Generalization Error Test Error Decomposition Model Selection Tasks

Dealing with error

Dealing with Variance and Bias errors

Keep iterating (image on the left) till
low bias and low variance is achieved.
Bias-Variance Tradeoff : Tool for one
can hurt other metric (probably this is
not valid for DL). For example training
complex model can reduce bias but can
increase variance.

Ensemble Learning
Bagging and Boosting are widely used techniques for dealing with high variance and high
bias problems respectively.
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complex model can reduce bias but can
increase variance.
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Section Contents

1 Debugging Model
Hypothesis Evaluation

2 Generalization Error
Expected Label
Learned Hypothesis
Expected Test Error
Expected Classifier

Expected Error of A
3 Test Error Decomposition

Decomposition of Expected Test Error
4 Model Selection

Understanding error
Optimum model complexity
Dealing with error

5 Tasks
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Tasks

Further Reading
1 Weak law of large numbers.
2 Effect of regularization on bias and variance.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Bias-Variance Trade Off 44 / 44



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Machine Learning
Unsupervised Learning

Clustering

Dr. Rizwan Ahmed Khan
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Reference Books

Reference Books

Reference books for this Module:

Chapter 9: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.

Chapter 14: Principles of Data Mining, Max Bramer, Springer Books.
Chapter 8: Introduction to Data Mining Kumar et al., 2nd Edition, Pearson
Education.
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Taxonomy of Machine learning
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Taxonomy

Supervised Learning: Function approximation

Supervised learning is about function approximation
Problem Setting:

Set of possible instances X
Unknown target function f : X → Y

Set of function hypotheses H = {h|h : X → Y }
Input:

training examples {< xi, yi >}. For example x is an email and y is either Spam or No
Spam.
We have labeled data in supervised learning.

Output:
Hypothesis h ∈ H that best approximates target function f . OR
a classification “rule” that can determine the class of any object from its attributes
values.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 6 / 56



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Taxonomy

Unsupervised Learning: Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised
learning).

- As data is unlabeled,
aim to find structure /
pattern in the data.
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Taxonomy

Unsupervised Learning: Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised
learning).

- As data is unlabeled,
aim to find structure /
pattern in the data.

Input:
Training examples {x1, x2, · · · , xm}.
Now, data is unlabeled.
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Taxonomy

Unsupervised Learning: Deductive Learning

Unlabeled data / examples

Derive structure from the data by exploring the relationship b/w input examples

Unsupervised learning is about description
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Taxonomy

Unsupervised Learning
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Taxonomy

Clustering

Clustering is one of the most common exploratory data analysis technique.

It is used to get an intuition about the structure of the data. And used to:
cluster data into meaningful and useful groups i.e. taxonomy of living things.
Identify subgroups / clustering in the data. OR
finding homogeneous subgroups / clusters (data points in each cluster are as similar as
possible) within the data.

Types (main) of clustering:
1 Partitional clustering i.e. K - Means clustering.
2 Hierarchical clustering i.e. Agglomerative Hierarchical clustering.
3 Fuzzy clustering i.e. Fuzzy K-Means.
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Applications

Clustering Applications

Market segmentation

Social network analysis
Image compression /
segmentation
Organizing computer cluster /
data centers
Astronomical data analysis
Document clustering
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Introduction

Introduction

K-means algorithm is by far the most popular / widely used clustering algorithm.
K-means algorithm is an iterative algorithm. It tries to:

partition the dataset into K pre-defined distinct / non-overlapping subgroups (clusters)
each data point in a dataset is assigned to only one cluster.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 13 / 56



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Introduction

K-Means Pictorial Representation

Input: Unlabeled Dataset
output: Group the data into two
clusters (K=3)
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Introduction

K-Means Pictorial Representation

Initialization: Randomly initialize
three points (as K=3), called cluster
centroids (shown in green).

K-means algorithm is an iterative
algorithm. It has two steps.

1 Cluster assignment step
2 Move / Update centroid step
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Introduction

K-Means Pictorial Representation

Cluster assignment(Step 1):
Algorithm will iterate over all data
points and depending on its distance
to each cluster centroid, assign data
point to closest cluster centroid.
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Introduction

K-Means Pictorial Representation

Move centroid (Step 2):
Calculate average of data points
assigned to specific cluster and
assign that value to cluster centroid
(moving centroid to new
coordinates).
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Introduction

K-Means Pictorial Representation

After two iterations
This shows result after completion
of two iterations.
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Introduction

K-Means Pictorial Representation

Convergence
If you keep iterating nothing will
change.
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Algorithm

K-Means Algorithm

Input:

- K (number of clusters). Its a parameter.
- Unlabeled training Set

{x1, x2, · · · , xm}

- where xi ∈ Rn
- m datapoints with n dimensions.
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Algorithm

K-Means Algorithm

Algorithm 1 K-Means Clustering Algorithm
Input: x1, x2, · · · , xm

1: Randomly initialize K cluster centroids: µ1, µ2, · · · , µK ∈ Rn

Repeat until convergence1 {

2: for i = 1 to m do
3: ci ← index of closest cluster centroid to xi
4: end for

5: for k = 1 to K do
6: µk ← average / mean of points assigned to cluster k
7: end for }

1run until cluster centroids don’t change
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 16 / 56
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Algorithm

Decoding K-Means Algorithm

- Steps shown in blue (in previous slide) belongs to cluster assignment step (step 1).

for i = 1 to m do
ci ← index of closest cluster centroid to xi

end for

- This step is computing distance:

ci ← min
k
||xi − µk||2

- Algorithm will iterate over all data points and depending on its distance to each cluster
centroid, assign data point to closest cluster centroid (find value of k that minimizes
distance).
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Algorithm

Decoding K-Means Algorithm

- Steps shown in red (in previous slide) belongs to move centroid step (step 2).

for k = 1 to K do
µk ← average / mean of points assigned to cluster k

end for

- Concrete Example:
IF x1, x5, x6, x10 are assigned to cluster 2, (from step 1) then
=⇒ c1 = 2, c5 = 2, c6 = 2, c10 = 2
=⇒ µ2 = 1

4 [x1 + x5 + x6 + x10] ∈ Rn

What if cluster centroid has zero data points assigned to it?
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Algorithm

Distance Metrics

Distance metric uses distance function which provides a relationship metric between
elements in the dataset.
Minkowski Distance:

dist(a, b) =
(

n∑
i=1

(ai − bi)p
) 1

p

(1)

1 if p = 1, Manhattan Distance

distL1(a, b) =
n∑
i=1

(‖ai − bi‖) (2)

2 if p = 2, Euclidean Distance

distL2(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (3)
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Algorithm

Manhattan or Euclidean Distance

Intuition of distances

distL1(a, b) =
n∑
i=1

(‖ai − bi‖)

distL1(a, b) = (6− 0) + (6− 0) = 12 (4)

distL2(a, b) =

√√√√ n∑
i=1

(ai − bi)2

distL2(a, b) =
√

62 + 62 =
√

72 ≈ 8.49 (5)

In Manhattan / taxicab geometry, the red, yellow, and blue paths all have the same shortest path length of 12. In
Euclidean geometry, the green line has length 6

√
2 ≈ 8.49 and is the unique shortest path.
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Objective Function

Importance?

Why to learn cost function?
1 To better understand algorithm

2 It is important to know cost function / objective function to debug algorithm.
3 To fine tune parameters i.e. k in k-means clusters, and to avoid local minima in order

to get better results.
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Objective Function

Optimization Function

k-means algorithm optimization objective:

ci = index of cluster (1, 2, · · · ,K) to which example xi is currently assigned.

µk = cluster centroid k (µk ∈ Rn), k = {1, 2, · · · ,K}.
µci

= cluster centroid of cluster to which example xi has been assigned.

For example: If example xi is assigned to cluster 5, then
ci ← 5 and µci

← µ5

Optimization objective:

min
c,µ

J(c1, c2, · · · , cm;µ1, µ2, · · · , µK) = 1
m

m∑
i=1
||xi − µci

||2 (6)
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Objective Function

Optimization Function

k-means algorithm optimization objective

min
c1,··· ,cm;µ1,··· ,µK

J(c1, c2, · · · , cm;µ1, µ2, · · · , µK) = 1
m

m∑
i=1
||xi − µci ||

2

Cost function is trying to minimize distance between examples xi and associated
cluster centroids µci

.
Or in other words, cost function is finding parameters µi and ci to minimize sum of
squared distance between example and cluster centroid to which example is assigned.
This function is sometimes also called as Distortion or Distortion function of K-Means.
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Objective Function

Optimization Function Visualization

min
c1,··· ,cm;µ1,··· ,µK

J(c1, c2, · · · , cm;µ1, µ2, · · · , µK) = 1
m

m∑
i=1
||xi − µci ||
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Objective Function

Optimization Function Visualization
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Objective Function

Looking at K-Means Algorithm w.r.t J

Input: x1, x2, · · · , xm
1: Randomly initialize K cluster centroids:
µ1, µ2, · · · , µK ∈ Rn

Repeat until convergence {

2: for i = 1 to m do
3: ci ← index of closest cluster centroid to xi
4: end for

5: for k = 1 to K do
6: µk ← average / mean of points assigned to cluster k
7: end for

}

Do you see any relation
between J and the two loops?

1 Loop 1 (cluster assignment step)
is minimizing J w.r.t
c1, c2, · · · , cm while holding
µ1, µ2, · · · , µK fixed.

2 Loop 2 (move centroid step) is
minimizing J w.r.t
µ1, µ2, · · · , µK
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Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Initialization

Random Initialization

Up till now we have discussed loops of K-Means algorithm. Any other detail missing?

First step of K-Means algorithm is:
Randomly initialize K cluster centroids: µ1, µ2, · · · , µK ∈ Rn

This discussion on random initialization of centroid will also cover discussion on local
optima.
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Initialization

Random Initialization

- K � m
- What will happen if K = or ≈ m ?
- There are two strategies:

1 Randomly set coordinates of
µ1, µ2, · · · , µK .

2 OR randomly pick K training
examples and set
µ1, µ2, · · · , µK equal to these K
examples.
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Initialization

Random Initialization

Random Initialization - Bad
Initialization
- Stuck at local optima
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Initialization

Random Initialization

Random Initialization - Good
Initialization

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 27 / 56



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Initialization

Random Initialization

Random Initialization - Good
Initialization
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Initialization

Random Initialization 1

- K-Means can converge on different solutions based on initialization of cluster centroids.
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Initialization

Random Initialization 2

- K-Means can converge on different solutions based on initialization of cluster centroids.
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Random Initialization 2

- K-Means can converge on different solutions based on initialization of cluster centroids.
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Initialization

Random Initialization: Local Optima

Data points
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Initialization

Random Initialization: Local Optima

Data points
Result after good initialization
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Initialization

Random Initialization: Local Optima

Data points

Not so good initialization, stuck in local optima i.e.
K-means not doing a good job in minimizing
distortion function J : minc1,··· ,cm;µ1,··· ,µK

J
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Data points
Not so good initialization, stuck in local optima i.e.
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distortion function J : minc1,··· ,cm;µ1,··· ,µK
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Initialization

Random Initialization - Avoiding Local Optima

Avoiding Local Optima

Algorithm 2 Random Initialization of K-Means Clustering Algorithm
for I = 1 to 100 do
Randomly initialize K-Means.
Run K-Means. Get c1, c2, · · · , cm and µ1, µ2, · · · , µK .
Computer J (Cost function / distortion Function). Refer Equation 6.

end for

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 31 / 56



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Initialization

Random Initialization - Avoiding Local Optima

for I = 1 to 100 do
Randomly initialize K-Means.
Run K-Means. Get c1, c2, · · · , cm and µ1, µ2, · · · , µK .
Computer J (Cost function / distortion Function). Refer Equation 6.

end for

- After running it 100 times, pick clustering that achieved lowest J (validation of clusters).

min
c1,··· ,cm;µ1,··· ,µK

J

For larger values of K, even this method might not work!
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Choosing number of K

Choosing number of K

Choosing number of K
- How to choose value for K i.e. number of clusters?

K can be chosen by visually inspecting the data, to find distinct clusters.

But sometimes it is impossible!
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Choosing number of K

Choosing number of K
- How to choose value for K i.e. number of clusters?

K can be chosen by visually inspecting the data, to find distinct clusters.
But sometimes it is impossible!
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Choosing number of K

Choosing number of K

What is
correct
value of
K i.e.
number
of
clusters?
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Choosing number of K

Choosing number of K

K = 2 ?
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Choosing number of K

Choosing number of K

K = 3 ?
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Choosing number of K

Choosing number of K

K = 4 ?
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Choosing number of K

Choosing number of K

Number
of
clusters
are am-
biguous

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 34 / 56



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Choosing number of K

Choosing number of K Algorithmically

- Elbow method

Number of K can be chosen
algorithmically by looking at
this graph.
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Choosing number of K

Choosing number of K Algorithmically

- Elbow method

If we get this kind of graph,
then value of K can be chosen
where elbow is formed.
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Choosing number of K

Choosing number of K Algorithmically

- Elbow method

Sometimes, elbow is not formed
when plotting distortion with
increasing K.
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Choosing number of K

Choosing number of K - Study Problem

Know the problem

Number of K can be
chosen by knowing
problem in hand.

For example, if in this
problem, if we know
that reason for
running K-means is to
identify “Observe”,
“healthy” and “At
risk”, then its
reasonable to take
K=3.
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Toy example

Dataset - Visualization

1 """
2 K-means , data taken from book " Principles of Data Mining ":

Chapter 14
3 @author : rizwan .khan
4 """
5 import numpy as np
6 import matplotlib . pyplot as plt
7 # Create Training Set , 2D vector , Values from book example
8 x=np. array ([
9 [6.8 , 12.6] ,[0.8 , 9.8] ,

10 [1.2 , 11.6] ,[2.8 , 9.6] ,
11 [3.8 , 9.9] ,[4.4 , 6.5] ,
12 [4.8 , 1.1] ,[6 , 19.9] ,
13 [6.2 , 18.5] ,[7.6 , 17.4] ,
14 [7.8 , 12.2] ,[6.6 , 7.7] ,
15 [8.2 , 4.5] ,[8.4 , 6.9] ,
16 [9, 3.4] ,[9.6 , 11.1]])
17 # create color dictionary for printing
18 colors = {0: ’r’, 1: ’b’}
19 plt. figure (0)
20 plt. scatter (x[:, 0], x[:, 1], c=’r’, cmap=plt.cm.jet)
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Toy example

Dataset - Visualization

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Clustering 39 / 56



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction K-Means Clustering Example - Python Hierarchical Clustering Conclusion

Toy example

Cluster Centroid - Visualization

1 # Euclidean Distance Calculator
2 def dist(x, y):
3 return np.sqrt(np.sum ((x-y)**2))
4

5 # Number of clusters
6 K = 3
7

8 # X coordinates of random 3 centroids
9 C_x = np. array ([3.8 , 7.8 , 6.2]) # Book Example Value

10

11 # Y coordinates of random 3 centroids
12 C_y = np. array ([9.9 , 12.2 , 18.5]) # Book Example Value
13

14 C = np. array (list(zip(C_x , C_y)), dtype =np. float32 ) # Merging x and y
15 print (C) # Cluster Centroids
16

17 # Plotting along with the Centroids
18 plt. figure (1)
19 plt. scatter (x[:, 0], x[:, 1], c=’#050505 ’, s=7) # s= size
20 plt. scatter (C_x , C_y , marker =’*’, s=200 , c=’g’)
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Toy example

Cluster Centroid - Visualization
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Toy example

Variables initialization

1 # Cluster Lables (0, 1, 2)
2 clusters = np. zeros (len(x))
3

4 colors = [’g’, ’c’, ’b’, ’y’, ’r’,’ m’]
5

6 # Variables used inside main loop
7 distances = np. zeros (K)
8 cluster = np. zeros (len(x))
9 count =0

10 how_many_in_one_cluster = 0
11

12 C_new = np. zeros (C. shape )
13 iteration = 2
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Toy example

K−Means Main Loop

1 while ( count < iteration ): # or use difference in C and C_new to stop loop
2 #step 1: Cluster Assignment
3 for i in range (len(x)): # loop over points
4 for j in range (0, K, 1): # loop over K
5 distances [j] = dist(x[i], C[j])
6 cluster [i] = np. argmin ( distances )
7

8 #step 2: Move / update cluster centroid ( average values of X)
9 C_new = np. zeros (C. shape ) # intialize

10

11 for k in range (K): # Loop over K - clusters
12 for i in range (len(x)): # Loop over all data points
13 if cluster [i] == k: # if points belongs to specific cluster k
14 C_new [k] = C_new [k] + x[i] # Finding cluster of point with

same label
15 how_many_in_one_cluster = how_many_in_one_cluster +1 # keeping

this values to take mean
16

17 C_new [k] = C_new [k]/ how_many_in_one_cluster # Average points to
find new cluster centroid

18 how_many_in_one_cluster = 0
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Toy example

K−Means Visualization

1 # Plotting along with the Centroids
2 plt. figure ( count +2)
3

4 for i in range (len(x)):
5 plt. scatter (x[i, 0], x[i, 1], c= colors [int( cluster [i])], s=10) # s=

size
6

7 #plt. scatter (C_x , C_y , marker =’*’, s=200 , c=’r ’)
8 for j in range (K):
9 plt. scatter ( C_new [j, 0], C_new [j, 1], marker =’*’, s=200 , c= colors [j])

10

11 print (’ ’)
12 print (’******************************************************* ’)
13 print (’Cluster Centroid After iteration : ’, count +1)
14 print (’******************************************************* ’)
15 print ( C_new )
16 C = C_new # update cluster centroid
17 count = count +1
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Toy example

K−Means Visualization
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Toy example

K−Means Visualization
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Toy example

K−Means Visualization
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Toy example

K−Means Visualization
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Toy example

K−Means Visualization
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Image Compression

K− Means Application on Image Compression
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Introduction

Introduction : Hierarchical Clustering

Introduction:
Produces set of nested clusters,
organized as a Hierarchical Tree. For
example, all files and folders on our hard
disk are organized in a hierarchy or
looking at taxonomy of living things.

Can be visualized as a dendogram.
Dendogram is a tree like structure that
records sequence of merges / splits.
Dendograms can reveal more meaningful
taxonomies / structure in the data.
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Introduction

Introduction : Hierarchical Clustering

There are two types of hierarchical clustering:
1 Agglomerative:

Agglomerative is a bottom-up clustering method.
Assign each observation to its own cluster i.e. initially each data point is a cluster.
Then, compute the similarity (e.g., distance) between each of the clusters and join the two
most similar clusters.
Proceed until there is only a single cluster left.

2 Divisive:
Divisive clustering is a top-down clustering method.
Assign all of the observations to a single cluster and then partition the cluster to two least
similar clusters.
Proceed recursively on each cluster until convergence / or there is one cluster for each
observation.
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Agglomerative Hierarchical clustering

Agglomerative Hierarchical clustering

Algorithm 3 Agglomerative Hierarchical Clustering Algorithm
Input: x1, x2, · · · , xm

1: Each data point be a cluster.
2: Repeat
3: Merge the two closest cluster.
4: Update distances matrix.
5: Until only a single cluster remains.
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Agglomerative Hierarchical clustering

Distances Matrix - Hierarchical clustering

Key operation in Agglomerative Hierarchical
clustering algorithm is computation of distance
between clusters. Different distance definition of
distance leads to different algorithms. For Example:

1 Single Link Clustering (SLC)
In single linkage hierarchical clustering, the distance
between two clusters is defined as the shortest
distance between two points in each cluster.

2 Complete Link Clustering (CLC)
In complete linkage hierarchical clustering, the
distance between two clusters is defined as the
longest distance between two points in each cluster.

3 Average Link Clustering (ALC)
In average linkage hierarchical clustering, the
distance between two clusters is defined as the
average distance between each point in one cluster to
every point in the other cluster
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Agglomerative Hierarchical clustering

Agglomerative Hierarchical clustering - SLC : Visualization
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Conclusion

K-means clustering is one of the most popular clustering algorithms.
K-means is usually the first algorithm practitioners apply when solving clustering
tasks as convergence is guaranteed.
K-means doesn’t learn the number of clusters from the data and requires it to be
pre-defined, which sometimes is difficult.
K-means can converge on different clusters based on initial values. It has
Computational complexity2 O(n2).
If there is overlapping between clusters, K-means doesn’t have an intrinsic measure
for uncertainty.
Hierarchical clustering is a very useful way of segmentation.
Hierarchical clustering has an advantage of not having to pre-define the number of
clusters.
Hierarchical clustering doesn’t work well for large datasets. Computational complexity
O(n3).

2n = number of datapoints
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Further Reading

Further Reading
Can K-Means algorithm over-fit?

Validity of clusters - Cohesion and Separation (internal measure).
Validity of clusters - Entropy, Purity etc (external measure).
Is K-Means algorithm NP-hard?
Different variants of K-Means algorithm:

Fuzzy C-Means Clustering
K-Means++

Affect of distance measure used? Is it dependent on type of data?
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Reference books for this Module:

Chapter 1 & 3: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.

Chapter 8: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.
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Problem Setting

Problem Formalization

Problem formalization
Set of possible instances X i.e. {< ~xi, yi >}
Dataset D, given by D = {< ~xi, yi >, . . . , < ~xn, yn >} ⊆ X × Y
Where:
~xi is a feature vector (Rd),
yi is a label / target variable,
X is space of all features and
Y is space of labels.
Unknown target function f : X → Y

Set of function hypotheses H = {h|h : X → Y }
Output:
- Hypothesis h ∈ H that best approximates target function f .
- Output consists of one or more continuous variables (instead of predefined concepts /
classes), the task is called ?

REGRESSION.
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Intuition

What?

REGRESSION is mapping of continuous inputs to continuous outputs.
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Intuition

Why?

Why
Why “regression” is called “regression” in machine learning?

As per dictionary
“Regression” means to return to a previous and less advanced or worse state

Read Paper: Galton, Regression Towards Mediocrity in Hereditary Stature, 18861.

1http://www.stat.ucla.edu/~nchristo/statistics100C/history_regression.pdf
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 8 / 65
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Intuition

Why?

According to psychoanalyst Sigmund Freud,
regression is a defense mechanism leading to the
temporary or long-term reversion of the ego to an
earlier stage of development rather than handling
unacceptable impulses in a more adaptive way.

In machine learning the usage of word
“regression” is linked to article by “Galton”. In
this article “Galton” showed that average height
of population regresses towards the mean.
So, this relationship b/w height of parent and
children is linear with m < 1 or ≈ 2

3 . From here
this term is used in ML as tech. to find
mathematical relationship b/w quantities.

Image from article: Galton, Regression Towards Mediocrity in Hereditary Stature, 18862.

2http://www.stat.ucla.edu/~nchristo/statistics100C/history_regression.pdf
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 9 / 65
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Toy Example

Toy Example

Dataset:

Experience (Yrs) Salary
1 30k
1.3 33k
1.8 36k
2 45k
3.3 65k
.. ..

Problem Setting:
Set of real-valued instances X
Unknown target function f : X → Y

Input:
“n” training examples {< xi, yi >}. For example x is
experience and y is salary of a person.

Output:
Function f : X → Y .

What would be the salary for a person with experience of 2.5 years?
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Toy Example

How?

Model relationship between inputs and
outputs using linear function i.e.
y = mx + c.
For more complex problem this can be
extended to non-linear function as well.
This example is of linear regression
with one variable or univariate linear
regression.

How do we find best fit line? y = mx+ c

1 Calculus
2 Random Search
3 Brute force
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Toy Example

How?

Model relationship between inputs and
outputs using linear function i.e.
y = mx + c.
For more complex problem this can be
extended to non-linear function as well.
This example is of linear regression
with one variable or univariate linear
regression.

How do we find best fit line? y = mx+ c

1 Calculus
2 Random Search
3 Brute force

Best line will be the one that minimizes the
error between line and the data points.
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Toy Example

Effect of Parameters

Hypothesis = mx+ c
Choices of parameters:

c = 1.5
m = 0

c = 0
m = 0.5

c = 1
m = 0.5
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Toy Example

Effect of Parameters

Hypothesis = mx+ c
Choices of parameters:

c = 1.5
m = 0
f(x) = 1.5

c = 0
m = 0.5
f(x) = 0.5 x

c = 1
m = 0.5
f(x) = 0.5 x+ 1
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(x) = c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(x) = c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?
- Best line will be the one that minimizes the error
between line and the data points.
- To find h ∈ H that makes least errors on training
data, loss functions are used.
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(x) = c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?

Zero-One Loss

L0/1(h) = 1
n

n∑
i=1

δh(xi) 6=yi
,

where δh(xi)6=yi
=

{
1, if h(xi) 6= yi

0, Otherwise

(1)
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(x) = c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?

Sum of squared Loss

Lsq(h) = 1
n

n∑
i=1

(h(xi)− yi)2 (2)
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(x) = c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?

Absolute Loss

Labs(h) = 1
n

n∑
i=1
|h(xi)− yi| (3)
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Toy Example

Finding best constant function: Solution 1

Solution 1:
Trying to find: f(x) = c.
So its a constant line without any slope m, and that line gives same output for any input.

How to do it?

Sum of squared Loss will be used

E(c) =
n∑
i=1

(yi − c)2 (4)

where, yi = actual target value, E=error, n = number
of samples and c = constant.
Find c that minimizes error.
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Toy Example

Finding best constant function: Solution 1

Sum of squared error:

E(c) =
n∑
i=1

(yi − c)2 (5)

How to find c that minimizes
error?

Take derivative : d(E(c))
dc (How much

Error wiggles as a function /
changes in c).

d(E(c))
dc

= d

dc

n∑
i=1

(yi − c)2

=
n∑
i=1

2(yi − c)(−1)(set to zero to find min.)

−
n∑
i=1

2(yi − c) = 0(Solve for c)

n∑
i=1

(yi) =
n∑
i=1

c =⇒ n.c =
n∑
i=1

(yi) =⇒ c =
∑n
i=1(yi)
n

(6)

Rem*:
∑n

i=1
c = n times summation of constant = n.c

So, its MEAN value.
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Toy Example
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Toy Example

Best line that passes through origin: Solution 2

Solution 2:

Trying to find: f(x) = mx.
So its a Linear Regression / best
line with Zero Intercept or a line
that passes through origin:

Do it yourself!

d(E)
dm

= d

dm

n∑
i=1

(yi −mxi)2

=
n∑
i=1

2(yi −mxi)(−xi)(set to zero to find min.)

−
n∑
i=1

2(yi −mxi)(xi) = 0(Solve for m)

n∑
i=1

(yixi) =
n∑
i=1

mxi
2 =⇒

n∑
i=1

(yixi) = m

n∑
i=1

xi
2

=⇒ m =
∑n
i=1(yixi)∑n
i=1 xi

2

(7)
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Toy Example

Visualization
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Toy Example

Visualization
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Visualization
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Section Contents

1 Introduction
Reference Books
Problem Setting

2 Intuition
Intuition
Toy Example

3 Cost Function and Gradient Descent
Cost Function Intuition
Cost function in 2D
Cost function in 3D
Gradient Descent

4 LR with GD

Linear Regression with GD
Linear Regression with Multiple
Variables
Issue with Gradient Descent
Variants of Gradient Descent
Bias

5 Python
Linear Regression: Python

6 Polynomial Regression
Polynomial Regression
Normal Equation method
Polynomial Regression Example

7 Tasks
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Cost Function Intuition

Cost function

Define cost function to find best line for the dataset.
Dataset:

Experience (Yrs) Salary
1 30k
1.3 33k
1.8 36k
2 45k
3.3 65k
.. ..

Hypothesis = mx+ c
How to choose m and c, which are
parameters of the model.
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Cost Function Intuition

Cost function

Choose m and c such that value of
hypothesis (h = mx+ c) becomes as close as
possible to training data < xi, yi >.

let’s formalize this:

argmin
m,c

n∑
i=1

(ŷi − yi)2 (8)

Where ŷi = predicted value, yi is actual value
and n is total number of training samples.

J(m, c) = 1
2n argmin

m,c

n∑
i=1

(ŷi − yi)2 (9)

where ŷi = mxi + c and J(m, c) is cost / loss
function.

Aim to find values of m,c that
minimizes cost function J(m, c) (squared
error function).
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Cost function in 2D

Visualize Cost function in 2D

Hypothesis:
hx = mx+ c

Parameters:
m and c
Cost function:

J(m, c) = 1
2n

n∑
i=1

(ŷi − yi)2

Goal:

argmin
m,c

J(m, c)

To visualize cost function J in 2D (one
parameter and predicted value), set
c = 0 , so hx = mx. Thus goal becomes

argmin
m

J(m)

By setting c = 0 means we are only
considering line from origin with some
slope m
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Cost function in 2D

Visualize Cost function in 2D

- Hypothesis function: hx = mx
- Hypothesis is function of x, while cost function is a function of parameter m.

for m = 1
Find j(m) when m = 1

J(m) = 1
2n

n∑
i=1

(ŷi − yi)2

where: ŷi = mxi
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Cost function in 2D

Visualize Cost function in 2D
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Cost function in 2D

Visualize Cost function in 2D
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Cost function in 2D

Visualize Cost function in 2D

Find j(m) when m = 1

J(m) = 1
2n

n∑
i=1

(ŷi − yi)2

where: ŷi = mxi

when m = 1 ;

J(1) = 1
2n (02 + 02 + 02) = 0

when m = 0.5 ;

J(0.5) =

J(0.5) = 1
2n (0.52 + 12 + 1.52) = 0.583

when m = 0 ;

J(0) = 2.3
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where: ŷi = mxi

when m = 1 ;

J(1) = 1
2n (02 + 02 + 02) = 0

when m = 0.5 ;

J(0.5) =

J(0.5) = 1
2n (0.52 + 12 + 1.52) = 0.583

when m = 0 ;

J(0) = 2.3

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 23 / 65



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Intuition Cost Function and Gradient Descent LR with GD Python Polynomial Regression Tasks

Cost function in 2D

Visualize Cost function in 2D

Find j(m) when m = 1

J(m) = 1
2n

n∑
i=1
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Cost function in 2D

Visualize Cost function in 2D

J(m), its a function of parameter m.

Note 3

3Matlab code available
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Cost function in 3D

Visualize Cost function in 3D

Hypothesis:
hx = mx+ c

Parameters:
m and c
Cost function:

J(m, c) = 1
2n

n∑
i=1

(ŷi − yi)2

where:
ŷi = mx+ c

Goal:

argmin
m,c

J(m, c)

It requires 3D plot to visualize cost
function J with two parameters (m and
c) and predicted value. By keeping both
the parameters m and c, we are
considering all set of solutions / lines,
whether or not they pass from origin
(unlike previously).
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Cost function in 3D

Visualize Cost function in 3D

- This is the visualization and
intuition of cost function, now
we need to have an algorithm
that automatically finds
hypothesis parameters m and
c that minimizes J(m, c).

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local
minima / optimum, except for one global minima / optimum.
Note 4

4Matlab code available
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 26 / 65



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Intuition Cost Function and Gradient Descent LR with GD Python Polynomial Regression Tasks

Gradient Descent

Gradient Descent (GD) for Minimizing “J”

Gradient descent is an optimization algorithm (not specific to linear regression) that
finds the optimal weights (ws , i.e. m and c) that reduces prediction error5 .
It can optimize weights for any general cost function:
argminw1,w2,...,wn

J(w1, w2, . . . , wn)

5Matlab code available
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Gradient Descent

Gradient Descent for Minimizing “J”

Algorithm 1 Gradient Descent Algorithm
Input:

J(wi, wj)

Output:
argmin
wi,wj

J(wi, wj)

1: Initialize weights ws (wi, wj), with random values and calculate Error SSE.
2: Calculate gradient i.e. change in SSE when the weights ws are changed by a very small

value from their original randomly initialized value. This helps move the values of ws
in the direction in which SSE is minimized.

3: Adjust weights ws with the gradients to reach the optimal values where SSE is minimized.
4: Use new weights ws for prediction and to calculate the new SSE.
5: Repeat steps 2 and 3 till further adjustments to ws doesn’t significantly reduce the Error

/ convergence.
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Gradient Descent

Gradient Descent in action

repeat until convergence {

wi := wi − α
∂

∂wi
J(wi, wj) } (10)

:= is “assignment” operator
α (positive number) is learning
rate
run for wi & wj and update
weights simultaneously
(simultaneous update)

∂ term6

Simultaneous update7

6This slide provides just an intuition of GD algorithm. I will explain this ∂ term in couple of slides
7Explained on next slide
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Gradient Descent

Gradient Descent in action
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Gradient Descent

Simultaneous update

temp0 := wi − α
∂

∂wi
J(wi, wj)

temp1 := wj − α
∂

∂wj
J(wi, wj)

wi := temp0

wj := temp1

- wi & wj to be updated together at the end of iteration, otherwise one weight will be
updated earlier and within same iteration updated weight will be used for the calculation
of other weight.
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Gradient Descent

Gradient Descent with one parameter (intuition of ∂ term)

repeat until convergence {

m := m− α ∂

∂m
J(m) } (11)

where α is learning rate.

Suppose we initialize m with an
random point.
We need to find derivative
∂
∂mJ(m), which is a tangent at
a given point and provides
value of its slope.
As slope is +ve,

m = m− α(+ve numb)

Finally, updated value of m will
be reduced and will move
towards function minima.
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Gradient Descent

Gradient Descent with one parameter (intuition of ∂ term)

repeat until convergence {

m := m− α ∂

∂m
J(m) } (11)

where α is learning rate.

Suppose we initialize m with an
random point.
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∂
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Gradient Descent

Gradient Descent with one parameter (intuition of ∂ term)

repeat until convergence {

m := m− α ∂

∂m
J(m) } (12)

where α is learning rate.

Suppose we initialize m with an
random point.
We need to find derivative
∂
∂mJ(m), which is a tangent at
a given point and provides
value of its slope.
As slope is −ve,

m = m− α(−ve numb)

Finally, updated value of m,
m+ α(numb) will be added
and will move towards function
minima.
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repeat until convergence {

m := m− α ∂

∂m
J(m) } (12)

where α is learning rate.

Suppose we initialize m with an
random point.
We need to find derivative
∂
∂mJ(m), which is a tangent at
a given point and provides
value of its slope.
As slope is −ve,

m = m− α(−ve numb)

Finally, updated value of m,
m+ α(numb) will be added
and will move towards function
minima.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 32 / 65



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Intuition Cost Function and Gradient Descent LR with GD Python Polynomial Regression Tasks

Gradient Descent

Learning Rate α

wi := wi − α
∂

∂wi
J(wi)

if α is too small, GD can be slow

if α is too large, GD can overshoot
the minimum. It may fail to
converge.

- Reading assignment: Problem of vanishing gradients
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Gradient Descent

Learning Rate α

wi := wi − α
∂

∂wi
J(wi)

if α is too small, GD can be slow

if α is too large, GD can overshoot
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Gradient Descent

Learning Rate α

With low learning rates the improvements
will be linear (blue line). With high learning
rates they will start to look more
exponential. Higher learning rates will decay
the loss faster, but they get stuck at worse
values of loss (green line). This is because
there is too much “energy” in the
optimization and the parameters are
bouncing around chaotically, unable to settle
in a nice spot in the optimization landscape.

Note: 8

8Image from Stanford’s course on CNN http://cs231n.stanford.edu/
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 34 / 65
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Section Contents

1 Introduction
Reference Books
Problem Setting

2 Intuition
Intuition
Toy Example

3 Cost Function and Gradient Descent
Cost Function Intuition
Cost function in 2D
Cost function in 3D
Gradient Descent

4 LR with GD

Linear Regression with GD
Linear Regression with Multiple
Variables
Issue with Gradient Descent
Variants of Gradient Descent
Bias

5 Python
Linear Regression: Python

6 Polynomial Regression
Polynomial Regression
Normal Equation method
Polynomial Regression Example

7 Tasks
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Linear Regression with GD

Regression with Gradient Descent

Putting together GD and cost function to perform regression.
Linear Regression Model:

hypothesis: h = mx+ c

Cost function:

J(m, c) = 1
2n argmin

m,c

n∑
i=1

(ŷi − yi)2

where ŷi = mxi + c and J(m, c) is cost / loss function.

Gradient Descent Algorithm:
repeat until convergence {

wi := wi − α
∂

∂wi
J(w1, w2) }

(for i=1 and i=2)

Linear Regression with GD
Apply gradient descent algorithm to minimize cost function J . argminm,c J(m, c)
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Linear Regression with GD

Regression with Gradient Descent

Solving for: ∂
∂wi

J(w1, w2) and (i=1 and i=2):

∂

∂wi
J(wi, wj) = ∂

∂wi

1
2n

n∑
i=1

(ŷi − yi)2

= ∂

∂wi

1
2n

n∑
i=1

((m.xi + c)− yi)2
(13)

There are two cases (in our scenario i = 1 : w1 or c and i = 2 : w2 or m):

1 w1 = c, ∂
∂cJ(m, c):

∂

∂c
J(m, c) = 1

n

n∑
i=1

(ŷi − yi) (14)

2 w2 = m, ∂
∂mJ(m, c):

∂

∂m
J(m, c) = 1

n

n∑
i=1

(ŷi − yi) · xi (15)
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Linear Regression with GD

Regression with Gradient Descent

Convergence
Plug back equations 14 and 15 into gradient descent algorithm

repeat until convergence {
wi := wi − α

∂

∂wi
J(wi, wj) }

repeat until convergence {

c := c− α 1
n

n∑
i=1

(ŷi − yi)

m := m− α 1
n

n∑
i=1

(ŷi − yi) · xi

}

(16)
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Linear Regression with Multiple Variables

Regression (multivariate / multi-variables) with Gradient Descent

Dataset:

Experience (Yrs) Completed Projects MOOC Last Salary Salary
x1 x2 x3 x4 y
1 2 2 25k 32k
1.3 2 3 30k 33k
1.8 3 3 40k 43k
2 2 2 41k 49k
3.3 4 2 55k 68k
.. .. .. .. ..

where
xd = feature at dth dimension
xi = ith training example
xdi = feature value at dth dimension for ith training example

Previously: hypothesis: h = c+mx or h = θ0 + θ1x
1

And Now ?
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Linear Regression with Multiple Variables

Regression (multivariate / multi-variables) with Gradient Descent

Hypothesis for multi-variables:

h = θ0 + θ1x
1 + θ2x

2 + θ3x
3 + · · ·+ θdx

d (17)

- Parameters of the model: θ0, θ1, · · · , θd
- Cost function:

J(θ0, θ1, · · · , θd) = 1
2n argmin

θ0,θ1,··· ,θd

n∑
i=1

(ŷi − yi)2

Gradient Descent:

repeat until convergence {

θj := θj − α
∂

∂θj
J(θ0, θ1, · · · , θd)

} (simultaneously update for every j = 0, 1, · · · , d)
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Linear Regression with Multiple Variables

Regression (multivariate / multi-variables) with Gradient Descent

Hypothesis for multi-variables:

h = θ0 + θ1x
1 + θ2x

2 + θ3x
3 + · · ·+ θdx

d (17)

- Parameters of the model: θ0, θ1, · · · , θd
- Cost function:

J(θ0, θ1, · · · , θd) = 1
2n argmin

θ0,θ1,··· ,θd

n∑
i=1

(ŷi − yi)2

Gradient Descent:
repeat until convergence {

θj := θj − α
∂

∂θj
J(θ0, θ1, · · · , θd)

} (simultaneously update for every j = 0, 1, · · · , d)

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 40 / 65



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Intuition Cost Function and Gradient Descent LR with GD Python Polynomial Regression Tasks

Linear Regression with Multiple Variables

Regression (multivariate / multi-variables) with Gradient Descent

Previously when d = 1

repeat until convergence {

θ0 := θ0 − α
1
n

n∑
i=1

(ŷi − yi)

θ1 := θ1 − α
1
n

n∑
i=1

(ŷi − yi) · x1
i

}
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Linear Regression with Multiple Variables

Regression (multivariate / multi-variables) with Gradient Descent

Generally (GD algorithm) for any given d dimensional vector (d ≥ 1)

repeat until convergence { θ0 := θ0 − α
1
n

n∑
i=1

(ŷi − yi)

θ1 := θ1 − α
1
n

n∑
i=1

(ŷi − yi) · x1
i

θ2 := θ2 − α
1
n

n∑
i=1

(ŷi − yi) · x2
i

. . . }

(18)
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Regression (multivariate / multi-variables) with Gradient Descent

Generally (GD algorithm) for any given d dimensional vector (d ≥ 1)

repeat until convergence { θ0 := θ0 − α
1
n

n∑
i=1

(ŷi − yi)

θ1 := θ1 − α
1
n

n∑
i=1

(ŷi − yi) · x1
i
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Introduction Intuition Cost Function and Gradient Descent LR with GD Python Polynomial Regression Tasks

Issue with Gradient Descent

Gradient Descent can stuck in local minima

Gradient Descent algorithm can get stuck in local minima9.

repeat until convergence {

wi := wi − α
∂

∂wi
J(wi, wj) }

Rem: Cost function for linear regression (SSE) will be a bowl-shaped / convex function. So there is no local
minima / optimum, except for one global minima / optimum.

9slide from Andrew Ng
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Issue with Gradient Descent

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

Skewed /elliptical shape (features are not scaled) of
contours
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Issue with Gradient Descent

Gradient Descent(GD) : Feature Scaling

- GD convergence is effected if features are not scaled.

Skewed /elliptical shape (features are not scaled) of
contours

- Better to scale features. You may use Mean Normalization or Standardization scaling method.
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Variants of Gradient Descent

Variants of GD

GD algorithm that we have just seen is called Batch Gradient Descent. Most common
used GD algorithms are breifly explained below:

1 Batch Gradient Descent is when we sum up over all examples on each iteration when
performing the updates to the parameters.

Advantages
1 Fixed learning rate during training.
2 It has straight trajectory towards the minimum and it is guaranteed to converge to global

optimum (for convex functions).
3 It has unbiased estimate of gradients.
4 It can benefit from the vectorization

Disadvantages
1 Slow (especially for large datasets), as it goes over all examples.
2 Each step of learning happens after going over all examples (think of outliers in dataset).
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Variants of Gradient Descent

Variants of GD

2 Stochastic Gradient Descent (SGD): Instead of going through all examples, Stochastic
Gradient Descent (SGD) performs parameters update on each example < xi, yi >.
Therefore, learning happens on every example.

Advantages
1 It is easier to fit into memory (single training sample being processed at a time).
2 It is computationally fast (For larger datasets it can converge faster).
3 Due to frequent updates, the steps taken towards the minima of the loss / cost function have

oscillations which can help getting out of local minimums of the loss function.

Disadvantages
1 Due to frequent updates, the steps taken towards the minima are very noisy. This can often

lead the gradient descent into sub-optimum directions.
2 It loses the advantage of vectorized operations as it deals with only a single example at a

time.
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Variants of Gradient Descent

Variants of Gradient Descent

3 Mini-Batch Gradient Descent: This is a mixture of both stochastic and batch gradient
descent. The training set is divided into multiple groups called batches. Each batch
has a number of training samples in it. For example, assume training set has 100
training examples which is divided into 5 batches with each batch containing 20
training examples.

Advantages
1 Easily fits in the memory.
2 It is computationally efficient.
3 Benefit from vectorization.

Disadvantages
1 Due to the noise, the learning steps have more oscillations and requires adding learning-decay

to decrease the learning rate as we become closer to the minimum.
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Variants of Gradient Descent

Variants of Gradient Descent: Visualization

1 Batch Gradient Descent, slow
but unbiased estimate of
gradients.

2 Stochastic Gradient Descent
(SGD), fast but frequent
updates causes noisy steps.

3 Mini-Batch Gradient Descent,
computationally efficient but
due to the noise the learning
steps have more oscillations.
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Bias

Inductive Bias of Linear Regression

Inductive Bias
The relationship between the attributes x and the output y is linear. The goal is to
minimize the sum of squared errors.
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Section Contents

1 Introduction
Reference Books
Problem Setting

2 Intuition
Intuition
Toy Example

3 Cost Function and Gradient Descent
Cost Function Intuition
Cost function in 2D
Cost function in 3D
Gradient Descent

4 LR with GD

Linear Regression with GD
Linear Regression with Multiple
Variables
Issue with Gradient Descent
Variants of Gradient Descent
Bias

5 Python
Linear Regression: Python

6 Polynomial Regression
Polynomial Regression
Normal Equation method
Polynomial Regression Example
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Linear Regression: Python

Salary prediction: Python

1 # @author : rizwan .khan
2 import matplotlib . pyplot as plt
3 import pandas as pd
4

5 # Dataset import
6 dataset =pd. read_csv (’data.csv ’)
7 X= dataset .iloc [: ,: -1]. values #data.iloc [: , -1] # last column of data frame
8 y= dataset .iloc [: ,1]. values
9

10 from sklearn . model_selection import train_test_split
11 X_train , X_test , y_train , y_test = train_test_split (X,y, test_size = 1/4)
12

13 # import linear regression and fitting it to test data
14 from sklearn . linear_model import LinearRegression
15 Regressor = LinearRegression ()
16 Regressor .fit(X_train , y_train )
17

18 # predicting trained model on test set
19 y_pred = Regressor . predict ( X_test )
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Linear Regression: Python

Salary prediction: Python

1 # Visualizaing Train set
2 plt. scatter (X_train ,y_train , color = ’red ’)
3 plt.plot(X_train , Regressor . predict ( X_train ), color =’blue ’)
4 plt. title (’Training Set: Exp. Vs Salary ’)
5 plt. xlabel (’Experience ’)
6 plt. ylabel (’Salary ’)
7 plt.show
8

9

10

11 # Visualizaing Test set
12 plt. figure ()
13 plt. scatter (X_test ,y_test , color = ’red ’)
14 plt.plot(X_train , Regressor . predict ( X_train ), color =’blue ’)
15 plt. title (’Test Set: Exp. Vs Salary ’)
16 plt. xlabel (’Experience ’)
17 plt. ylabel (’Salary ’)
18 plt.show
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Linear Regression: Python

Visualization: Test Set
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Linear Regression: Python

Visualization: Train Set
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Polynomial Regression

Polynomial Regression

Polynomial regression fits a nonlinear relationship between independent variable x and the
dependent variable y.

1 k = 0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)

2 k = 1 Straight Line (Linear regression, not a
good fit. Under-fitting)

Under-fitting
Linear regression is under-fitting the data (high-bias).
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Polynomial Regression

Polynomial Regression

Polynomial regression fits a nonlinear relationship between independent variable x and the
dependent variable y.

1 k = 0 Constant (Constant line (average of
output values), not a good fit. Under-fitting)
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Polynomial Regression

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.

- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = θ0 + θ1x
can be transformed to h = θ0 + θ1x+ θ2x

2(x − squared)

1 k = 2 Parabola

2 k = 3 Cubic (Polynomial function, fits nicely)

3 k = 9 9th degree polynomial. Over-fitting
General form for Polynomial Regression:

h(θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θkx

k (19)
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Polynomial Regression

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.
- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = θ0 + θ1x
can be transformed to h = θ0 + θ1x+ θ2x

2(x − squared)

1 k = 2 Parabola

2 k = 3 Cubic (Polynomial function, fits nicely)

3 k = 9 9th degree polynomial. Over-fitting
General form for Polynomial Regression:

h(θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θkx

k (19)
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Polynomial Regression

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.
- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = θ0 + θ1x
can be transformed to h = θ0 + θ1x+ θ2x

2(x − squared)

1 k = 2 Parabola

2 k = 3 Cubic (Polynomial function, fits nicely)

3 k = 9 9th degree polynomial. Over-fitting

General form for Polynomial Regression:

h(θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θkx

k (19)
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Polynomial Regression

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.
- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = θ0 + θ1x
can be transformed to h = θ0 + θ1x+ θ2x

2(x − squared)

1 k = 2 Parabola

2 k = 3 Cubic (Polynomial function, fits nicely)

3 k = 9 9th degree polynomial. Over-fitting
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2 + · · ·+ θkx

k (19)

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Regression 57 / 65



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Intuition Cost Function and Gradient Descent LR with GD Python Polynomial Regression Tasks

Polynomial Regression

Polynomial Regression

- To overcome under-fitting, we need to increase the complexity of the model.
- To generate a higher order equation, can add powers of the original features as new
features. The linear model h = θ0 + θ1x
can be transformed to h = θ0 + θ1x+ θ2x

2(x − squared)

1 k = 2 Parabola

2 k = 3 Cubic (Polynomial function, fits nicely)

3 k = 9 9th degree polynomial. Over-fitting

General form for Polynomial Regression:

h(θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θkx

k (19)
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Normal Equation method

Solving for Polynomial Regression

Find coefficients w, for cubic regression, number of samples = n
Equation: w0 + w1x+ w2x

2 + w3x
3 ≈ y

Write this in matrix format:
1 x1 (x1)2 (x1)3

1 x2 (x2)2 (x2)3

1 x3 (x3)2 (x3)3

...
...

1 xn (xn)2 (xn)3



w0
w1
w2
w3

 ≈

y1
y2
y3
...
yn



where n is number of samples in training data.
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Normal Equation method

Solving for Polynomial Regression

Find coefficients w, for cubic regression, number of samples = n
Equation: w0 + w1x+ w2x

2 + w3x
3 ≈ y

Write this in matrix format:
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Normal Equation method

Solving for Polynomial Regression

Find coefficients w, for cubic regression, number of samples = n
Equation: w0 + w1x+ w2x

2 + w3x
3 ≈ y

Write this in matrix format:
1 x1 (x1)2 (x1)3
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Normal Equation method

Solving for Polynomial Regression

Solve for W: 
1 x1 (x1)2 (x1)3

1 x2 (x2)2 (x2)3

1 x3 (x3)2 (x3)3

...
...

1 xn (xn)2 (xn)3



w0
w1
w2
w3

 ≈

y1
y2
y3
...
yn



X W ≈ Y
XXT W ≈ XTY

W ≈ (XTX)−1XTY (Closed-form solution)
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Polynomial Regression Example

Polynomial Regression Example

1 Polynomial Degree 1

2 Polynomial Degree 2
3 Polynomial Degree 3
4 Polynomial Degree 4
5 Polynomial Degree 5
6 Polynomial Degree 6
7 Polynomial Degree 7
8 Polynomial Degree 8
9 Polynomial Degree 9

10 Polynomial Degree 10
11 Polynomial Degree 11
12 Polynomial Degree 12
13 Polynomial Degree 13
14 Polynomial Degree 14
15 Polynomial Degree 15
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Polynomial Regression Example

Polynomial Regression Example: RMSE
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Polynomial Regression Example

Best Fit
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Polynomial Regression Example

Either to use Gradient Descent or Normal Equation Method?

Consider: d dimensional feature vector and n training examples.

Gradient Descent
1 Need to choose α
2 Needs many iterations
3 Needs feature scaling
4 Works well for high dimensional feature

vector
5 Reasonably efficient for a very large

number (millions) of features

Analytical method
1 No need to choose α
2 No need to iterations
3 No Need for feature scaling
4 Slow for high dimensional feature vector.

As it need to compute (XTX)−1 which
has complexity of O(d3)

5 Issue of non-invertible or singular matrix
6 Doesn’t work well with complex

classifiers i.e. logistic regression etc.
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Section Contents

1 Introduction
Reference Books
Problem Setting

2 Intuition
Intuition
Toy Example

3 Cost Function and Gradient Descent
Cost Function Intuition
Cost function in 2D
Cost function in 3D
Gradient Descent

4 LR with GD

Linear Regression with GD
Linear Regression with Multiple
Variables
Issue with Gradient Descent
Variants of Gradient Descent
Bias

5 Python
Linear Regression: Python

6 Polynomial Regression
Polynomial Regression
Normal Equation method
Polynomial Regression Example

7 Tasks
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Exercise

Implement
1 Do implement GD (without using any library)

Further Reading
1 Cost functions
2 Multivariate Regression
3 Surface plots / Contour plots
4 Variants of Gradient Descent (GD)
5 Regularization: Ridge Regression and LASSO (Least Absolute Shrinkage and

Selection Operator) Regression
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Machine Learning
Decision Tree

Dr. Rizwan Ahmed Khan
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Outline

1 Preface
2 Representation

Expressiveness
3 Intuition

Tree learning intuition
Example

4 Best Attribute
Algorithm
Statistical measure

5 Learning
Example Problem statement
Tree Construction: Root Node

Tree Construction: Second test / Node
Tree Construction: Third Node / Test
Trained Decision Tree
Function Approximation

6 Code
Weka
Python
Ocular Proof

7 Considerations
Splitting measure / Statistical test
Inductive Bias
Problem of Overfitting
Pruning
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Preface Representation Intuition Best Attribute Learning Code Considerations

Reference Books

Chapter 3: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.

Chapter 9: Introduction to Machine Learning, Ethem ALPAYDIN, The MIT Press,
latest edition.
Microsoft Research Technical Report TR-2011-114: A. Criminisi et al. Decision
Forests for Classification, Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning. Microsoft Research 2011.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Problem Formalization / Function approximation

Problem formalization
Set of possible instances X i.e. {< ~xi, yi >}
Dataset D, given by D = {< ~xi, yi >, . . . , < ~xn, yn >} ⊆ X × Y
Where:
~xi is a feature vector (Rd),
yi is a label / target variable,
X is space of all features and
Y is space of labels.
Unknown target function f : X → Y

Set of function hypotheses H = {h|h : X → Y }
Output:
- Hypothesis h ∈ H that best approximates target function f . Or a classification “rule”
that can determine the class of any object from its attributes values.
- If training is done correctly h(~xi) ≈ yi
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Preface Representation Intuition Best Attribute Learning Code Considerations

Introduction

It is a method of approximating discrete-valued functions, learned function is
represented by decision tree.

There are some extensions that can handle real-valued functions.

Learned trees can also be represented as sets of if-then rules (advantage as it is human
readable).
It is simple yet powerful learning algorithm.
In next Section, we will look how it represents data.
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Section Contents

1 Preface
2 Representation

Expressiveness
3 Intuition

Tree learning intuition
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

Can you write if-then rules for
this tree?
Each internal node tests an
attribute (discrete-valued).
Each branch corresponds to an
attribute value.
Each leaf node assigns a
classification / label. Predict y
or P (y|x ∈ leaf).
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

There are different parts of it:
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

These are nodes, in fact decision nodes.
Decision is based on “attribute /
feature” value.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

“Edges” represent path to follow
considering decision node attribute
value. In summary, nodes represent
attributes and edges represent values.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

“Circles” at the bottom of tree represent
decisions. Decision is reached after
answering / probing different attribute
values.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

- By asking series of questions, decisions / classification can be made. It’s not necessary
that all attributes take part in decision making process.

- What will be the output?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Decision tree representation

In fact, decision tree represents disjunction of conjunctions of constraints on the attribute values of instances /
examples. An example is classified by sorting it through the tree from the root to the leaf node.

Disjunction of Conjunctions :

Disjunction of Conjunctions
(Color=red ∧ Model > 2010)
∨ (Color=red ∧ Model < 2010 ∧ Mileage<50000)
∨ (Color=yellow ∧ Make=Ferrari)
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Expressiveness of trees: Boolean function

- What will be its decision tree?
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Expressiveness

Expressiveness of trees: Boolean function
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Expressiveness of trees: Boolean function

- What will be its decision tree?

- How about swapping x and y?
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Expressiveness

Expressiveness of trees: Boolean function

- What will be its decision tree?
- How about swapping x and y?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Expressiveness of trees: Boolean function

- What will be its decision tree?

By choosing different attribute at the top of the
tree, algorithm may find better tree
representation (not true in this case), but
generally it matters.
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Expressiveness

Expressiveness of trees: Boolean function

- What will be its decision tree?
- How about swapping x and y?

By choosing different attribute at the top of the
tree, algorithm may find better tree
representation (not true in this case), but
generally it matters.
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Expressiveness

Expressiveness of trees: Boolean function

- What will be its decision tree?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Expressiveness of trees: Boolean function
- What will be its decision tree?

This tree is another representation of full truth table
(unlike previous slides, which was compact representation
as some branches were not required).
This “compactness” will matter for inducing tree with
many attributes.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Expressiveness of trees

- Consider this problem:

How many decision trees to be looked at
in order to find the right one? (how big
is hypotheses space H?)
Dataset with d dimensional vector /
attributes (Boolean).
Target function Y is also Boolean.

f1 f2 f3 . . fd Label
x1

1 x1
2 x1

3 . . x1
d +

x2
1 x2

2 x2
3 . . x2

d -
x3

1 x3
2 x3

3 . . x3
d +

x4
1 x4

2 x4
3 . . x4

d -
x5

1 x5
2 x5

3 . . x5
d -

. . . . . . .
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- Consider this problem:

How many decision trees to be looked at
in order to find the right one? (how big
is hypotheses space H?)
Dataset with d dimensional vector /
attributes (Boolean).
Target function Y is also Boolean.

f1 f2 f3 . . fd Label
T T T . . T +
T T T . . F -
F T T . . T +
T F T . . T -
T T F . . T -
. . . . . . .

- How many row are there in the table?
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Expressiveness

Expressiveness of trees

- Consider this problem:

How many decision trees to be looked at
in order to find the right one? (how big
is hypotheses space H?)
Dataset with d dimensional vector /
attributes (Boolean).
Target function Y is also Boolean.

f1 f2 f3 . . fd Label
T T T . . T +
T T T . . F -
F T T . . T +
T F T . . T -
T T F . . T -
. . . . . . .

- How many row are there in the table?
- There are 2d possibilities.
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is hypotheses space H?)
Dataset with d dimensional vector /
attributes (Boolean).
Target function Y is also Boolean.

f1 f2 f3 . . fd Label
T T T . . T +
T T T . . F -
F T T . . T +
T F T . . T -
T T F . . T -
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- How many functions or decision tree
possibilities are there in 2d rows?
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Expressiveness

Expressiveness of trees

- Consider this problem:

How many decision trees to be looked at
in order to find the right one? (how big
is hypotheses space H?)
Dataset with d dimensional vector /
attributes (Boolean).
Target function Y is also Boolean.

f1 f2 f3 . . fd Label
T T T . . T +
T T T . . F -
F T T . . T +
T F T . . T -
T T F . . T -
. . . . . . .

- How many functions or decision tree
possibilities are there in 2d rows?

- As there are 2d rows, output for each row
also have two possibilities (either “true” or
“false”) . Thus, 22d possibilities. This is
double exponential and gives very big
number for very small value of d.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Expressiveness of trees

22d grows very fast.

On the other hand it shows that hypothesis
space H is very expressive and there are lots
and lots of functions (as we seen on previous
slide (“OR” & “AND” function)) that can be
represented by decision trees.
This also points to the fact that algorithm
that selects tree should be robust enough to
find the best representation given such huge
number of choices.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Expressiveness

Decision tree suitability

Instances are represented by fix set of attributes e.g. attribute “colour” and its values
“red” and “yellow”.

Different extensions are proposed to basic algorithms which allows handling of real-valued
attributes as well.

The target function has discrete output values / classes.

Different extensions are proposed which allows handling of real-valued outputs as well but
it is less common.

Decision tree learning algorithms (ID3, C4.5) are robust to errors in classifications
labels and errors in attribute values.
Decision tree learning algorithms are robust to missing attribute values in training
data.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Section Contents

1 Preface
2 Representation

Expressiveness
3 Intuition

Tree learning intuition
Example

4 Best Attribute
Algorithm
Statistical measure

5 Learning
Example Problem statement
Tree Construction: Root Node

Tree Construction: Second test / Node
Tree Construction: Third Node / Test
Trained Decision Tree
Function Approximation

6 Code
Weka
Python
Ocular Proof

7 Considerations
Splitting measure / Statistical test
Inductive Bias
Problem of Overfitting
Pruning
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree learning intuition

ID3 Learning Algorithm

ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan1 used to
generate a decision tree from a dataset.

There are many extensions to it e.g C4.5, CART etc.
ID3 learns decision tree by constructing them top-down, “which attribute to be tested
at the top?”

Which attribute is most discriminative or provides most information to classify ??

Attributes to be evaluated by Statistical test to determine how well specific attribute
classifies training data / examples.

1Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn., pp 81–106
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree learning intuition

Search for the best hypothesis: ID3

ID3 performs search through space of
decision trees.

Search to find “best” attributes to test at the
top.
Based on tested attribute examples are
sorted, either side of the test attribute.
Feature space is thus recursively divided till
the “pure” leaf (uniformly +ve or uniformly
-ve) is obtained or “stopping criteria” is met.

2

2Image from Tom’s book
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree learning intuition

Search for the best hypothesis: ID3

It is powerful representation. Every discrete
valued function can be represented by some
decision tree.

ID3 performs no backtracking. Once
attribute is selected at certain level of tree, it
never backtracks to reconsider choice (greedy
algorithm approach).
ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for
one that fits the training examples.

Bias
Which tree ID3 selects? Discussion on it later
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm

Consider below presented classification (binary) problem. Assume training data with each
instance / example having two attributes / features (attributes x1, x2):
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm

The “expected” decision boundary given this training data.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm

The “expected” decision boundary given this training data. Learn it!
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm (attribute selection intuition)

Is x1 (feature 1) greater than 3 ?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm (attribute selection intuition)

Given x1 > 3, is feature 2 (x2) greater than 3?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm (attribute selection intuition)

Given x1 < 3, is feature 2 (x2) greater than 1?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example: Tree learning algorithm (attribute selection intuition)

Feature space, learned decision boundary

Exercise
Can you draw corresponding decision tree?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example solution: Tree learning algorithm
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example solution: Tree learning algorithm
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Preface Representation Intuition Best Attribute Learning Code Considerations

Example

Example solution: Tree learning algorithm

1 These rules perform recursive partitioning of training data into homogenous regions.
Homogeneous − > outputs are same / similar for all inputs in that region

2 Given a new test input, we can use the DT to predict its label
3 A key benefit of DT: Prediction at test time is very fast (just testing a few
conditions)
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Preface Representation Intuition Best Attribute Learning Code Considerations

Algorithm

ID3 Tree Induction / Learning Algorithm

Algorithm 1 ID3 Learning Algorithm
Result: Learned Tree

1 initialization node = root
2 while TRUE do
3 - A← the best attribute for the next node.

- Assign A as the decision attribute for the node.
- For each value of A, create new decedent of the node.
- Sort training examples to leaf nodes.

4 if training examples perfectly classified then
5 break
6 else
7 Iterate over new leaf node (back to line 2)
8 end
9 end
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Preface Representation Intuition Best Attribute Learning Code Considerations

Algorithm

Greedy search

- ID3 algorithm forms a greedy search for an acceptable decision tree, in which the
algorithm never backtracks to reconsider earlier choices.

- Greedy is an algorithmic paradigm that builds up a solution piece by piece, always
choosing the next piece that offers the most obvious and immediate benefit. So the
problems where choosing locally optimal also leads to global solution are best fit for
Greedy.

The greedy algorithm fails to solve above presented problem because it makes decisions
purely based on what the best answer at the time is: at each step it did choose the largest
number.
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree 33 / 88



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Preface Representation Intuition Best Attribute Learning Code Considerations

Algorithm

Best Attribute: Quiz

- Which “attribute” is the best?

- Prefer splits that makes data “less randomized” after the split.
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Algorithm

Best Attribute

Question
What is a good quantitative measure to evaluate effectiveness of an attribute for
classification task?

Information gain measures how well a given attribute / feature separates the training
examples according to their target classification.
ID3 uses information gain (entropy) to measure to select among the candidate
attributes at each step while growing the tree.
“Best attribute” is the one with lowest entropy or highest information gain.
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Statistical measure

Statistical measure: Entropy

Given a collection S, containing positive and negative
examples of some target concept, the entropy of S relative
to this Boolean classification is:

Entropy(S) = −p⊕ log2 p⊕−p⊗ log2 p⊗ (1)

where:
- p⊕ is the proportion of positive examples in S.
- p⊗ is the proportion of negative examples in S.
- In all calculations involving entropy we define 0 log2 0 to
be 0.

- Entropy3 is measure of “randomness”.

3C. E. SHANNON. A Mathematical Theory of Communication. The Bell System Technical Journal, 1948.
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Statistical measure

Statistical measure: Entropy

If the target attribute can take c different
values (classes in our case):

Entropy(S) =
c∑

i=1
−pi log2 pi (2)

Entropy is 0 if all members of S belong
to the same class.
The difference in the entropy before and
after the split is called Information Gain
(IG).
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Statistical measure

Statistical measure: Entropy

Entropy characterizes the (im)purity of
an arbitrary collection of examples.
Entropy is commonly used in
Information theory to measure
amount of information needed to
represent an event drawn from a
probability distribution for a random
variable. OR
Its a measure of “disorder” or
“randomness”.
Thus, Entropy is 0 if all members
of S belong to the same class.
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Statistical measure

Statistical measure: Entropy Calculation

Dataset=1

Calculation:

Entropy(S) =
c∑

i=1
−pi log2 pi

c=2 , buy = Yes or No
[p+, p−] ⇒ [3+, 2−]

Entropy(S) = −{3
5 log2

3
5} − {

2
5 log2

2
5}

Entropy(S) = 0.4422 + 0.5288
Entropy(S) = 0.9710

(3)
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Statistical measure

Statistical measure: Entropy Calculation

Dataset=2

Calculation:

Entropy(S) =
c∑

i=1
−pi log2 pi

c=2 , buy = Yes or No
[p+, p−] ⇒ [2+, 2−]

Entropy(S) = −{2
4 log2

2
4} − {

2
4 log2

2
4}

Entropy(S) = 0.5 + 0.5
Entropy(S) = 1

(4)
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Statistical measure

Statistical measure: Entropy Calculation

Dataset=3

Calculation:

Entropy(S) =
c∑

i=1
−pi log2 pi

c=2 , buy = Yes or No
[p+, p−] ⇒ [5+, 0−]

Entropy(S) = −{5
5 log2

5
5} − 0

Entropy(S) = 0
(5)
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Statistical measure

Statistical measure: Entropy Calculation

[3+, 2−]
Entropy (S) = 0.9710

[2+, 2−]
Entropy (S) = 1

[5+, 0−]
Entropy (S) = 0

Entropy is measure of disorder or randomness!
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Preface Representation Intuition Best Attribute Learning Code Considerations

Statistical measure

Information Gain

Given entropy as a measure of the impurity in a collection of training examples, we
can now define a measure of the effectiveness of an attribute in classifying the training
data. Generally, information gain (IG) is used as this measure of effectiveness.
The difference in the entropy before and after the split is called information gain.

Mathematically:

Gain(S, A) = Entropy(S)−
∑

v∈values(A)

|Sv|
|S|

Entropy(Sv) (6)

where:
- S set of training data, and
- values(A) is the set of all possible values for attribute A (feature vector dimensions), and
- Sv is the subset of S for which attribute A has value v.
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Statistical measure

Information Gain

For DT construction,
entropy/IG gives us a criterion
to select the best split.
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Section Contents

1 Preface
2 Representation

Expressiveness
3 Intuition

Tree learning intuition
Example

4 Best Attribute
Algorithm
Statistical measure

5 Learning
Example Problem statement
Tree Construction: Root Node

Tree Construction: Second test / Node
Tree Construction: Third Node / Test
Trained Decision Tree
Function Approximation

6 Code
Weka
Python
Ocular Proof

7 Considerations
Splitting measure / Statistical test
Inductive Bias
Problem of Overfitting
Pruning
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Example Problem statement

Example Problem statement

*4 4Problem for Tom’s book
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Example Problem statement

Example Problem statement

Problem Setting:
1 Set of possible instances X

each instance in X is defined by a feature vector,
for example < Outlook = rain, Humidity =
low, W ind = weak, .. >
x =< x1, x2, . . . , xn >

2 Unknown target function f : X → Y

Y = 1 if we play tennis on specific day, else 0.
3 Set of function hypotheses H = {h|h : X → Y }

each hypothesis h is a decision tree.
tree sorts x to leaf, which assigns y.
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Example Problem statement

Example Problem statement

Initially, we have 14 example
[9+, 5−].
We need to calculate IG of all
attributes to find which
attribute is the best.
List of attributes:

1 Outlook
2 Temperature
3 Humidity
4 Wind
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Root Node

DT Construction using IG Criterion: Outlook

c=2 , play = Yes or No
[p+, p−] ⇒ [9+, 5−]

Entropy(S) = −{
9

14
log2

9
14
} − {

5
14

log2
5

14
}

Entropy(S) = 0.4098 + 0.5305 = 0.9403
(7)

“Outlook” attribute has three values:
1 Sunny [2+, 3−]
2 Overcast [4+, 0−]
3 Rain [3+, 2−]

Gain(S, Outlook) = ??
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Tree Construction: Root Node

DT Construction using IG Criterion: Outlook

Gain(S, Outlook):
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Tree Construction: Root Node

DT Construction using IG Criterion: Temperature
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Tree Construction: Root Node

DT Construction using IG Criterion: Humidity
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Tree Construction: Root Node

DT Construction using IG Criterion: Wind
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Tree Construction: Root Node

Decision tree: first node decided

Gain(S, Outlook) : 0.248
Gain(S, T emperature) : 0.031
Gain(S, Humidity) : 0.153
Gain(S, W ind) : 0.048

Having decided which feature (highest IG) to test at the
root, let’s grow the tree

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree 54 / 88



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Root Node

Decision tree: first node decided

Gain(S, Outlook) : 0.248
Gain(S, T emperature) : 0.031
Gain(S, Humidity) : 0.153
Gain(S, W ind) : 0.048

Having decided which feature (highest IG) to test at the
root, let’s grow the tree

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree 54 / 88



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

Iterate - for each child node, select the feature
with the highest IG.
No need to expand the middle node (already pure -
all yes).
If a feature has already been tested along a path
earlier, we don’t consider it again.
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Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

c=2 , play = Yes or No
[p+, p−] ⇒ [2+, 3−]

Entropy(S) = −{
2
5

log2
2
5
} − {

3
5

log2
3
5
}

Entropy(S) = 0.5288 + 0.4422 = 0.9710
(8)

“Temperature” attribute has three values:
1 Hot [0+, 2−]
2 Mild [1+, 1−]
3 Cold [1+, 0−]

Gain(SSunny, Temperature) = ??
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

Gain(SSunny, Temperature) = ??
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

Gain(Ssunny, Humidity) = ??
1 High [0+, 3−]
2 Normal [2+, 0−]
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Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

Gain(Ssunny, Humidity) = ??
1 High [0+, 3−]
2 Normal [2+, 0−]
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

Gain(Ssunny, Wind) = ??
1 Weak [1+, 2−]
2 Strong [1+, 1−]
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Second test / Node

DT Construction using IG Criterion: Second Node

Gain(Ssunny, Wind) = ??
1 Weak [1+, 2−]
2 Strong [1+, 1−]
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Second test / Node

Decision tree: second node decided

Gain(SSunny, Temperature) = 0.571
Gain(Ssunny , Humidity) = 0.971
Gain(Ssunny , Wind) = 0.02

Lets grow tree!
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Decision tree: second node decided

Gain(SSunny, Temperature) = 0.571
Gain(Ssunny , Humidity) = 0.971
Gain(Ssunny , Wind) = 0.02

Lets grow tree!
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Preface Representation Intuition Best Attribute Learning Code Considerations

Tree Construction: Third Node / Test

DT Construction using IG Criterion: Third Node

What to do next?

Calculate Gain for remaining attributes:
Gain(SRain, Wind)
Gain(SRain, Temperature)
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Tree Construction: Third Node / Test

DT Construction using IG Criterion: Third Node

What to do next?
Calculate Gain for remaining attributes:
Gain(SRain, Wind)
Gain(SRain, Temperature)
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Preface Representation Intuition Best Attribute Learning Code Considerations

Trained Decision Tree

Trained classification tree

c=2 , play = Yes or No
[p+, p−] ⇒ [3+, 2−]

Entropy(S) = −{
3
5

log2
3
5
} − {

2
5

log2
2
5
}

Entropy(S) = 0.4422 + 0.5288 = 0.9710
(9)

Gain(SRain, W ind) = 0.971−
3
5
× {

3
5

log2
3
5
− 0}

−
2
5
× {0−

2
5

log2
2
5
}

(10)

Gain(SRain, Wind)=0.971
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Preface Representation Intuition Best Attribute Learning Code Considerations

Function Approximation

Function Approximation

We began problem with unknown target function
f : X → Y that classifies whether to play tennis or
not on a given day X.
Now we have decision tree for f :<
Outlook, T emperature, Humidity, W ind >→ Y .
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Preface Representation Intuition Best Attribute Learning Code Considerations

Section Contents

1 Preface
2 Representation

Expressiveness
3 Intuition

Tree learning intuition
Example

4 Best Attribute
Algorithm
Statistical measure

5 Learning
Example Problem statement
Tree Construction: Root Node

Tree Construction: Second test / Node
Tree Construction: Third Node / Test
Trained Decision Tree
Function Approximation

6 Code
Weka
Python
Ocular Proof

7 Considerations
Splitting measure / Statistical test
Inductive Bias
Problem of Overfitting
Pruning
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Preface Representation Intuition Best Attribute Learning Code Considerations

Weka

Play Tennis: Weka

*5

5ID3 Algorithm
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Preface Representation Intuition Best Attribute Learning Code Considerations

Weka

Play Tennis: Weka
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Preface Representation Intuition Best Attribute Learning Code Considerations

Python

Play Tennis: Python

CART stands for Classification
and Regression Trees.
“scikit-learn” uses an optimized
version of the CART algorithm.
CART constructs binary trees
(twoing criteria).
Unlike ID3, it uses pruning to
avoid over-fitting.

*6
6Result obtained with CART algorithm
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Preface Representation Intuition Best Attribute Learning Code Considerations

Python

Decision Tree: Python

1

2 import numpy as np
3 import pandas as pd
4 from sklearn . model_selection import train_test_split
5 from sklearn .tree import DecisionTreeClassifier
6 from sklearn . metrics import accuracy_score
7 from sklearn .tree import export_graphviz
8 from sklearn . preprocessing import OneHotEncoder
9 from IPython . display import Image
10 from sklearn .tree import export_graphviz
11 from pydotplus import graph_from_dot_data
12

13 df = pd. read_csv (’play_tennis .csv ’)
14

15 # Before we do anything we ’ll want to split our data into training and test
sets.

16 # We ’ll accomplish this by first splitting the DataFrame into features (X) and
17 # target (y), then passing X and y to the train_test_split () function to
18 # split the data so that 70% of it is in the training set , and 30% of
19 # it is in the testing set.
20

21 # loc () function is used to access a group of rows and columns by label (s) or
a boolean array

22

23 X = df.loc [:, [’outlook ’, ’temp ’, ’humidity ’, ’wind ’]]
24 y = df.loc [:, ’play ’]
25

26 X_train , X_test , y_train , y_test = train_test_split (X, y, test_size = 0.05 ,
27 random_state = 42)
28

29

30 # Encode categorical data as numbers
31 # Since all of our data is currently categorical ( recall that each column is
32 #in string format ), we need to encode them as numbers . For this ,
33 # we ’ll use a handy helper object from sklearn ’s preprocessing module
34 # called OneHotEncoder .
35

36

37 # One -hot encode the training data and show the resulting
38 # DataFrame with proper column names
39 ohe = OneHotEncoder ()
40

41 ohe.fit( X_train )
42 X_train_ohe = ohe. transform ( X_train ). toarray ()
43

44 # Creating this DataFrame is not necessary its only to show the result of the
ohe

45 ohe_df = pd. DataFrame ( X_train_ohe ,
46 columns =ohe. get_feature_names ( X_train . columns ))
47

48 ohe_df .head () # to show dataframe
49

50

51 # Create the classifier , fit it on the training data and make predictions on
the test set

52 clf = DecisionTreeClassifier ( criterion =’entropy ’)
53

54 clf.fit( X_train_ohe , y_train )
55

56

57

58 DecisionTreeClassifier ( class_weight =None , criterion =’entropy ’, max_depth =None ,
59 max_features =None , max_leaf_nodes =None ,
60 min_impurity_decrease =0.0 , min_impurity_split =None ,
61 min_samples_leaf =1, min_samples_split =2,
62 min_weight_fraction_leaf =0.0 , presort =False ,
63 random_state =None , splitter =’best ’)
64

65

66

67 #Plot the decision tree
68 #You can see what rules the tree learned by plotting this decision tree.
69 #To do this , you need to use additional packages such as pytdotplus
70

71 #Note: If you are run into errors while generating the plot ,
72 # you probably need to install python - graphviz in your machine
73 # using conda install python - graphviz
74

75

76 # Create DOT data
77 dot_data = export_graphviz (clf , out_file =None ,
78 feature_names = ohe_df .columns ,
79 class_names =np. unique (y). astype (’str ’),
80 filled =True , rounded =True , special_characters =True)
81

82 # Draw graph
83 graph = graph_from_dot_data ( dot_data )
84

85 # Show graph
86 Image ( graph . create_png ())
87

88

89

90 X_test_ohe = ohe. transform ( X_test )
91 y_preds = clf. predict ( X_test_ohe )
92

93 print (’Accuracy : ’, accuracy_score (y_test , y_preds ))

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree 68 / 88



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Preface Representation Intuition Best Attribute Learning Code Considerations

Python

Decision Tree: Python

1 # loc () function is used to access a group of rows and columns by label (s) or
a boolean array

2

3 X = df.loc [:, [’outlook ’, ’temp ’, ’humidity ’, ’wind ’]]
4 y = df.loc [:, ’play ’]
5

6 X_train , X_test , y_train , y_test = train_test_split (X, y, test_size = 0.05 ,
7 random_state = 42)
8

9 # Encode categorical data as numbers
10 # Since all of our data is currently categorical ( recall that each column is
11 #in string format ), we need to encode them as numbers . For this ,
12 # we ’ll use a handy helper object from sklearn ’s preprocessing module
13 # called OneHotEncoder .
14 # One -hot encode the training data and show the resulting
15 # DataFrame with proper column names
16 ohe = OneHotEncoder ()
17 ohe.fit( X_train )
18 X_train_ohe = ohe. transform ( X_train ). toarray ()
19

20 # Creating this DataFrame is not necessary its only to show the result of the
ohe

21 ohe_df = pd. DataFrame ( X_train_ohe ,
22 columns =ohe. get_feature_names ( X_train . columns ))
23

24 ohe_df .head () # to show dataframe
25

26

27 # Create the classifier , fit it on the training data and make predictions on
the test set

28 clf = DecisionTreeClassifier ( criterion =’entropy ’)
29

30 clf.fit( X_train_ohe , y_train )
31

32

33

34 DecisionTreeClassifier ( class_weight =None , criterion =’entropy ’, max_depth =None ,
35 max_features =None , max_leaf_nodes =None ,
36 min_impurity_decrease =0.0 , min_impurity_split =None ,
37 min_samples_leaf =1, min_samples_split =2,
38 min_weight_fraction_leaf =0.0 , presort =False ,
39 random_state =None , splitter =’best ’)
40

41

42

43 #Plot the decision tree
44 #You can see what rules the tree learned by plotting this decision tree.
45 #To do this , you need to use additional packages such as pytdotplus
46

47 #Note: If you are run into errors while generating the plot ,
48 # you probably need to install python - graphviz in your machine
49 # using conda install python - graphviz
50

51

52 # Create DOT data
53 dot_data = export_graphviz (clf , out_file =None ,
54 feature_names = ohe_df .columns ,
55 class_names =np. unique (y). astype (’str ’),
56 filled =True , rounded =True , special_characters =True)
57

58 # Draw graph
59 graph = graph_from_dot_data ( dot_data )
60

61 # Show graph
62 Image ( graph . create_png ())
63

64

65

66 X_test_ohe = ohe. transform ( X_test )
67 y_preds = clf. predict ( X_test_ohe )
68

69 print (’Accuracy : ’, accuracy_score (y_test , y_preds ))
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Python

Decision Tree: Python

1 # Creating this DataFrame is not necessary its only to show the result of the
ohe

2 ohe_df = pd. DataFrame ( X_train_ohe ,
3 columns =ohe. get_feature_names ( X_train . columns ))
4

5 # Create the classifier , fit it on the training data and make predictions on
the test set

6 clf = DecisionTreeClassifier ( criterion =’entropy ’)
7 clf.fit( X_train_ohe , y_train )
8 # DecisionTreeClassifier ( class_weight =None , criterion =’ entropy ’, max_depth =None

,
9 # max_features =None , max_leaf_nodes =None ,
10 # min_impurity_decrease =0.0 , min_impurity_split =None ,
11 # min_samples_leaf =1, min_samples_split =2,
12 # min_weight_fraction_leaf =0.0 , presort =False ,
13 # random_state =None , splitter =’best ’)
14 #Plot the decision tree
15 #You can see what rules the tree learned by plotting this decision tree.
16 #To do this , you need to use additional packages such as pytdotplus
17

18 #Note: If you are run into errors while generating the plot ,
19 # you probably need to install python - graphviz in your machine
20 # using conda install python - graphviz
21

22

23 # Create DOT data
24 dot_data = export_graphviz (clf , out_file =None ,
25 feature_names = ohe_df .columns ,
26 class_names =np. unique (y). astype (’str ’),
27 filled =True , rounded =True , special_characters =True)
28

29 # Draw graph
30 graph = graph_from_dot_data ( dot_data )
31

32 # Show graph
33 Image ( graph . create_png ())
34

35

36

37 X_test_ohe = ohe. transform ( X_test )
38 y_preds = clf. predict ( X_test_ohe )
39

40 print (’Accuracy : ’, accuracy_score (y_test , y_preds ))
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Python

Decision Tree: Python

1

2 # Create DOT data
3 dot_data = export_graphviz (clf , out_file =None ,
4 feature_names = ohe_df .columns ,
5 class_names =np. unique (y). astype (’str ’),
6 filled =True , rounded =True , special_characters =True)
7

8 # Draw graph
9 graph = graph_from_dot_data ( dot_data )
10

11 # Show graph
12 Image ( graph . create_png ())
13

14

15

16 X_test_ohe = ohe. transform ( X_test )
17 y_preds = clf. predict ( X_test_ohe )
18

19 print (’Accuracy : ’, accuracy_score (y_test , y_preds ))
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Preface Representation Intuition Best Attribute Learning Code Considerations

Ocular Proof
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Ocular Proof
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Ocular Proof
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Ocular Proof
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Section Contents
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Preface Representation Intuition Best Attribute Learning Code Considerations

Splitting measure / Statistical test

Play Tennis: Python - Changing Statistical Test

Entropy(S) =
c∑

i=1

−pi log2 pi

Gini(S) = 1−
n∑

i=1

(pi)2 (11)
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Preface Representation Intuition Best Attribute Learning Code Considerations

Splitting measure / Statistical test

Play Tennis: Python - Changing Statistical Test

Entropy(S) =
c∑

i=1

−pi log2 pi Gini(S) = 1−
n∑

i=1

(pi)2 (11)
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Preface Representation Intuition Best Attribute Learning Code Considerations

Splitting measure / Statistical test

Play Tennis: Python - Changing Statistical Test

Please read more on different splitting measure / statistical test to understand which one
suits which type of datasets and what are benefits and drawbacks for different criteria.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Inductive Bias

Inductive Bias of Learning Algorithm: ID3

As with other inductive learning methods, ID3 can be characterized as searching a space of hypotheses (set
of possible decision trees) for one that fits the training examples.
ID3 performs hill-climbing search through hypothesis space.

1 Hill climbing algorithm is a technique which is used for optimizing the mathematical problems i.e.
Traveling Salesman Problem (TSP).

2 It is also called greedy local search as it only looks to its good immediate neighbor state and not
beyond that.

3 It does not backtrack the search space, as it does not remember the previous states.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Inductive Bias

Inductive Bias of Learning Algorithm: ID3

The evaluation function that
guides this hill-climbing search
is information gain.
By looking at the figure, we
can get insight into capabilities
and limitation of ID3 in terms
of search space and search
strategy.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Inductive Bias

Inductive Bias of Learning Algorithm: ID3

Every discrete valued function can be represented
by some decision tree.
ID3 performs no backtracking. Once attribute is
selected at certain level of tree, it never
backtracks to reconsider choice.
ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for one
that fits the training examples.

Which tree ID3 selects?

It chooses first acceptable tree it encounters in hill
climbing (greedy) strategy (placing attribute with
highest information gain closest to the root), thus
favoring shorter trees.
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ID3 is characterized as searching a space of
hypotheses (set of possible decision trees) for one
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Preface Representation Intuition Best Attribute Learning Code Considerations

Inductive Bias

Inductive Bias of Learning Algorithm: Occam’s razor

Occam’s Razor
- Is ID3’s inductive bias favoring shorter trees a sound basis for generalization?
- Philosophers and Scientists have debated this question for centuries. William of Occam
(or William of Ockham, Ockham was the village in the English county of Surrey) was one
of the first to discuss this, so this bias often goes by the name of Occam’s razor.

Read more
Are shorter / simpler explanation always correct? Do read more and find issues with
Occam’s razor.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Problem of Overfitting

Stopping Criteria / how deeply to grow tree?
Add Noise / just one example / feature vector:
< Outlook = Sunny, T emperature = Hot, Humidity = Normal, W ind = Strong, P layT ennis = No >

- Right side tree has added another level to cater for one (noise) example.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Problem of Overfitting

Overfitting

ID3 grows deeply enough to perfectly classify all training examples. This leads to problem
when there is noise in the data (refer previous slide). This also highlights the problem of
overfitting training data.

Overfit
Given a hypothesis space H, a hypothesis h ∈ H is said to overfit the training data if there
exists alternative hypothesis h′ ∈ H, such that h has smaller error than h′ over training
examples but h′ has smaller error than h over entire distribution of instances.
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Problem of Overfitting

Overfitting

Overfit
Given a hypothesis space H, a
hypothesis h ∈ H is said to
overfit the training data if there
exists alternative hypothesis
h′ ∈ H, such that h has smaller
error than h′ over training
examples but h′ has smaller
error than h over entire
distribution of instances.
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Problem of Overfitting

Overfitting

Overfit
Given a hypothesis space H, a
hypothesis h ∈ H is said to
overfit the training data if there
exists alternative hypothesis
h′ ∈ H, such that h has smaller
error than h′ over training
examples but h′ has smaller
error than h over entire
distribution of instances.
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Preface Representation Intuition Best Attribute Learning Code Considerations

Problem of Overfitting

Overfitting Vs Underfitting

Is this a good fit?
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Problem of Overfitting

Overfitting Vs Underfitting

Is this a good fit?
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Preface Representation Intuition Best Attribute Learning Code Considerations

Problem of Overfitting

Overfitting Vs Underfitting

Is this a good fit?

- Overfitting happens when a model memorizes its training data so well that it is learning
noise on top of the signal
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Preface Representation Intuition Best Attribute Learning Code Considerations

Pruning

How to avoid overfitting in Decision Tree?

Two approaches:
Stop growing when data split not statistically significant.
Grow full tree, then post-prune.

Pruning
Pruning reduces the size of decision trees by removing parts of the tree that do not provide
statistical significance to classify instances.
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How to avoid overfitting in Decision Tree?

Two approaches:
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Preface Representation Intuition Best Attribute Learning Code Considerations

Pruning

Reduced error pruning

Split data into training and validation set
Do until further pruning is harmful:

1 Evaluate impact on validation set of pruning each possible node (plus those below it).
2 Greedily remove the one that most improves validation set accuracy.

Produces smallest version of most accurate subtree.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree 87 / 88



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Preface Representation Intuition Best Attribute Learning Code Considerations

Pruning

Reduced error pruning

Split data into training and validation set
Do until further pruning is harmful:

1 Evaluate impact on validation set of pruning each possible node (plus those below it).
2 Greedily remove the one that most improves validation set accuracy.

Produces smallest version of most accurate subtree.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Decision Tree 87 / 88



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Preface Representation Intuition Best Attribute Learning Code Considerations

Pruning

How to avoid overfitting in Decision Tree?

How to select best tree:
Measure performance over training data
Measure performance over separate validation data set
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Reference Books

Reference Books

Reference books for this Module:

Chapter 3: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4th or latest
edition.

Chapter 6 & 7: Pattern Recognition and Machine Learning, Christopher M. Bishop,
Springer Books, latest edition.
Book Support Vector Machines Succinctly, Alexandre Kowalczyk, 2017.
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Intuition - Decision Boundary

Intuition - Decision Boundary

How would you divide +ve examples from −ve examples?
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Intuition - Decision Boundary

Intuition - Decision Boundary

How would you divide +ve examples from −ve examples?

Seems infinite possibilities.
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Intuition - Decision Boundary

Intuition - Decision Boundary

Tree / Perceptron

k− Nearest Neighbor Neural Network

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 7 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Intuition - Decision Boundary

Intuition - Decision Boundary

Tree / Perceptron

k− Nearest Neighbor

Neural Network

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 7 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Intuition - Decision Boundary

Intuition - Decision Boundary

Tree / Perceptron k− Nearest Neighbor

Neural Network

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 7 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Intuition - Decision Boundary

Intuition - Decision Boundary

Tree / Perceptron k− Nearest Neighbor Neural Network

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 7 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Intuition - Decision Boundary

Goal of SVM

Goal of SVM is to identify an optimal
separating hyperplane which maximizes the
margin between different classes of the
training data.

SVM a is completely based on Mathematical
Optimization problem.
SVMs are linear classifiers (a line in 2
dimensions, a plane in 3 dimensions, a n − 1
dimensional hyperplane in n dimensions b.

aCortes, C., Vapnik, V. Support-vector networks. Machine
Learning 20,
273–297 (1995). https://doi.org/10.1007/BF00994018

bcs276a SVM Review-Stanford University
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SVM - Decision Boundary

Intuition - Decision Boundary

Widest Street Approach
Find such a line that maximizes the
distance between +ve examples and −ve
examples, while deciding decision
boundary / surface.

What would the decision rule?
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SVM - Decision Boundary

Decision Boundary

Consider a vector W̄ that is perpendicular to
median / or gutter. We don’t know anything
about its length yet.

Consider unknown point Ū and a vector points to
it.
We are interested to know whether this unknown
is either right side of street or left or we want to
know its label.
What we can do, project that to perpendicular
vector. The further we go we can find that its on
the right side of the street.
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Decision Boundary

We are interested to know whether this unknown
is either right side of street or left or we want to
know its label.
What we can do, project Ū to vector W̄ which is
perpendicular median line. The further we go, we
can find that its on the right side of the street.

W̄ · Ū ≥ C

Dot product is projecting onto W̄ . The bigger the
projection is then it will cross median line and
then unknown vector can be labeled as +ve
sample.
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SVM - Decision Boundary

Decision Boundary

Then, without loss of generality we can say:

W̄ · Ū + b ≥ 0 THEN +ve (1)

This is Decision Rule.

We don’t know (yet) what constant b, C = −b, to
use and what W̄ to use either.
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Constraints

We just know that W̄ needs to be perpendicular
to the median line of the street.

But then there many W̄s perpendicular to the
median line of the street, any length is not fixed
yet.
What should we do?
So we need to put constraints to find particular
W̄ and b that maximizes width of the street
(separation between +s and −s).
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Constraints

Putting constraints to calculate W̄ and b.

W̄ · X̄+ + b ≥ 1 {for +ve samples} (2)

W̄ · X̄− + b ≤ −1 {for -ve samples} (3)

So imposing separation of -1 to +1 for −ve and
+ve samples (maximizing margin).

*1

1Did you see similarity with “Perceptron” decision rule?
Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 16 / 75
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Constraints

Equation 2 and 3 can be
written / combined as:

yi(W̄ · X̄i + b) ≥ 1 (4)

where:
- yi is +1 for +ve samples.
- yi is −1 for −ve samples.

Proof:
1 for +ve samples:

1 × (W̄ · X̄i + b) ≥ 1
⇒ (W̄ · X̄i + b) ≥ 1

(5)

Same as Eq. 2.

2 for −ve samples:

−1 × (W̄ · X̄i + b) ≥ 1
⇒ −W̄ · X̄i − b ≥ 1
⇒ W̄ · X̄i + b ≤ −1

(6)

Same as Eq. 3.
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Constraints

Back to equation 4:

yi(W̄ · X̄i + b) ≥ 1

where:
- yi is +1 for +ve samples.
- yi is −1 for −ve samples.

Equation 4 can be written as:

yi(W̄ · X̄i + b) ≥ 1
yi(W̄ · X̄i + b) − 1 ≥ 0

(7)

Additional constraint:

yi(W̄ · X̄i + b) − 1 = 0
{for samples (Xi) in gutter or at boundary / margin}

(8)
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Samples on the boundary / gutter

Additional constraint:

yi(W̄ · X̄i + b) − 1 = 0
{for samples (Xi) in gutter or at boundary / margin}

These samples are also called as Support Vectors.
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Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

We are trying to arrange line W̄ and b in a such a
way that it maximizes width of the street
(separation between +s and −s).

Boundary lines are parallel to one another, we
can pick points on these lines to define width of
the street.
Width of the street is distance b/w the gutters /
boundary lines.
Difference of two vectors can give us width of the
street:

(X̄+ − X̄−)
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Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

Width of street:

= (X̄+ − X̄−) · W̄

||W ||
(9)

- Where W̄
||W || is a unit vector (Ŵ ) perpendicular

/ normal to gutter or boundary line.

- In other words, projection of difference vector
on to unit vector (Ŵ ) will be width of the street
(difference in the direction of W̄ vector).

- It’s a dot product, so its scalar, width of the
street.
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Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

Width of street:

= (X̄+ − X̄−) · W̄

||W ||

From Equation 8 we know that, samples in a gutter
(enforcing constraint) =

yi(W̄ · X̄i + b) − 1 = 0

So,
for +ve sample:

W̄ · X̄i = 1 − b (10)

for −ve sample:

−W̄ · X̄i − b − 1 = 0
−W̄ · X̄i = 1 + b

(11)
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Distance b/w boundary lines

Distance b/w boundary lines / margin / gutters

Width of street:

(X̄+ − X̄−) · W̄

||W ||

W̄ · X̄+ − W̄ · X̄− · 1
||W ||

(12)

Putting back values from Equations 10 and 11 into Equation 12.

Width = 2
||W ||

(13)
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Distance b/w boundary lines

Distance b/w gutter

Width of street:

Width = 2
||W ||

- SVM tries to maximize this width, to have
maximum possible separation between samples of
different classes.

Width = Max 2
||W ||

=⇒ Min||W || =⇒ Min1
2 ||W ||2

Width = Min1
2 ||W ||2 (14)
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Summary

Summary

Stages in the development:
1 Decision Rule:

W̄ · Ū + b ≥ 0 THEN +ve
2 Projection of W on U and put a constraint then it should be ≥ +1 for +ve samples

and ≤ −1 for −ve samples.

W̄ · X̄+ + b ≥ 1 {for +ve samples}

W̄ · X̄− + b ≤ −1 {for -ve samples}
3 Additional constraint for samples in gutter

yi(W̄ · X̄i + b) − 1 = 0
4 Then we discovered we wish to maximize / minimize this expression:

Width = Min1
2 ||W ||2
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Summary

What’s next?

We have now transformed the problem into a form that can be efficiently solved.

Width = Min1
2 ||W ||2

The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.

How can we go forward (QUIZ):
1 Laplace
2 Legendre
3 Lagrange
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Width = Min1
2 ||W ||2

The above is an optimization problem with a convex quadratic objective and some
constraints. Its solution gives us the optimal margin classifier.
How can we go forward (QUIZ):

1 Laplace
2 Legendre

3 Lagrange
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Lagrange Multiplier

Lagrange multipliers provides a way for finding extremum of a function subject to
equality constraints i.e., subject to the condition that one or more equations have to
be satisfied exactly by the chosen values of the variables.
The great advantage of this method is that it allows the optimization to be solved
without explicit parameterization in terms of the constraints.
Method can be summarized as follows: in order to find the stationary points of a
function f(x) subjected to the equality constraint g(x) = 0, form the Lagrangian
function:

L(x, λ) = f(x) − λg(x) (15)

where λ = Lagrange multiplier
2

2Refer Section 8 to see disscussion on intuition of Lagrange multiplier
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Lagrange Multiplier

- Taking Equation 15 and writing function that we are trying to find extremum.

L = 1
2 ||W ||2 −

∑
αi(write down constraints)

- Constraint is given in Equation 8

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1] (16)

where αi = Lagrange multiplier
αi will be non-zero for vectors connected with samples in gutter, otherwise it will be zero.
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Find Extremum

- What needs to be done to find extremum of Equation 16 ?

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1]

- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W”:

∂L

∂W
= W̄ −

∑
i

αiyiX̄i = 0 =⇒ W =
∑

i

αiyiX̄i (17)

Where αi is a scalar, yi is +1 or -1 and Xi is sample vector. What this equation
signifies?

What this equation signifies
Decision vector W is linear sum of some samples. Some, in the sense that αi will be
non-zero for few vectors (connected with samples in gutter).

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 30 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Find Extremum

- What needs to be done to find extremum of Equation 16 ?

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1]

- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W”:

∂L

∂W
= W̄ −

∑
i

αiyiX̄i = 0 =⇒ W =
∑

i

αiyiX̄i (17)

Where αi is a scalar, yi is +1 or -1 and Xi is sample vector. What this equation
signifies?

What this equation signifies
Decision vector W is linear sum of some samples. Some, in the sense that αi will be
non-zero for few vectors (connected with samples in gutter).

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 30 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Find Extremum

- What needs to be done to find extremum of Equation 16 ?

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1]

- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W”:

∂L

∂W
= W̄ −

∑
i

αiyiX̄i = 0 =⇒ W =
∑

i

αiyiX̄i (17)

Where αi is a scalar, yi is +1 or -1 and Xi is sample vector. What this equation
signifies?

What this equation signifies
Decision vector W is linear sum of some samples. Some, in the sense that αi will be
non-zero for few vectors (connected with samples in gutter).

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 30 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Find Extremum

- What needs to be done to find extremum of Equation 16 ?

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1]

- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W”:

∂L

∂W
= W̄ −

∑
i

αiyiX̄i = 0 =⇒ W =
∑

i

αiyiX̄i (17)

Where αi is a scalar, yi is +1 or -1 and Xi is sample vector. What this equation
signifies?

What this equation signifies
Decision vector W is linear sum of some samples. Some, in the sense that αi will be
non-zero for few vectors (connected with samples in gutter).

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 30 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Find Extremum

- What needs to be done to find extremum of Equation 16 ?

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1]

- Take derivative and set it equal to zero.

- Take derivative w.r.t. “W”:

∂L

∂W
= W̄ −

∑
i

αiyiX̄i = 0 =⇒ W =
∑

i

αiyiX̄i (17)

Where αi is a scalar, yi is +1 or -1 and Xi is sample vector. What this equation
signifies?

What this equation signifies
Decision vector W is linear sum of some samples. Some, in the sense that αi will be
non-zero for few vectors (connected with samples in gutter).

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 30 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Find Extremum

- Back to Equation 16. Any other variable that may vary?

L = 1
2 ||W ||2 −

∑
αi [yi(W̄ · X̄i + b) − 1]

- Take derivative w.r.t. “b”:

∂L

∂b
= −

∑
i

αiyi = 0 =⇒
∑

i

αiyi = 0 (18)
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Find Extremum

Plug back value of W from Equation 17 to Equation 16.

W =
∑

i

αiyiX̄i

L = 1
2 ||W ||2 −

∑
i

αi [yi(W̄ · X̄i + b) − 1]

L = 1
2(

∑
i

αiyiX̄i) · (
∑

j

αjyjX̄j)

−(
∑

i

αiyiX̄i) · (
∑

j

αjyjX̄j)

−
∑

i

αiyib +
∑

i

αi

(19)
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Find Extremum

Term shown in red in Equation 19 = 0 , refer Equation 18

Now arrange and re-write Lagrangian Equation 19

L =
∑

i

αi − 1
2

∑
i

∑
j

αiαjyiyjX̄i · X̄j (20)

What this equation signifies
This optimization / finding extremum of a function depends only on dot products of pairs
of samples (dual problem).
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Decision Rule

Recall Equation 1, related to decision rule:

W̄ · Ū + b ≥ 0 THEN +ve

Now, we can update this Equation, with derived value of W̄ , refer Equation 17:

∑
i

αiyiX̄i · Ū + b ≥ 0 THEN +ve (21)

What this equation signifies?
Decision rule depends again only on dot product of unknown vector and sample vector.
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Summary

Summary

Summary
Recall Equation 13, Width = Max 2

||W || , while satisfying constraints, given by: classify
training examples correctly yi(W̄ · X̄i + b) − 1 ≥ 0, ∀i.

Then, we transformed above equation into equivalent problem (which is easier to
solve), Equation 14, Width = Min 1

2 ||W ||2.
Why its easier?
Actually, this is easier to solve as when we have optimization problem in the form
given above while satisfying constraints, is called quadratic programming (QP)
problem. QP is well known field and it’s solution is easier to find.
Optimization problems of this form have convex function and thus unique solution is
always guaranteed.
Quadratic programming problem form: L =

∑
i αi − 1

2
∑

i

∑
j αiαjyiyjX̄i · X̄j
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Summary

Summary

Summary

Quadratic programming problem form: L =
∑

i αi − 1
2

∑
i

∑
j αiαjyiyjX̄i · X̄j

While, W =
∑

i αiyiX̄i and∑
i αiyi = 0

It turns out most of αi are zeros, which implies that
only few vectors (with non-zero αi) matters in finding
solution / decision boundary while most of vectors do
not. Thus, building a machine with few support
vectors (with non-zero αi).
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i αiyiX̄i and∑
i αiyi = 0

It turns out most of αi are zeros, which implies that
only few vectors (with non-zero αi) matters in finding
solution / decision boundary while most of vectors do
not. Thus, building a machine with few support
vectors (with non-zero αi).
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i

∑
j αiαjyiyjX̄i · X̄j

While, W =
∑

i αiyiX̄i and∑
i αiyi = 0

This optimization / finding extremum of a function depends only on dot products of
pairs of samples , (X̄i

T · X̄j). Notea.

Analyzing : X̄i
T · X̄j , What it actually means?

1 Its a dot product, projection of one on another.
2 It is a measure of similarity between two non-zero vectors. If vectors are orthogonal

value will be zero, and if vector in opposite direction value will be −ve.
aTranspose is used to make matrix dimensions compatible
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Ocular proof

Ocular proof

What to do here? Data is not
linearly separable!
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Problem Statement

Non-linearly separable

What to do, since SVM find linear classification
boundary? SVMs are linear classifiers (a line in 2
dimensions, a plane in 3 dimensions, a n − 1
dimensional hyperplane in n dimensions.
Some probabilities:

1 Probably its a outlier!
2 or find linear decision boundary while minimizing

some cost function that penalizes for training error.
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Problem Statement

Non-linearly separable

- In previous example, one
example seemed outlier and
solution was proposed, but in
this case it is impossible to
come up with linear classifier.

As it seems impossible to use SVM / linear classifier,
should we just remove SVM from machine learning
toolkit?
No, there is a little trick that can be done to
transform data (change the data point without
changing the data point) in a such away that it
become linearly separable.
Define function Φ that will take data point and
change its dimension (in our example there are two
dimension).
For example, we can transform data from our example
in three dimensions using:
Φ(x) =< x2

1, x2
2,

√
2x1x2 >

where: x1 and x2 are dimension of same vector
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Kernel Trick

Intuition

There is a little trick that
can be done to transform
data (change the data
point without changing the
data point) in a such away
that it become linearly
separable.
Define function Φ that will
take data point and change
its dimension.

Video showing XOR data from 2D to 3D. 3

3https://youtu.be/5KIYu3zKvqo
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Kernel Trick

Non-linearly separable

Φ(x) =< x2
1, x2

2,
√

2x1x2 >

There isn’t any new information!

Reminder: Quadratic programming problem form:
L =

∑
i αi − 1

2
∑

i

∑
j αiαjyiyjX̄i · X̄j

Reminder: This optimization / finding extremum of a
function depends only on dot products of pairs of samples,
given by X̄i

T · X̄j .
What will be Φ(X̄i)T · Φ(X̄j) for a given Φ(x)
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Kernel Trick

Non-linearly separable

QUIZ: What will be
Φ(X̄i)T · Φ(X̄j) for a given
Φ(x) ?

Consider Xi as x and Xj as y, for the ease of notations:
Φ(x)T Φ(y) =

< x2
1, x2

2,
√

2x1x2 >
T

· < y2
1 , y2

2 ,
√

2y1y2 >

x2
1y2

1 + 2x1x2y1y2 + x2
2y2

2

(x1y1 + x2y2)2

(22)

or this is equal to:

(xT y)2 (23)

So, dot product becomes square of last dot product.
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Kernel Trick

Kernel Trick

Refer Equation 23, its particular form of equation of circle
in matrix form.

Somehow, the notion of similarity (X̄i
T · X̄j) is

transformed to notion of circle where some points remain
inside the circle while others don’t.
So, data got transformed from 2D to 3D (without any
additional information) in such a way that now it can be
separated by hyperplane.
This little trick of projecting data into higher dimension
space to make it separable is called Kernel trick.
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separated by hyperplane.
This little trick of projecting data into higher dimension
space to make it separable is called Kernel trick.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 45 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Kernel Trick

Kernel Trick

Refer Equation 23, its particular form of equation of circle
in matrix form.
Somehow, the notion of similarity (X̄i

T · X̄j) is
transformed to notion of circle where some points remain
inside the circle while others don’t.
So, data got transformed from 2D to 3D (without any
additional information) in such a way that now it can be
separated by hyperplane.

This little trick of projecting data into higher dimension
space to make it separable is called Kernel trick.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 45 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Kernel Trick

Kernel Trick

Refer Equation 23, its particular form of equation of circle
in matrix form.
Somehow, the notion of similarity (X̄i

T · X̄j) is
transformed to notion of circle where some points remain
inside the circle while others don’t.
So, data got transformed from 2D to 3D (without any
additional information) in such a way that now it can be
separated by hyperplane.
This little trick of projecting data into higher dimension
space to make it separable is called Kernel trick.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 45 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Kernel Trick

Kernel Trick

Coming back to this equation:
Quadratic programming problem form:

L =
∑

i

αi − 1
2

∑
i

∑
j

αiαjyiyjX̄i · X̄j

and Equation 23:
(xT y)2

This signifies that data points don’t need to be
transformed separately, but rather its just a dot product
squared! So we actually never used Φ.
That’s the beauty of mathematics and SVM.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 46 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Kernel Trick

Kernel Trick

Coming back to this equation:
Quadratic programming problem form:

L =
∑

i

αi − 1
2

∑
i

∑
j

αiαjyiyjX̄i · X̄j

and Equation 23:
(xT y)2

This signifies that data points don’t need to be
transformed separately, but rather its just a dot product
squared! So we actually never used Φ.

That’s the beauty of mathematics and SVM.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 46 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Kernel Trick

Kernel Trick

Coming back to this equation:
Quadratic programming problem form:

L =
∑

i

αi − 1
2

∑
i

∑
j

αiαjyiyjX̄i · X̄j

and Equation 23:
(xT y)2

This signifies that data points don’t need to be
transformed separately, but rather its just a dot product
squared! So we actually never used Φ.
That’s the beauty of mathematics and SVM.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 46 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Kernel Trick

Kernel Trick

L =
∑

i

αi − 1
2

∑
i

∑
j

αiαjyiyjX̄i · X̄j

This equation can now be written as:

L =
∑

i

αi − 1
2

∑
i

∑
j

αiαjyiyjK(X̄i · X̄j) (24)

Where K is Kernel function, that takes Xi and Xj and returns scalar, the inner
product (generalization of the dot product) between two points in a suitable feature
space.
Kernel functions allow to inject domain knowledge into classifier.
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Kernel Trick

Kernel Trick

Gaussian Kernel
K(xi, xj) = e

−∥xi−xj ∥2

2σ2 (25)

Polynomial
K(xi, xj) = ((xi)T xj + c)p (26)

Neural-net inspired!
K(xi, xj) = tanh(κxixj − δ)p (27)

Radial Basis
K(xi, xj) = e(γ||xi−xj ||2) (28)
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Code

Python for SVM

1 from __future__ import division , print_function
2 import numpy as np
3 from sklearn import datasets , svm
4 #from sklearn . cross_validation import train_test_split
5 from sklearn . model_selection import train_test_split
6 import matplotlib . pyplot as plt
7

8 from sklearn .tree import DecisionTreeClassifier
9 from sklearn . ensemble import RandomForestClassifier , BaggingClassifier ,

AdaBoostClassifier , VotingClassifier
10

11 iris = datasets . load_iris ()
12 X = iris.data [: ,:2] # First two features , can take last two using [: ,2:]
13 y = iris. target
14

15 X_train , X_test , y_train , y_test = train_test_split (X, y, test_size =0.25 ,
random_state =42)
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Code

Python for SVM

1 def evaluate_on_test_data ( model =None):
2 predictions = model . predict ( X_test )
3 correct_classifications = 0
4 for i in range (len( y_test )):
5 if predictions [i] == y_test [i]:
6 correct_classifications += 1
7 accuracy = 100* correct_classifications /len( y_test ) # Accuracy as a

percentage
8 return accuracy
9

10 kernels = (’linear ’,’poly ’,’rbf ’)
11 accuracies = []
12 for index , kernel in enumerate ( kernels ):
13 model = svm.SVC( kernel = kernel )
14 model .fit(X_train , y_train )
15 acc = evaluate_on_test_data ( model )
16 accuracies . append (acc)
17 print ("{} % Test accuracy obtained with kernel = {}". format (acc , kernel ))
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Code

Python for SVM

1 # Train SVMs with different kernels
2 svc = svm.SVC( kernel =’linear ’).fit(X_train , y_train )
3 rbf_svc = svm.SVC( kernel =’rbf ’, gamma =0.7) .fit(X_train , y_train )
4 poly_svc = svm.SVC( kernel =’poly ’, degree =9).fit(X_train , y_train )
5

6

7

8 # Create a mesh to plot in
9 h = .02 # step size in the mesh

10 x_min , x_max = X[:, 0]. min () - 1, X[:, 0]. max () + 1
11 y_min , y_max = X[:, 1]. min () - 1, X[:, 1]. max () + 1
12 xx , yy = np. meshgrid (np. arange (x_min , x_max , h),
13 np. arange (y_min , y_max , h))
14

15 # Define title for the plots
16 titles = [’SVM with linear kernel ’,
17 ’SVM with RBF kernel ’,
18 ’SVM with polynomial ( degree 9) kernel ’]
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Code

Python for SVM

1 for i, clf in enumerate ((svc , rbf_svc , poly_svc )):
2 # Plot the decision boundary . For that , we will assign a color to each
3 # point in the mesh [x_min , m_max ]x[y_min , y_max ].
4 plt. figure (i)
5

6 Z = clf. predict (np.c_[xx. ravel () , yy. ravel () ])
7 # Put the result into a color plot
8 Z = Z. reshape (xx. shape )
9 plt. contourf (xx , yy , Z, cmap=plt.cm.Paired , alpha =0.8)

10

11 # Plot also the training points
12 plt. scatter (X[:, 0], X[:, 1], c=y, cmap=plt.cm. ocean )
13 plt. xlabel (’Sepal length ’)
14 plt. ylabel (’Sepal width ’)
15 plt.xlim(xx.min () , xx.max ())
16 plt.ylim(yy.min () , yy.max ())
17 plt. xticks (())
18 plt. yticks (())
19 plt. title ( titles [i])
20 plt.show ()
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Results

SVM Visulaization

SVM with Linear Kernel (No
transformation)

K(xi, xj) = xi
T xj + c
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Results

SVM Visulaization

SVM with RBF

K(xi, xj) = e
−∥xi−xj ∥2

2σ2

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 54 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Results

SVM Visulaization

SVM with Polynomial Kernel (Degree 3)

K(xi, xj) = ((xi)T xj + c)p
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Results

SVM Visulaization

SVM with Polynomial Kernel (Degree 5)

K(xi, xj) = ((xi)T xj + c)p
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Results

SVM Visulaization

SVM with Polynomial Kernel (Degree 7)

K(xi, xj) = ((xi)T xj + c)p
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XOR problem visualization

XOR problem

- XOR data.
- Problem is non-linearly separable
in the given feature space.

Video 4

4https://youtu.be/5KIYu3zKvqo
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XOR problem visualization

XOR problem

SVM with Linear Kernel (No
transformation)
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XOR problem visualization

XOR problem

SVM with Polynomial Kernel
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XOR problem visualization

XOR problem

SVM with RBF Kernel
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Conclusion

Conclusion

Powerful theoretical grounds.
Global, unique solution (convex optimization function).
Performance depends on choice of kernel and parameters.
Training is memory-intensive.
Complexity dependent on the number of support vectors.

Video 5

5https://youtu.be/FxLIsbnp_5c
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Need for soft Margin SVM

Need for soft Margin SVM

Real-life data is often noisy, thus linear separability is an issue.
Even when the data is linearly separable, the outlier can be closer to the other
examples than most of the examples of its class, thus reducing the margin, or it can
be among the other examples and break linear separability.

*6

In this case, there is no solution to the optimization problem solved earlier.
6Image taken from SVM Succinctly
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Soft margin

Slack variable

In 1995, Vapnik and Cortes introduced a modified version of the original SVM that
allows the classifier to make some mistakes.
The goal is now not to make zero classification mistakes, but to make as few mistakes
as possible.
Constraints of the optimization problem was modified, so the constraint (refer Eq 4)

yi(W̄ · X̄i + b) ≥ 1

becomes

yi(W̄ · X̄i + b) ≥ 1 − ξi (29)

where: ξ= slack variable and ∀i ≥ 0.

ξ is subtracted from 1, in order to make it possible to satisfy constraint.
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Soft margin

Slack variable

The problem is that we could choose a huge value of ξ for every example, and all the
constraints will be satisfied.
To avoid this, we need to modify the objective function (refer Eq. 14 for objective
function of hard margin SVM) to penalize the choice of a big ξ:

argmin
W,b,ξ

1
2 ||W ||2 + C

n∑
i=1

ξi (30)

subject to

yi(W̄ · X̄i + b) ≥ 1 − ξi

and ξi ≥ 0 ∀i
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Soft margin

Slack variable

Consider:

argmin
W,b,ξ

1
2 ||W ||2 + C

n∑
i=1

ξi

The slack variable ξi allows the input xi to be closer to the hyperplane (or even be on
the wrong side), but there is a penalty in the objective function for such “slack”.
How to select hyper-parameter C?

Value of C (hyper-parameter tuning)
1 If C is very large (penalty is higher), the SVM becomes very strict and tries to classify all

data points correctly.
2 If C is very small, the SVM becomes very loose and may “sacrifice” some points to obtain a

simpler solution.
3 Usually telescopic / grid search is applied to find best C for the given dataset.
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Soft margin

Slack variable

Consider:

argmin
W,b,ξ

1
2 ||W ||2 + C

n∑
i=1

ξi

The slack variable ξi allows the input xi to be closer to the hyperplane (or even be on
the wrong side), but there is a penalty in the objective function for such “slack”.
How to select hyper-parameter C?

Value of C (hyper-parameter tuning)
1 If C is very large (penalty is higher), the SVM becomes very strict and tries to classify all

data points correctly.

2 If C is very small, the SVM becomes very loose and may “sacrifice” some points to obtain a
simpler solution.

3 Usually telescopic / grid search is applied to find best C for the given dataset.
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Soft margin

Slack variable
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Soft margin

Slack variable
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the wrong side), but there is a penalty in the objective function for such “slack”.
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data points correctly.
2 If C is very small, the SVM becomes very loose and may “sacrifice” some points to obtain a

simpler solution.
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Ocular Proof

Ocular Proof

This image corresponds to large value of C.

*7

7Demo images from LIBSVM website: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Ocular Proof

Ocular Proof

This image corresponds to small value of C,
over-simplification of solution.

*7

7Demo images from LIBSVM website: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Ocular Proof

Ocular Proof

This image corresponds to appropriate value
of C given dataset (maximizing margin,
sacrificing few (one data point) to obtain
wider margin / better generalization).

*7

7Demo images from LIBSVM website: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Function Visualization

Optimizing function with constraint

- Maximize f(x, y) = x2y on the set
x2 + y2 = 1.

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint g(x, y) that
x2 + y2 = 1 (unit circle)

Visualization
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Function Visualization

Optimizing function with constraint

- Maximize f(x, y) = x2y on the set
x2 + y2 = 1.

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint g(x, y) that
x2 + y2 = 1 (unit circle)

Visualization

The function is in 3-D. To analytically examine the
problem , we can use contour plot.
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Function Visualization

Optimizing function with constraint

- Maximize f(x, y) = x2y on the set
x2 + y2 = 1.

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint g(x, y) that
x2 + y2 = 1 (unit circle)

Visualization

Contour plot
A contour plot is a graphical technique for
representing a 3-D surface by plotting
constant z slices, called contours, on a 2-D
format. That is, lines are drawn for all
possible pairs of (x, y) that produce
same/constant output (z).
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Function Visualization

Contour Plot

Contour plot
A contour plot is a graphical technique for representing a 3-D surface by plotting constant
z slices, called contours, on a 2-D format. That is, lines are drawn for all possible pairs of
(x, y) that produce same/constant output (z).
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Function Visualization

Contour Plot

3D plot of function, along with corresponding contour plot of the problem in hand.

Contour plot
A contour plot is a graphical technique for representing a 3-D surface by plotting constant
z slices, called contours, on a 2-D format. That is, lines are drawn for all possible pairs of
(x, y) that produce same/constant output (z).
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Function Visualization

Optimizing function with constraint

- Maximize f(x, y) = x2y on the set
x2 + y2 = 1.

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint that x2 + y2 = 1
(unit circle)

Visualization
Function with constraint visualization
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Function Visualization

Optimizing function with constraint

- Maximize f(x, y) = x2y on the set
x2 + y2 = 1.

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint that x2 + y2 = 1
(unit circle)

Visualization
Function with constraint visualization
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Function Visualization

Optimizing function with constraint

Function intersects with the constraint.
This means that this pair of (x, y)
satisfies constraint (four possible pair of
(x, y) values), but visually we can
observe that they are maximum values.

Function never intersects with the constraint.
This means that this pair of (x, y) is off the

constraint. It also shows that, as we are max. x2y
subject to constraint, we can never go as high as

these values of (x, y).
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Function Visualization

Optimizing function with constraint

Function intersects with the constraint.
This means that this pair of (x, y)
satisfies constraint (four possible pair of
(x, y) values), but visually we can
observe that they are maximum values.

Function never intersects with the constraint.
This means that this pair of (x, y) is off the

constraint. It also shows that, as we are max. x2y
subject to constraint, we can never go as high as

these values of (x, y).
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Function Visualization

Optimizing function with constraint

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint that x2 + y2 = 1
(unit circle)
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Function Visualization

Optimizing function with constraint

- Here we are trying to
Optimize multi-variable function
f(x, y) = x2y

with the constraint that x2 + y2 = 1
(unit circle)

Objective
To maximize function f(x, y) = x2y while
satisfying constraint x2 + y2 = 1, is to find
maximum value of pair of (x, y) or value of
constant s to the point that afterwards its off
the constraint.
This will only happen when the two
functions (f(x, y) & g(x, y)) are tangent.
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satisfying constraint x2 + y2 = 1, is to find
maximum value of pair of (x, y) or value of
constant s to the point that afterwards its off
the constraint.
This will only happen when the two
functions (f(x, y) & g(x, y)) are tangent.

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 69 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Function Optimization

Optimizing function with constraint

The gradient of f or g evaluated at a point
(x0, y0) always gives a vector perpendicular
to the contour line passing through that
point (as there is no change in value along
contour line).
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Function Optimization

Optimizing function with constraint

The gradient of f evaluated at a point
(x0, y0) always gives a vector
perpendicular to the contour line passing
through that point (as there is no
change in value along contour line).
When the contour lines of two functions
f and g are tangent, their gradient
vectors are parallel.
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Function Optimization

Optimizing function with constraint

The fact that contour lines are tangent
tells us nothing about the magnitude of
each of these gradient vectors, but that’s
okay. When two vectors point in the
same direction, it means we can multiply
one by some constant to get the other.
Since this tangency means their gradient
vectors align:

▽f(x, y) = λ ▽ g(x, y)

λ = Lagrange multiplier
f(x, y) = Function
g(x, y) = Constraint

Dr. Rizwan Ahmed Khan, https://sites.google.com/site/drkhanrizwan17/ Support Vector Machines 71 / 75



(c
)D

r.
Ri

zw
an

A
Kh

an

(c
)D

r.
Ri

zw
an

A
Kh

an

Introduction Decision Rule Constraints Optimal Margin Classifier Kernel Trick Python Soft Margin SVM Lagrange Optimization

Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Ocular Proof

Ocular Proof: When the
contour lines of two functions f
and g are tangent, their
gradient vectors are parallel.
Since this tangency means their
gradient vectors align:

▽f(x, y) = λ ▽ g(x, y)
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Function Optimization

Optimizing function with constraint: Example Solution

L = f(x, y) − λg(x, y)
= x2y − λ[x2 + y2]

To find max. take derivative. First partial derivative w.r.t “x”:

∂L

∂x
= 2xy − λ2x

y = λ
(31)

Partial derivative w.r.t “y”:
∂L

∂y
= x2 − λ2y

x2 = λ2y

x2 = 2λ2(as y = λ)
x = ±

√
2λ

(32)
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Function Optimization

Optimizing function with constraint: Example Solution

Putting back values of “x” and “y” found from equations 31 and 32 in the constraint
equation:

x2 + y2 = 1

[
√

2λ]
2

+ λ2 = 1
3λ2 = 1

λ = ±
√

1
3

(33)

Put back value of λ in equations 31 and 32 to find value of x and y:

y = ±
√

1
3 (34)

x = ±
√

2
√

1
3 = ±

√
2
3

(35)
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Function Optimization

Optimizing function with constraint: Example Solution

- From equations 34 and 35 , we know values
of x and y. They make four possible pairs of
(x, y):

1 (
√

2
3 ,

√
1
3 )

2 (−
√

2
3 ,

√
1
3 )

3 (
√

2
3 , −

√
1
3 )

4 (−
√

2
3 , −

√
1
3 )

- Last two point make function (x2y)
negative (will not max. func.) and first two
points gives same output and that is the
maximum value function can achieve while
satisfying constraint (refer image on the left).
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negative (will not max. func.) and first two
points gives same output and that is the
maximum value function can achieve while
satisfying constraint (refer image on the left).
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edition.
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Issues with K-Nearest Neighbors

Although k-nearest neighbor is a strong classifier and can achieve good results if the
number of training samples (n) are very large, but one issue that restricts to use it
(for practical reason) is:

What is computational complexity of K-Nearest Neighbors
1 Compare query data / test data to all training examples.
2 Training Complexity : O(1)
3 Test Complexity : O(nd), where n = number of training instances and d = dimensions of

training data. It’s linear time algorithm and that is not good!
4 Result: K-Nearest Neighbors is slow.

For practical application, test time is more important that train time.
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History

Historical Context

The first artificial neural network (ANN) was invented in
1958 by psychologist Frank Rosenblatt, called Perceptron.
It was intended to model how the human brain processed
visual data and learned to recognize objects.
Press Conference in 1958: “the embryo of an electronic
computer that [the US Navy (funding agency)] expects will
be able to walk, talk, see, write, reproduce itself and be
conscious of its existence”.

In 1969 it was proved that Perceptron could not be trained
for non-linearly separable data (i.e. XOR problem). This
lead to field of neural network research to stagnate for
many years (almost quarter of a century – A.I winter).
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(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

History

Historical Context

The first artificial neural network (ANN) was invented in
1958 by psychologist Frank Rosenblatt, called Perceptron.
It was intended to model how the human brain processed
visual data and learned to recognize objects.
Press Conference in 1958: “the embryo of an electronic
computer that [the US Navy (funding agency)] expects will
be able to walk, talk, see, write, reproduce itself and be
conscious of its existence”.
In 1969 it was proved that Perceptron could not be trained
for non-linearly separable data (i.e. XOR problem). This
lead to field of neural network research to stagnate for
many years (almost quarter of a century – A.I winter).

Dr. Rizwan Ahmed Khan Perceptron 7 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

History

Historical Context

Dr. Rizwan Ahmed Khan Perceptron 8 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Algorithm

Assumption
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Algorithm

Assumption

Assumptions or Bias:

- Binary classification

yi ∈ {−1,+1}
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Algorithm

Assumption

Assumptions or Bias:

- Binary classification

yi ∈ {−1,+1}

- There must be a
hyperplane that linearly
separates the data (one
class from the other).

- All data points from one
class lie on one side of
hyperplane.
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Algorithm

Assumption

What will happen in this case? Now data is
not linearly separable.

In high dimensional space data points tend
to be far away from each other (difficult to
visualize).

In low dimensional spaces linear separability
doesn’t hold for long but in high dimensional
space it almost holds i.e. (kernel trick).

In essence Perceptron is opposite of k-NN as
k-NN works better in low dimensional spaces
(rem: curse of dimensionality) while Perceptron
assumption holds in high dimensional spaces.
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Algorithm

Assumption : Data in higher dimensional space

XOR Problem

Inputs Output
0 0 0
0 1 1
1 0 1
1 1 0

XOR in 2D is not linearly
separable but in 3D it is.
In low dimensional spaces
linear separability doesn’t hold
for long but in high
dimensional space it almost
holds i.e. (kernel trick).

XOR in 3D: https://www.youtube.com/watch?v=5KIYu3zKvqo

Dr. Rizwan Ahmed Khan Perceptron 11 / 60
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Algorithm

Mapping data in higher dimensional space: Kernel function

There is a little trick that
can be done to transform
data (change the data
point without changing the
data point) in a such away
that it become linearly
separable.
Define function Φ that will
take data point and change
its dimension.

Video showing XOR data from 2D to 3D. 1

Kernel Trick 2

1https://youtu.be/5KIYu3zKvqo
2Later in the course during lecture on SVM
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Formalization

Classifier Visualization : Defining hyperplane

- In case of difficulty in understanding equation of a hyperplane, refer Section 7.
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Formalization

Classifier Calculus

Assuming that hyperplane exists that
linearly separates data according to labels,
Perceptron algorithm tries to find it.
Mathematically hyperplane can be given by:

H = {x : (w̄>x̄ + b) = 0}

where: b is the bias term (without the bias
term, the hyperplane that w defines would
always have to go through the origin).
Learning a perceptron involves choosing
values for weights w.
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Formalization

Classifier Calculus

What to do at test time? (unknown sample xi)

h(xi) = sign(w>xi + b)

OR

w>x + b > 0 ∀ x in class1, +ve Examples

w>x + b < 0 ∀ x in class2, -ve Examples

This means test time speed is constant. It’s very
fast.
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Formalization

Classifier Calculus

Dealing with b separately is difficult (difficult for
mathematical proofs and for programming), thus
this term can be merged with weight vector w.
Under this convention:

xi becomes
[
xi
1

]

w becomes
[
w
b

]

We can verify:[
xi
1

] [
w
b

]>
= w>xi + b
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Formalization

Classifier Calculus

xi becomes
[
xi
1

]

w becomes
[
w
b

]
Now we can say:

H = {x : (w̄>x) = 0}

Rem: We absorbed b with w, in essence b is offset and
w is orientation of hyperplane.
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Perceptron Learning Algorithm

Perceptron Learning Algorithm

Algorithm 1 Perceptron Learning Algorithm
Result: Learned Hyperplane / Decision Boundary
initialization ~w = 0
while TRUE do

missClassification = 0
for (xi, yi) ∈ D do

if yi(~w> ~xi) ≤ 0 then
~w ← ~w + y~x
missClassification← missClassification+ 1

end
end
if missClassification = 0 then

break
end

end
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Perceptron Learning Algorithm

Perceptron Learning Algorithm

In algorithm, what this statement
specifies?

yi(~w> ~xi) ≤ 0 (1)

Remember: We are dealing binary
classification yi ∈ {−1,+1}
And

~w>x > 0 ∀ +ve Examples (2)

~w>x < 0 ∀ -ve Examples (3)

By combining Equations 2 and 3, we can
write:

yi(~w> ~xi) ≥ 0 (4)

Proof:
1 yi(~w> ~xi) ≥ 0 , yi = +1 for +ve samples

+1(~w> ~xi) ≥ 0 =⇒ (~w> ~xi) ≥ 0
same as Equation 2

2 yi(~w> ~xi) ≥ 0, yi = -1 for -ve samples
−1(~w> ~xi) ≥ 0 =⇒ (~w> ~xi) ≤ 0
same as Equation 3
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Perceptron Learning Algorithm

Perceptron Learning Algorithm

Again, in perceptron learning algorithm, what this statement (refer Equation 1)
specifies?

yi(~w> ~xi) ≤ 0

This shows a misclassification!

~w ← ~w + y~x

This is weight update rule.
1 if misclassified sample is from +1 class then add in ~w amount proportional to ~x
2 if misclassified sample is from −1 class then subtract in ~w amount proportional to ~x

The algorithm belongs to a more general algorithmic family known as reward and
punishment schemes.
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Example : Perceptron Learning Algorithm

- Design a linear classifier using the perceptron algorithm

Consider four data points (first two points belong
to class w1, while other two belongs to class w2):

1

[
−1
0

]

2

[
0
1

]
3

[
0
−1

]
4

[
1
0

]
Consider initial weight vector is chosen as w(0) =0

0
0

 in extended 3D space i.e. merged w and b.
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Example : Perceptron Learning Algorithm

1 Consider first data point

−1
0
1

, find ~wT~x

=
[
0 0 0

] −1
0
1

 = 0 (Miss-classification, result should be > 0 for w1 samples)

- update rule, w : ~w ← ~w + y~x

~w(1)←

0
0
0

+ (1)

−1
0
1

 =

−1
0
1

 (This is updated w)

2 Consider second data point

0
1
1

, find ~wT~x

=
[
−1 0 1

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, no update in ~w(1)

required, ~w(2) = ~w(1))

Dr. Rizwan Ahmed Khan Perceptron 23 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Example

Example : Perceptron Learning Algorithm

1 Consider first data point

−1
0
1

, find ~wT~x

=
[
0 0 0

] −1
0
1

 = 0 (Miss-classification, result should be > 0 for w1 samples)

- update rule, w : ~w ← ~w + y~x

~w(1)←

0
0
0

+ (1)

−1
0
1

 =

−1
0
1

 (This is updated w)

2 Consider second data point

0
1
1

, find ~wT~x

=
[
−1 0 1

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, no update in ~w(1)

required, ~w(2) = ~w(1))

Dr. Rizwan Ahmed Khan Perceptron 23 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Example

Example : Perceptron Learning Algorithm

1 Consider first data point

−1
0
1

, find ~wT~x

=
[
0 0 0

] −1
0
1

 = 0 (Miss-classification, result should be > 0 for w1 samples)

- update rule, w : ~w ← ~w + y~x

~w(1)←

0
0
0

+ (1)

−1
0
1

 =

−1
0
1

 (This is updated w)

2 Consider second data point

0
1
1

, find ~wT~x

=
[
−1 0 1

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, no update in ~w(1)

required, ~w(2) = ~w(1))

Dr. Rizwan Ahmed Khan Perceptron 23 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Example

Example : Perceptron Learning Algorithm

1 Consider first data point

−1
0
1

, find ~wT~x

=
[
0 0 0

] −1
0
1

 = 0 (Miss-classification, result should be > 0 for w1 samples)

- update rule, w : ~w ← ~w + y~x

~w(1)←

0
0
0

+ (1)

−1
0
1

 =

−1
0
1

 (This is updated w)

2 Consider second data point

0
1
1

, find ~wT~x

=
[
−1 0 1

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, no update in ~w(1)

required, ~w(2) = ~w(1))

Dr. Rizwan Ahmed Khan Perceptron 23 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Example

Example : Perceptron Learning Algorithm

1 Consider first data point

−1
0
1

, find ~wT~x

=
[
0 0 0

] −1
0
1

 = 0 (Miss-classification, result should be > 0 for w1 samples)

- update rule, w : ~w ← ~w + y~x

~w(1)←

0
0
0

+ (1)

−1
0
1

 =

−1
0
1

 (This is updated w)

2 Consider second data point

0
1
1

, find ~wT~x

=
[
−1 0 1

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, no update in ~w(1)

required, ~w(2) = ~w(1))

Dr. Rizwan Ahmed Khan Perceptron 23 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Example

Example : Perceptron Learning Algorithm

1 Consider first data point

−1
0
1

, find ~wT~x

=
[
0 0 0

] −1
0
1

 = 0 (Miss-classification, result should be > 0 for w1 samples)

- update rule, w : ~w ← ~w + y~x

~w(1)←

0
0
0

+ (1)

−1
0
1

 =

−1
0
1

 (This is updated w)

2 Consider second data point

0
1
1

, find ~wT~x

=
[
−1 0 1

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, no update in ~w(1)

required, ~w(2) = ~w(1))
Dr. Rizwan Ahmed Khan Perceptron 23 / 60



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Example

Example : Perceptron Learning Algorithm

3 Consider third data point

 0
−1
1

, find ~wT~x

[
−1 0 1

]  0
−1
1

 = 1 > 0 (Miss-classification, result should be < 0 for w2 samples)

- update rule, w : ~w ← ~w + y~x

~w(3)←

−1
0
1

− 1

 0
−1
1

 =

−1
0
1

−
 0
−1
1

 =

−1
1
0

 (This is updated ~w(3))

4 Consider fourth data point

1
0
1

, find ~wT~x

[
−1 1 0

] 1
0
1

 = -1 < 0

(Correct as ~wT~x < 0 for w2 samples, no update in ~w(3) required, ~w(4) = ~w(3))
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Example : Perceptron Learning Algorithm

5 One loop on dataset is completed in which misclassification were encountered, now
again go through dataset (loop will only stop if there is no misclassification). Consider−1

0
1

, find ~wT~x

[
−1 1 0

] −1
0
1

 =1 > 0 (Correct as ~wT~x > 0 for w1 samples, ~w(5) = ~w(4))

6 Consider second data point

0
1
1

, find ~wT~x

[
−1 1 0

] 0
1
1

 = 1 > 0 (Correct as ~wT~x > 0 for w1 samples, ~w(6) = ~w(5))
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Example : Perceptron Learning Algorithm

7 Consider third data point

 0
−1
1

, find ~wT~x

[
−1 1 0

]  0
−1
1

 = -1 < 0

(Correct as ~wT~x < 0 for w2 samples, ~w(7) = ~w(6))

- Since for four consecutive steps no correction is needed, all points are correctly
classified and the algorithm terminates. Final weight vector w =

[
−1 1 0

]T .
- That is the resulting linear classifier that correctly separates all data points. This
line has slope = 1 and intercept = 0, how?
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w update visualization

- Draw new ~w after
encountering ~x ∈ w+, which is
misclassified point.

- update rule, w : ~w ← ~w + y~x
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w Update

w update visualization

- Draw new ~w after
encountering ~x ∈ w+, which is
misclassified point.

- update rule, w : ~w ← ~w + y~x

- In our example after an
update ~x gets correctly
classified but there is no
guarantee that after one update
data point will be correctly
classified.
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Demo 1: Perceptron Learning Algorithm

*3 3Matlab demo available
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Perceptron or Artificial Neuron
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Artificial Neuron

Artificial Neuron

Step 1
Modeling synaptic
connection.

xi × wi
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Artificial Neuron

Artificial Neuron

Step 2
Modeling collection of
inputs ∑

i

xiwi
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Artificial Neuron

Artificial Neuron

Step 3
Decision, whether
collective input is more
than threshold to fire
neuron

f(x) =
{

1, ifx ≥ T
0, otherwise
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Perceptron Algorithm

Perceptron Algorithm

First algorithm with a strong formal guarantee of convergence.
1 If the data is linearly separable, it will find a separating hyperplane in a finite number of

updates.
2 If the data is not linearly separable, it will loop forever.

Perceptron Algorithm
If ∃w such that yi(w>x) > 0 ∀(xi, yi) ∈ D, then
Perceptron will find that w in finite number of steps.
- Condition to satisfy:

y(w>x) > 0
{
y = +1 : w>x > 0
y = −1 : w>x < 0

(5)

- Update rule:

~w ← ~w + y~x

{
y = +1 : ~w ← ~w + ~x

y = −1 : ~w ← ~w − ~x
(6)
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Perceptron Convergence Setup

Perceptron Convergence : Setup

1 If ∃w∗ such that yi(w∗>x) > 0 ∀(xi, yi) ∈ D
2 Rescale each data point and the w∗ such that:
||w∗|| = 1 and ||xi|| ≤ 1 ∀xi ∈ D
- To get ||xi|| ≤ 1, divide all x by norm of max of x.

3 Let us define the Margin (it’s a constant) (the distance
from the hyperplane to the closest data point) γ of the
hyperplane w∗ as γ = min(xi,yi)∈D |w∗>xi|

Note:
w∗ is one of the hyperplane that separates data and point no. 2
elaborates on how data is scaled to be confined in unit radius circle.
This helps in proof of convergence.

Theorem
If all of the above holds, then the Perceptron algorithm makes at most 1/γ2 mistakes
before it converges.
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Perceptron Convergence Setup

Perceptron Convergence : Setup

w is initial hyperplane that we have (let’s say all zeros)
w∗ is a separating hyperplane that we want to obtain.
Keeping previous definition, consider the effect of an update
(w + yx) on the two terms:

1 w>w∗
2 w>w,

Why these two terms?
1 First Term (w>w∗): Calculates how closer w is getting to w∗, inner product.
2 Second term (w>w): This is required in order to understand that increase in first

term is not due to scaling (first term can grow even if hyperplanes are not getting close
but getting scaled i.e. scaled by 2) but these hyperplanes are actually getting closer
i.e. w is tilting towards w∗. So it is required that this term should not grow fast.
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Perceptron Convergence Setup

Perceptron Convergence : Two Terms

Why these two terms?
1 First Term (w>w∗): Calculates how closer w is getting to w∗, inner product.
2 Second term (w>w): This is required in order to understand that increase in first

term is not due to scaling (first term can grow even if hyperplanes are not getting close
but getting scaled i.e. scaled by 2) but these hyperplanes are actually getting closer
i.e. w is tilting towards w∗. So it is required that this term should not grow fast.
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Perceptron Convergence

Perceptron Convergence : First Term

Two facts, in case w gets updated
1 y(x>w) ≤ 0 : This holds because x is misclassified by w - otherwise

update wouldn’t happen.
2 y(x>w∗) > 0 : This holds because w∗ is a separating hyper-plane

and classifies all points correctly.

How this update ( ~w ← ~w + y~x) effects (first term), which is w>w∗:

(w + yx)>w∗ = w>w∗ + y(x>w∗)︸ ︷︷ ︸
>0 or ≥γ

≥ w>w∗ + γ︸ ︷︷ ︸
Resultant

(7)

the distance from the hyperplane defined by w∗ to x must be at least γ
or
y(x>w∗) = |x>w∗| ≥ γ

Conclusion-1
This means that for each update, w>w∗ grows by at least γ i.e. w>w∗ + γ.
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Perceptron Convergence : First Term
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Perceptron Convergence

Perceptron Convergence : Second Term

Two facts, in case w gets updated
1 y(x>w) ≤ 0 : This holds because x is misclassified by w - otherwise

update wouldn’t happen.
2 y(x>w∗) > 0 : This holds because w∗ is a separating hyper-plane

and classifies all points correctly.
How this update ( ~w ← ~w + y~x) effects (second term), which is w>w:

(w + yx)>(w + yx) = w>w + 2y(w>x)︸ ︷︷ ︸
<0

+ y2︸︷︷︸
=1

(x>x)︸ ︷︷ ︸
≤1

≤ w>w + 1︸ ︷︷ ︸
Resultant

(8)

The inequality follows from the fact that:
2y(w>x) < 0 as we had to make an update, meaning x was misclassified.
0 ≤ y2(x>x) ≤ 1 as y2 = 1 and x>x ≤ 1 (because ‖x‖ ≤ 1, data was scaled to have max.
norm of 1)

Conclusion-2
This means that for each update, w>w grows by at most 1, i.e. w>w + 1.
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Perceptron Convergence

Perceptron Convergence : Final Step

After M updates, the following two inequalities must hold:
1 w>w∗ ≥Mγ as w>w∗ grows by at least γ, so after M updates it must be at least Mγ

2 w>w ≤M as w>w grows by at most 1

Mγ ≤ w>w∗ = |w>w∗|︸ ︷︷ ︸
Abs.V al.

≤ ||w>||.||w∗||︸ ︷︷ ︸
Cauchy-Schwarz inequality

= ||w>|| as ||w∗|| =

1 (Data scaled)
=

√
w>w︸ ︷︷ ︸

Definition of norm

- What do we know about w>w?
- w>w grows by at most 1 Conc-2.
- So, after M updates:
=
√

w>w≤
√
M

Interesting find

Mγ ≤
√
M

5

5Cauchy-Schwarz inequality: For two vectors, their inner products is less than equal to product of their
norms
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Perceptron Convergence : Final Step

We proved

Mγ ≤
√
M

- Solve for M:

Mγ ≤
√
M (9)

M2γ2 ≤M (10)

M ≤ 1
γ2 (11)

- This proof made Frank Rosenblatt famous. Such a strong result!

Perceptron Algorithm Convergence
M ≤ 1

γ2 : This means number of updates M is bounded from above by a constant. So
algorithm wouldn’t make more mistakes than constant 1

γ2 (smallest distance between data
point x and w∗) before finding a linear separating hyperplane.
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Interesting Facts

*6

6Image from Pattern Recognition and Machine Learning Book by Christopher Bishop
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Line

Equation of a line

Equation of a line:

y = mx+ c
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Line

Equation of a line

Equation of a line:

y = mx+ c

m = rise
run
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Line

Equation of a line

Equation of a line:

y = mx+ c

m = rise
run

- m = slope
- c = y-intercept
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Line

Equation of a line: Slope

Derivative / Slope Recap
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Line

Equation of a line: Slope

Derivative / Slope Recap

Consider

f(x) = 2(x) or y = 2x

if x = 1 then f(x) = 2

if x = 1.4 then f(x) = 2.8
Slope ( dydx ) of f(x) is 2.
dy
dx = height

width0.8
0.4 = 2
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Line

Equation of a line: General Form (2D)

ax+ by + c = 0 (12)

This equation (ref Equation 12) is same as slope form of a line y = mx+ c

ax+ by + c = 0 (13)

y = −c
b︸︷︷︸

c or, y−intercept

− a

b︸︷︷︸
m or, slope

x (14)

- If axis are x1 and x2, then ax+ by + c = 0 can be written as:

ax1 + bx2 + c = 0 (15)
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Line

Equation of a line: General Form (2D)

- Get rid of a and b as well, since we may need to write equation in n dimensions and then
in this case we will run out of alphabets. Thus, Equation 15 can be written as:

w1x1 + w2x2 + w0 = 0 (16)

- What about in 3D?
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Plane

Plane in 3D

- Equivalent of a line in 2D is a plane in 3D.
- Idea is same. Line separates data in 2D surface, while plane separates data in 3D volume.
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Plane

Plane in 3D

- Equivalent of a line in 2D is a plane in 3D.
- Idea is same. Line separates data in 2D surface, while plane separates data in 3D volume.
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Plane

Plane in 3D

- Extending Equation 16 to write equation of
a plane in 3D:

w1x1 + w2x2 + w3x3 + w0 = 0 (17)

- What about plane in nD?
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Plane

Plane in nD

- Plane in n dimensions is called hyperplane.
- Equation of a plane nD can be formulated easily from Equations 16 and 17.

w0 + w1x1 + w2x2 + w3x3 + · · ·+ wnxn = 0 (18)

- Is there a more concise way to write this equation?

w0 +
n∑
i=1

wixi = 0 (19)

- Above form is summation form / notation of an equation. Is there a vector form to write
this equation?
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Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Plane

Vector notation of a plane in nD

- Vector notation of a plane in nD

w0 +
[
w1, w2, w3, · · · , wn

]︸ ︷︷ ︸
w vector


x1
x2
x3
...
xn


︸ ︷︷ ︸
x vector

= 0 (20)

- This equation, Equation 20 is exactly same as Equation 19.

- Vector w has dimensions of 1× n (w1×n)

- Vector x has dimensions of n× 1 (xn×1)

- Multiplication of vector w & vector x will give scalar or 1× 1 matrix (multiplication of a
row vector with a column vector).
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Plane

Vector notation of a plane in nD

- In ML literature, as a standard, vector are written as column vector i.e.


w1
w2
w3
...
wn


Taking Equation 20, and using standard notation, we can write:

w0 + w̄>x̄ = 0 (21)

- This is standard form of hyperplane equation!
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Intuition

Hyperplane equation with reference to line equation

- Equation of plane in 2D :

w1x1 + w2x2 + w0 = 0

- Rearrange:

x2 = −w0

w2
− w1

w2
x1

- Can you find correspondence of this equation with
y = mx+ c

x2︸︷︷︸
y

= −w0

w2︸ ︷︷ ︸
c

− w1

w2︸︷︷︸
m

x1 (22)
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Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Intuition

Hyperplane passing through origin

As we have seen:

x2 = −w0

w2
− w1

w2
x1

- If this line passes through origin then c = 0 or w0 = 0. Then Equation 16 will become:

w1x1 + w2x2 = 0 (23)

- In 3D (Plane)

w1x1 + w2x2 + w3x3 = 0 (24)

- In nD (Hyperplane)

w1x1 + w2x2 + w3x3 + · · ·+ wnxn = 0 (25)
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Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Intuition

Hyperplane passing through origin

- Vector form of equation of hyperplane passing through origin:

w̄>x̄ = 0 (26)

- Vector form of equation of hyperplane not passing through origin:

w0 + w̄>x̄ = 0 (27)
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Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Intuition

Geometric interpretation of Hyperplane

- Consider hyperplane that passes through origin, so Equation would be w̄>x̄ = 0, where

w =


w1
w2
w3
...
wn

 and x =


x1
x2
x3
...
xn


w · x = w>x = ||w|| ||x|| cosθw,x (28)

- According to definition of hyperplane passing through origin w̄>x̄ = 0. This will only be
true if vector w and x are orthogonal i.e (cos(90) = 0).
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Why Perceptron Perceptron Algorithm Visualization Convergence Interesting Facts Rev: Line & Hyperplane

Intuition

Geometric interpretation of Hyperplane

||w|| ||x|| cosθw,x = 0

- As w and x vectors are orthogonal

- Usually vector w is taken as vector perpendicular (⊥) to the hyperplane as well, for all
data points / vector x lie on the plane.

- Often hyperplane is defined by a unit vector ŵ = w
||w|| (e.g. w ⊥ hyperplane).
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||w|| ||x|| cosθw,x = 0

- As w and x vectors are orthogonal

- Usually vector w is taken as vector perpendicular (⊥) to the hyperplane as well, for all
data points / vector x lie on the plane.
- Often hyperplane is defined by a unit vector ŵ = w

||w|| (e.g. w ⊥ hyperplane).
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Intuition

Geometric interpretation of Hyperplane

- Often hyperplane is defined by a unit vector ŵ = w
||w|| (e.g. w ⊥ hyperplane).
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Machine Learning
Instance-Based Learning & Nearest Neighbor Classifier
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Outline

1 Abstraction
1-D World
2-D World

2 Abstract to Concrete
Algorithm
Distance Metrics
Toy Problem : Exercise
Summary

3 Image Classification
Dataset
Feature Space

4 Python
Digits Dataset Classification: Python
Improvement?

5 Big Picture

K-Nearest Neighbors
Inductive Bias of K-Nearest Neighbors
Decision Boundary for K-Nearest
Neighbors
Instance-based Learning

6 Dimensionality Curse
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Feature Transformation
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Practical issue with K-NN
KD-tree intuition
KD-Tree Data Structure
KD-tree for kNN search

8 Tasks
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Reference Books

Reference books for this Module:

Chapter 8: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.

Chapter 2 & 5: Pattern Recognition, Konstantinos Koutroumbas and Sergios
Theodoridi, Academic Press, 4th or latest edition
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1-D World

Abstraction: 1-D

If we live in one dimensional world:

What would you say?
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Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

1-D World

Abstraction: 1-D

Previous slide presented points with associated labels i.e. 1 and 6.

When we are presented with point with unknown label i.e. test point, based on
training points we were quick to answer.
We were quick to understand underlying pattern in the data.
Without much of information we figured out that points are grouping together i.e.
minimum distance
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2-D World

Abstraction: 2-D

What would you say?
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2-D World

Abstraction: 2-D

What would you say?
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2-D World

Abstraction: 2-D

Again, in 2-D points with associated labels i.e. 1 and 6 were presented. When we are
presented with point with unknown label i.e. test point, based on training points we
were quick to answer.

Without much of information we figured out that points are grouping together
(understand underlying pattern) i.e. minimum distance.
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Algorithm

K-NN Algorithm 1

Assumption: Similar Inputs have similar outputs.
Classification rule: For a test input x, assign the most common label amongst its k
most similar training inputs.
Formal definition of k-NN:

Test point : x
Denote the set of the k nearest neighbors of x as Sx.
Formally Sx is defined as Sx ⊆ D (dataset) s.t. |Sx| = k and ∀(x′, y′) ∈ D\Sx

dist(x, x′) ≥ max
(x′′,y′′)∈Sx

dist(x, x′′) (1)

That is every point in D but not in Sx is at least as far away from x as the farthest
point in Sx.

1Cover, Thomas and Hart, Peter. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 1967, 13(1): 21-27
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Distance Metrics

Distance Metrics

Distance metric learning is a research field, but most commonly used are Minkowski Distance. Distance metric
uses distance function which provides a relationship metric between elements in the dataset.
Minkowski Distance:

dist(a, b) =
(

n∑
i=1

(ai − bi)p

) 1
p

(2)

1 if p = 1, Manhattan Distance

distL1(a, b) =
n∑

i=1
(‖ai − bi‖) (3)

2 if p = 2, Euclidean Distance

distL2(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (4)

3 if p = ∞, Chebychev Distance / Max difference
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Distance Metrics

Manhattan or Euclidean Distance

Intuition of distances

distL1(a, b) =
n∑

i=1
(‖ai − bi‖)

distL1(a, b) = (6− 0) + (6− 0) = 12 (5)

distL2(a, b) =

√√√√ n∑
i=1

(ai − bi)2

distL2(a, b) =
√

62 + 62 =
√

72 ≈ 8.49 (6)

In Manhattan / taxicab geometry, the red, yellow, and blue paths all have the same shortest path length of 12. In
Euclidean geometry, the green line has length 6

√
2 ≈ 8.49 and is the unique shortest path.
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Toy Problem : Exercise

Toy Problem statement

K −NN : Toy dataset
We are given a training dataset with n = 6 observations of d = 2 dimensions.

Table 1: Toy dataset

x1 x2 Label
1 1 class 1
2 2.5 class 1
3 1.2 class 1
5.5 6.3 class 2
6 9 class 2
7 6 class 2

Predict output class / label for query data point xq = [3, 4]T for K = 1.
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Toy Problem : Exercise

Toy Problem

Visualization of toy problem2

1https://www.desmos.com/
Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 14 / 81
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Toy Problem : Exercise

Toy Problem: Python

1 import numpy as np
2 import matplotlib . pyplot as plt
3 import seaborn as sns
4

5 # Create Training Set , 2D vector
6 x_train =np. array ([[1 ,1] , [2 ,2.5] , [3 ,1.2] , [5.5 , 6.3] , [6 ,9] , [7 ,6]])
7 y_train =(1 ,1 ,1 ,2 ,2 ,2)
8

9

10 # create color dictionary for printing
11 colors = {1: ’r’, 2: ’b’}
12

13 fig , ax = plt. subplots ()
14 # plot each data - point
15 for i in range (len( x_train )):
16 ax. scatter ( x_train [i ,0] , x_train [i ,1] , color = colors [ y_train [i]])
17

18 ax. set_xlabel (’Feature 1’)
19 ax. set_ylabel (’Feature 2’)
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Toy Problem : Exercise

Toy Problem: Python Visualization
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Toy Problem : Exercise

Toy Problem: Python

1

2 ax. set_xlabel (’Feature 1’)
3 ax. set_ylabel (’Feature 2’)
4

5

6 # Create Test point
7 x_test =np. array ([3 ,4])
8 y_test =(1)
9

10

11 #plot again train + test data
12 #plt. figure ()
13 fig , ax1 = plt. subplots ()
14 for i in range (len( x_train )):
15 ax1. scatter ( x_train [i ,0] , x_train [i ,1] , color = colors [ y_train [i]])
16 ax1. scatter ( x_test [0] , x_test [1] , color =’g’)
17 ax1. set_xlabel (’Feature 1’)
18 ax1. set_ylabel (’Feature 2’)
19 ax1. set_title (’Classify Green Point !’)
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Toy Problem : Exercise

Toy Problem: Python

1 """
2 Intuition : It seems new point ( GREEN ) is nearer to red points but How
3 mathematically we can prove that new point is near to red point ?
4 Step 1: Find Distance to all points in training
5 Step 2: Find point with minimum distance in training set
6 Step 3: Assign label of nearest point to test point
7

8 STEP 1
9 """
10 def dist(x, y):
11 return np.sqrt(np.sum ((x-y)**2))
12

13 distance =np. zeros (len( x_train ))
14 for i in range (len( x_train )):
15 distance [i]= dist( x_train [i], x_test )
16 print ( distance )
17

18 #Step 2: Find point with minimum distance in training set
19 min_index = np. argmin ( distance )
20 #Step 3: Assign label of nearest point to test point
21 print (’New point is classified in Class : ’,y_train [ min_index ])
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Toy Problem : Exercise

Verify Result: Euclidean Distance

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 21 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Summary

Move forward

This is intuitive, easy to understand.
Now the question is, can we map an image, audio, document to a point in feature
space? As we have already seen the method to classify unknown point on feature
space i.e. Nearest Neighbor Classifier.
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Summary

Move forward

If we can represent image in a space3like we did with toy example than its easy to
classify it.

2Example images from CS50 - Harvard University.
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Dataset

Concrete Example: Digits Dataset

This dataset is made up of 1797, 8 x 8 images. Each image, like the one shown below, is of
a hand-written digit4.

3https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
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Feature Space

Image Representation in Feature Space

How can we represent image in feature space?

We can represent it with any dimension 1D, 2D, 3D , · · · nD
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Feature Space

Image Representation in Feature Space

The dataset we are working with has 8 x 8 pixels with max. pixel value of 16.
This image could be thought of point in 64-D space.
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Feature Space

Image Representation in Feature Space

This image could be thought of point in 64-D space.
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Feature Space

Image Representation in Feature Space

If we can represent image with a point in 64-D space, then we need to find distance of test
example to training set and can assign label of nearest train example! We have a classifier!
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Feature Space

Image Distance or Similarity Measure

Distance metric uses distance function which provides a relationship metric between
elements in the dataset.
Minkowski Distance:

dist(a, b) =
(

n∑
i=1

(ai − bi)p

) 1
p

(7)

1 if p = 1, Manhattan Distance

distL1(a, b) =
n∑

i=1
(‖ai − bi‖) (8)

2 if p = 2, Euclidean Distance

distL2(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (9)

3 if p = ∞, Chebychev Distance
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Feature Space

Image Distance or Similarity Measure
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Digits Dataset Classification: Python

Nearest Neighbor Classifier: Python

1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 from sklearn import datasets
5 digits = datasets . load_digits ()
6

7 """
8 The dataset contains 1797 images . Two array :
9 digits . images
10 digits . target
11 """
12 print ( digits . images [0])
13 print ( digits . target [0]) # label of image
14

15 # What is this number ?
16 plt. figure ()
17 plt. imshow ( digits . images [0] , cmap = plt.cm.gray_r , interpolation =’nearest ’)
18 plt.show ()
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Digits Dataset Classification: Python

Visualization
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Digits Dataset Classification: Python

Nearest Neighbor Classifier: Python

1 # Creating training set by selecting first 10 images
2

3 # x_train = digits . images [0:10]
4 x_train = digits .data [0:10] # it is reshaped images in one row
5 y_train = digits . target [0:10]
6

7 # x_test = digits . images [345]
8 x_test = digits .data [345]
9

10 # To visulaize test image
11 plt. figure ()
12 plt. imshow ( digits . images [345] , cmap = plt.cm.gray_r , interpolation =’nearest ’)
13 plt. title (’Test Image ’)
14 plt.show ()
15 ####
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Digits Dataset Classification: Python

Training Set
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Digits Dataset Classification: Python

Visualization

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 37 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Digits Dataset Classification: Python

Nearest Neighbor Classifier: Python

1 """
2 Step 1: Find Distance to all points in training
3 Step 2: Find point with minimum distance in training set
4 Step 3: Assign label of nearest point to test point
5 STEP 1
6 """
7 def dist(x, y):
8 return np.sqrt(np.sum ((x-y)**2))
9

10 #Step 2: Find point with minimum distance in training set
11

12 distance =np. zeros (len( x_train ))
13 for i in range (len( x_train )):
14 distance [i]= dist( x_train [i], x_test )
15

16 min_index = np. argmin ( distance )
17

18 #Step 3: Assign label of nearest point to test point
19 print (’New point is classified in Class : ’,y_train [ min_index ])
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Digits Dataset Classification: Python

Visualization
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Digits Dataset Classification: Python

Calculating Error on 100 Test Images

Up till now we have trained model on 10 images and tested it on only one image.
How about running / testing same model on last 100 (test) images.
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Digits Dataset Classification: Python

Nearest Neighbor Classifier: Python

1 """
2 So far , it seems a good classifier with correct result .
3 How about running it for 100 test images to see how accurate it is?
4 """
5 num=len( x_train )
6 no_errors =0
7 distance =np. zeros (num)
8

9 for j in range (1697 , 1797) : # taking last 100 images as test
10 x_test = digits .data[j]
11

12 for i in range (num): # Cal. dist. from selested test examp to all train
examp .

13 distance [i]= dist( x_train [i], x_test )
14

15 min_index =np. argmin ( distance ) # labeling test example .
16

17 if y_train [ min_index ] != digits . target [j]:
18 no_errors +=1
19

20 print (’Total error : ’, no_errors )
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Digits Dataset Classification: Python

Visualization
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Improvement?

Improvement?

Improvement?
How to improve accuracy?
For 100 test examples, 37 examples are misclassified.
Any idea?
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Improvement?

Improvement?

Idea-1
We have used only 10 training examples to train. With only 10 samples model will not be
able to capture all the variations of writings present in database. To cater different
variation we need to add more training samples!

Idea-2
It is possible that add more neighbors! By adding more neighbors, final label of test
sample can be verified by majority voting.

Idea-3
Changing distance measure? e.g. Mahalanobis distance, Bhattacharyya distance, etc.
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Improvement?

Results: Idea 1 and Idea 3

- Adding more training samples (samples added with step size of 10)
- Distance Measure Comparison
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K-Nearest Neighbors

K-Nearest Neighbors

Taking Idea-2 forward: to label query / test data we have looked only 1-neighbor. For
most problems one neighbor can lead to misclassification i.e. noise in data, inter class
variations in data point are less.

1 if k=1, label = diamond
2 if k=3, label = star
3 if k=7, label = star
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Taking Idea-2 forward: to label query / test data we have looked only 1-neighbor. For
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variations in data point are less.

1 if k=1, label = diamond
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K-Nearest Neighbors

K-Nearest Neighbors (k-NN): Pseudo-code

Algorithm 1 K-Nearest Neighbors (k-NN)

Out of the N training vectors, identify the k nearest neighbors, regardless of class label.
Caution: k is chosen to be odd for a two class problem, and in general not to be a
multiple of the number of classes M .
Out of these k samples, identify the number of vectors ki , that belong to class wi,
i = 1, 2, . . . , m.

∑
i ki = k.

Assign x to the class wi with the maximum number ki of samples.
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K-Nearest Neighbors

Number of Neighbors: K

Taking Idea-2 forward: add K neighbors. It’s a parameter that has to be learned for
problem in hand!

1 if k=1, label = diamond
2 if k=3, label = star
3 if k=7, label = diamond
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K-Nearest Neighbors

Number of Neighbors: K

Taking Idea-2 forward: add K neighbors. It’s a parameter that has to be learned for
problem in hand!

1 if k=1, label = diamond
2 if k=3, label = star
3 if k=7, label = diamond
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K-Nearest Neighbors

Number of Neighbors: K

Taking Idea-2 forward: add K neighbors - improvement!

1 Distance-weighted nearest neighbor
algorithm: One obvious refinement,
to weight the contribution of each of
the k neighbors according to their
distance to the query / test point.

2 Giving greater weight to closer
neighbors.

weighti = 1
dist(traini, test)2 (10)

3 Robust to noise
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1 Distance-weighted nearest neighbor
algorithm: One obvious refinement,
to weight the contribution of each of
the k neighbors according to their
distance to the query / test point.

2 Giving greater weight to closer
neighbors.

weighti = 1
dist(traini, test)2 (10)

3 Robust to noise
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K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

What is computational complexity of K-Nearest Neighbors

1 Compare query data / test data to all training examples.
2 Training Complexity : O(1)
3 Test Complexity : O(nd), where n = number of training instances and d =

dimensions of training data. It’s linear time algorithm and that is not good!
4 Result: K-Nearest Neighbors is slow.

Suggestions
Any suggestions to make it fast i.e.
to reduce its complexity!
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K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

1 Curse of dimensionality (more on this later)
Reduce d by removing irrelevant features (feature selection).

2 Reduce ”n”
Don’t compare all n.
Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
KD-tree: Its a data structure and can find m nearest neighbors in O(log2n). Works
well for low dimensional data but it can miss neighbors.
Inverted list: data structure for storing a mapping from data.
Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 52 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

1 Curse of dimensionality (more on this later)
Reduce d by removing irrelevant features (feature selection).

2 Reduce ”n”
Don’t compare all n.

Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
KD-tree: Its a data structure and can find m nearest neighbors in O(log2n). Works
well for low dimensional data but it can miss neighbors.
Inverted list: data structure for storing a mapping from data.
Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 52 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

1 Curse of dimensionality (more on this later)
Reduce d by removing irrelevant features (feature selection).

2 Reduce ”n”
Don’t compare all n.
Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).

KD-tree: Its a data structure and can find m nearest neighbors in O(log2n). Works
well for low dimensional data but it can miss neighbors.
Inverted list: data structure for storing a mapping from data.
Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 52 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

1 Curse of dimensionality (more on this later)
Reduce d by removing irrelevant features (feature selection).

2 Reduce ”n”
Don’t compare all n.
Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
KD-tree: Its a data structure and can find m nearest neighbors in O(log2n). Works
well for low dimensional data but it can miss neighbors.

Inverted list: data structure for storing a mapping from data.
Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 52 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

1 Curse of dimensionality (more on this later)
Reduce d by removing irrelevant features (feature selection).

2 Reduce ”n”
Don’t compare all n.
Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
KD-tree: Its a data structure and can find m nearest neighbors in O(log2n). Works
well for low dimensional data but it can miss neighbors.
Inverted list: data structure for storing a mapping from data.

Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 52 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

K-Nearest Neighbors

Practical issue with K-Nearest Neighbors

1 Curse of dimensionality (more on this later)
Reduce d by removing irrelevant features (feature selection).

2 Reduce ”n”
Don’t compare all n.
Quickly (ideally in constant time or in log time) identify potential m nearest neighbors,
| m << n. Thus, complexity will reduce to O(md).
KD-tree: Its a data structure and can find m nearest neighbors in O(log2n). Works
well for low dimensional data but it can miss neighbors.
Inverted list: data structure for storing a mapping from data.
Locality-sensitive hashing: hashes similar input items into the same “bucket” with
high probability. Its a way to reduce the dimensionality while preserving relative
distances between items. It can also miss neighbors.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 52 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Inductive Bias of K-Nearest Neighbors

Inductive Bias

Inductive Bias
What is the inductive bias of k-NN classifier?

Inductive Bias
For k-NN classifier inductive bias corresponds to an assumption that the classification of
an test instance, will be most similar to the classification of other instances that are nearby
in (Euclidean) space.
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Decision Boundary for K-Nearest Neighbors

Decision Boundary

Voronoi Cells / Diagram / Tessellation
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Decision Boundary for K-Nearest Neighbors

Decision Boundary

A small value of k could lead to
overfitting as well as a big value of k
can lead to underfitting. Overfitting
imply that the model is well on the
training data but has poor
performance when new data is
coming i.e. high variance.

*5 5Result on first two dimensions of iris dataset, demo in Python availableDr. Rizwan Ahmed Khan Instance-Based Learning - KNN 55 / 81
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Decision Boundary for K-Nearest Neighbors

Decision Boundary

Decision Boundary : Exercise
Consider following 2D dataset:

1 +ve : (−1, 3), (−2, 2), (1, 1)
2 −ve : (2, 1), (−1, 2), (−1, 0)

Draw decision boundary for 1−NN classifier
with Euclidean distance.

+ve examples are shown in color red, while −ve
examples are shown in color blue.
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Instance-based Learning

Instance-based Learning

Instance-based learning methods (Lazy learners) simply store the training examples
(lazy learner vs Eager learner).
Generalizing beyond given examples is postponed until a new instance gets classified.
A key advantage: instead of estimating the target function once for the entire instance
space, it learns target function for each new instance to be classified.
Instance-based learning includes:

1 k-Nearest Neighbor (Instances represented as points in a Euclidean space)
2 Locally weighted regression methods (Constructs local approximation)
3 Case-based reasoning methods (Uses symbolic representations and knowledge-based

inference)
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Instance-based Learning

Instance-based Learning

Disadvantages:
1 Cost of classifying new instances is high (nearly all computation takes place at

classification time rather than when the training examples are first encountered (eager
learner approach)).

2 All attributes of the instances are considered when attempting to retrieve similar
training examples from memory.
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Curse of Dimensionality

Curse of Dimensionality

Curse of Dimensionality
One practical issue in applying k-NN classifier is that the distance between instances
is calculated based on all attributes / features of the instance / example.

This is in contrast to many other ML algorithms i.e. Decision Tree where learning
selects only a subset of the instance attributes when forming the hypothesis.
Consider applying k-NN classifier to a problem that has 20 features, but only 2
attributes are relevant or inter-class variability depends only on 2 features. In this
case k-NN distance function can give misleading results.
This difficulty, which arises when many irrelevant attributes are present, is sometimes
referred to as the curse of dimensionality.
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Curse of Dimensionality

Formally, curse of dimensionality
As the number of features or dimensions grows, the amount of data need to be generalized
accurately grows exponentially.

The K−NN classifier makes the assumption that
similar points share similar labels.

Unfortunately, in high dimensional spaces, points
that are drawn from a probability distribution,
tend to never be close together, Example –>:
How big this little box has to be to encapsulate
all K− nearest neighbors of a test point?
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Curse of Dimensionality

Curse of Dimensionality

Formally, this is unit cube of d dimensions i.e. Rd. All training
data is sampled uniformly within this cube.

Considering the k = 10 nearest neighbors and n = 1000.
Then: volume of box =

`d ≈ k
n
(as the box contains k points out of n). This says, roughly

volume is same as the ratio of the points, because of uniform
distribution.

`d ≈ k

n
=⇒ ` ≈

(
k

n

)1/d

How large is `?
d `
2 0.1
10 0.63
100 0.955
1000 0.9954
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Formally, this is unit cube of d dimensions i.e. Rd. All training
data is sampled uniformly within this cube.
Considering the k = 10 nearest neighbors and n = 1000.
Then: volume of box =

`d ≈ k
n
(as the box contains k points out of n). This says, roughly

volume is same as the ratio of the points, because of uniform
distribution.

`d ≈ k

n
=⇒ ` ≈

(
k

n

)1/d

How large is `?
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Curse of Dimensionality

Curse of Dimensionality

Problems identified
So as d dimension increases almost the entire space is needed to find the 10−NN .
What does it mean?

10 points are at the edge of smaller cube and that edge of cube is almost touching
outer cube that that has remain 9990 points.
This breaks down the k-NN assumptions, because the k-NN are not particularly closer
(and therefore more similar) than any other data points in the training set.
So the distance between two randomly drawn data points increases drastically with
their dimensionality. Neighbors are not close! All the points whether they are in
neighbors or not are roughly at the same distance.
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Curse of Dimensionality

Curse of Dimensionality

Should we remove k-NN from toolkit?
Not all is lost. Data may lie in low dimensional subspace or on
sub-manifolds. Example: natural images (digits, faces (they are
not uniformly distributed)). Here, the true dimensionality of
the data can be much lower than its ambient space.

k-NN would work if data has low intrinsic dimensionality.
Ref Figure a: a manifold is a topological space that locally
resembles Euclidean space near each point, but globally it is
not. For k-NN it works as only nearby points are considered.
Human faces are a typical example of an intrinsically low
dimensional data set. Although an image of a face may require
10M pixels, a person may be able to describe this person with
less than 50 attributes / features (e.g. male/female, blond/dark
hair, ...) along which faces vary.

aImage courtesy Dr. Kilian Weinberger

Figure 1: An example of
a data set in 3D that is
drawn from an
underlying 2D manifold.
The blue points are
confined to the pink
surface area, which is
embedded in a 3D
ambient space.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 64 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Curse of Dimensionality

Curse of Dimensionality

Should we remove k-NN from toolkit?
Not all is lost. Data may lie in low dimensional subspace or on
sub-manifolds. Example: natural images (digits, faces (they are
not uniformly distributed)). Here, the true dimensionality of
the data can be much lower than its ambient space.
k-NN would work if data has low intrinsic dimensionality.

Ref Figure a: a manifold is a topological space that locally
resembles Euclidean space near each point, but globally it is
not. For k-NN it works as only nearby points are considered.
Human faces are a typical example of an intrinsically low
dimensional data set. Although an image of a face may require
10M pixels, a person may be able to describe this person with
less than 50 attributes / features (e.g. male/female, blond/dark
hair, ...) along which faces vary.

aImage courtesy Dr. Kilian Weinberger

Figure 1: An example of
a data set in 3D that is
drawn from an
underlying 2D manifold.
The blue points are
confined to the pink
surface area, which is
embedded in a 3D
ambient space.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 64 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Curse of Dimensionality

Curse of Dimensionality

Should we remove k-NN from toolkit?
Not all is lost. Data may lie in low dimensional subspace or on
sub-manifolds. Example: natural images (digits, faces (they are
not uniformly distributed)). Here, the true dimensionality of
the data can be much lower than its ambient space.
k-NN would work if data has low intrinsic dimensionality.
Ref Figure a: a manifold is a topological space that locally
resembles Euclidean space near each point, but globally it is
not. For k-NN it works as only nearby points are considered.
Human faces are a typical example of an intrinsically low
dimensional data set. Although an image of a face may require
10M pixels, a person may be able to describe this person with
less than 50 attributes / features (e.g. male/female, blond/dark
hair, ...) along which faces vary.

aImage courtesy Dr. Kilian Weinberger

Figure 1: An example of
a data set in 3D that is
drawn from an
underlying 2D manifold.
The blue points are
confined to the pink
surface area, which is
embedded in a 3D
ambient space.

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 64 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Dimensionality Reduction

Dimensionality Reduction

Generally, when the number of features are very large (relative to the number of
observations in your dataset (not completely true, as in the case of k-NN)), algorithms
struggle to train effective models.
Preprocessing of dataset is always recommended before applying machine learning
algorithm.
One of the main step of preprocessing is dimensionality reduction. Approaches for
dimensionality reduction can be divided into feature selection and feature extraction.

1 Feature selection : try to find a subset of the input variables/ features. The three
strategies are:

1 the filter strategy (e.g. information gain)
2 the wrapper strategy (e.g. search guided by accuracy),
3 and the embedded strategy

2 Feature extraction / projection / transformation : Feature projection (also called
Feature extraction) transforms the data from the high-dimensional space to a space of
fewer dimensions. Mostly used technique for feature extraction, principal component
analysis (PCA), performs a linear mapping of the data to a lower-dimensional space in
such a way that the variance of the data in the low-dimensional representation is
maximized.
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Dimensionality Reduction

Feature Selection Algorithm

Problem:
n features → m features : m ≤ n

How hard is this problem?
1 Linear
2 Polynomial
3 Exponential

Solution:
It’s like choosing a subset of n features that gives best score. f(n) → Score
Intuitively, need to create all possible subsets of n features and to try which one is
best.
Exponential number of subsets i.e. ∑

0≤m≤n

(
n

m

)
= 2n

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 66 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Dimensionality Reduction

Feature Selection Algorithm

Problem:
n features → m features : m ≤ n

How hard is this problem?
1 Linear
2 Polynomial
3 Exponential

Solution:
It’s like choosing a subset of n features that gives best score. f(n) → Score

Intuitively, need to create all possible subsets of n features and to try which one is
best.
Exponential number of subsets i.e. ∑

0≤m≤n

(
n

m

)
= 2n

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 66 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Dimensionality Reduction

Feature Selection Algorithm

Problem:
n features → m features : m ≤ n

How hard is this problem?
1 Linear
2 Polynomial
3 Exponential

Solution:
It’s like choosing a subset of n features that gives best score. f(n) → Score
Intuitively, need to create all possible subsets of n features and to try which one is
best.

Exponential number of subsets i.e. ∑
0≤m≤n

(
n

m

)
= 2n

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 66 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Dimensionality Reduction

Feature Selection Algorithm

Problem:
n features → m features : m ≤ n

How hard is this problem?
1 Linear
2 Polynomial
3 Exponential

Solution:
It’s like choosing a subset of n features that gives best score. f(n) → Score
Intuitively, need to create all possible subsets of n features and to try which one is
best.
Exponential number of subsets i.e. ∑

0≤m≤n

(
n

m

)
= 2n

Dr. Rizwan Ahmed Khan Instance-Based Learning - KNN 66 / 81



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Abstraction Abstract to Concrete Image Classification Python Big Picture Dimensionality Curse KD-Trees Tasks

Dimensionality Reduction

Feature Selection Algorithm: Filtering

Filtering based approach
Feature selection algorithm doesn’t take feed back from final classification / learning
algorithm to score selected feature subset.
Selection criterion is independent from classification / learning criterion.
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Dimensionality Reduction

Feature Selection Algorithm: Filtering

Advantage:
1 Fast

Disadvantage:
1 There isn’t any feedback from learning

algorithm.
2 Features are scored in isolation.

Examples:
1 Decision trees (e.g. using inductive bias

of DT to learn features than using k-NN
to classify)

2 Statistical tests:
1 Pearson Correlation
2 Chi-square
3 Gini Index
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Dimensionality Reduction

Feature Selection Algorithm: Wrapper

Wrapper based approach
Feature selection algorithm, after selecting subset of features gets feedback from final
classification / learning algorithm to score selected feature subset.
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Dimensionality Reduction

Feature Selection Algorithm: Wrapper

Advantage:
1 With feed back from learning algorithm,

feature selection is optimal.
2 Takes into account learning bias of final

learning algorithm.
Disadvantage:

1 Very slow

Examples:
1 Recursive Feature Elimination
2 Genetic Algorithm
3 Forward Search Algorithm
4 Backward Search Algorithm (consider

football team, remove player who is not
performing)
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Feature Transformation

Principal Component Analysis (PCA)

1 Construct the covariance
matrix from d-dimensional
dataset D.

2 Decompose the covariance
matrix into its Eigenvectors
and Eigenvalues.

*6 6Matlab demoDr. Rizwan Ahmed Khan Instance-Based Learning - KNN 71 / 81
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Feature Transformation

Principal Component Analysis (PCA)

3 Sort the eigenvalues by
decreasing order to rank the
corresponding eigenvectors.

4 Select k eigenvectors which
correspond to the k largest
eigenvalues, where k is the
dimensionality of the new
feature subspace (k ≤ d).

*6
6Matlab demo
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Feature Transformation

Principal Component Analysis (PCA)

5 Construct a projection matrix
W from the “top” k
eigenvectors.

6 Transform the d-dimensional
input dataset D using the
projection matrix W to obtain
the new k-dimensional feature
subspace.

*6
6Matlab demo
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Practical issue with K-NN

Practical issue with K-Nearest Neighbors

What is computational complexity of K-Nearest
Neighbors

1 Compare query data / test data to all training
examples.

2 Training Complexity : O(1)
3 Test Complexity : O(nd), where n = number of

training instances and d = dimensions of training
data. It’s linear time algorithm and that is not
good!

4 Result: K-Nearest Neighbors is slow.
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Practical issue with K-NN

Practical issue with K-Nearest Neighbors

Suggestions
We can reduce
neighborhood search
complexity using
appropriate data structure.

What is computational complexity of K-Nearest
Neighbors

1 Compare query data / test data to all training
examples.

2 Training Complexity : O(1)
3 Test Complexity : O(nd), where n = number of

training instances and d = dimensions of training
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KD-tree intuition

KD-tree data structure for kNN search
- Consider one neighbor case.
- Claim: Just look for the nearest neighbor in the partition in which test / query point lies. Proof?

2x speedup

Identify which side the test/query point lies in, e.g. the
right side.
Find the NN xR

NN of xt in the same side. The R denotes
that nearest neighbor is also on the right side.
Compute the distance between xt and the dividing “wall”.
Denote this as dw. IF

dw > d(xt, xR
NN)

we got 2x speedup.
Simply, if the distance to the partition is larger than the
distance to closest neighbor, it means none of the data
points inside that partition can be closer.
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KD-tree intuition

Space division by KD-tree data structure

- We can split feature space again to gain more speedup (like previous example)

The general idea of KD-trees is to
partition the feature space.
Only one-dimensional (axis aligned)
splits. Instead of splitting in the middle,
choose the split “carefully” (many
variations).
By using KD-tree lots of data points
immediately gets discarded from search
space as their partition is further away
than k closest neighbors.
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space as their partition is further away
than k closest neighbors.
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KD-tree for kNN search

KD-tree data structure summary

Pros
Exact
Easy to build
Popular in Computer Graphics i.e. meshes, polygons , used to find which points are
close in 3D surfaces.

Cons
Curse of dimensionality makes KD-Trees ineffective for higher number of dimensions
(almost all data points on the edges far away). Will not work if data is confined to
manifold which is present is high dimensional ambient space. In such cases ball trees
will be useful.
All splits are axis aligned.

Approximation: Limit search to m leafs only
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Section Contents

1 Abstraction
1-D World
2-D World

2 Abstract to Concrete
Algorithm
Distance Metrics
Toy Problem : Exercise
Summary

3 Image Classification
Dataset
Feature Space

4 Python
Digits Dataset Classification: Python
Improvement?

5 Big Picture

K-Nearest Neighbors
Inductive Bias of K-Nearest Neighbors
Decision Boundary for K-Nearest
Neighbors
Instance-based Learning

6 Dimensionality Curse
Curse of Dimensionality
Dimensionality Reduction
Feature Transformation

7 KD-Trees
Practical issue with K-NN
KD-tree intuition
KD-Tree Data Structure
KD-tree for kNN search

8 Tasks
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Exercise

Question
1 Repeat experiment with Digits dataset by varying values of k and find its optimal

value.
2 What is the error bound of k-NN classifier. What happen when number of samples

n →∞ ?

Further Reading
1 Effect of K on decision boundary i.e. k = 1 or k = 3 or k = 7 etc.
2 Feature transformation / reduction : Singular Value Decomposition (SVD), Principal

Component Analysis (PCA)
3 Feature selection techniques i.e. statistical test and GA
4 Locally weighted regression
5 Ball-Trees
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Reference Books

Reference Books

Reference books for this Module:

Chapter 1 & 5: Pattern Recognition, Theodoridis et al., Academic Press, 4th Edition
or latest edition.

Chapter 1: Combining Pattern Classifiers: Methods and Algorithms, Ludmila I.
Kuncheva, Wiley-Interscience.
Chapter 2: Data Mining , Practical Machine Learning Tools & Techniques, Witten
and Franck, Elsevier Books, 2nd Edition.
Chapter 2: Data Mining & Analysis : Fundamental Concepts & Algorithms, Zaki and
Meira, Cambridge University Press 2014.
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Basic Terminology

Basic Terminology

Algorithm: An Algorithm is a set of rules that a machine follows to achieve a
particular goal. An algorithm can be considered as a recipe that defines the inputs,
the output and all the steps needed to get from the inputs to the output.

for j = 1 to N do
detect color (imageN )
lots of code

end for

Learner: A Learner or Machine Learning Algorithm is the program used to learn a
machine learning model from data. Another name is “inducer” (e.g. “tree inducer: is
a program which builds the decision tree from data”).
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Basic Terminology

Basic Terminology

Classification: Classification is the process of predicting the class of given data
points. Classes are sometimes called as targets / labels or categories.

Target function: The target function f : X → Y is the function f that we want to
model. It maps data points to targets / labels.

Machine Learning Model / Classifier / Hypothesis: A Machine Learning Model is the
learned program / function that maps inputs to outputs / predictions. For example:
decision tree is a classifier or this can be a set of weights for a linear model or for a
neural network.

Problem Setting:
Set of possible instances X i.e. {< xi, yi >}
Unknown target function f : X → Y
Set of function hypotheses H = {h|h : X → Y }
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Machine Learning Problem Setup

Problem Formalization

Problem formalization
Set of possible instances X i.e. {< ~xi, yi >}
Dataset D, given by D = {< ~xi, yi >, . . . , < ~xn, yn >} ⊆ X × Y
Where:
~xi is a feature vector (Rd),
yi is a label / target variable,
X is space of all features and
Y is space of labels.
Unknown target function f : X → Y

Set of function hypotheses H = {h|h : X → Y }
Output:
- Hypothesis h ∈ H that best approximates target function f . Or a classification “rule”
that can determine the class of any object from its attributes values.
- If training is done correctly h(~xi) ≈ yi
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Machine Learning Problem Setup

Problem Formalization

Examples of Label Space Y
Binary classification
Y={0,1}
Y={-1,+1}

Multi-class classification
Y={1, 2, · · · ,K}
where (K > 2)

Regression
Y=R
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Machine Learning Problem Setup

Example of Feature vector : image features

- This is actually not a good representation and before deep
learning / CNN, raw pixel values were not used for learning

concepts (feature extraction).

- Word document : Sparse representation!

Some common /
traditional image feature
extractors:

Scale-Invariant
Feature Transform
(SIFT)
Speeded-Up Robust
Features (SURF)
Local Binary Pattern
(LBP)
GIST extractor
Histogram of Oriented
Gradients (HoG)
....
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Machine Learning Problem Setup

Example of Feature vector : image features

- This is actually not a good representation and before deep
learning / CNN, raw pixel values were not used for learning

concepts (feature extraction).
- Word document : Sparse representation!

Some common /
traditional image feature
extractors:

Scale-Invariant
Feature Transform
(SIFT)
Speeded-Up Robust
Features (SURF)
Local Binary Pattern
(LBP)
GIST extractor
Histogram of Oriented
Gradients (HoG)
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Machine Learning Problem Setup

Test / Train setup

- Aim is that algo. should
learn to map ~xi → yi
- If training is done
correctly h(~xi) ≈ yi
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Machine Learning Problem Setup

Test / Train setup

- For test, take ~x whose
label is unknown.
- Then computer passes
that ~x to h to make
prediction on unknown
data.

Important
It will only work if train
and test data are drawn
from the same distribution.
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Hypothesis Class

Hypothesis

Hypothesis h ∈ H that best approximates target function f .
Before we can find a function h from infinite many possibilities H , we must specify
what type of function it is that we are looking for. It could be:

1 Decision Tree
2 Nearest Neighbor
3 SVM
4 ANN
5 Bayesian classifier
6 ..

There is NO best algorithm. It all depends on the problem and on the data.
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Hypothesis Class

Hypothesis class selection

- How to select h ∈ H?

Some random ideas:
1 Pick h ∈ H randomly (and hope it works!).

- Problem: Space H (the set of functions that can possibly be learned) is very large
and it is very unlikely that randomly picked function would work.
- Any corner case, where it might work?
- It may work, only if, H is restricted enough (set of function that will work)

2 Traverse all the h in hypothesis class H and chose the one that works best i.e. least
error.
- Problem: Again space H is very large.

h ∈ H
Essentially, we try to find a function h within the hypothesis class that makes the fewest
mistakes within training data.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Objective

Objective of Machine Learning

The purpose of machine learning is to discover patterns in the data and then make
predictions on test set based on experience / data. Thus, selected function h within
the hypothesis class H, should minimize error on unseen future examples (prediction).
But before making prediction, function h is selected based on lowest error on the
training set.
To find h ∈ H that makes least errors on training data loss functions are used.
The higher the loss, the worse it is - a loss of zero means it makes no errors.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Loss Functions

Loss Functions or Objective Functions

1 Zero-One Loss: The simplest loss function is the zero-one loss. It literally counts how
many mistakes an hypothesis function h makes on the training set.

L0/1(h) = 1
n

n∑
i=1

δh(xi) 6=yi
, where δh(xi)6=yi

=
{

1, if h(xi) 6= yi

0, Otherwise
(1)

- Is this loss function fine for regression settings?
2 Squared loss: The squared loss function is typically used in regression settings.

Lsq(h) = 1
n

n∑
i=1

(h(xi)− yi)2 (2)

The loss suffered grows quadratically with the absolute mis-predicted amount. This
property encourages no predictions to be really far off (or the penalty would be so large
that a different hypothesis function is likely better suited). Penalty of one example off
by 10 is much higher than penalty of ten examples off by 1.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Loss Functions

Loss Functions or Objective Functions

3 Absolute loss: is also typically used in regression settings. Loss grows linearly (as
opposed to squared loss) with mis-predictions, thus it is more suitable for noisy data.

Labs(h) = 1
n

n∑
i=1
|h(xi)− yi| (3)
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Loss Functions

Hypothesis class selection

- How to select h ∈ H?
Some random ideas:

3 If you find a function h(·) (i.e. memorizer*) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*

h(x) =
{
yi, if ∃(xi, yi) ∈ D, s.t., x = xi,
0, other wise
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Loss Functions

Hypothesis class selection

- How to select h ∈ H?
Some random ideas:

3 If you find a function h(·) (i.e. memorizer*) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*

h(x) =
{
yi, if ∃(xi, yi) ∈ D, s.t., x = xi,
0, other wise

It has ZERO training error.
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Loss Functions

Hypothesis class selection

- How to select h ∈ H?
Some random ideas:

3 If you find a function h(·) (i.e. memorizer*) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*

h(x) =
{
yi, if ∃(xi, yi) ∈ D, s.t., x = xi,
0, other wise

What is the issue with this algorithm?
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Loss Functions

Hypothesis class selection

- How to select h ∈ H?
Some random ideas:

3 If you find a function h(·) (i.e. memorizer*) with low loss on your data D, how do you
know whether it will still get examples right that are not in D?
memorizer*

h(x) =
{
yi, if ∃(xi, yi) ∈ D, s.t., x = xi,
0, other wise

It will perform horribly with samples not in D, i.e., there’s the over-fitting issue with this
function.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Loss Functions

Hypothesis class selection : Generalization

We have the metric to measure loss on training set. How about Generalization?

What actually is required?
We want min error for
∀(~x, y) ∼ P Where (~x, y) are new data points drawn from distribution P and P is not
known , although distribution D is drawn from P .

Or Minimize Expected Loss

E [L(hi(~x, y))](~x,y)∼P (4)

Generalization
We don’t have distribution P so we can’t compute loss for it. Good thing is we can
approximate it.
In ML usually dataset is divided in three parts train, validation and test to measure
generalization capabilities (more on this later in the lecture).
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Loss Functions

Summary

1 We train our classifier by minimizing the training loss:

Learning: h∗(·) = argminh(·)∈H
1

|DTR|
∑

(x,y)∈DTR

`(x, y|h(·))

where H is the set of all possible classifiers h(.). In other words, we are trying to find
a hypothesis h which would have performed well on the training data.

2 We evaluate our classifier on the test data to calculate testing loss:

Evaluation: εTE = 1
|DTE |

∑
(x,y)∈DTE

`(x, y|h∗(·))

3 If the samples are drawn independent and identically distributed from the distribution
P, then the testing loss is an unbiased estimator of the true generalization loss:

Generalization: ε = E(x,y)∼P [`(x, y|h∗(·))]
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Summary
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Learning: h∗(·) = argminh(·)∈H
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|DTR|
∑

(x,y)∈DTR

`(x, y|h(·))

where H is the set of all possible classifiers h(.). In other words, we are trying to find
a hypothesis h which would have performed well on the training data.

2 We evaluate our classifier on the test data to calculate testing loss:

Evaluation: εTE = 1
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`(x, y|h∗(·))
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Loss Functions

Summary

Quiz
Why does εTE → ε as |DTE| → +∞ ?
or
Why Test error εTE becomes same as generalization error ε when test set is really large
n→ +∞.

Read
Weak law of large numbers : the empirical average of data drawn from a distribution
converges to its mean
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Reference Books
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Motivation
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Outliers

5 Model Evaluation
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Understanding Dataset

Understanding Dataset

A Dataset / Training set / database: is set of data containing features and the target
to predict.

An Instance: is a row in the dataset. Other names for instance are: (data) point,
example, observation. An instance consists of the feature values.
The Features / Attributes: are the inputs used for prediction or classification. A
feature is a column in the dataset. A feature is an individual measurable property or
characteristic of a phenomenon being observed. Choosing informative, discriminating
and independent features is a crucial step for effective algorithms in Machine Learning.
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Understanding Dataset

Toy Dataset

Training Data / Features extracted from real data

Weight Texture Class
150g Bumpy Orange
170g Bumpy Orange
140g Smooth Apple
130g Smooth Apple
.. .. ..
.. .. ..

1 Each row in training data is an example (Feature extractor algorithm).
2 Last column is class / label / target.
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Understanding Dataset

Understanding Dataset

Toy Dataset.
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Understanding Dataset

Understanding Dataset

An Instance is a row in the
dataset. It is also called as
Obervation , Example.
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Understanding Dataset

Understanding Dataset

The Features / Attributes: are
the inputs used for prediction
or classification.
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Understanding Dataset

Understanding Dataset

Target / class is the
information the machine learns
to predict.
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Understanding Dataset

Understanding Dataset

Complete dataset consists of
features and class variables.
One instance is represented as
< x1

1, x1
2, · · · , x1

n, y1 > or
< ~x1, y1 > where ~x1 ∈ Rn
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Example

From Image to Data Point

- To understand all previously described terms, have a look at this example1 from Medical
Image Classification.

- Two images, each having a distinct region inside it.
First image from a benign lesion
Second image from malignant one (cancer)

1Image from Theodoridis book
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Example

From Image to Data Point

The first step is to identify the measurable quantities or features that make these two
regions distinct from each other (problem of feature identification / engineering).

Figure below shows a plot of the mean value of the intensity in each region of interest
versus the corresponding standard deviation around this mean.
Each point corresponds to a different image from the available database.
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Example

From Image to Data Point

- Assume that we are given a new image (shown as *). Algorithm will again calculate same
features i.e. mean intensity and standard deviation in the region of interest to classify new
data point.

The measurements used for the classification, the
mean value and the standard deviation in this
case, are known as features.

Feature is an individual measurable property or
characteristic of a phenomenon being observed a.
Generally, n features are used to describe one
observation : < xi

1, xi
2, · · · , xin > ∈ Rn. This is

also called feature vector.
aBishop, Christopher (2006). Pattern recognition and machine learning
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Example

From Image to Data Point

Each of the feature vectors (< xi
1, xi

2, · · · , xin > ∈ Rn)
identifies uniquely a single pattern (object / observation /
example).

The straight line in Figure is known as the decision line,
and it constitutes the classifier whose role is to divide the
feature space into regions that correspond to either class A
or class B.
If decision line fails to correctly classify example, a
misclassification has occurred.
The feature vectors whose true class < yi > is known
(supervised learning) and which are used for the design /
training of the classifier are known as training feature
vectors in broad sense.
Training feature vectors are further divided into train,
validation and test set.
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Basic Questions

Basic Questions: Classification Task

1 How are the features generated? It is not trivial to know which feature will have
discriminative ability. It is problem dependent, and it concerns the feature generation
/ extraction / engineering stage of the design of a classification system. In image
above few feature extraction algorithms are given, each of which transform image data
to n-dimensional feature vector.

2 What are the best n number of features to use? This is also a very important task
and it concerns the feature transformation / selection / preprocessing stage of the
classification system.

Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Preprocessing & Model Evaluation 29 / 66



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Basic Questions

Basic Questions: Classification Task

1 How are the features generated? It is not trivial to know which feature will have
discriminative ability. It is problem dependent, and it concerns the feature generation
/ extraction / engineering stage of the design of a classification system. In image
above few feature extraction algorithms are given, each of which transform image data
to n-dimensional feature vector.

2 What are the best n number of features to use? This is also a very important task
and it concerns the feature transformation / selection / preprocessing stage of the
classification system.
Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Preprocessing & Model Evaluation 29 / 66



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an
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Basic Questions

Basic Questions: Classification Task

3 How does one design the classifier? Is linear classifier a good choice (like the one in
previous example). These questions concern the classifier design stage.

4 Finally, how can one assess the performance of the designed classifier? That is, what is
the classification error rate? This is the task of the system / model evaluation stage.

Note 2

2Question 2-4 will be discussed
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Features

Features quality

Feature is an individual measurable property or characteristic of a phenomenon being
observed.
Fundamental question
What are good features?

Good feature
Good features makes it easy for classifier to decide (learn) between two different classes /
concepts / labels OR good features enhances inter class variations while minimize intra
class varaition.
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Features

Feature Types

Mainly feature variable can have two distinct types:
1 Numerical variable / feature :

Numerical data is a type of data that is
expressed in terms of numbers rather than
natural language descriptions

2 Categorical variable / feature :
Categorical data is a type of data that can be

stored into groups or categories
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Features

Feature Types

1 Numerical variable / feature
1 Continuous: Observations can take any value between a certain set of real numbers.

2 Discrete: Observations can take a value based on a count from a set of distinct whole
values. A discrete variable cannot take the value of a fraction between one value and the
next closest value.

2 Categorical variable / feature
1 Ordinal: Observations can take a value that can be logically ordered or ranked. The

categories associated with ordinal variables can be ranked higher or lower than another,
but do not necessarily establish a numeric difference between each category e.g. short,
tall.

2 Nominal: Observations can take a value that is not able to be organized in a logical
sequence e.g. the name or colour of an object. A nominal variable may be numerical in
form, but the numerical values have no mathematical interpretation. E.g. label 10
people as numbers 1, 2, 3, ..., 10 , but any arithmetic with such values, e.g. 1 + 2 = 3
would be meaningless.
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sequence e.g. the name or colour of an object. A nominal variable may be numerical in
form, but the numerical values have no mathematical interpretation. E.g. label 10
people as numbers 1, 2, 3, ..., 10 , but any arithmetic with such values, e.g. 1 + 2 = 3
would be meaningless.
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Motivation

What is Preprocessing?

Preprocessing
Pre-processing refers to the transformations applied to our data before feeding it to
the algorithm. It converts the raw data into a clean data set (improved
interpretability), suitable for machine learning.
Data preprocessing is an integral step in Machine Learning as the quality of data and
the useful information that can be derived from it directly affects the ability of model
to learn.
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Motivation

Why Preprocess Data?

It helps in removing redundant information / Outliers
(a point that lies very far from the mean of the
corresponding random variable).

Noise removal to improve performance. Data may
come from some “sensors”e.g. physical devices,
instruments, software programs such as web crawlers,
manual surveys, etc which are prone to malfunction.
Secondly, there could be human error in recoding data
as well.
Some specified machine learning algorithm needs
information in a specified format, for example:

Random Forest algorithm does not support null
values.
Principal Component Analysis (PCA) algorithm
requires data to have zero mean and unit variance.
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Motivation

Data Preprocessing Techniques

1 Data Scaling / Data Normalization : This technique transforming feature / data so
that it fits within a specific scale, like 0–100 or 0–1. For example, standardization
transforms attributes to a standard Gaussian distribution with a mean of 0 and a
standard deviation of 1 (requirement for PCA).

2 Outlier Removal : Points with values very different from the mean value produce large
errors during training and may have disastrous effects.

3 Missing Data / Null value handling : Two ways to handle
1 Discard feature vectors with missing values, provided large data sets and these values

are rare.
2 “Complete” the missing values by (a) zeros or (b) mean (c) defining customized function

Completing the missing values in a set of data is also known as imputation.
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Feature Scaling

Feature / Data Scaling

Feature / Data Scaling - Motivation
1 Range of values of attributes / features varies widely. Thus, features with large values

may have a larger influence in the cost function than features with small values,
although this does not necessarily reflect their respective significance in the design of
the classifier.

For example, many classifiers and clustering algorithm (i.e. K- nearest neighbor, K-
Means) calculate the distance between two points by the Euclidean distance. Without
scaling one feature (with broad range of values) will dominate this calculation.

2 Secondly, scaling is applied as some algorithm i.e. gradient descent, converges much
faster with feature scaling than without it.

3 In Principle Component Analysis (PCA), without scaling results will be biased
towards feature that has higher range (components that maximize the variance).
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Feature Scaling

Feature Scaling Methods

1 Min-max normalization: This equation scales features to the range in [0, 1].

xscaled = x−min(x)
max(x)−min(x) (5)

where x is an original value, xscaled is the normalized value.

2 Mean normalization :

xscaled = x− x̄
max(x)−min(x) (6)

where x̄ = distribution average /mean
3 Standardization: Feature standardization makes the values of each feature in the

data have zero-mean and unit-variance. This method is widely used for normalization.

xscaled = x− x̄
σ

(7)

where x̄ = distribution average /mean and σ is standard deviation.
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Feature Scaling

Feature Scaling - Example

Consider this data presented below 3. This data needs to be scaled as values of
attributes / features are varying widely.

Calculate:
Scale feature using Equation 5 :
xscaled = x−min(x)

max(x)−min(x)

3Data from Data mining book by Zaki & Meira
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Feature Scaling

Feature Scaling - Example

Calculate:
Scale feature using Equation 5 :
xscaled = x−min(x)

max(x)−min(x)
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Feature Scaling

Feature Scaling - Example

Scaled values are ...
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Feature Scaling

Feature Scaling - Example
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Feature Scaling

Feature Scaling - Python

1 # @author : rizwan .khan
2 import numpy as np
3 from sklearn import preprocessing
4 from sklearn . preprocessing import StandardScaler
5

6 # Create Training Set , 2D vector , Values from Zaki ’s book example
7 X=np. array ([[12 , 300] , [14 , 500] , [18 , 1000] , [23 , 2000] , [27 ,

3500] ,
8 [28 , 4000] ,[34 , 4300] ,[37 , 6000] ,[39 , 2500] ,[40 , 2700]])
9 # First Method : Range Normalization (xi -min(xi))/( max(xi)-min(xi))
10

11 max_x1 =np.max(X [: ,0])
12 max_x2 =np.max(X [: ,1])
13 min_x1 =np.min(X [: ,0])
14 min_x2 =np.min(X [: ,1])
15

16 x1_tran =(X[: ,0] - min_x1 )/( max_x1 - min_x1 )
17 x2_tran =(X[: ,1] - min_x2 )/( max_x2 - min_x2 )
18

19 X_normalized =np.r_[ x1_tran [None ,:] , x2_tran [None ,:]]
20 X_normalized = np. transpose ( X_normalized )
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Feature Scaling

Feature Scaling - Example

Scale feature using Equation 7 :
xscaled = x−x̄

σ
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Feature Scaling
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Outliers

Detecting Outliers

Outliers are data points with values very different from the mean value. Thus they
may produce large errors during training and can have disastrous effects. For example
AdaBoost increase the weights of misclassified example, thus outliers can have more
weights as they tend to be often misclassified.
linear & logistic regression are easily impacted by the outliers in the training data, so
does K −NN , if K is small.

Common methods for detecting outliers :
Z-Score: Z-Score is calculated using Equation 7. The data points which are way too far
from zero mean can be outliers.

Box-Plot : This is quickest and easiest way to identify outliers is by visualizing them
using plots.

Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Preprocessing & Model Evaluation 44 / 66



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Outliers

Detecting Outliers

Outliers are data points with values very different from the mean value. Thus they
may produce large errors during training and can have disastrous effects. For example
AdaBoost increase the weights of misclassified example, thus outliers can have more
weights as they tend to be often misclassified.
linear & logistic regression are easily impacted by the outliers in the training data, so
does K −NN , if K is small.

Common methods for detecting outliers :
Z-Score: Z-Score is calculated using Equation 7. The data points which are way too far
from zero mean can be outliers.

Box-Plot : This is quickest and easiest way to identify outliers is by visualizing them
using plots.

Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Preprocessing & Model Evaluation 44 / 66



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Outliers

Detecting Outliers

Outliers are data points with values very different from the mean value. Thus they
may produce large errors during training and can have disastrous effects. For example
AdaBoost increase the weights of misclassified example, thus outliers can have more
weights as they tend to be often misclassified.
linear & logistic regression are easily impacted by the outliers in the training data, so
does K −NN , if K is small.

Common methods for detecting outliers :
Z-Score: Z-Score is calculated using Equation 7. The data points which are way too far
from zero mean can be outliers.

Box-Plot : This is quickest and easiest way to identify outliers is by visualizing them
using plots.

Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Preprocessing & Model Evaluation 44 / 66



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Outliers

Dealing with Outliers

If the number of outliers is very small and dataset is large enough, outliers are usually
discarded.

In some applications where dataset is small, dropping data is a harsh step and should
be avoided.
Few techniques to deal with outliers, if they are not dropped:

Winsorizing : setting the extreme values of an attribute to some specified value. For
example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.
Log-Scale Transformation : This method is often used to reduce the variability of data
including outlying observation.
Adopt cost functions that are not very sensitive in the presence of outliers.
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Outliers

Winsorization: Python

1 """
2 @author : rizwan .khan
3 """
4

5 import scipy . stats
6 import numpy as np
7 a = np. array ([92 , 19, 101 , 58, 1053 , 91, 26, 78,

10, 13, -40, 101 , 86, 85, 15, 89, 89, 28, -5,
41])

8

9 print (a)
10 print ( scipy . stats . mstats . winsorize (a, limits

=[0.05 , 0.05]) )
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Workflow for Classification

Workflow: Supervised Learning Algorithm

Workflow of a supervised learning algorithm for classification:
1 Data preprocessing and feature extraction (not required in DL)

2 Training phase : {< xi, yi >} → algorithm

3 Evaluation phase : provides feedback to improve model accuracy.

The training process is repeated until a desired accuracy level is achieved
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Workflow for Classification

Model Evaluation

Classifiers (both supervised and unsupervised) are learned / trained on a finite
training set.

A learned classifier has to be tested on a different test set to gauge its performance.
The experimental performance on the test data is a proxy for the performance on
unseen data. It checks the classifier’s generalization ability.

Learning the training data too precisely usually leads to poor classification results on new
data.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Workflow for Classification

Model Evaluation

How machine learning trained model generalizes on unseen data is an important
aspect. As aim of trained model is to correctly predict new examples. Good training
accuracy can be achieved from memorizing trained data.

The above issue can be handled by evaluating the performance (generalization
capability) of a trained model model on unseen data, separated from available dataset.
Following are few dataset partitioning techniques:

Hold out
k − fold Cross validation
Bootstrap
Leave-one-out cross-validation

More training data gives better generalization.
More test data gives better estimate for the classification error probability.
Never evaluate performance on training data. The conclusion would be biased.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Dataset Partitioning

Hold Out Cross Validation

Hold out cross validation
Given data is randomly partitioned into two independent sets i.e. training set and the
testing set.
The function approximator / classifier fits a function using the training set only. Then
learned model is used to predict the output values for the data in the testing set.
It is now becoming a common practice to use three instead of two data sets: one for
training, one for validation, and one for testing.. More on this later.

Dr. Rizwan Ahmed Khan Problem Setup, Dataset, Preprocessing & Model Evaluation 51 / 66



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Dataset Partitioning

k − fold Cross Validation

In k-fold cross validation, dataset is divided into k equal subsets. k-1 subsets are used for the training while a
single set is retained for testing. The process is repeated k times (k-folds), with each of the k subsets used exactly
once for testing. Then, the k estimations (accuracy) from k-folds are averaged to produce final estimated value.
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Dataset Partitioning

Bootstrap

The bootstrap (also called bagging1 ) uses sampling with replacement to form the training set.

Given: the training set T consisting of n entries.
Bootstrap generates m new datasets Ti each of size n′ < n by sampling T uniformly with replacement. The
consequence is that some entries can be repeated in Ti.
The m statistical models (e.g., classifiers, regressors) are learned using the above m bootstrap samples.

1Proposed in: Breiman, Leo (1996). Bagging predictors. Machine Learning 24 (2): 123–140.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Dataset Partitioning

Leave-One-Out Cross-Validation

1 Do N experiments. In each experiment, use N − 1 samples for training, and leave only
1 sample for testing.

2 Compute the testing error Ei, i = 1, 2, . . . , N .
3 After N experiments, compute the overall estimated error:

E = 1
N

N∑
i=1

Ei (8)
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Measure of Classification Performance

Error Estimation

Performance evaluation metrics explain the performance of a model on unseen data
and provides feedback. Thus allowing to make continuous improvements till desired
accuracy is achieved.

The choice of evaluation metrics / error estimation depends on a problem in hand
(such as classification, regression, clustering, topic modeling, among others) and final
goal.
Most used classification performance evaluation metrics:

Classification accuracy
Confusion matrix
Precision
Recall
F-Measure
Receiver Operating Characteristic (ROC) Area Under Curve (AUC)
Logarithmic loss
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Measure of Classification Performance

Classification Accuracy

The most simple way to calculate the accuracy of any classification machine learning
model is:

Accuracy = Ncc
Dts

where Ncc = Number of examples correctly classified and Dts = total examples in testing data set.

Ncc in actual is sum of true positives Tp and true negative Tn.

Any drawbacks?

Consider that in Dts, 98% samples belongs to class A (class imbalance problem).
According to this method, model can achieve 98% accuracy by simply predicting every
training sample to class A.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Measure of Classification Performance

Classification Accuracy

The real problem arises, when the cost of misclassification of the minor class samples
are very high. For example If we deal with a rare but fatal disease, the cost of failing
to diagnose (False negative, Fn) the disease of a sick person is much higher than the
cost of sending a healthy person to more tests (False positive, Fp).

Let’s understand:
1 True positives Tp: Classifier predicted disease and the person actually has the disease.
2 True negative Tn: Classifier predicted no disease and the person actually is healthy.
3 False positive Fp: Classifier predicted disease but the person actually is healthy, also

known as a “Type I error”.
4 False negative Fn: Classifier predicted no disease and the person actually has the

disease, also known as a “Type II error”.
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Measure of Classification Performance

Confusion Matrix

To overcome problem shown above, we have a diagnostic / visualization tool, called
Confusion Matrix.

It contains information about actual and predicted classifications. For Example:
Please label these quantities as Tp, Tn, Fp & Fn
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Measure of Classification Performance

Confusion Matrix

To find out how the errors are distributed across the classes we construct a confusion
matrix using the testing data set Dts. The entry aij (off-diagonal) of such a matrix
denotes the number of elements from Dts whose true class is wi, and which are
assigned by classifier to class other than wi.

Confusion matrix (in multiclass problem, define one class as +ve and rest of other as −ve) from my PhD
research4

The additional information that the confusion matrix provides is where the
misclassifications have occurred.
Information provided can help to focus on classes that are difficult to classify, or
classes that are more similar / confusing than others.

4https://tel.archives-ouvertes.fr/tel-01166539/
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Measure of Classification Performance

Sensitivity, Specificity & Precision

Sensitivity / Recall calculates the ratio of positive
class correctly detected. This metric gives how good
the model is to recognize a positive class. Tp

Tp+Fn

Specificity is characterized as the ratio of actual
negatives, which model predicted as a negative class
or true negative. Fp

Fp+Tn

Precision is ratio of total number of correctly classified
positive examples and the total number of predicted
positive examples.
Tp

Tp+Fp
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Measure of Classification Performance

Sensitivity, Specificity & Precision

Precision and recall both indicate accuracy but there is subtle difference between the
two. Precision means the percentage of results which are relevant. Recall refers to the
percentage of total relevant results correctly classified by algorithm.

Trade-off
To increase recall algorithm needs to keep generating results which are not accurate, hence
lowering precision.
Thus, it is not possible to maximize both these metrics at the same time.
For simplicity, there is another metric available, called F-score:

Fα = (1 + α2) precision× recall
α2 × precision+ recall

(9)

F-score is a harmonic mean of precision and recall.
when α = 1 (F1 - score)

F1 = 2× precision× recall
precision+ recall

(10)
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Measure of Classification Performance

Sensitivity, Specificity & Precision: Quiz

In the following machine learning application domain, which metric would be more useful?

1. Cancer Detection 2. Spam Email Identification 3. Object Detection (balanced
dataset)

1 Precision
2 Recall
3 Accuracy
4 Specificity

1 Precision
2 Recall
3 Accuracy
4 Specificity

1 Precision
2 Recall
3 Accuracy
4 Specificity

Recall
Cost of failing to diagnose the
disease of a sick person Fn is
much higher than the cost of
sending a healthy person to
more tests Fp.

Precision
It is important that legitimate
email should not be classified
as Spam, so cost of Fp is high.

Accuracy
Accuracy is a good measure
when the target variable classes
in the data are nearly balanced.
Accuracy = Tp+Tn

Tp+Fp+Tn+Fn
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Introduction Problem Setup Dataset Preprocessing Model Evaluation Further Reading

Measure of Classification Performance

It’s not only about numbers

http://radar.oreilly.com/2013/09/

gaining-access-to-the-best-machine-learning-methods.

html

1 Accuracy or Interpretability?
Interpretability is critical if a model has
to be explained for transparency.

2 Complex or Simple?
Simplicity is important for practical
reasons: it is impossible to tune model if
model has “too many knobs to tune” .

3 Scalability?
Either model needs to be scalable in
terms of size of data or parameters.

4 Fast prototyping?
Either production needs to deliver fast
or can R & D be initiated?
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Section Contents

1 Introduction
Reference Books

2 Problem Setup
Basic Terminology
Machine Learning Problem Setup
Hypothesis Class
Objective
Loss Functions

3 Dataset
Understanding Dataset
Example

Basic Questions
Features

4 Preprocessing
Motivation
Feature Scaling
Outliers

5 Model Evaluation
Workflow for Classification
Dataset Partitioning
Measure of Classification Performance

6 Further Reading
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Further Reading

Further Reading
Dense Vs. Sparse representation of feature vector.
Data Preprocessing techniques in Machine Learning:

Handling Categorical Variables
One-Hot Encoding
Outlier handling - Cook’s distance

Considering recent trend of having large datasets, which dataset partitioning
technique is suitable?
Dealing with Imbalance dataset.
Article reading: The use of the area under the ROC curve in the evaluation of
machine learning algorithms (https:
//www.sciencedirect.com/science/article/abs/pii/S0031320396001422)
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Big Picture Machine Learning Taxonomy Workflow Examples

Reference Books

Reference books for this lecture:

Chapter 1: Machine Learning, Tom MITCHELL, McGraw Hill, latest edition.

Chapter 1: Pattern Classification, R. DUDA et al., Wiley Interscience, latest edition.
Chapter 1: Pattern Recognition, S. Theodoridis et al.,Academic Press, 4th or latest
edition.
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Big Picture Machine Learning Taxonomy Workflow Examples

Context

Context

Perception / Representation
In AI, perception is a process
to interpret, acquire, select,
and then organize the sensory
information from the physical
world to make actions like
humans.
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Big Picture Machine Learning Taxonomy Workflow Examples

Context

Context

Learning
Learning is the ability of a
system to improve its behavior
based on experience.
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Context

Context

Reasoning
Reasoning is a way to infer
facts from existing data. It is a
general process of thinking
rationally, to find valid
conclusions.
Machine Learning Vs Machine
Reasoning: one is about finding
patterns, while the other is
about understanding
relationships (tackle new
problems with a deductive and
inductive reasoning approach) a

aFrom Machine Learning to
Machine Reasoning, L Bottou 2011
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Context

Context

Abstraction
Abstraction is a fundamental
mechanism underlying both
human and artificial perception,
representation of knowledge,
reasoning and learning. It aims
at taking knowledge that is
discovered at certain level and
applying it up at another level.
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Context

Context

Bottleneck
“The most important problem
for AI today is abstraction and
reasoning” — Francois
Chollet-IBM
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Context

Context

AI / ML
Write AI for fund-raising
(Science fiction feel)
Write Machine Learning
for Hiring
(Engineering sensibility)
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Demystifying AI

AI Hype

There is lot of hype about AI, that it will exceed the capabilities of human beings or
will displace humanity.

In this lecture and course I will try to demystify the hype and will discuss where
technology currently is and where it is head. What it can do or can’t do.
When people or media refer to term AI, usually they refer to General AI or AGI.

Artificial General Intelligence (AGI)
Hypothetical intelligence of a machine that has the capacity to understand or learn any
intellectual task that a human being can. Full autonomy, topic of science fiction (at the moment).

Artificial Narrow Intelligence (ANI)
ANI is focused on one narrow task. Every sort of machine intelligence that surrounds us
today is Narrow AI.

Google Assistant
Google Translate
Siri

Recommender systems, etc.

Dr. Rizwan Ahmed Khan Machine Learning 6 / 47
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Demystifying AI

AI : Why Now?

Note: 1

1Image inspiration: MIT-Mathematics of Big Data and Machine Learning
Dr. Rizwan Ahmed Khan Machine Learning 7 / 47
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Demystifying AI

AI : Why Now?

Convergence of big data, compute power, advancements in machine learning algorithms
and investment (big) helped in widespread AI development / deployment.

Note: 1

1Image inspiration: MIT-Mathematics of Big Data and Machine Learning
Dr. Rizwan Ahmed Khan Machine Learning 7 / 47
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Demystifying AI

AI System Architecture : End-to-End Pipeline

- Data
Conditioning,
relates to
pre-processing
steps
- Algorithms: Life
beyond NN or
DNN

- Supervised
Learning: This
course

2

2Image courtesy: MIT-Mathematics of Big Data and Machine Learning
Dr. Rizwan Ahmed Khan Machine Learning 8 / 47
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Conditioning,
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pre-processing
steps
- Algorithms: Life
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AI waves

First AI wave : Reasoning

Handcrafted knowledge / Reasoning based systems
Experts took knowledge (a particular domain) and
characterize it in rule that fit in the computers. Good at
explainability of AI (XAI).

Huge data not required. No learning. Operate in narrow
domain. No perception (doesn’t sense natural world).
Example: Expert System. Reasoning through knowledge,
represented mainly as if–then rules.

MYCIN: diagnosis of infectious diseases.
CaDet: identification of cancer.
IBM’s Deep Blue: Defeated chess champion in 1997.

Enables reasoning over narrowly defined problems but with
no learning and abstraction (handling uncertainty)
capabilities. Still valid today (for some applications).

*3

3Waves adapted from John Launchbury-DARPA
Dr. Rizwan Ahmed Khan Machine Learning 9 / 47



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Big Picture Machine Learning Taxonomy Workflow Examples

AI waves

First AI wave : Reasoning

Handcrafted knowledge / Reasoning based systems
Experts took knowledge (a particular domain) and
characterize it in rule that fit in the computers. Good at
explainability of AI (XAI).
Huge data not required. No learning. Operate in narrow
domain. No perception (doesn’t sense natural world).

Example: Expert System. Reasoning through knowledge,
represented mainly as if–then rules.

MYCIN: diagnosis of infectious diseases.
CaDet: identification of cancer.
IBM’s Deep Blue: Defeated chess champion in 1997.

Enables reasoning over narrowly defined problems but with
no learning and abstraction (handling uncertainty)
capabilities. Still valid today (for some applications).

*3

3Waves adapted from John Launchbury-DARPA
Dr. Rizwan Ahmed Khan Machine Learning 9 / 47



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Big Picture Machine Learning Taxonomy Workflow Examples

AI waves

First AI wave : Reasoning

Handcrafted knowledge / Reasoning based systems
Experts took knowledge (a particular domain) and
characterize it in rule that fit in the computers. Good at
explainability of AI (XAI).
Huge data not required. No learning. Operate in narrow
domain. No perception (doesn’t sense natural world).
Example: Expert System. Reasoning through knowledge,
represented mainly as if–then rules.

MYCIN: diagnosis of infectious diseases.
CaDet: identification of cancer.
IBM’s Deep Blue: Defeated chess champion in 1997.

Enables reasoning over narrowly defined problems but with
no learning and abstraction (handling uncertainty)
capabilities. Still valid today (for some applications).

*3
3Waves adapted from John Launchbury-DARPA

Dr. Rizwan Ahmed Khan Machine Learning 9 / 47



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Big Picture Machine Learning Taxonomy Workflow Examples

AI waves

Second AI wave : Learning

Statistical / Machine Learning
Enabled by learning algorithms and lots of data.
Algorithm itself learns rules / patterns from the data to
make prediction on unseen data.
Good to perceive natural world, e.g. identify person,
object, sound etc.
They are not capable to contextualize / abstract
information and provide limited reasoning power (black
box).
Most of recent success is based on research and
advancements in ML algorithms. Examples of ML based
tools (more on this later):

SIRI / Google Assistant
Autonomous cars
Spam filters
Medical diagnosis

Dr. Rizwan Ahmed Khan Machine Learning 10 / 47
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AI waves

Challenges with second AI wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Robustness
ML algo results are only as
good as data it is trained on.
Neural networks fed inaccurate
or incomplete data will simply
produce the wrong results.

Dr. Rizwan Ahmed Khan Machine Learning 11 / 47
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AI waves

Challenges with second AI wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Object Recognition
No robustness against noise

Dr. Rizwan Ahmed Khan Machine Learning 11 / 47
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AI waves

Challenges with second AI wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Face recognition
With colorful glasses system
failed

Dr. Rizwan Ahmed Khan Machine Learning 11 / 47
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AI waves

Challenges with second AI wave

While ML / neural networks achieve statistically impressive results across large sample
sizes, they are “individually unreliable” and often make mistakes humans would never
make.

Microsoft’s Tay-Tweets
Microsoft took it down just
after 24 hours. This chat-bot
got offensive messages and
learned the pattern (skewed
training data).

Dr. Rizwan Ahmed Khan Machine Learning 11 / 47
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AI waves

Third (future) AI wave : Context

Contextual Adaptation
To remove bottlenecks of techniques of second wave of AI.
Research is at beginning stages.
Third wave: systems construct explanatory models that
allow them to characterize real-world phenomena.

Example: Third Wave AI will not only recognize the
“cat”, but will be able to explain why it’s a cat and how it
arrived at that conclusion (i.e. has a fur, two ears and a
tail etc.) — a giant leap from today’s “black box” systems.
Third wave -> (XAI).

It does not take much imagination to envision the
tremendous possibilities of Third Wave AI. Some under
development products:

Pandai
Aigo

Dr. Rizwan Ahmed Khan Machine Learning 12 / 47
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Section Contents

1 Big Picture
Context
Demystifying AI
AI waves

2 Machine Learning
Intuition
What?
Why?

3 Taxonomy
Introduction
Supervised Learning
Unsupervised Learning
Reinforcement Learning

4 Workflow
Features
Python code

5 Examples
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Intuition

Intuition

Have you ever thought?
How easily we recognize face, color, shape or handwritten characters.
How children learn to balance or develop preference to some taste.

Human’s cognitive abilities have transformed every aspect of our lives.
Human mind is a set of cognitive gadgets, specialized to learn. 4

4Cecilia Heyes, New thinking: the evolution of human cognition, Philosophical Transactions of the Royal
Society 2012.

Dr. Rizwan Ahmed Khan Machine Learning 14 / 47
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Intuition

Intuition

Humans learn from experience!

Dr. Rizwan Ahmed Khan Machine Learning 15 / 47
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Intuition

Humans learn from experience!
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Intuition

How Machine Learning is different from Traditional Programming?

Activity
Write a program (pseudo-code) to identify “cat” in an image

Dr. Rizwan Ahmed Khan Machine Learning 16 / 47
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Intuition

How Machine Learning is different from Traditional Programming?

Traditional programing

for j = 1 to N do
detect color (imageN )
lots of code

end for

for j = 1 to N do
detect shape (imageN )
lots of code

end for

for j = 1 to N do
detect fur (imageN )
lots of code

end for
.
.
Is this enough to recognize cat?

Note5

5courtesy: Prof. Fei-Fei Li (Stanford)
Dr. Rizwan Ahmed Khan Machine Learning 17 / 47
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Intuition

How Machine Learning is different from Traditional Programming?

Can we manually write an algorithm (hard
code) that caters all the variations?

Note5

5courtesy: Prof. Fei-Fei Li (Stanford)
Dr. Rizwan Ahmed Khan Machine Learning 17 / 47
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Intuition

How Machine Learning is different from Traditional Programming?

Machine learning algorithms are
algorithms that learn models from data
/ experience.
No need to formulate explicit rules.
Algorithm performance gets better with
experience / data.

Note5

5courtesy: Prof. Fei-Fei Li (Stanford)
Dr. Rizwan Ahmed Khan Machine Learning 17 / 47
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What?

What is Machine learning?

Machine Learning
Field of study that gives computers the ability to learn without being explicitly
programmed.

Arthur Samuel,
1959

Dr. Rizwan Ahmed Khan Machine Learning 18 / 47
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What?

What is Machine learning?

Dr. Rizwan Ahmed Khan Machine Learning 19 / 47



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Big Picture Machine Learning Taxonomy Workflow Examples

What?

What is Machine learning?

ML in a Nutshell
A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.

Example:
- Task T : Recognize human face
- Performance measure P : Accuracy of prediction
- Experience E : Dataset of human faces

Dr. Rizwan Ahmed Khan Machine Learning 20 / 47
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What?

What is Machine learning?

ML in a Nutshell
A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.

Example:
- Task T : Recognizing hand-written words
- Performance measure P : Percentage of words correctly classified
- Experience E : Database of human-labeled images of handwritten words

Dr. Rizwan Ahmed Khan Machine Learning 20 / 47
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What?

What is Machine learning?

ML in a Nutshell
A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.

Example:
- Task T : Categorize email messages as spam or legitimate
- Performance measure P : Percentage of email messages correctly classified
- Experience E : Database of emails, some with human-given labels

Dr. Rizwan Ahmed Khan Machine Learning 20 / 47



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Big Picture Machine Learning Taxonomy Workflow Examples

What?

What is Machine learning?

ML in a Nutshell
A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.

Example:
- Task T : Categorize X-ray image having lung disease
- Performance measure P : Percentage of X-ray images correctly classified
- Experience E : Database of X-ray image with domain expert labels

Dr. Rizwan Ahmed Khan Machine Learning 20 / 47
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What?

What is Machine learning?

Machine Learning algorithms ingest data and learn a model (hypothesis).
The learned model can be used to:

1 Detect pattern / trends / structures etc. from the data
2 Make predictions on unseen / new data

Dr. Rizwan Ahmed Khan Machine Learning 21 / 47
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Why?

Why Machine Learning?

Machine Learning is used when:
Humans can’t explain their expertise:

speech recognition

visual recognition
face detection, expressions recognition
hand writing recognition (pattern recog.) etc

Models must be customized (personalized
medicine, personalized recommendations, home
assistant)
Models are based on huge amounts of data

genomics
stock prices
self driving cars etc.

Human expertise does not exist (Mars navigating)
Human capabilities needs to be augmented
(medical diagnosis)

Dr. Rizwan Ahmed Khan Machine Learning 22 / 47
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Why ML is growing?

1. ML is preferred approach to:

Medical imaging
Speech recognition
Robotics
Computer vision:

1 Person identification
2 Activity recognition
3 Object detection
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5 ....

...

2. ML is preferred approach to all of the
above problems and:

Improved ML algorithms
Availability of large volumes of datasets
Self customizing software i.e. Speech
recognition or Spam filter
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Supervised Learning

Function approximation

Supervised learning is about function approximation
Problem Setting:

Set of possible instances X

Unknown target function f : X → Y

Set of function hypotheses H = {h|h : X → Y }
Input:

training examples {< xi, yi >}. For example x is an email and y is either Spam or No
Spam.

Output:
Hypothesis h ∈ H that best approximates target function f . OR
a classification “rule” that can determine the class of any object from its attributes
values.
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Inductive Learning

Example

Input 1 2 3 4 5 6 7
Output 1 4 9 16 25 36 ??

- f : X2 → Y OR
- f : input2 → output
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Supervised Learning

Inductive Learning

Example
Input 1 2 3 4 5 6 7
Output 1 4 9 16 25 36 ??

- f : X2 → Y OR
- f : input2 → output

Guarantee
What if function is not well behaved? What
if everything squared up to 6?

Fundamental assumption:
Function is well behaved and consistent
with the data
Generalize (induction)
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Supervised Learning

Inductive Learning

Specifics → generality

Examples/observed instances → general rules

Supervised learning is about function approximation or induction of approximate function.
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Unsupervised Learning Workflow for clustering
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Unsupervised Learning

Deductive Learning

Unsupervised learning is about description, opposed to approximation (supervised
learning).
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Deductive Learning

Unlabeled data / examples

Derive structure from the data by looking at relationship b/w input examples

Unsupervised learning is about description
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Reinforcement Learning Workflow

Learning from delayed reward
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Features

Features or attributes

Traditional Workflow for classification

Feature is an individual measurable property or characteristic of a phenomenon being
observed1.

1Bishop, Christopher (2006). Pattern recognition and machine learning
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Features

Features: Toy Example

Toy Example
What features can differentiate between Apple and Oranges, consider different color
variations.
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Features

Features quality

Feature is an individual measurable property or characteristic of a phenomenon being
observed.
Fundamental question
What are good features?

Good feature
Good features makes it easy for classifier to decide (learn) between two different classes /
concepts / labels OR good features enhances inter class variations while minimize intra
class varaition.
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concepts / labels OR good features enhances inter class variations while minimize intra
class varaition.
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Big Picture Machine Learning Taxonomy Workflow Examples

Features

Features: Toy Example

Coming back to toy example. What are good features (individual measurable property or
characteristic) to learn concept of “Apple” and “Orange” ?

In (supervised )Machine Learning algorithm (more on this):
Input is set of features and label / class.
Output is set of rules or pattern related to specific class. Simply output is trained
Classifier or Decision Surface
Classifier is function f : X → Y
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

Remember this!

Steps:
1 Collect training data (features extraction)
2 Train classifier
3 Predict new data
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

Remember this!

Steps:
1 Collect training data (features extraction)

2 Train classifier
3 Predict new data
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

Remember this!

Steps:
1 Collect training data (features extraction)
2 Train classifier

3 Predict new data
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

Remember this!

Steps:
1 Collect training data (features extraction)
2 Train classifier
3 Predict new data
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

Training Data / Features extracted from real data

Weight Texture Class
150g Bumpy Orange
170g Bumpy Orange
140g Smooth Apple
130g Smooth Apple
.. .. ..
.. .. ..

1 Each row in training data is an example (Feature extractor Algorithm)
2 Last column is class / label
3 Train classifier (ML Algorithm) - More data, better classifier training!
4 Predict new data

Dr. Rizwan Ahmed Khan Machine Learning 42 / 47
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

Training Data / Features extracted from real data

Weight Texture Class
150g Bumpy Orange
170g Bumpy Orange
140g Smooth Apple
130g Smooth Apple
.. .. ..
.. .. ..

1 Each row in training data is an example (Feature extractor Algorithm)
2 Last column is class / label
3 Train classifier (ML Algorithm) - More data, better classifier training!
4 Predict new data
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

First ML code: Toy Example

1 from sklearn import tree
2 # features =[[140 , " smooth " ] ,[130 , " smooth "] ,[150 ," bumpy " ], [170 , " bumpy " ]]
3 # labels =[" apple "," apple "," orange "," orange "]
4

5 # sklearn uses real - valued features
6

7 features =[[140 , 1 ] ,[130 , 1] ,[150 ,0 ], [170 , 0 ]]
8 labels =[0 ,0 ,1 ,1]
9

10 # Train Classifier - Decision Tree
11 clf = tree. DecisionTreeClassifier ()
12 clf=clf.fit(features , labels ) # Classifier is trained on our data
13

14 # Predict
15 print (clf. predict ([[140 ,0]]) )
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Big Picture Machine Learning Taxonomy Workflow Examples

Python code

Expectation from ML Specialist?

Previous example has six lines of code!
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Previous example has six lines of code!

Dr. Rizwan Ahmed Khan Machine Learning 44 / 47



(c
)D
r.
Ri
zw
an

A
Kh

an

(c
)D
r.
Ri
zw
an

A
Kh

an

Big Picture Machine Learning Taxonomy Workflow Examples

Python code

Expectation from ML Specialist?

Previous example has six lines of code!
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Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Disease diagnosis
The X are the properties of the patient.
The f(X) is the disease they suffer from.
Dr. Rizwan Ahmed Khan Machine Learning 46 / 47
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Big Picture Machine Learning Taxonomy Workflow Examples

Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Person identification
The X are images of face.
The f(X) is the identified person.
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Big Picture Machine Learning Taxonomy Workflow Examples

Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Person identification / Biometric
The X are finger.
The f(X) is the identified person.
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Big Picture Machine Learning Taxonomy Workflow Examples

Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Posture Analysis
The X are images with different postures.
The f(X) is the recognized posture / activity.
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Big Picture Machine Learning Taxonomy Workflow Examples

Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Semantic Scene Analysis
The X are images.
The f(X) is the recognized label for each pixel.
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Big Picture Machine Learning Taxonomy Workflow Examples

Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:

Medical Image segmentation
The X are images coming from different modalities.
The f(X) is the segmented images with clear boundaries.
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Examples

- In practice it is almost always too hard to estimate the function, so we are looking for
very good approximations of the function.

- Some practical examples of (supervised learning) are:
- This is Regression. i.e. real-valued output.

Stock Price Prediction
The X data recorded for t time.
The f(X) is prediction.
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Golden Words
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