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Preface 

In an effort to develop a means for detecting the presence of enemy sub¬ 

marines during the First World War, the famous French physicist Paul 

Langevin designed a 150 kHz source for generating intense ultrasound beams. 

As noted in 1917, he observed that small fish were killed when entering the 

beam and that intense pain was caused when a hand was placed in its path. 

Although the generation and detection of ultrasound had been pursued in the 

previous century, this aspect of Langevin’s work is often regarded to be the 

inception of modern ultrasound and its biological applications. 
Ultrasound is a sub-discipline of acoustics, whose mathematical and 

physical foundations were developed in the 18th and 19th centuries. An impor¬ 

tant part of this sub-discipline is the more recent interdisciplinary area of 

biomedical ultrasonics, which involves mechanics, electrical engineering, 

physics, biology, and medicine. Specifically, it is concerned with the application 

of ultrasound techniques for biological and medical purposes, particularly 

for diagnostic and therapeutic use. Some students beginning to study and 

research this field find it difficult to determine the most appropriate path 

for obtaining a good grasp of the fundamentals along with applications and 

recent developments. A primary purpose of this book is to provide a study 

path by building on the mathematical foundation that graduate students in 

physics and engineering should have gained in their undergraduate years. 

Moreover, it should serve as a useful resource-base for those in industry 

or academia that are actively engaged in ultrasound research and system 

development. Much of this base is recorded in a variety of publications, but 
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little has been assembled in a form suited for its use in formal or informal edu¬ 
cation programs. 

This book developed from a graduate course in ultrasound that the author 

has given for more than 20 years. It evolved initially from extensive course 

notes and reprints from the literature but in more recent years from compact 

disk versions provided to students. It should be well suited for a univer¬ 

sity course, as well as for concentrated training programs in industry and 
hospitals. 

The book consists of 10 chapters that bridge the spectrum from the funda¬ 

mental properties of wave propagation through to the clinical systems. The 

first four chapters describe linear and nonlinear propagation and methods for 

calculating the field produced by transducers of various designs. A number of 

problems designed to test the reader’s understanding, and which are well 

suited for formal class assignments, accompany these chapters. The topics of 

ultrasound scattering and transducer design are addressed in Chapters 5 and 

6. The final four chapters address methods of imaging and flow measurement. 

Some 350 drawings, graphs, sketches, and color images have been used. These, 

together with many tables, have been used to illustrate the various topics 

covered, a substantial portion of which appears for the first time in published 
form. 

I am particularly indebted to many graduate students and research associ¬ 

ates whom I have had the privilege of supervising. From them I have learnt 

more than they will ever realize. The master’s and doctoral students include 

Marty Hager, Bruno Maruzzo, Larry Korba, Mike Kassam, Oliver Fastag, Jim 

Arenson, Jerry Arenson, Peter Arato, Rick Appugliese, Benny Lau, Peter 

Zuech, Donald MacHattie, John Grant, Carl Walker, Kent Poots, Claude 

Royer, Jim Mehi, Larry Mo, Joe Facca, Weimin Chen, Clement Fung, William 

Gibson, Peter Bascom, Peter Vaitkus, Ramez Shehada, Theofanis Maniatis, 

Nirav Shah, Yi Dai, Andrew Hill, David Surat, Yen Lu, Dominic Calla, Brian 

Lim, Pinar Crombie, Kwok Lam, Roger Zemp, Adam Weathermon, Aaron 

Steinman, Howard Ginsberg, Elaine Lui, Alfred Yu, Renee Warriner, and 

Roozbeh Arshadi. Postdoctoral fellows and research associates were a vital 

part of our research team, and these include Helen Routh, Tadashi Tamura, 

Yu Fi Law, Jahan Tavakkoli, Jerry Myers, Alex Karpelson, and Nikolai 

Sushilov. In addition, I wish to thank Peter Veltink, Jan Koers, Bernt Roelfs, 

and Renee Aarnink, all of whom made significant contributions. They were 

students from the Netherlands who joined our group to do their final-year 

thesis research. I should also like to mention the special help that Larry Mo 

provided through his continuing collaboration with our research group. His 

insights into the practical and physical aspects of ultrasound pulsed wave flow 

estimation systems has been particularly helpful in improving the final chapter. 

My introduction to ultrasound and its clinical use was in 1973 through the 

initiatives of an academic and clinical-based colleague, Wayne Johnston. Our 

collaborative research has now extended to over 30 years, and I am particu¬ 

larly grateful for his encouragement in this major project. Moreover, the 

research grants that we have jointly held from the Medical Research Council 
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of Canada (currently the Canadian Institutes Heath Research) and the 

Canadian Heart and Stroke Foundation have played a vital role. Other 

research grants that have supported our ultrasound research are from the 

Natural Sciences and Engineering Research Council of Canada and the Hos¬ 

pital for Sick Children Foundation. There are several other academic col¬ 

leagues that I should like to thank, and these include Matadial Ojha, Ross 

Ethier, Peter Burns, and Stuart Foster. In addition, I am grateful to the previ¬ 

ous and current Director of our Institute for providing essential services and 

research space. Finally, to my wife, who has again tolerated long periods of 

temporary absence through my disappearance to the basement office, I am 

indebted to her for encouragement. 
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1 

Introduction 

The past 50 years have seen important advances in the understanding, devel¬ 
opment, and application of ultrasound methods for medical and industrial 
uses. For medical diagnostic applications, a major advantage accrues from the 
ability of ultrasound to penetrate biological tissue and to return signals that 
contain information from which the acoustic structure can be determined. 
Provided the intensity is not too great, it can do this without causing micro- 
or macroscopic damage. For medical therapeutic applications, the use of ultra¬ 
sound can be traced to the mid-1930s, when it was used in physiotherapy for 

deep tissue heating. 
Many of the advances can be attributed to a combination ol experimental 

observations, theoretical developments, and ingenious design. With the avail¬ 
ability of high-speed computers and display systems, simulation methods have 
enabled the design and performance of ultrasound systems to be investigated 
without the need for costly experimental research. The basis of good simula¬ 
tion methods is a theoretical understanding of the different components of a 
system, especially the manner in which acoustic waves propagate in liquid and 
solid media. Much of the theoretical basis of linear and nonlinear acoustic 
wave propagation was established in the 18th century by Euler (Leonhard, 
^707-1783), D’Almbert (Jean-le-Rond, 1717-1783), and Lagrange (Joseph 
Louis 1736-1813). In the 19th century, major contributions were made by 
Poisson (Simeon Denis, 1781-1840), Navier (Claude Louis Marie Henri, 
1785-1836), Helmholtz (Hermann Ludwig Ferdinand, 1821-1894), Earnshaw 
(Rev. Samuel, 1805-1888), Kirchhoff (Gustav Robert, 1824-1887), Stokes 
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(George Gabriel, 1819-1903), Riemann (Bernhard, 1826-1866), Lebedev (Petr 

Nikoloevich, 1866-1912), and Lord Rayleigh (John William Strutt, 1842-1919). 

Perhaps the most important milestone in understanding the fundamental 

physics of acoustic wave propagation was the classic two-volume treatise by 

Rayleigh [1] entitled The Theory of Sound, which was published in 1877 and 
1878. It remains a frequently cited text. 

The period beginning around 1916 is considered by some to mark the start 

of modern ultrasonics development. Langevin (Paul, 1872-1946) was a major 

contributor to this, but a good deal of his work was unpublished [2], though 

some was subsequently reported by those who had attended his lectures. 

Along with Boyle (Robert William, 1883-1955) and a coworker, Constantin 

Chilowski, Langevin was responsible for many important practical contribu¬ 

tions. Wood (Robert Williams, 1868-1955) appears to be the first to report 

investigations on the effects of high-power ultrasound on biological media, 

and his work [3] on this topic, published in conjunction with Loomis (Alfred 

Lee, 1887-1975), can be considered to be the forerunner of modern medical 

therapeutic applications. All of the above, together with other developments, 

have been reported by Graff [4] in a comprehensive account of the history of 
ultrasonics to the immediate post-WWII period. 

This chapter aims to provide a mathematical and physical introduction 

to wave propagation in biological media and should form a foundation for 

subsequent chapters dealing with theory and applications. It begins with a 

description of the various forms of wave motion, leading to the development 

of equations that describe propagation in liquid and solid media. The effects 

of abrupt changes in the medium characteristics on the propagation, along 

with the effects of diffraction, are then considered. The final sections are 

devoted to the effects of absorption and scattering on propagation. 

1.1 Physical Nature of Acoustic Wave Motion 

1.1.1 Wave Propagation in a Semi-Infinite Medium 

Acoustic waves can arise from the application of a time-varying stress to a 

medium. For an isotropic1 homogeneous2 material, the simplest forms of wave 

motion are those arising from a stress normal to the material surface, giving 

rise to a longitudinal (compressional) wave. If the medium is solid, application 

of a unidirectional time-varying shear stress will gives rise to a simple trans¬ 

verse wave that is polarized in the direction of the stress. To provide a physi¬ 

cal picture of the effects of such stresses, it is helpful to introduce the concept 
of an acoustic particle. 

When a medium is subject to a time-varying stress, the coupling forces 

between the atoms and molecules of the medium are perturbed and very small 

1. In an isotropic medium, the physical properties are independent of direction. 
2. For a homogeneous medium, the acoustic properties are constant throughout the 

tion region. 
propaga- 
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displacements result. However, this is a much oversimplified picture of what 

really happens at an atomic or molecular level. Let us consider the simple crys¬ 

talline solid illustrated in Fig. 1.1. Such a system of springs and masses will 

possess many degrees of freedom and as a result will have many normal modes 

of oscillation. Under equilibrium conditions the thermal energy will cause 

oscillations: the resulting temperature-dependent spectrum of frequencies is 

characteristic of the medium. Quantum mechanics requires that acoustic 

energy be quantized into elementary units of energy called phonons. In the 

absence of free electrons, virtually all the thermal energy is carried by 

phonons, whose frequency spectrum generally ranges from frequencies corre¬ 

sponding to the maximum sample linear dimension, up to around 10l3Hz. If 

the medium is disturbed by the application of a time-varying stress, the phonon 

frequency distribution will be affected: in fact, the passage of a wave through 

the medium can be considered to correspond to the passage of a group of 

coherent phonons. The discrete nature of the medium needs to be considered 

in characterizing the propagation of ultrasonic waves only when the wave¬ 

length approaches the inter-atomic or molecular spacing. This occurs when the 

ultrasonic (hypersonic) frequency is in the order of 100 GHz, with wavelengths 

around 10~8m. As will be seen, to account for the loss of energy loss during 

propagation, molecular processes and structural order in the medium can play 

an important role. If a medium is to be treated as a continuum, then it is con¬ 

venient to define an acoustic particle to be a small volume element whose 

dimensions are large compared to the inter-atomic spacing and are much 

Figure 1.1 2-D representation of a simple crystal lattice. Many possible modes ol 
vibration are possible. Under equilibrium conditions the thermal energy will be 
distributed over a wide range of frequencies, with wavelengths ranging from the 

dimensions of the medium to the interatomic spacing. 
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smaller than the wavelength. In discussing the movement and properties of a 

given fluid particle, we are really speaking of the movement and properties of 

all the matter contained within the volume element. Thus, within the volume 

of given acoustic particle, we assume that all of the physical quantities remain 
constant. 

1.1.2 Longitudinal and Transverse Waves 

The simplest form of acoustic wave propagation is that of a plane longitudi¬ 

nal (also called compressional) wave propagating in a homogeneous isotropic 

medium of semi-infinite extent. As illustrated in Fig. 1.2a, the passage of such 

a wave is associated with regions of compression and rarefaction that propa¬ 

gate with a speed determined primarily by the properties of the medium. Asso¬ 

ciated with the wave propagation will be changes in the particle displacement, 

velocity, density, pressure, and temperature. The speed3 with which the wave 

propagates (which must be distinguished from the particle velocity) depends 

on the properties of the medium. For a fairly stiff medium the wave will 

propagate faster than for one that is highly elastic (a perfectly incompressible 

medium would have an infinite propagation speed). Associated with com¬ 

pression and rarefaction of wave propagation will be temperature changes, 

making it necessary to consider whether isothermal or adiabatic (constant 

entropy) conditions can be assumed. It might be thought that at lower fre¬ 

quencies, because there would be more time for heat to flow, a longitudinal 

wave should behave less adiabatically. However, the reverse is true. When the 

angular frequency to is decreased, the distance between the crests and valleys 

increases, and as a result the irreversible heat transfer by conduction can be 

shown to be proportional to to2. This does not compensate for the 1/co factor 

that arises from the increased time between cycles at lower frequencies; hence, 

a compressional wave behaves more adiabatically at lower frequencies [6, 

p. 275; 7, p. 45], Indeed, it is a good approximation4 to assume that the propa¬ 
gation process is adiabatic for frequencies below 109Hz. 

A second simple foim of wave propagation in a solid medium occurs when 

the particle movement is at right angles to the direction of propagation. In Fig. 

1.2b the particle motion is in the y-direction, with the wave propagating in the 

z-direction. Such a wave is a y-polarized transverse (also called shear) wave. 

In contrast to the changes in acoustic particle volume that occur for longitu¬ 

dinal waves, no density change occurs for shear waves, even though there is a 

transformation of the acoustic particle volume shape. It is also evident from 

this figuie that a shear wave could also propagate in the same direction but 

with particle displacements in the x-direction. If both components were 

3. The term speed is used to describe the scalar quantity, while velocity is used for a velocity 
vector. ' 1 

4. For media with a very high thermal conductivity this may not be true: the propagation 
would then be closer to isothermal. 
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Longitudinal Wave 

Figure 1.2 Snapshot view of “particle” displacements for waves propagating in the 
z-direction of an isotropic solid medium: (a) a plane longitudinal wave, (b) a 
y-polarized wave shear wave. The “particles” are assumed to be small volume 
elements. For the waves illustrated the “particles” move in the z-direction for the 
longitudinal wave and in the y-direction for the shear wave. (Reproduced from 
Ristic [5], Principles of Acoustic Devices, © 1983 Wiley. This material is used by 

permission of John Wiley & Sons Limited.) 

present, the result would be an elliptically polarized shear wave with a major 
to minor axis ratio that depends on the relative component amplitudes. 
Both longitudinal and shear waves may be present in solid media, but in 
liquids, because shear waves are not supported, only longitudinal waves can 

propagate. 
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1.1.3 Rayleigh and Lamb Waves 

If the plane boundary of a semi-infinite solid separates the solid from a rar¬ 

efied medium such as a gas, then wave propagation can occur close to the 

boundary through a coupling of longitudinal and transverse waves at the inter¬ 

face. Such waves, first described by Rayleigh in 1885, are often referred to as 

Rayleigh waves. As indicated in Fig. 1.3a, the amplitude of the particle dis¬ 

placement for these waves decays very rapidly with distance from the inter¬ 

face: at a depth of two Rayleigh wavelengths (kR), the amplitude is virtually 

zero. Each particle moves in an elliptical orbit whose direction of polarization 
changes at a depth of about 0.2 )iR from the interface. 

Other forms of wave motion can occur in plates and rods, and depending 

on the dimensions a variety of propagation modes are possible. The simplest 

case occurs when the thickness and width are much less than a wavelength so 

that only the lowest-order mode is possible. For example, if one end of a thin 

rod were excited with low-frequency axial vibrations, an extensional wave 

would be propagated, with particle motion both along and perpendicular to 

the rod axis. As illustrated in Fig. 1,3b, on the free surface of the rod the normal 

component of the stress is zero; consequently, the stress component in the rod 

perpendicular to its axis will also be zero. The wave propagates without any 

changes occurring in the volume associated with a particle, though of course 

its shape changes. On the other hand, if the material is an infinitely wide flat 

plate, shear motion can occur in both the width and thickness directions. The 

waves that result from all possible modes, including the extensional wave 
mode, are called Lamb waves. 

1.2 Properties of Isotropic Media 

In our subsequent discussions of wave propagation in an isotropic medium, 

certain mechanical properties of the medium will be needed for describing the 

propagation. These will now be defined and equations that relate them to 
the wave propagation speed will be introduced. 

1.2.1 Compressibility and Bulk Modulus: Liquids and Gases 

If an equilibrium volume V0 of an isotropic medium is subject to an increase 

in pressure dp, the volume will decrease by dV and work will done. If the com¬ 

pression is performed under isothermal conditions, the change in volume will 

normally differ from that occurring under adiabatic conditions; consequently 

it is necessary to distinguish between the two processes. The adiabatic com¬ 
pressibility is defined by 

(1 • 1) Adiabatic compressibility = k = - — — 

K dp / 
or, since density p is the mass per unit volume, i.e., p a \/y this can be 
expressed as 
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(b) Extension Wave -► 

Figure 1.3 Snapshot of particle displacements for (a) Rayleigh wave, (b) extensional 

(Lamb) wave in a thin rod, and (c) flexural (antisymmetric) Lamb wave in a thin 

plate, (a, reproduced, with permission, from Hassan and Nagy [8], J. Acoust. Soc. 

Am., 104, 3107-3110, © 1998, Acoustical Society of America, b and c, reprinted by 

permission of Elsevier from Kuttruff [9], Ultrasonics: Fundamentals and Applications, 

© 1991 Elsevier.) 

(1.2) K - 
j_3p 

po 

where pQ is the equilibrium density and s indicates a constant entropy 

corresponding to a reversible adiabatic process. A similar definition is used for 

the isothermal compressibility kt, except that now the partial derivative is 

evaluated for a constant temperature. The inverse of the adiabatic compress¬ 

ibility is the adiabatic bulk (elastic) modulus (K = 1/k). Tfie variations of the 

two compressibilities for water as a function of temperature are illustrated 

in Fig. 1.4. Some of the data shown in Table 1.1 shows that very large differ¬ 

ences can exist between the adiabatic compressibilities of different types of 

media. For example, air is approximately 15,000 times more compressible 

than water. 
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Temperature, °C 

Figure 1.4 Isothermal (tcr) and adiabatic (k) compressibility of water as a function 

of temperature. Based on the values given by Zemansky and Dittman [10]. 

As previously noted, for most media the effects of thermal conduction 

between regions of compression and rarefaction during the passage of a lon¬ 

gitudinal wave can be expected to be very small, and consequently it is rea¬ 

sonable to assume that isentropic (s = const) conditions are maintained 

throughout the propagation process. For plane wave propagation in a liquid 

or a gas, all acoustic particles that lie on a given plane normal to the direction 

of propagation will be subject to the same incremental pressure change. The 

fractional change in their volume will be proportional to the adiabatic com¬ 

pressibility of the medium. It is therefore reasonable to expect that the speed 

of propagation" (the phase speed) of a small-amplitude longitudinal wave in 

a liquid or gas should be directly related to the adiabatic compressibility and, 
as will be subsequently shown, it is given by 

(L3) c0 = l/Vicp7, 

where the subscript o has been used to indicate that it is the small-signal speed 

for quasi-equilibrium conditions. Since the propagation process in most liquids 

is sufficiently close to adiabatic, measurement of the propagation speed is 
often used for determining the adiabatic compressibility.5 6 

Accurate (±0.015 m/s) measurements on the propagation speed in pure 

water over a temperature range from 0.001 to 95°C at 5 MHz and interpolated 

5. More generally, for an isentropic process the propagation speed in a gas or fluid is defined 

by c2 = (dPIdp)s. Under large signal conditions the non-linearity of the relation between P and p 

must be accounted for, which makes the speed dependent on the instantaneous value of the pres¬ 

sure and hence on the instantaneous particle velocity (see Chapter 4). 

6. For certain fluids that are of an additive nature, the compressibility is linearly related to the 

density. In blood, for example, the net density is the result of the plasma and red blood cell den¬ 

sities, and similarly for the compressibility. Both relations involve the hematocrit, which, when 

eliminated between the two, yields a linear relation between the compressibility and density that 
has been verified experimentally [11], 
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Figure 1.5 Speed of sound in pure water as a function of temperature. The measured 

values at 5.0MHz [12] have been interpolated and are accurate to ±0.015m/s. The 

insert shows the magnitude of the difference between the values from the 

approximation given by (1.4) and those measured over the range from 0 to 45°C. 

by means of a fifth-order polynomial have been reported by Del Grosso and 

Mader [12]. These are widely regarded as a standard.7 The interpolated curve 

is shown in Fig. 1.5 along with that obtained from the following approxima¬ 
tion as given by Temkin [14, p. 47]: 

(1-4) ce = 1402.40 + 5.0TT - 0.055T2 + 0.00022T3. 

It can be seen that this equation is accurate to <0.1 m/s over the temperature 

range from 0 to 40°C. Other approximations have been reviewed by Lubbers 
and Graaff [15], 

For an ideal gas, the speed can also be expressed in terms of the pressure 

by noting that under adiabatic conditions the gas law can be expressed as pVy 

= const., where y = CP/CV is the ratio of the specific heat at a constant pres¬ 

sure to that at a constant volume. By differentiating this expression and denot¬ 

ing the equilibrium pressure by p0, we obtain dV/V = -dpl(Poy), which by 

comparison with (1.1) enables the adiabatic compressibility to be expressed 

as k = 1 l(Poi)- By substituting this into (1.3) the wave speed can be written in 
terms of the ambient pressure and density: 

(L5) C0 = 4Pol/Po- 

The measured values for the propagation speed versus those calculated 

provide information on the question previously addressed as to whether the 

passage of an ultrasonic wave can be regarded as an adiabatic or isothermal 

process. For dry air at atmospheric pressure and 20°C, y = 1.40, so that the 

7. Based on the adoption of a new (1990) international temperature scale, some corrections 
have been made; these are reported in [13], 
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assumption of isothermal propagation (y = 1.0) leads to an error that 
approaches 20%. On the other hand, for water at 30°C, y is very close to unity 
(y= 1.0152) and as a result the speed of sound calculated from the isothermal 
compressibility is in error with respect to that measured or calculated by less 

than 1%. 

1.2.2 Solids: Young's Modulus, Poisson's Ratio, and 

Shear Modulus 

As illustrated in Fig. 1.2a, the propagation of a plane longitudinal wave in an 
infinite isotropic solid involves no particle motion normal to the propagation 
axis. For a solid of finite dimensions, this can occur only if appropriate lateral 
stresses are present on the surface to prevent a dimensional change in the 
lateral direction. A simple way of visualizing this situation is to consider a thin 
cylindrical rod of length z to which a compressive stress is applied in the axial 
direction. Not only will the length of the rod decrease, but there will also be 
an increase in the radius. The axial strain can be found from knowing Young’s 

modulus E for the medium. This is defined as the ratio of the stress to the axial 
strain (fractional change in length) for a thin rod. In addition, the strain in the 
radial direction can be found from a second property of the material, namely 
Poisson’s ratio a, which is defined as the ratio of the lateral strain to the 
longitudinal strain. These two definitions can be written as 

(1.6) 

(1.7) 

, Longitudinal Stress Tz 
Young’s modulus = E =  -;—-———— = —~r~, 

Longitudinal Strain oz/z 

Poisson’s Ratio = o = 
-Lateral Strain 

Longitudinal Strain 

-5 rjr 

§z/z 

where T. is the applied axial stress on a rod and 5rlr and 5z/z are the strains 
in the radial and axial directions, respectively. 

For an ideal fluid, if the strain in the z-direction for a certain small volume 
element is 8z/z, then, since there can be no net volume change and the lateral 
strains in the y- and x-directions are equal, it can be readily seen that 5z/z = 
-28x/x, so that a = 0.5. At the other extreme, for a medium in which no lateral 
strain results from a longitudinal strain, o = 0. Consequently, the possible range 

in values for Poisson’s ratio is 0 < o < 0.5. 
If a sinusoidal axial stress is applied to a thin rod, at a sufficiently low fre¬ 

quency so that the wavelength is much greater than the rod diameter, then an 
extensional wave will be propagated, as illustrated in Fig. 1.3b. In this case the 
appropriate elastic property governing the speed of propagation is Young’s 

modulus and, as will be shown, the speed given by 

(1.8) cfi = V£/p„. 
On the other hand, if the rod diameter is prevented from changing by the 

application of an appropriate compressive stress to the surface of the rod, it 
is evident that for the same axial stress, the axial strain will be reduced, i.e., 
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the rod now behaves in a more rigid manner, and as a result longitudinal waves 
have a higher speed than extensional waves. Thus, an additional material prop¬ 
erty can be defined: specifically, the axial modulus is given by 

(1.9) 
... . . Longitudinal Stress 

Axial modulus = % =-2- 
Longitudinal Strain 

Tz 

5 z/z r=const. 

under the condition that there be no lateral strain (br/r = 0). Consequently, the 
speed of a longitudinal wave is given by 

(1-10) cL = V%/p0. 

Alternatively, since X: 

(i.ii) 

£(l-d) 

(l-2c)(l + o) 

cL = 

, this can be written as 

C(l-a) 
Po(l-2c)(l + c)' 

which, by comparison with (1.8) and noting that 0 < a < 0.5, shows that 
cL ^ cE. 

Since the propagation of transverse waves involves a shearing motion, it is 
to be expected that the shear modulus p<, defined by 

(1.12) Of =■ 
Shear Stress 

Shear Strain (angular deformation)' 

governs the propagation speed. As will be shown, the speed is given by 

(1.13) cr = V|Vp0, 

but, because = £7{2(1 + a)}, the speed can also be expressed in terms of the 
same two elastic constants used previously, yielding 

(1.14) cT - 
2p0(l + a) 

1.2.3 Temperature Effects 

Temperature changes will accompany the pressure changes due to a plane 
wave propagating under adiabatic conditions. As shown in the following der¬ 
ivation, the amplitude of the temperature changes can be readily calculated 
from the pressure amplitude. Let T be the absolute temperature, y = CPICV, 

and k and kt be the adiabatic and isothermal compressibilities, respectively. 
By making use of thermodynamic equations [10], we find that for a reversible 
adiabatic process (constant entropy s), the second T ds equation [10, p. 265] 
can be written as 

T ds = 0 = CP dT-T 
dV_ 

dT 
dp, 

in which V is the volume, and hence 

p 
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(1.15) CpdT = TV $ dp, 

1 dV 
where P is the volume expansivity given by (3 = ——— . Now since CP- Cv = 

V dT p 

TV p2/Kr [10, p. 270] and y= CPICV = kt/k [10, p. 271], (1.15) simplifies to 

(1.16) 
dP_ 

dT 
P 

(r - i)K 

Now for a gas or a liquid pV = nRT( 1 + Bp + Cp2 + ...), where B and C are 

the virial coefficients, n is the number of moles and R is the gas constant [10, 

p. 106]. Taking the partial derivative of this expansion at a constant pressure 

and comparing the result with the definition of the volume expansivity, yields 

P = 1 IT, enabling (1.16) to be written as 

BP 1 

3T,~T(y-1)k' 

Hence, for a small change in pressure Ap, under adiabatic conditions the tem¬ 

perature change is given by 

(1.17) AT - Ap(y - 1)T K. 

As an example, consider a plane wave whose amplitude is 2kPa traveling 

in water at 30°C. From Table 1.1, AT = 2 x 103(1.0152 - 1)(273 + 30)4.41 x 10 10 

= 4.1 p°C, which is very small indeed. Very much higher values can be obtained 

for propagation in a gas due to the much larger values of the compressibility 

and (y- 1). For example, the same plane wave propagating in dry air at 20°C 

results in AT = 1.6°C. 

1.3 Equations Governing Wave Propagation in Fluids 

The state of a fluid in motion can be mathematically described by a knowl¬ 

edge of the particle velocity function v = v(r:f) together with twos thermody¬ 

namic functions, such as the density p = p(r :t) and pressure p =p(i:t), at all 

spatial locations r and at any instant of time t. By establishing and solving the 

equations that describe the behavior of these three functions subject to the 

initial and boundary conditions, the flow field can be fully determined. For 

the purpose of describing wave motion under adiabatic conditions we shall 

obtain three equations: an equation of motion, the continuity equation, and 

an equation of state. As will be seen, these enable equations to be obtained 

for the particle velocity and thermodynamic functions. We shall start by deriv¬ 

ing an equation of motion, though, for rather special conditions. 

8. Two thermodynamic quantities together with an equation of state are sufficient to deter¬ 

mine all other such quantities. 
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1.3.1 Euler's Equation of Motion 

An ideal fluid is one for which the effects of viscosity and thermal conductiv¬ 

ity can be neglected. The equation that was first derived by Euler in 1755, and 

that bears his name, characterizes the motion of an ideal fluid and forms one 

of the cornerstones of fluid dynamics. This will be first derived since it forms 

a stepping stone to the derivation of the more complex Navier-Stokes equa¬ 

tion that describes the motion of a nonideal fluid. 

The stress principle discovered by Cauchy forms the starting point of our 

derivation. It has been expressed by Truesdell [17] in the following way: “upon 

any imagined closed surface S there exists a distribution of stress vectors x 

whose resultant and moment are equivalent to those of the actual forces of 

material continuity exerted by the material outside S upon the inside.” It there¬ 

fore follows that we can determine the resultant stress and moment acting on 

an acoustic particle by examining the stresses acting on a small volume of fluid 

enclosed by the surface S. For simplicity, we will assume that the effects of 

body forces such as gravity and electromagnetic forces acting on this volume 

can be neglected. Under non-equilibrium conditions the surrounding fluid will 

exert stresses on the surface of the volume causing it to be displaced and 

changed in shape. In general, for a viscous fluid both tangential (shear) and 

normal component stresses will be present over the surface, but, because the 

fluid has been assumed to be inviscid, all tangential components will be zero 

and the moment will be zero. The remaining normal components are simply a 

distribution of pressures on the surface. Because the resulting force on the 

volume due to these pressures will generally be non-zero, the volume will be 

displaced and may change its shape. 

Rather than determining equations governing a given fluid property at a 

fixed spatial location, it is simpler to focus on the properties of a moving par¬ 

ticle as they change (Fig. 1.6) under the action of the various forces. Equations 

that characterize the properties in this manner are said to be expressed in a 

Eagrangian form. It will be shown how the Eulerian form, which expresses the 

property at a fixed spatial location, can be obtained from the Lagrangian form 
by means of a simple transform relation.9 

If p(r:t) represents the pressure distribution on the surface of a fluid 
volume V, then the resulting vector force F is given by 

(1-18) F = -JJ pnd S, 
s 

where the integral is over the entire surface area S of the fluid volume and n 
is an outward-directed normal unit vector on the elementary surface area dS. 

By making use of a well-known vector relation,10 this surface integral can be 
transformed into an integral over the volume V yielding 

9. The Lagrangian and Eulerian coordinate systems are sometimes referred to as material 
and spatial coordinate systems, respectively. 

10. See Appendix D: from Gauss’ Divergence theorem, jjf divAdv= [[ AndS, it can be 
readily shown that JJj^ grad£rfv = JJ^ 
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t+8t 

rAV(t+St) 
p(t+5t) 

AV(f) 

p(0 z 

Figure 1.6 Lagrangian description showing a small volume element (an acoustic 

particle) at a time t and at a subsequent time of t + 81. The displacement is due to the 

particle velocity in the direction of the arrow. The density is shown as having 

increased and the volume as having decreased. 

F = - Jjj grad pdV, 

in which grad = V is the gradient operator.11 It therefore follows that the force 

per unit volume of the fluid is simply -gradp = -Vp. Now, by Newton’s second 

law the force per volume is equal to the product of density and acceleration, 

yielding 

(Lagrange) (1.19) 

where v is the vector velocity of a fluid particle and the use of the capital D 

on the left side of this equation specifies that the derivative is the rate of 

change of the velocity of the moving particle, which in general differs from the 

derivative evaluated at a fixed point in space. On the other hand, the right- 

hand side is expressed in terms of the stationary coordinate system. This equa¬ 

tion is the Lagrangian form of Euler's equation of motion. 
To obtain an equation in terms of what happens to a fixed point in space, 

it is necessary to consider how any given property of the particle, such as its 

velocity and density, changes as the particle moves. Let us suppose that the 

property (which can be a scalar, a vector, or a tensor) is denoted by /. There 

are two contributions to the change in / as the particle moves by an incie- 

mental vector distance Dr in a time increment of Dt. The first arises from the 

change that occurs at a fixed spatial location and is equal to (dfldt)Dt. The 

second is due to the change in / that occurs over the spatial distance Dr, and 

this can be written in Cartesian coordinates as 

11 In Cartesian coordinates, V = x^- + y— + z —, where x, y, and z are unit vectors along 
, ,. . Ox dy dz 

the x-, y- and z-directions. 
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^fdx + ^fdy + ^fdz = (Dr-V)f. 
dx dy dz 

Consequently, by adding these two contributions, dividing by Dt, and noting 

that the particle velocity is defined by v = DrIDt, we obtain 

(1.20) Df_ 
Dt 

Material Derivative 

3/ 

a + <vV)/ 

Local Derivative Convective Part 

This equation allows us to relate the rate of change of a given property as seen 

by an observer moving with the particle to that occurring at a fixed spatial 
location. 

A transformation of (1.19) to a fixed coordinate system can be achieved by 

first replacing / in (1.20) by v and then substituting the result into (1.19), 
yielding the Eulerian form: 

(1.21) 
dx 

p 

S
r11

 ! + •< <
 

<
 

i
_

 

= -Vp. (Euler) 

This is Eider’s equation of motion for an ideal fluid in the absence of any grav¬ 

itational forces. It characterizes the time and spatial behavior of the velocity 

vector in terms of the density and pressure, both of which are generally time- 

and space-dependent. If the fluid is incompressible the density will be 

space- and time-invariant, but Euler’s equation remains unchanged. The two 

additional equations that are needed for the state of an inviscid fluid to be 

fully determined for a given set of boundary and initial conditions, will now 
be discussed. 

1.3.2 Continuity Equation 

The continuity equation simply expresses the conservation of mass. It can be 

derived by assuming that the arbitrary fluid volume VQ shown in Fig. 1.7 

remains constant and is at fixed spatial location. Over the surface area S0 

enclosing this volume the mass of fluid flowing in must equal that flowing out. 

If dS is an element of surface area at the location r, v(r:t) is the fluid veloc¬ 

ity, p(r :t) is the density, and n is a unit vector pointing outwards from dS, then 

the net mass that flows out of the volume V0 in a small time increment At is 

equal to pv • n dS. Now since the rate of increase of the fluid mass inside 

V0 is given by 

d_ 

dt 
Vo 

the conservation of mass requires that 

dt 
[JJ/prfv]A,= [J| Pv irfS At. 
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■> 

z 

Figure 1.7 Showing a volume T0 of fluid fixed in space, a unit vector n normal to an 

element dS of the surface that encloses the volume, and an elemental volume dV 

within V0. 

Transforming the RHS to a volume integral and rearranging yields 

niMdv=~^M<’v)dv' 
in which div (u) = V • u. But, since this equation must hold true for an arbi¬ 

trarily small volume, we obtain the Euler form of the continuity equation: 

dp 
(1.22) 

dt 
+ div(pv) = 0. (Euler) 

The Lagrangian form of this equation can be obtained by making use of 

the transformation given by (1.20) to re-express (1.22) as 

—- = -div(pv) + (v ■ grad)p. 
Dt 

By making use of the standard vector relation,12 this can be simplified to 

(1.23) 
Dp 

Dt 
-hpdivv = 0. (Lagrange) 

1.3.3 Equation of State 

An equation of state is one that relates various thermodynamic variables such 

as pressure, density, and entropy, i.e.,p = p(r, s). For example, in the case of an 

12. See Appendix D: div(aA) = (Agrad)a + adivA. 
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ideal gas under constant entropy conditions, this takes the form plpa = (p/p0)r. 

However, rather than using the restrictions of a specific relation we shall 

proceed in a more general manner by first writing down the definition of the 

adiabatic compressibility in the form given by (1.2), viz: 

(1.2) 1 dp K~— — 
Po dp s 

This equation relates the change in density to the change in pressure of a given 

acoustic particle as it moves in the medium. Consequently, the rates of change 
of its pressure and density are related by: 

(!-24) Kp« ~ = ^, (Lagrange) 

which is the Lagrangian form. To transform this to the Eulerian form we again 
make use of (1.20) and obtain 

(1.25) dp —+ v-gradp = Kp0 —+ vgrad/7 (Euler) 

1.3.4 Navier-Stokes Equation [6,18-20] 

In deriving the Euler equation (see subsection 1.3.1), the assumption of an 

inviscid fluid enabled all the stress components acting tangentially to the 

surface of the moving fluid volume to be set to zero, leaving just the normal 

components. For a viscous fluid the presence of shear stresses can be accounted 

for through the addition of a viscous force term to the right-hand side of 
Euler’s equation (1.19), yielding 

(1.26) p^-Vg-V't. 

In this equation, t is a second-rank tensor known as the viscosity stress tensor, 

which has nine (six independent) components that can be written in Cartesian 

coordinates as: xxx, xyy, xzz, xxy = xyx, xxy = xyx, xxy = xyx. Moreover, V -x represents 

a divergence operation on the second-rank tensor x. It results in a vector whose 
components can be expressed in the matrix form: 

[V-T] 
~d_ d_ 

dy dz_ 
'tyx 

Tzx 

^xy ^xz 

'Cyy 'tyz 

^zy zz 

It can be shown that these components can be expressed in terms of two coef¬ 

ficients that characterize the viscous properties of the fluid: the shear viscos¬ 

ity p and the bulk viscosity pB. As its name suggests, the shear viscosity arises 

from velocity differences between adjacent fluid layers. The presence of veloc- 

ity gradients in the fluid means that adjacent layers move at differing speeds, 

and as a result there is a frictional drag force that causes energy to be 
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dissipated. The bulk viscosity accounts for the effects of energy loss during 

compression (see subsection 1.8.2) and enters into the stress tensor in a dif¬ 

ferent manner to the shear viscosity. For an incompressible fluid, only the shear 

viscosity is present. 
It can be shown that when the expressions for the stresses are determined 

and substituted into (1.19), the following compact form of the Navier-Stokes 

equation results:13 

(1.27) 

p~~ = -Vp + i fls + -^fl]v(V ■ v)-pV x (V x v) 
Dt V 3 ) 

= -Vp + ^pfl + |pjv(V-v) + pV2v, 

(Lagrange) 

where the second form follows through the use of a standard vector relation.14 

Conversion to the Eulerian form is again achieved through the use of (1.20): 

(1.28) 

dv 

¥ 
+ (v ■ V)v = -Vp + 

4 ^ 

j 7 
V(V • v)-pV x (V x v) 

= + +^p jv(V • v) + pV2v. 

(Euler) 

1.3.5 Small-Signal Approximations 

Obtaining linearized forms of the equation of state and the Navier-Stokes and 

continuity equations enables partial differential equations to be obtained that 

are much more amenable to analytic solution. To obtain these forms it is nec¬ 

essary to make some approximations concerning the relative magnitudes of 

the various terms appropriate to ultrasonic wave propagation. To do this we 

consider a homogeneous isotropic medium whose equilibrium density and 

pressure are p„ and pa, respectively. As an acoustic field propagates, local 

changes occur in the density, pressure, and particle velocity of the medium. If 

these are denoted by px(r:t) and v(r:i), and the equilibrium values of 

the density and pressure are p0 and p„, the instantaneous values can be 

expressed as [21]: 

p = p„ + pi, |pi|«p„ 

(1.29) P = Po + Pi, \Pi\«P»c2o 

v = 0 + v, |v|«c0. 

As will be seen, the three inequalities are the conditions needed to ensure that 

puPlf and v are quantities of the first order of smallness. 

13. In passing, it should be noted that for an incompressible fluid V(V-V) = 0, and conse¬ 

quently the middle terms on the right-hand side (1.27) and (1.28) are eliminated, making the equa¬ 

tions independent of the bulk viscosity. 

14. See Appendix D: V x (V x A) = V(V • A) - V"A. 



22 Biomedical Ultrasound 

Typically, the changes in density are small compared to pe, i.e. Ip,I « p0. For 

example, a 5 MHz plane wave in water with an intensity of lOOmW/cm2 can 

be shown to result in a fractional density change of only 24 x 10“6. However, 

for the same plane wave the corresponding pressure amplitude is 54 kPa, which 

is more than 50% of the equilibrium (atmospheric) pressure. It would there¬ 

fore seem that for the small-signal condition to be valid the signal intensity 

should be much smaller. To investigate this further, it is helpful to examine the 

relation between the density and pressure in more detail. 

For propagation under isentropic conditions in liquids and gases, a Taylor 

series expansion enables the relation between the excess pressure and excess 
density to be written as15 [21]: 

(1.30) Pi =PoC‘c 
Pi B 

Po +2!A 
f- 
' Po J 

+ ■ 
C 

3! A ' Po / 

+... 

where B/A, and CIA are nonlinearity parameters. If the inequality lp,l « pQ is 

accepted, by rewriting (1.30) in the approximate form p,/(poc02) ~ p,/p0 it can 

be seen that the small-signal condition for the excess acoustic pressure is that 

N « p0c02. For propagation in water, this requires that lp,l « 1.5 MPa, which 
is well satisfied for the above example. 

Proper justification of the linearizing approximations, as used in obtaining 

the first-order equations given below, requires careful consideration of the 

magnitudes of the higher-order terms. Insana and Brown [22] have addressed 

this issue in detail and point out that when the above equations are substi¬ 

tuted into Euler’s equation, the continuity equation, and the equation of state, 

unlike p0,p0 is absent. They provided details of the conditions required for dis¬ 

carding higher-order terms, a problem that appears to have been initially 
detailed by Eckart [23] in 1948. 

By substituting (1.29) into the continuity equation (1.22) and ignoring 
higher-order terms, we find that 

(131) dpi 
at 

p.v v«0. 

Similarly, the equation of state can be approximated by substituting (1.29) into 
(1.25) and making use of (1.31): 

(1.32) K 
dpi 

at 
+ V • v « 0, 

and the linearized Navier-Stokes equation (1.28) is: 

(1.33) 
dv 

Po~~~Vpi + 
4 3 

Pb + ~P 
V 3 , 

V(V • v)-pV x V x v. 

Now any vector can be decomposed into the sum of two vectors, one of 

which has zero divergence and the other whose curl is zero, i.e., v = vL + vT, 

15. See subsection 4.4.2 for further details. 
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where V x vL = 0 and VvT = 0. By substituting into (1.33), making use of the 

properties of vL and vT, noting that V(V • vL) = V2vL, and dropping the subscript 

on pj, two independent equations can be obtained that describe the behavior 

of the two velocity vectors, one of which is irrotational (curl vL = 0) and the 

other is divergenceless (div vT = 0): 

(1.34) 

Po 

Po 

dvi. 

dt 

5vt 

~aT 

= - Vp-t- 
4 3 

V 3 
V2vL, 

= -pV x V x vT. 

(a) 

(b) 

The first equation describes the propagation of longitudinal wave waves, while 

the second corresponds to shear wave propagation involving no pressure or 

density changes. The pressure term in (1.34a) can be expressed in terms of the 

particle velocity by first differentiating, making use of (1.32), and noting the 

relation in footnote 14 and that V x vL = 0, yielding 

(1.35) Kp0 
32Vl 

dt2 
’2- '-(■* -4")4(V2Vl). V2Vl + K 

dt 

Considerable simplification results if this can be expressed in a scalar form. 

Two such forms will be obtained: one in terms of the pressure, the second in 

terms of a scalar potential. 
By taking the divergence of (1.34a) and then substituting for the velocity 

terms by using both (1.32) and its gradient, the scalar equation for the pres¬ 

sure is found to be identical in form to (1.35): 

(1.36) = V2p + k(^s + | 
X 

M- 
/ 

d_ 

dt 
(VV). 

It can be readily shown that the density equation also has the same form. 

The form that we will frequently use can be obtained by using the fact that 

any irrotational vector can always be expressed as the gradient of a scalar 

potential. We shall define the velocity potential (J), bylh 

(1.37) v L = - grad(j) = - V(() , 

which, when substituted into (1.35), gives 

(1.38) 
32(|) 

Kp„ — = V2(j) + K| PB + -P 
dt2 3 dt 

(V2«)). 

A knowledge of the velocity potential enables the particle velocity vector to 

be found from (1.37), and hence the density and pressure can be obtained from 

(1.31) and (1.32). From this point onwards, unless ambiguity arises, the longi¬ 

tudinal particle velocity subscript L will be dropped. Of considerable value are 

16. The sign chosen is consistent with electrical engineering practice. Some authors prefer to 

use the positive sign, resulting in equations that differ from some of those that follow, through a 

change in sign. 
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the relations between the pressure and velocity potential and between the 

pressure and particle velocity. For an inviscid fluid, these can be obtained by 

substituting (1.37) into (1.34a) and setting the viscosity coefficients to zero, 
yielding 

(1.39) 

ckb 

Vp = 

1.4 Propagation in Liquid and Solid Media 

1.4.1 Phase and Group Speed17 

In considering the effects of propagation of longitudinal waves in an attenu¬ 

ating medium, it may be necessary to take account of the fact that the propa¬ 

gation speed is frequency-dependent. As will be seen, the presence of 

dispersion in a medium is intimately related to its absorption via the Kramers- 

Kronig relations (see subsection 3.10.1). For a broadband ultrasound pulse 

propagating in a dispersive medium, the effect of changes in the propagation 

speed on the spectrum of frequencies present can, apart from the effects of 

attenuation, cause the waveform to become progressively distorted. As a 

result, the “center of gravity” of the pulse may propagate with a speed that 

differs from that of its frequency components.18 It is therefore important to 

define carefully what we mean by the propagation speed. Sommerfeld and 

Brillouin contributed two fundamental papers on this topic in German that 

were published in 1914 and subsequently translated and published in a book 
by Brillouin [24], 

As its name implies, the phase speed of a wave is the speed with which any 

given phase of the waveform propagates to a new spatial location. For a simple 

harmonic wave the phase speed can be determined from the time taken for a 

given point or phase of the waveform to propagate a specified distance. Let 

us consider the harmonic wave given by (}) = cos(cot — kx) propagating in the 

x-direction, where k is the wave number and co is the angular frequency. After 

a distance of Ax and a time interval of At, the wave will have the same phase 

if, (cot — kx) = co(/ + At) — k(x + Ax), i.e., when Ax/At = co//c, and consequently, 

the phase speed can be defined as the ratio of the angular frequency to the 
wave number, i.e., 

17. Generally referred to as group and phase velocity, but because our discussion is restricted 
to scalar quantities, footnote 3 applies. 

18. This phenomena was well know in the 1800s, as evidenced by the remark by Lord Rayleigh 

in his classical paper of 1877 (Proc. Lond. Math. Soc., 9, 21, 1877): “It has often been remarked 

that, when a group of waves advances into still water, the velocity of the group is less than the 

velocity of the individual waves of which it is composed.” It seems likely that the concept was first 

formulated in the field of optics by Hamilton (Proc. Roy. Irish Acad., 1, 267 & 341,1839). 
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(1.40) Phase Speed: = co/k. 

In a dispersive medium is a function of frequency, causing the shape of 

a pulse to change with the propagation distance. To characterize the pulse 

propagation speed a particular feature of the pulse must chosen, but changes 

to this feature may make it difficult to arrive at an appropriate definition. The 

presence of precursors (also called forerunners) whose amplitudes may be 

very small and that, by definition, arrive ahead of the signal creates some dif¬ 

ficulties. The wavefront can be defined as the surface beyond which, at a given 

instant of time, the propagation medium is at rest [24, Chapter 1]. Alterna¬ 

tively, the wavefront speed can be taken as the speed with which the princi¬ 

pal part of the signal starts to arrive; this speed is sometimes taken to be the 

high-frequency limit of the phase speed [25]. 
The group speed is used to describe the speed with which a representative 

characteristic of the pulse moves. Lamb [26, pp. 381-382], has provided a useful 

and fairly intuitive definition for the group speed. He noted that the wave¬ 

length could be considered as a function of space and time, i.e., X = A.(v:, t). In 

the neighborhood of a point that travels with the group at a speed of cg, the 

representative wavelength can be taken to be constant. To find this speed we 

make use of (1.20), which can be expressed as D'k/Dt = d’k/dt + cgd\/dx = 0. It 

follows that the group speed can be defined by 

(1.41) 

Using this definition, the speed with which the center of gravity of the pulse 

propagates can be written as 

where the derivative is evaluated at the angular frequency corresponding to 

the center frequency of the group. In the absence ot dispersion, this equation 

reduces to the definition of the phase speed. Bearing in mind what the group 

speed represents, it is hardly surprising to find, as shown by Rayleigh [27], that 

it also corresponds to the speed with which the wave energy is propagated. In 

a medium whose group speed is always less than the phase speed, the medium 

is said to be normally dispersive. When the opposite is true, the medium said 

to exhibit anomalous dispersion. Soft tissue is anomalous, whereas bone 

appears to possess normal dispersion. 
From the above definitions, the group speed can be expressed in terms of 

the phase speed by substituting (1.40) into (1.41) and evaluating the total 

derivative, yielding 

(1.42) (a) 
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0 

(a) 

0 5 10 15 20 
Frequency, MHz 

Figure 1.8 Gaussian modulated sinusoidal pulse in the absence of any dispersion 
and attenuation. The parameters of the pulse, whose equation is given by (1.43), are: 
G = q, = 1500m/s,/c = coc/2jt = 10MHz and aro = 1 x lOY1. (a) Illustrating the time 
domain waveform at two spatial locations as it propagates along the x-axis with the 
Gaussian envelopes shown as curves, (b) Normalized frequency spectrum of the 
pulse as calculated from the real part of (1.45). 

where cc is the phase speed at the center frequency. This equation, which is 
sometimes referred to as the Rayleigh formula, shows that if the phase speed 
increases with frequency (it usually does in ultrasound), the group speed is 
greatei than the phase speed at the center frequency. An alternative form in 
terms of the wavelength X is 

(1.42) 
(b) 

An understanding of the group speed can be obtained considering the effect 
of dispersion on a plane wave pulse propagating in the x-direction. We assume 
that the wave consists of a Gaussian modulated sinusoidal pressure pulse that 
propagates without attenuation. The pulse is given by 

(1.43) 

where is the frequency dependent phase speed, 2^2/is approximately 
equal to the envelope full-width at half its maximum, coc is the center angular 
frequency, and vj(2.67fc) is the -6dB (0.5) fractional bandwidth.19 This equa¬ 
tion is plotted in Fig. 1.8 for the values given in the figure caption at two spatial 

19. The more general equation is:Fractional Bandwidth = o012A/21n[l0^20l/(or, where r, is 
the level relative to the maximum in dB’s. 



Introduction 27 

locations. Moreover, a snapshot of the pulse at a given instant of time reveals 

its Gaussian spatial distribution. 
Since the waveform can be represented by the real part of 

(1.44) p(x:t) = p0 

the frequency spectrum can be found by evaluating its Fourier transform °, 

i.e., 

p(x:(ti) = p0 J e 

i mc \ 

'iwdt 

(1.45) p(x:(o) = p0 
e-jxw/c/sf e—(co—cOc f /2d 

which is also a Gaussian function. In the absence of dispersion (q = q), the 

frequency spectrum is unchanged as the wave progresses. If q = q(to), then a 

Taylor series expansion about the center frequency cofl can be used to express 

the wave number (/q = to/q) as 

to,, (to — coc) , v2 
« — + --— + b((£>-(£>c) , 

cc cg 

where cg is the group velocity as defined in (1.41) and b - [d2(G)/q)/rfar]a)=u)c. 
By substituting this expression into (1.45), the frequency spectrum of the 

pulse is 

p(x:(£>) = p0 

The time domain waveform can be obtained by taking the inverse Fourier 

transform of this, i.e., by evaluating, p(x:t) = — J p(x:t)e'",ld<s). By substitut¬ 

ing the above expression for p(x:t) this integral can be written as 

p(x:t) dco. 

which evaluates20 to 

20. See Appendix B for a summary of Fourier transforms. The integral can be evaluated with 

the help of the identity: J" exp(Ax - Bx2)dx = -^[b exp{A2/4B). 
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(1.46) PM = -, , 
Vl + 2/too; 

If the wave number (A^ = co/q,) varies linearly with frequency, i.e., b = 0, this 
reduces to 

;coc /—— 

C ' Cc,C 

(1.47) p{x:t) = Poe*e^\-^'-^ 

which has the same form as (1.44). For the case of b = 0, it can be seen from 

Fig. 1.9a that the Gaussian envelope moves at the group speed cg = l,510m/s 

(assuming cg > cc) and, because the pulse width is determined by om, it retains 

the same shape as it propagates in the medium. But for cc i1 cg, the waveform 
(as opposed to the envelope) seen at various locations will differ. 

On the othei hand, if the wave number varies nonlinearly with frequency 

and b ^ 0, the real part of (1.46) must be evaluated to obtain the waveform. 

Examination of this expression shows that the pulse width increases with 

distance from the origin. It is caused by the differing phase speeds of the 

various frequency components so that they arrive at a specific x-location with 

differing phases from that at another location. The stretching of the original 

pulse shape caused by the effects of this form of dispersion can be seen in 
Fig. 1.9b. 

As discussed in section 1.8 and more completely in section 3.9, absorption 

and dispersion are intimately connected: in the absence of any absorption, 

— 6.62 )J,s —! 

(a) 

(b) 

Figure 1.9 Effects of dispersion on a Gaussian modulated sinusoid:f. = (oc/2n = 
10MHz, = 1 x 107s cg = 1510m/s, cc = 1500m/s. The waveform and envelope are 
shown for two spatial locations, (a) Calculated from (1.47) for no shape distortion 
b - 0; (b) calculated from (1.46) for b = 8 x 10“13. 
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there should be no dispersion. At frequencies in the MHz region and below, 

the absorption of pure water is very small, and as a result the dispersion is 

either zero or too small to be of practical significance. On the other hand, over 

the diagnostic frequency range, the attenuation of soft tissue is considerably 

higher, and the increased effects of dispersion may have to be taken into 

account in predicting the propagation of wide-band pulses. For some media 

(Table 1.2) the phase speed depends logarithmically on frequency /, i.e., cp = 

cp0 + A:ln(/), where k and cpo are constants, so that the change in speed 

with frequency is given by dcp/df = k/f. It will also be noted in Table 1.2 that 

for bone, whose the attenuation can be an order of magnitude higher than that 

for soft tissue, the phase speed can decrease with increasing frequency. For 

example. Wear [28] reported that phase speed measurements on 24 human cal¬ 

canei (heelbones) showed a decrease in speed as the frequency was increased 

from 0.2 to 0.7 MHz, with an average decrease of 9 m/s over this range. 

1.4.2 Longitudinal Wave Speed in Fluids and Gases 

Plane Waves In an Inviscid Fluid 

For an inviscid medium, the velocity potential is given by solutions to the wave 

equation 

d2(t) rv 

(1.48a) V^-Kp* — = 0 

subject to the proper initial and boundary conditions. 
In Cartesian coordinates and in the absence of losses, a plane longitudinal 

wave propagating in the direction of the unit vector k in an infinite medium 

and having an arbitrary time dependence can be written in the functional 

form 

Table 1.2. Dispersion of Ultrasound Speed in Various Biological Media 

dcp/df Comments & 

Medium cp(f), m/s (m/s)/Hz Freq. Range Reference 

Bone, human 

calcaneus 

= 1522- 18 x 

10 -y 

-18 x lO-6 0.2-0.7 MHz Average change 

measured on 24 

autopsy samples 

[28] 

Human 

hemoglobin 

= 1523.83 + 

0.4013 ln(/) 

= 0.4013// 0.3-10 MHz Aqueous solution, 

16.5g/100mL, 

measured 15°C 

[29] 

Fresh canine 

lung tissue 

644 @ 1 MHz 

1472 @ 7 MHz 

= 138 x 10'6 1-7 MHz -60% air, 35°C: values 

given for specimen 

with p„ = 0.4g/cm3 

[30] 



30 Biomedical Ultrasound 

Figure 1.10 The wavefront for a plane wave is shown as it progresses in the 

direction of the unit vector k, which is normal to the surface. The distance of the 

surface from the origin is k r, where r is any point on the surface. 

(1.49) = 0(cof-k • r), (a) 

where r is a position vector from the origin to any point. In addition, it can be 

readily verified^1 that c0 is the small-signal propagation speed. Now k-r = con¬ 

stant is the equation of a plane, i.e., all values of r that satisfy this equation 

must lie on this plane (Fig. 1.10). Consequently, a constant value for k-r in 

(1.49a), describes a planar surface upon which the velocity potential is con¬ 

stant at any fixed time. For the particular case of a simple harmonic wave, 
(1.49a) can be written in the complex form 

(1-49) §(r:t) = $0eik{cot-'lI\ (b) 

where k - colcQ. 

By substituting (1.49a) into (1.48a), it can be shown [31, pp. 65-66] that this 

is a solution of the homogeneous wave equation and that the propagation 
speed is given by 

(1.3) 

. 21- The velocity potential will have the same value at a subsequent time t + At if ca(t + At) - 

k • (r + Ar) = c0t - k ■ r, i.e., if ca = k ■ Ar/At. But k ■ Ar is simply the distance moved by the wavefront 
in a time of At, and therefore c„ is the speed of propagation. 
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as previously noted. Consequently, (1.48a) can be written as 

(1.48b) V>- 
1 320 

'c2^2 
= 0. 

In Cartesian coordinates the 1-D form of this wave equation is 

(1.50) 
32<b 1 d20 
dx2 cl dt2 

whose solution for an arbitrary time dependence can be expressed as 

(1.51) 0(x:f) = (|)i (cDt -x) + 02 {cat + x), 

where the arbitrary functions 0! and 02 represent plane waves in the positive 

and negative x-directions, respectively. For example, the function 0t could 

consist of a pulse such as: Fx(c0t - x) - di{cat - x)3C(c0f - c0t - x) where 3C is a 

Heaviside function22 and t is the pulse duration. To show that (1.50) is satis¬ 

fied by both 0! and 02, we proceed as follows. 
Suppose that only the positive going wave 0+(x;f) = 0i(cat - x) is considered. 

Differentiating, first with respect to t and then with respect to x, yields 

(1.52) = c0§[(c0t-x) ^- = -0j(cor-x), 
dt dx 

where the prime indicates the derivative with respect to the argument. Elim¬ 

inating 0i between these two equations yields the reduced wave equation given 

by 

(1.53) 
d0+ _ 30+ 

dt ° dx 

Similarly, for the negative going wave, 0 (x,f) = 02(cof + *) the reduced wave 

equation 

(1.54) 
30 _ 30 

~A~~c°~d7’ 

is obtained.23 If both of the equations in (1.52) are again differentiated and 

the function is eliminated, (1.50) is obtained. Similarly, (1.50) is obtained if the 

same procedure is conducted for the negative going wave, i.e., both 0! and 02 

satisfy the wave equation, as do the sum of these functions. But when just a 

unidirectional plane wave is considered, either of the reduced wave equations, 

(1.53) or (1.54), would suffice. 

22. Defined by: 3C(r) = 1 for f > 0, 3C(0) = 1/2, and 3C(0 = 0 for t < 0. 

23. A much simpler way of obtaining the reduced equations is to re-write (1.50) in the oper¬ 

ator form- ( — -c0 — T— + c0 — Wo. Since either of the operator terms in parenthesis can be 
{dt dx ){dt dx J 

zero, (1.53) and (1.54) are obtained. 
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Harmonic Waves in a Viscous Fluid 

If we consider a harmonic wave such that the velocity potential is given by 

(1-55) <()(r:r) = O(r:co)e/C0', 

then substitution into the wave equation for a viscous fluid (1.38) leads to the 
Helmholtz equation 

(1.56) V2O + AfO = 0 

where k-k/l + /C0K(|iB + |p) is a complex wave number in which k = co!c0 

is the wave number and ca = l/VKp„. If the harmonic wave propagates in a 

medium whose viscous loss is relatively small, the complex wave number can 
be expanded in a binomial and written as 

k~k 
/(OK 

M-s + — 
V j 

-k- ja. 

where a = 
co" 

2p0c0 

( 4 V 
M- b + — p J is the amplitude attenuation coefficient (see section 

1.8 and subsection 3.10.5). If a sinusoidal source exists on the plane x = 0, a 

plane harmonic wave will be propagated in the positive and negative x- 

directions. For the positive x-wave the approximate steady-state velocity 
potential can be expressed as 

<j)(x:r) = <\>ae cos(cot-kx), 

which describes an attenuated plane harmonic wave. 

The pressure can be readily related to the velocity potential. By substitut¬ 

ing V-v = -V-Vp and (1.55) into (1.31), we obtain K —= V2Oey“ which, with 
dt 

the help of (1.56), yields k -~--k OfT®'. But since p is also sinusoidal and can 
at 

be written as p = pe'(0t, where p is the pressure phasor, it follows that 

(1-57) P = jk o/(cok). 

It follows that in the absence of viscous loss, the pressure is exactly 90 degrees 

out of phase with the velocity potential, a relationship that is true for plane, 
spherical, and cylindrical waves. 

By taking the gradient of (1.57) and noting the definition of the velocity 
potential, the particle velocity phasor can be expressed as 

(1-58) \ = j(£>Kp/k~. 

Both of the prior two equations demonstrate that the phase differences 

between p, v, and 9 depend on the viscous loss through the complex wave 

number k. For spherical and cylindrical waves, in contrast to plane waves, the 
phase differences between p and v is position-dependent. 

Foi an inviscid fluid medium, the relation between the particle velocity and 

pressure for a plane wave takes on a very simple form. If the pressure phasor 
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is given by p(x:go) = pQe ’kx, the velocity phasor can be found by substituting 

into (1.58), noting that k-k and that c2 = l/(Kp0), yielding 

(1.59) \ = xp/(c0p0) 

for a plane wave traveling in the x-direction. Consequently, for an inviscid 

medium the pressure and velocity are in phase. 

Plane, Spherical, and Cylindrical Harmonic Waves in an 
Inviscid Fluid 

In Cartesian coordinates the Helmholtz equation for an inviscid fluid is 

H.60) 
320 320 320 

dx2 dy2 dz2 
+ k2<& = 0. 

A solution is O = <\>0e~ikx, where <j)0 is the velocity potential amplitude. Conse¬ 

quently, a solution to the wave equation is O = <j>0e';fe, which describes a plane 

harmonic wave traveling in the x-direction. Expressions for the pressure and 

velocity can be obtained from (1.39), the density from (1.31), and the particle 

displacement from 3^/3x = vx. Table 1.3 shows the various expressions 

expressed in real form. 
In spherical coordinates (r,0,(p), the Helmholtz equation is 

(1.61) 
r2 dr 

= 0 

a ( 2 ao' 
r 

V 

i_a2o 
dr) r2 sin 0 39^ dO J r ~sin~0 3(p_ 

+ 
a( . Oao) 

sin0-— + + /c2O(/\0,cp:co) 

If the wave is spherically symmetrical, i.e., O = 0(r), then (1.61) reduces to 

(1.62) 
320 

~dr2 

2 ao \ a 
H-h /c‘-O(r:0)) = 0. 

r dr 

The simplest solution corresponds to a spherical wave traveling in the posi¬ 

tive r-direction and is given by O = ^e~ikr, or <j> = — ei{w,~kr). A sphere whose 
r r 

surface is vibrating sinusoidally in the radial direction can produce such a 

wave. Listed in Table 1.3 are the real parts of the velocity potential, together 

with expressions for the other quantities derived from it. 

Finally, in cylindrical coordinates (r, 0, z), the Helmholtz equation is 

(1.63) 
i a f _ ao \ 
r dr V dr J 

i 32o a2o 
r2 d62 dz2 

+ k20(r, 0,z:to) = 0. 

Here again we shall assume that the wave is cylindrical^ symmetrical, i.e., O 

= O(r), which enables (1.63) to be reduced to 

320 

'dr2 
+-+ Ar0(rco) = O. 

r dr 
(1.64) 
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It can be shown [6, pp. 356-357] that a solution to this equation for an outgo¬ 

ing wave of the lowest order is given by 

0(r: co) = ®0 [J0 (kr) - jSM0 (kr)] 

where J0(.) is a cylindrical Bessel function of order zero, J%(.) is a Neumann 

function of order zero, and is a constant. As kr —> 0, 2N~0(kr) —» -«> and JQ(kr) 

—> 1. On the other hand, it can also be shown [6] that if kr > 1, i.e., r > A,/2ti, 

then a good approximation24 to this equation is O = y]2/(Kkr)e~ikr, which 

enables the outgoing wave time-dependent velocity potential to be written as 

V r 

where = ~j2/(nk). Such a wave can be produced by an infinitely long cylin¬ 

drical shell whose surface is vibrating harmonically. Using this expression, the 

other related quantities can be readily obtained; these are also listed in 

Table 1.3. 

Longitudinal Wave Speeds in Biological Media 

Knowledge of the propagation speed in biological media is of considerable 

practical importance. A variety of methods are available for measuring 

samples, and these have been described and critically reviewed by Bamber 

[32] , Biological specimens are frequently far from ideal in terms of their shape, 

and achieving a good accuracy can require considerable care. One of the sim¬ 

plest techniques is the substitution method, based on observing the change in 

transit time of a short ultrasound pulse when the specimen is removed from 

the propagation path and is replaced by a fluid whose speed is known. Because 

the speed in pure water as a function of temperature has been accurately 

determined (see Fig. 1.5), it is often used as a reference. 
Summaries of the results reported in the literature have been published 

from time to time [32,35-37], These indicate that a relatively wide range of 

values can be obtained due to variations resulting from differences in pre¬ 

paration, differing mammals, temperature, and other factors. The results 

summarized in Fig. 1.11 clearly show this variability and also that the range of 

speeds for soft tissue is relatively narrow. 
Speed measurements on extracted tissue samples could differ significantly 

from in vivo measurements [33]. Estimating the in vivo speed with sulficient 

accuracy so that the data could be used diagnostically is a much more difficult 

challenge. Such information could be of value for enabling corrections to be 

made for the distortions that arise from the inhomogeneous nature of the 

media as well as the possibility that the small differences in speed could enable 

tissue abnormalities to be detected. Work toward this end has been reviewed 

[33] and recent studies [34] using pulse-echo systems have indicated that 

24. For kr = 1 the error is 3.6%: as kr increases the error rapidly reduces. 
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Figure 1.11 Summary of speed of sound measurements in various biological media 

generally made in the temperature range 20 to 37°C and over the frequency range 1 

to 10MHz. The original sources from which the data were obtained are given in [32], 

(Reproduced, with permission, from Bamber, Ch. 5, in Physical Principles of Medical 

Ultrasonics, © 2004 John Wiley & Sons Limited.) 

measurements could be achieved with an accuracy of around 0.5%, corre¬ 
sponding to an uncertainty in speed of approximately 7.5 m/s. 

1.4.3 Compressional and Shear Wave Propagation in 
Solids [38,39] 

Unbounded Propagation in Isotropic Solids 

In describing wave propagation in an inviscid liquid, just a single elastic 

modulus was needed: the compressibility. For isotropic solids, shear stresses 

will be present that cause a deformation in shape, making the analysis rather 

more complex. It can be shown that for such a solid, the effects of these shear 

stresses on wave propagation can be accounted for by one additional elastic 

modulus. A much more complex situation arises with propagation in cancel¬ 

lous bone, whose network of bony plates and columns are filled with fat, bone 

marrow, and blood. In addition to a shear wave, two compressional compo¬ 

nents can exist: a fast wave associated with propagation in which the soft 

medium and rigid structures move in phase and a slow wave in which they are 

out of phase. Analysis [40] of propagation in cancellous bone is often based 

on a theory originally developed by Biot [41,42] in 1956 for predicting prop¬ 

agation in fluid-saturated porous rocks. Because of the complexities of this 
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analysis we shall restrict our discussion to propagation in homogeneous 

isotropic solids. 
Traditionally, the analysis of wave propagation in solids is generally con¬ 

ducted by introducing two elastic constants called the Lame coefficients whose 

MKS units are Pascals. The first Lame constant will be denoted by Xe, and the 

second by p(.The latter is the coefficient (or modulus) of rigidity, often called 

the shear modulus, as defined in (1.12). An alternative pair of elastic constants 

is Young’s modulus E and Poisson’s ratio a, as in (1.6) and (1.7), respectively. 

These are related to the Lame constants by 

(1.65) E = 2pf (1 + o), and 2a = /(Af + p<>) for a < i/2. (a) 

Note that for a liquid, pf 0, while for a perfectly rigid solid, p<. -> A further 

alternative pair of constants is Poisson’s ratio c and the compressibility k 

(either the adiabatic or isothermal), and these are related to the Lame 

constants [38] 

(1.65) k = l/(Xf + 2\h 3), and 2a = 2w/(A,f + pf) for o < i/2. (b) 

In terms of the Lame coefficients, it can be shown that for an isotropic solid 

the equation describing the time and spatial variation of the particle dis¬ 

placement is given by 

(1.66) p 0 aft 
ar 

a) 
iL + p- 

v at j 
V ^ + A,; + |i^ + (h«+h/3)T|v(V'$). dt) 

(a) 

in which £(r:t) is the particle displacement vector and p and pB are the shear 

and bulk viscosity coefficients (MKS units of Pa.s). In the absence of viscous 

loss this simplifies to 

(1.66) p,3i = H,VJ5 + (V + H,)V(V 5) 0>) 
at 

If this is written out in full for each of the three Cartesian components of the 

displacement vector we obtain 

Po 

Po 

d% 

dt2 

dt2 

d% 

dt2 

u J 
rd% d% d%) 

j> + (A,f +p<)| - PC 
[ dx2 dy2 dz2 J 

-u J 
■3% 3%+ 3%\ 

> + (A,/- + p/-)| - pc 
, dx2 dy2 dz2 J 

= P f< 
(3%+3%+3%' 

[ dx2 dy2 dz2 . 
J> + (A,* + p*)j 

[dzdx dzdy 

In the case of plane waves traveling in the z-direction, all the partial deriva¬ 

tives with respect to x and y vanish, leaving 

d% 

dt2 
[If 

d% 

dz2 
Po 

d% d% 

dt2 
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The first two equations describe displacements at right angles to the propa¬ 

gation direction and correspond to two polarized transverse waves with prop¬ 

agation speeds of cT- VpT/Po"- The third equation describes a longitudinal 

wave with a speed of cL - + 2pf )/p0. 

An equation for the particle velocity vector v can be found by first differ¬ 

entiating (1.66a) with respect to time, substituting v = dfydt, and then using a 
standard vector relation.14 These steps yield 

P. 

(1.67) 

32v 

dt2 

(ke + 2p() + [ pB + — (i 
j J ot 

V2v + (Xe -i- Pf) + 
1 ■) 

j y 

a_ 

dt 
Vx Vx v. 

The same procedure can now be used for transforming the linearized Navier- 

Stokes equation into two independent equations (see (1.33) and (1.34)). 

Because the velocity vector can be written as v = vL + vT, in which V x vL = 0 

and V-Vj = 0, it can be readily be shown that (1.67) can be expressed as 

(1.68) 32vl 

dt2 
= (^ + 2p,)V2vL + fis + —M- 

V 3 y 
f(V>vL) (a) 

(1.68) Po = !tV2vl -p |-(V2vt). (b) 

These two independent equations25 describe the propagation of longitudinal 

and transverse (shear) waves in an isotropic viscous solid. For an inviscid 
medium these reduce to 

(T69) ^L = c2V2Vl and ^t=c2V2Vt5 

in which the propagation speeds are 

cl = ^(Xf + 2\ie)/p0 and cT = Vjr/po • 

With the help of (1.65) the speeds can also be expressed in terms of Young’s 
modulus and Poisson’s ratio: 

(1-70) cL = J\, + 2n,)/p„= „£(1~C) 
I p0(l-2o)(l + o) 

so that the ratio of the two speeds can be written as 

and Cj = — = 
Po V 2p0(l + a)' 

(1-71) 
cT _ j0.5-a 

cL * 1 — ct 

Fig. 1.12 shows how the ratio CtIcl varies with o. For many solids Poisson’s 

ratio is roughly a ~ 0.33, and consequently cL/cT ~ 2, i.e., the shear wave speed 

25. It should be noted that for a liquid, = 0, so that k = 1 IXe and as a result (1 68a) and 
(1.68b) reduce to (1.35) and (1.34b) respectively. 
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Figure 1.12 Propagation speed ratios shown as a function of Poisson’s ratio. Values 

for typical solid materials are given with the longitudinal speed, in km/s, in 

parentheses. Subscript notation used: R = Rayleigh, L = Longitudinal, T = Transverse 

(shear), E = Extensional. Based on a similar figure by Kino [16]. 

is approximately half the compression wave speed. On the other hand, soft 

biological tissues can be considered to behave as a viscoelastic medium with 

a shear modulus (p€) that is typically five or so orders of magnitude smaller 

than the bulk modulus ( 1/k). As a result, Poisson’s ratio approaches 0.5, so that 

from (1.65a) Young’s modulus, E ~ 3p< and from (1.71) cL » cT. Whereas lon¬ 

gitudinal speeds may be around 1500 m/s, the shear propagation speed may be 

in the order of a few meters per second. Thus, at frequencies in the MHz range 

the shear wavelengths are in the order of tens of microns, but at much lower 

frequencies (e.g., 100 Hz), they approach the dimensions of tissue organs. This 

is important in elastography, where shear wave propagation can be used to 

probe the characteristics of tissue (see subsection 8.8.3). 

Propagation in a Bounded Solid Isotropic Medium: 

Rayleigh Waves 

If we consider a semi-infinite solid medium, three conditions exist for the 

medium on the other side of the boundary: (i) vacuum, (ii) liquid, or (iii) a dif¬ 

ferent solid. The boundary conditions that must be satisfied for each case are 

(i) for a vacuum (free surface condition), all stresses at the interface must 

vanish; (ii) for a liquid-solid interface, the fluid pressure (stress) must be equal 

to the normal component of the stress just within the solid, the tangential stress 

in the solid must vanish, and the normal component of the velocity must be 

continuous; (iii) for another solid, all stress and velocity components on the 

boundary must be continuous. 
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For case (i), in which a vacuum (or a gas) exists above a solid surface, 

Rayleigh waves can be generated through the interaction of shear and 

longitudinal waves at the common boundary. Specifically, it can be shown that 

the solution of (1.69), with the condition that all stress components must 

vanish on the boundary, results in a secular eauation for the speed cR given by 
[5,44] 

(1.72) (—Y - 8f—1 
4 r \2 

3-2 ' Ct_n 
2' 

-16 1-2 

2' 

\CT J V Cj y \cT) k. Cl > \CL ; 
= 0. 

It can be shown that there is only one real root, corresponding to the 

Rayleigh wave velocity, and for the range of Poisson’s ratio from 0 < a < 0.5, 

this satisfies the condition 0.8743 < cRlcT < 0.9554 (see Fig. 1.12). Such a wave 

consists of longitudinal and transverse waves that are coupled by the 

common boundary. If the solid extends from the plane y = 0 to y ~ °°5 and a 
Rayleigh wave propagates in the x-direction, then the particle displacement 

will have components in the x- and z-directions, corresponding to the longi¬ 

tudinal and transverse components. As a result the net particle motion is 

an ellipse and the displacement amplitudes of the two components decay 

with depth from the interface and their amplitudes become quite small at a 

depth of 1 (Rayleigh) wavelength lR. This behavior is illustrated in Fig. 1.13, 

where it can be seen that the direction of polarization reverses at about 
0.2V 

A more complex situation exists if the medium above the solid is a liquid 

[44], A pure surface wave (Stoneley wave) can always exist, and in addition, 

depending on the properties of the media, a complex “leaky” Rayleigh wave 
may also be present [45]. 

Figure 1.13 Particle displacement components parallel to and normal to a solid-gas 

interface as a function of the distance from the interface expressed in terms of the 

Rayleigh wavelength kR. Based on a similar figure by Dransfield and Salzmann [43], 
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Extensional Wave Propagation in a Thin Isotropic 
Semi-Infinite Rod 

In considering acoustic wave propagation along a semi-infinitely long rod or 

wire, in general it is necessary to account for the presence of both shear and 

longitudinal components, which will be coupled through their interaction on 

the boundary. If the diameter is small compared to a wavelength, shear waves 

can be neglected. This situation corresponds to the thin waveguide [5, pp. 39 

& 46; 18, pp. 427-430] approximation and, as previously noted, the wave is 

sometimes referred to as an extensional wave [16, pp. 14 & 89]. For this type 

of wave there will be no stress component perpendicular to the axis, just an 

axial component. Propagation of this wave causes changes in the wire diame¬ 

ter, which should be contrasted with the case of a plane wave in an infinite 

medium where no such changes are present. This suggests that the appropri¬ 

ate elastic constant is Young’s modulus, so that the speed of propagation is 

given by 

(1.8) cE = (F/p)1/2, 

which is less than the longitudinal speed cL as given by (1.70). From (1.70) and 

(1.65) the ratio is given by: 

(1.73) 
(l + a)(l-2c) 

(1-a) 

1/2 

from which it follows that for 0.5 > o > 0, (cE/cL) lies between 0 and 1. In addi¬ 

tion, the ratio of the transverse to the extension speed can be found from (1.73) 

and (1.71) as 

_(l + c)(l-2o)_ 
(1.74) 

Ct 

Cf 

Both (1.73) and (1.74) are plotted in Fig. 1.12. 

1.5 Impedance, Energy Density, Intensity and 

Radiation Pressure 

1.5.1 Specific Acoustic Impedance, Characteristic 

Impedance, and Acoustic Impedance 

The concept of impedance is particularly valuable in characterizing wave prop¬ 

agation in the presence of boundaries between media with differing acousti¬ 

cal properties. For a harmonic wave of angular frequency co at a spatial location 

r, the specific acoustic impedance can be defined by 

(1.75) , Specific Acoustic Impedance 
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where p(co) is the pressure phasor and v(to) is the particle velocity phasor. The 

term specific is used to draw attention to the fact that it involves the force per 

unit area rather than just the total force acting on a specified area, which is 

used for defining the acoustic impedance (see below). In general, the specific 

acoustic impedance is frequency- and position-dependent and, because the 

pressure and velocity can differ in phase, it is a complex quantity. The units 

for Z are Rayleighs (Rayl), where IRayl = 1 Pa.s/m and the dimensions are 

[ML“2T“1]. Typical values are in the 106Rayl range, i.e., in MRayl. 

The simplest situation occurs with the propagation of a plane wave in an 

inviscid fluid medium. By substituting the pressure-velocity relation given by 
(1.59), into (1.75) we obtain 

(1.76) Z-Z0 = PoCo , Characteristic (Acoustic) Impedance 

where Z0 is known as the characteristic (acoustic) impedance of the medium. 

The term characteristic is used because Za is the vital characteristic of the 

medium. In a viscous medium, it follows from (1.58) that there will be a phase 

difference between the pressure and velocity vector, and as a result Z is 
complex and Z * Zc. Typical values are given in Table 1.4. 

Directly analogous to the electrical impedance, an acoustic impedance can 
be defined by 

(1.77) Acoustic Impedance 

where T(r:co) is the total acoustic force acting on a specific area. The acoustic 

impedance has MKS units of Pa.s and dimensions of [MLr’T-1]. 

For a spherical or cylindrical wave propagating in an inviscid medium, close 

to the origin a phase difference will exist between the pressure and velocity, 

and as a result the specific acoustic impedance is position-dependent. At large 

distances from the origin, where the wave becomes pseudo-plane, Z = Z„. 

Equations for the specific acoustic impedance for plane, spherical, and cylin¬ 
drical waves are also given in Table 1.3. 

1.5.2 Energy and Energy Density 

Energy will be associated with wave propagation in a medium. If we consider 

an arbitrary volume V through which a wave is propagating, the total energy 

Table 1.4. Characteristic Impedances of Selected Media 

Medium Z0, MRayl Medium Z0, MRayl 

Aluminum 17.21 Dry air (1 atm) 0.000413 
Steel (mild) 44.38 Water, 20°C 1.479 
Tungsten 101.0 Blood, whole human 

36°C, Hct = 40% 
1.67 

PZT-5A (ceramic) 33.7 Bone, fresh bovine phalanx 7.9 
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{E(r:t), Joules) of this volume will be increased due to the kinetic and poten¬ 

tial energy of the acoustic particles within it. By determining the energy con¬ 

tained in a small element of volume within V, then the energy density )e(r:f), 

Joules/m3} at this location can be obtained. Evidently, integrating the energy 

density over the entire volume V enables the total eneigy to be obtained. In 

general, both the energy density and total energy are time-dependent quanti¬ 

ties. In what follows, a simplified approach is given for obtaining equations 

that describe these two quantities. 
If we consider a small element of volume dV, the kinetic energy at a given 

instant of time t is given by 

(1.78) 5EKE = ^-p0|v|" dV. 

The potential energy 5Epe, can be determined by obtaining an expression for 

the work done by the pressure in changing the element of volume from its 

equilibrium value to the value that exists at the time t. To obtain this expres¬ 

sion we proceed as follows. 
Consider an equilibrium element of volume Ve. If the element changes to 

a volume Vf=Ve + AV, then the work done to produce this change under adi¬ 

abatic conditions by a pressure change from the equilibrium pressure p0 to pa 

+ Ap at time t is given by WD = [ pdV. By using the definition for adiabatic 
"Ve 

p 
o KpVdp. For 

a small change in volume, WD « -kV pdp = -kV By applying this rela¬ 
bel 2. 

tion to the volume element dV, noting that Ap is the small-signal pressure p, 

that K = l/(p0cl) and that WD = -8Epe, we obtain 

(1.79) bEKE = -^-jdV. 
2p 0Co 

Consequently, the total energy stored at a given time t in the volume dV is 

the sum of (1-78) and (1.79), i.e., 

5 E = 5Eke + 8Epe = + 

By integrating this over the total enclosed volume, the total instantaneous 

energy is given by 

(1.80) P.M + 
poCo 

dV. 

From this it can be seen that the instantaneous energy density e(r:/) is 
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As an example we shall consider a plane harmonic wave that is traveling 

in the x-direction and will obtain the time-averaged energy density. For a sinu¬ 

soidal pressure given by p(x:t) = pucos(cor - kx), then v(x:t) = (p0/Z0)cos(tor - 

kx). Substituting these into (1.81) and averaging over the period 'T by using 

£ = £.(x:t)dt, it can be readily shown that 

(1.82) £ - £/>e + &ke 
Pi 

2p 0cl 

1.5.3 Energy Flux and Intensity 

By differentiating (1.80) with respect to time and making use of (1.3), (1.32), 

and (1.34a) and ignoring viscous damping, we find that the total energy flowing 
out of V is given by 

w(t) = = JJJ (v • Vp + pV ■ \)dV = JJJ V(p\)dV, 
V V 

where use has been made of a standard vector relation.12 Thus, V(p\) is the 

rate at which energy leaves an element of volume. Because the volume inte¬ 

gral can be transformed to an integral over the surface S0 that bounds V, the 
energy flow can be expressed as 

(1-83) W(r) = JJ(pv)-ndS, 
So 

where n is a unit vector normal to the surface pointing in an outward direc¬ 

tion. From this equation it can be seen that the vector quantity (p\) is the 

instantaneous energy flow per unit area out from a surface element dS. 

This can be defined211 to be the instantaneous intensity (watts/m2) vector I(r:r), 
i.e., 

(1.84) I(r:0 = Pv 

If a harmonic wave of period T4s considered, then the time-average intensity 

vector I (a real quantity) can be found from I(r:co) = f1 pydt. By express¬ 
ing . “I Jo 

p and v in the standard complex form and then evaluating the integral, it 
can be readily shown that 

I(r:co) = p\ = Re[p(r)] x Re[v(r)] x e2jv>' 

(1.85) = ^Re[p(r)i*W]5 

where * indicates the complex conjugate, Re{.) denotes the real part, and the 
underlined quantities are phasors. 

26. Many authors define the intensity as a time-averaged rather than an instantaneous 
quantity. 
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In the absence of any attenuation, time-averaged power from a source of 

ultrasound can be found by integrating the intensity vector over any surface 

that encloses the source, i.e., 

(1.86) W =<J£ l(r)ndS. 

In the presence of attenuation, the surface Sa must be sufficiently close to the 

source so that the intensity is not significantly reduced. 

If we consider a plane harmonic wave traveling in an inviscid fluid in the 

direction n, substituting (1.59), i.e., v = np/(c0p0) into (1.85) the time-averaged 

intensity can be written as [46] 

(1.87) I(r) = -W—n, or as I(r) = ^-p0cD|vf n. 
2 P o C o ^ 

We are now in a position to express the various physical quantities associ- 

ated with the transmission of a plane harmonic wave in a fluid medium in 

terms of the average intensity /, and these are shown in Table 1.5 for water at 

37°C, an average intensity expressed in watts/cm2 and for a frequency of / 

(expressed in MHz). 

1.5.4 Radiation Pressure 

When ultrasound is incident on a body consisting of medium that absorbs, scat¬ 

ters, or reflects the radiation, a force will be exerted that consists of two com¬ 

ponents. The first is an oscillatory component with a time-average of zero, 

arising from time-varying acoustic pressure acting on the body. The second is 

a steady component known as the radiation pressure. The presence of radia¬ 

tion pressure is an inherent property of the nonlinear relation between pres¬ 

sure and density in the propagation medium. Thus, for a medium that behaves 

in a perfectly linear manner, there would be no radiation pressure. Two types 

of radiation pressure are generally identified, depending on the measurement 

conditions: the Langevin radiation pressure and the Rayleigh radiation pres- 

Table 1.5. Amplitudes for a Plane Harmonic Wave Propagating in Water at B7°C for a 

Time-Averaged Intensity / (W/m2) at a Frequency f (Hz) 

Amplitude Equation @ 10mW/cm2, 5.0MHz 

Pressure, p0 p0 = 1.734 x 103V7 Pa 0.1734 x 105 Pa 

Particle displacement, t,0= 183.7 x10h7"1V7 m 3.673 x 10"i0m 

Particle velocity, va v„= 1.154 x10"3V7 m/s 1.154cm/s 

Acceleration, a„ a0 = 7.248 x10-3/V7 m/s2 3.624 x 107cm/s2 

Fractional density change, Ap/p0 Ap/p0 = 7.646 x 10'7 V7 7.646 x IQ-6 
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sure. Radiation pressure will also be present within a fluid medium and will 

cause the fluid to be displaced in the direction of the pressure gradient. This 

phenomenon, known as acoustic streaming, is a direct result of the radiation 

pressure: further details are contained in the reviews by Nyborg [47] and Duck 

[48]. 

It seems that Altberg [49] in 1903 was the first to report measurements of 

the radiation force produced by acoustic waves and to show how this could 

enable the absolute intensity of acoustic waves to be measured. For diagnos¬ 

tic ultrasound transducers, the radiation force can be quite small and errors 

can arise from this and a variety of other sources, making it difficult to achieve 

a high degree of accuracy. Nonetheless, absolute calibrations can be performed 

and the method is often used for routine checks of hospital equipment [50,51]. 

By measuring the radiation force acting on a small body such as a sphere, the 

intensity distribution of an ultrasound beam can also be determined. This 

requires that the characteristics of the body and the incident field profile be 

theoretically related to the force. Obtaining the necessary equations is far from 

trivial since, as mentioned earlier, the radiation force depends on second-order 

effects and therefore requires the use of second-order (nonlinear) acoustic 
theory. 

Understanding the physics and obtaining equations that correctly describe 

the acoustic radiation pressure has been the subject of considerable contro¬ 

versy ever since the first publication in 1902 by Rayleigh [52], Problems have 

arisen from improperly posed problems, confusion over definitions, and the 

difficulties associated with nonlinear phenomena. More recently, through a 

careful and rigorous analysis, many of the difficulties have been resolved. In 

this regard, the work reported by Lee and Wang [54,55] is particularly helpful 
and forms the basis of the description presented below. 

To simplify the analysis we shall assume that the body being investigated is 

rigid so that the normal component of the particle velocity on its surface is 

zero. The total radiation force exerted on such a body is simply the vector sum 

of the forces acting on each elementary area of its surface27 and therefore can 

be written as a surface integral of the force due to the time-averaged acoustic 

pressure acting on the element of area dS in an inward normal direction. Since 

the particle surface velocity is zero, the pressure at each point corresponds to 

that measured in a fixed (Eulerian) coordinate system. If n is a unit vector in 

the outward normal direction to dS, then the net radiation force is given by 

(1-88) F = -ff pEhdS, 
» JSq 

where pj is the time-averaged Eulerian excess pressure, i.e., that due to the 
acoustic field. Lee and Wang [54,55] showed that pE is given by 

27. For the more general case where the body is not rigid, the surface velocity will be non¬ 

zero and the force components must then obtained by integrating the normal component of the 

radiation stress tensor over the surface. The radiation stress tensor is given by %tj = -phn -p„v"v] 

in which 5(/ is the Kronecker delta (5^ = 1 for i =;, otherwise §,y = 0), and the subscripts i and j are 

equal to *, y or z. For example: if i =j = * then xX(= -p or if i = x and j = y, then xxy = -p„vp\. 
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(1.89) PE — &PE ~ &KE + C, 

in which 
1 

£p£ — £ke - ~ 
p0< 

-p0v-v is the difference between the time- 

averaged potential and kinetic energy densities and C is a constant determined 

by a system constraint such as the conservation of mass in a closed system. 

Lee and Wang defined the Langevin radiation pressure to be present if it 

depends exclusively on the incident waves, i.e., no constraint needs to be sat¬ 

isfied (C = 0). This occurs when the system is in communication with fluid in 

equilibrium. On the other hand, a Rayleigh radiation pressure is present if the 

pressure depends on both the waves and a system constraint. This can occur 

when the system is enclosed so that the mass of fluid is conserved. The pres¬ 

ence of a constraint requires that C ^ 0, but for most practical situations C = 

0, so that the Langevin radiation pressure is present. 

Ideal Reflecting Plane: Normal Incidence 

Rayleigh [52,53] was the first to examine case of a plane harmonic wave inci¬ 

dent on an ideal rigid plane reflector. In such a situation, the incident plane 

wave and the reflected wave add to form a standing wave whose amplitude is 

a function of the distance from the reflector. For an incident wave with a pres¬ 

sure waveform given by p„cos(cor - kx) traveling in the positive x-direction 

that encounters a perfect reflector at x = 0, the total pressure of the standing 

wave is given by 

p(x:t) = p0 cos((ot - kx) + p0 cos((or + kx) 

-2p„ cos(/cx)cos(cot). 

With the help of (1.39), the particle velocity of this standing wave can be 

expressed as 

(1.91) v(x:t) = (2 p0 / Z0)sin(&x)cos(cot - Jt/2), 

where Z0 - p0c0 is the characteristic impedance of the medium. It should be 

noted that (1.91) satisfies the boundary condition for a rigid reflector which 

requires the velocity be zero on its surface at x - 0. It should also be noted 

that because the time-varying components of pressure and velocity are in 

phase quadrature, the specific acoustic impedance is then an imaginary quan¬ 

tity given by Z(x) = jZ0cot(kx). For this standing wave, normalized amplitudes 

of both the particle velocity and pressure are shown in Fig. 1.14. 

By taking the time average of the square of (1.90) and (1.91), we find that 

the potential and kinetic energy densities are given by 

£pe = Po (Po / Zc )2 cos2 (kx), Ike = Po (Po / Z0f sin 2(kx). 

Consequently 

epE - £ke = Po (Po /Z0 )2 [cos2 (kx) - sin2(Acjc)] = p„ (p0 /ZG f cos(2kx), 



48 Biomedical Ultrasound 

p(x : t) = {2p0 cos(kx)}cos(wt) 

AS = 8pE - £ke = p0(pQ/Z0 y cos(2kx) 

Figure 1.14 A standing wave is shown corresponding to that produced by the 

reflection of a harmonic plane wave by a perfectly reflecting plane rigid boundary 

(Z0 = °°). The normalized amplitudes of the pressure, particle velocity, and difference 

between the potential and kinetic energies of the standing wave are shown in the 

region x < 0. The amplitudes of the pressure and velocity correspond to the 

bracketed terms in the equations. 

or 

Ae = £pe — &ke = 2e, cos(2 kx) 

where e, is the time-averaged energy density of the incident wave as given by 

(1.82) (also shown in Fig. 1.14). By substituting this into (1.89) and assuming 

that there are no system constraints to satisfy (C = 0), the time-averaged pres¬ 
sure on the reflecting plane (x = 0) is given by28 

(1.92) Pe = 2e, (a) 

By using (1.82) and (1.87), this can be re-expressed in terms of the time- 
averaged intensity as 

(1.92) Pe — 2//c0 (b) 

Ideal Absorbing Plane: Normal Incidence 

As a second example, the somewhat controversial problem of a plane har¬ 

monic wave incident on a perfectly absorbing plane medium is considered. 

28. If the system is closed then C can be evaluated by making use of the conservation of mass. 

When this is done it can be shown that ^7 = (y + l)g; for an ideal gas, which is the result origi¬ 
nally obtained by Rayleigh [1.53]. 
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Because the problem definition requires that there be no reflected wave, the 

characteristic impedance of the absorbing medium must be identical to that 

of the transmission medium. If it is temporarily assumed that we can proceed 

in the same manner as for the ideal reflecting plane, then the pressure and par¬ 

ticle velocity are given by 

p(x:t) = pa cos(cot - kx) 

v(x:t) = (p0/Z0)cos((£>t - kx). 

From these it can be readily shown that epe = eKE = p„(p0/2Z0)2 = e,72, so that 

from (1.89) ~pl - C, which suggests that in the absence of any constraint, the 

average pressure due to the acoustic wave is zero. However, because the 

absorbing medium has been assumed to be perfectly matched to the trans¬ 

mission medium, it is inconsistent to assume that acoustic particles at the inter¬ 

face are stationary, and consequently the time-averaged Eulerian pressure as 

given by (1.89) is not appropriate. According to Lee and Wang [54,55], the 

time-averaged excess pressure experienced by the moving acoustic particles is 

given by 

PL = e + C, 

where the subscript L indicates that the pressure is measured in the 

Lagrangian coordinate system and e is the total time-averaged energy density. 

In the absence of any constraints C = 0, and consequently the time-averaged 

pressure on the perfectly absorbing plane is 

(1.93) (a) 

or, from (1.82) and (1.87), 

(1.93) (b) 

which is exactly half that of a perfectly reflecting plane. 
As an example, consider a plane wave with an intensity of lOOmW/cnr in 

water that is incident normally on a perfect absorbing interface with an area 

of 1.5 cm2. The Langevin radiation force would be: F = (I/c0) x Area = (0.1 x 

104/1500) x 1.5 x 1CT4 = 0.1 mN. If this force were balanced by a weight, the 

required mass would be: 0.1 x 10 3/9.81 = 10.2 mg. 

1.6 Reflection and Refraction 

Reflection and refraction of acoustic waves can be considered as a special case 

of scattering. To illustrate this concept we consider the field distribution illus¬ 

trated by Fig. 1.15a in which waves from a circular source are incident on an 

object whose dimensions are large compared to a wavelength. The reflected 

waves can be considered as having originated lrom the surface of the object. 

If these are superimposed on the waves that occur in the absence ot the object, 

then, except in the geometric shadow of the object, the actual field (that occur¬ 

ring in the presence of the object) will be correctly represented. But if the 
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Figure 1.15 The scattered field plus the undisturbed illumination field equals the 

actual field, (a) The actual field from a circular source in the presence of a reflecting 

object, (b) Undisturbed field from circular source (the position of the object and the 

shadow region are indicated for the purpose of alignment with the other figures), (c) 

The scattered field. Note that in the “shadow” region, the scattered field cancels out 
the field in the same region of (b) when the two are added. 

object is also considered to be a source of radiation into the shadow region, 

and provided the form of this radiation interferes destructively with the waves 

that occur in the absence of the object, then superposition will result in a 

correct representation of the entire actual field. As illustrated in Fig. 1.15c, the 
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reflected and the interfering components originating from the object are the 
scattered field. It can also be seen from this figure that the scattered field con¬ 
sists of the sum of a classical geometrical optics reflected field and the shadow 
field. In summary, the scattered field is the difference between the field that 
occurs without the object and the actual field in the presence of the object. 
Thus, for example, the total pressure at a given location r can be written as 

P(r-t)= Pi(r:t) + ps(r:t), 

where the subscripts i and 5 denote the incident and scattered field compo¬ 
nents. This way of treating the effect of a wave on an object will be particu¬ 
larly valuable in our detailed discussion of scattering in Chapter 5. But for the 
moment we shall treat the problem of reflection and refraction in a classical 
manner. Both the classical reflected and refracted fields, together with the 
shadow region field, are components of the scattered field. 

1.6.1 Compressional Waves in Fluid Media 

Consider a longitudinal plane harmonic wave incident on the boundary 
between two semi-infinite media, as illustrated in Fig. 1.16. The 3-D aspect of 
this problem can be reduced to 2-D by choosing the coordinate axes such that 
the y-axis is parallel to the plane of the incident wave. In general, if medium 
2 is a solid, wave mode conversion can occur whereby a portion of the 
incident energy is converted into a shear wave, so that both the shear and 
longitudinal waves will propagate. If wave-mode conversion at the interface 
can be ignored, which is the case for liquid-gas or liquid-liquid junctions, 
then the velocity potentials of the incident, reflected, and transmitted waves 
can be obtained. We first note that a general expression for a plane wave 

Figure 1.16 Reflection and refraction of an incident plane wave at a plane interface 
between two media in the absence of wave-mode conversion for co2 > col. 
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propagating in an inviscid fluid is <j)(r:t) = (j)„,exp7'co(t - k • r/c0), where the sub¬ 

script m indicates the amplitude and k is a unit vector in the propagation direc¬ 

tion. By expanding the dot product and expressing it in terms of the angles 

defined in Fig. 1.16, the velocity potentials for the three wave components can 

be expressed as the sum of two components along the x- and z-axes: 

(1,94) 

(jj'j = (j)j gM'-(Vcoi)cose,-(z/coi)sin0/] 

< (j)[ = (Kj" g/ffl[<+b/c0i)coser-(z/coi)siner] 

d>2 _ (j)2me 
j(o[l-(x/c02 )cos0, -(z/coi )sin0, ] 

in which the superscripts i and r denote the incident and reflected wave veloc¬ 

ity potentials, respectively, and the subscripts 1 and 2 refer to the two media. 

Boundary Conditions and Snell's Law 

At the interface two conditions must be satisfied: (i) the pressure should be 

continuous and (ii) the particle velocity component normal to the interface 
should be continuous. 

These two conditions follow from considering the physical implications of 

a discontinuity of either the pressure or velocity at the interface. For the pres¬ 

sure to be discontinuous, it would be necessary that a source of acoustic energy 

exist at the interface. Similarly, for the normal component of the velocity to 

be discontinuous (implying an infinitely large acceleration), there would need 

to be a dipole source layer at the boundary. Since neither is present, the above 

boundary conditions must be satisfied. Recalling from (1.39) that p = -p0d$/dt 
and vn = -3<j)/3x, the boundary conditions can be expressed as 

(1.95) Pol 
"4! !&K" d§2 

_ dt dt 
Po2 

x=0 . dt „ x=0 

(1.96) 

£
 4 

1
_

 3^2 

%
 

1
_

 

x=0 - 3x _ 

Differentiating (1.94) with respect to time, substituting into (1.96), and putting 
x = 0 we obtain 

(1.97) 

(j)jm COS 6; e~ jm(z/coi)smO, _ COs9,. ^_;m(z/Cnl)sinQr COS 9, 

Co\ Col Co2 

;co(z/co2)sin0, 

But this equation can be satisfied for all values of z only if 

sin9, _ sin9r _ sin9, 

Col Col C0 2 

so that 9, = 9r and 

sin 9, = col 

sin 9, co2 
(1.98) 
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which is the acoustic form of Snell’s law. Differentiating (1.94) with respect to 

time, substituting into (1.95), and putting x = 0 and 0, = 0,, we obtain 

(1.99) +>!>;„ ] = 

Since the real portion can be equated to zero, it follows that 

(1.100) Pol^hm 3" Pol^jhm — Po202m • 

Substituting Snell’s law into (1.97) yields 

(1-101) C02 COS 0, = C0\<f)2m COS0,. 

By eliminating <j)2m between (1.100) and (1.101) and expressing the character¬ 

istic impedances by Zo1 = p0iCol, Zo2 = po2co2: 

Zo2 [1 - (<Km /<Wm )] COS 0, = Zol[l + (<Km/<t>lm)] COS 0,. 

or 

(j)[m Zo2 cos 0, - Zol cos 0, 

(1.102) p!lm Zo2cos0,+Zol cos0r 

= Pm I Pm =Rp , 

where p'm and prm are the pressure amplitudes of the incident and reflected 

waves and Rp is the pressure amplitude reflection coefficient. This can be 

expressed in terms of 0, by means of 

(1.103) cos0, = Vl ~[co2 sin0,/col]" , 

which was obtained from Snell’s law. It should be noted from (1.102) that if 

Zo2 cos 0, < Zol cos 0„ then the reflected wave is 180 degrees out of phase with 

the incident wave; otherwise, it is in-phase. 

Critical and Intromission Angles 

If co2 > c0i and the incident angle is given by 0, = 0C = sin ~\cJco2), then it follows 

from Snell’s law that 0, = 90 degrees, i.e., the transmitted wave propagates 

along the surface. At the critical angle 0C, it follows from (1.102) and (1.100) 

that <Km = <K,„ and <\>2m = 2<K„I(Poi/p02). Thus, all the incident energy is reflected 
even though the transmitted beam amplitude remains non-zero. If 90° > 0, > 

0C, the transmitted angle becomes imaginary, and as a result (1.103) can be 

can be written as cos0, = -/a, in which a = sl[co2 sin0,/coi] -1 and therefore 

sin0, = Vl-cos20, = V 1 + a2. If these two expressions are substituted into 

(1.94), the velocity potential for the transmitted wave is found to have an expo¬ 

nent of {jot - (cam/co2) - [(jm/co2 )V 1 + a2 ]}. Consequently, the x-component 

(normal to the interface) of the transmitted wave is attenuated exponentially 

with the distance from the interface, and therefore a is an attenuation factor. 

On the other hand, the z-component corresponds to the transmission of a wave 

along the interface. Waves with these characteristics are generally called 
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evanescent waves. As an example we shall estimate the penetration depth for 

a= ^corresponding to 0, = sin“'(V2 col/co2).The ratio of the amplitude of the 

transmitted wave at a depth of one wavelength (x = A, = 27Tco2/co) to that at the 

interface expressed as a percentage is: 100 x exp(-2jta) = 0.187%, and as a 

result the wave is rapidly attenuated. If medium 2 is lossy, it can be shown that 

not all the incident energy is reflected: some is absorbed due to losses by the 
evanescent wave. 

If the angle of incidence is such that Zo2 cos 0, = Zoicos0„ then it follows 

from (1.102) that all the incident energy is transmitted and none is reflected. 
With the help of (1.98), this condition reduces to 

(1.104) sinO, = 4l-(Z„1/Z„2)-’j/[l-(Pol/p„2)! 

which is the intromission angle [31]. For this to exist the square root term must 

be >0 and <1, which sets certain requirements on the densities and impedances. 

The phase of the reflected beam varies for incident angles greater than the 

critical angle; it also changes when the angle of intromission is reached. It can 

be readily shown from (1.102) that the phase angle of the reflected beam is 
given by 

(1.105) 0 = 2 tan -l 
aZ0l 

Zo2 cosO, 
for 0(. < 0, < 90c 

This variation is illustrated in the graph of Fig. 1.17, which shows both the mag¬ 

nitude and phase angle of the reflection coefficient versus the incident angle 
for two sets of density and speed ratios. 

Reflection and Transmission Coefficients 

We shall define the intensity reflection coefficient29 R, as the ratio of the time- 

averaged intensity magnitudes of the reflected and incident waves (0 < R, < 

1). Since the intensity for a plane wave is expressed in terms of pressure by 

(1.87), it follows that R, = (pjpf)2, and consequently from (1.102) the reflec¬ 
tion coefficient can be written as 

2 
Zo2 cosO, -Z0] cosO, 

Zo2 cosO,+Z0l cosO, J 
in which 0, can be expressed in terms of the incident angle by (1.103). 

The intensity transmission coefficient T, can be defined as the ratio of the 

time-averaged transmitted and incident intensities, so that from (1 87) T, = 

[(Pm)2/2Z(,2]/[(p/„)2/2Zol)]. While this can be evaluated using the equations 

given earlier, it is simpler to obtain the result by making use of the conserva¬ 

tion of energy. From the geometry of Fig. 1.16 it is evident that the power inci¬ 

dent on an area S of the interface is S/,cos0„ and that leaving is S(IrcosO, + 

29. This should be distinguished from the pressure amplitude reflection and transmission coef¬ 
ficients (denoted by Rp and Tp, respectively), which are the ratios of the amplitudes of the reflected 
and transmitted waves to the incident wave. 

(1.106) R,= 
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Figure 1.17 Graphs showing the pressure amplitude reflection coefficient and phase 
angle of the reflected beam versus angle of incidence for (a) po2/p0i = 0.8, co2/coi = 1.1 

and (b) po2/p0i = co2Ico1 = 1.1. The critical and intromission angles are also indicated. 
The graphs were calculated from (1.102) and (1.105). 

7,cos0,). By equating these two components and noting the definitions of T, 

and Rh it follows that T, cos 6, = (1 - R,)cos0. Consequently, from (1.106) the 

intensity transmission coefficient is given by 

(1.107) Tj = 
4Z0iZo2 cos2 0, 

2 

[Zo2cos0, +Zol cos0,f 

When the incident angle is equal to the intromission angle, i.e., Zo2cos0, = 

Zol cos 0„ then R, = 0, and T, = ZJZo2. Because of the different transmitted 

beam cross-sectional area compared to the incident and reflected beams, the 
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transmitted beam intensity differs from the incident beam intensity by the 

ratio of the impedances: nonetheless, all the incident power is transmitted. 

The velocity potential, pressure, and time-averaged power reflection and 

transmission coefficients can all be calculated in a similar way [31,56], and 

these are summarized in Table 1.6 together with the relations between them. 

In particular, it should be noted that for the pressure, velocity potential, and 

intensity coefficients, in general R + T ^ 1. All of the equations clearly show 

that the characteristic impedance is of key importance in governing the energy 

transmitted through the interface between two differing media. 

For the normal incidence condition (9, = 0, = 0), (1.106) and (1.107) reduce 
to: 

(1.108) R,= 
Zq2-ZqI 

- Z02 + Zq\ _ 
Tj 

AZ0\Zo2 

[Zo2 + Zo1] 

and as a result, Tr = 0 and Rj = 1 for either Zo2 = °° or Zo2 = 0. The case corre¬ 

sponding to Zo2 = oo has been previously examined in subsection 1.5.3 (see Fig. 

1.14), where it was shown that a standing wave is established whose velocity 

is zero at the boundary. For a soft boundary in which Zo2 = 0, a standing wave 

is also established, but in this case the pressure is zero on the boundary (hence 

the term pressure release) and the particle velocity is a maximum. Both of the 

above boundary conditions are examined for the more general case of an arbi¬ 
trary angle of incidence in the next subsection. 

Table 1.6. Equations for Plane Wave Reflection and Transmission Coefficients 

Reflection Coefficient 

Velocity Potential 

R* = 
Z„2 cos0, - Zo1 cos0, 

Zo2 cos0, + ZoI cos0, 

Transmission Coefficient 

2p0lco2 cos0,- 

Zo2 cos0, + ZoX cos0, 

Relationship 

D _ Po2 r-p , 
FX(t> — / d> — 1 

Pol 

Pressure 

Zo2cos0,-Zolcos0, 
R 

Zo2cos0, + Zolcos0, 
T = 1 p 

2Zo2 cos0, 

Zo2 cos0,+Zolcos0, 
RP=Tp-\ 

Intensity (Watts/m2) 

Rr- 
Z„2cos0,-Zoicos0, 

_ Z„ 2 cos0, + Zol cos0, 
Ti = 

4 ZolZo2 cos2 0, 

[Z„2cos0, + Zolcos0,] 
Rl + T,^ = 1 

cos0, 

Power (Watts) 

Rw — 
Z„2 cos0, -Zo1 cos0, 

Z„2cos0, + Zolcos0, 

T _ 4ZolZo2cos0,cos0, 
1 w — -- 

1Zo2cos0, + Zo1 cos 0,1 
Rw + Tw = 1 
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Rigid and Pressure-Release Boundaries 

It can be seen from (1.106) and (1.107) that if Z0l/Z0\ —> », then region 2 

behaves as an ideal rigid boundary, such that all the incident energy is reflected 

and none is transmitted, i.e., —> 1 and T, —> 0. On the interface at any given 

z-location the incident and reflected wave pressures are equal. This can be seen 

by first applying p = —p0d§/dt to (1.94) to obtain expressions for the incident 

and reflected wave pressures. Now (1.102) shows that when the velocity poten¬ 

tial amplitudes are equal ($„, = p[(0,z'-t) - p\(0,z'.t). Because the total 

acoustic pressure is the sum of the incident and reflected wave pressures, it 

follows that on a rigid boundary the pressure is twice that of the incident wave. 

Moreover, on such a boundary the normal component of the incident and 

reflected wave particle velocities must be equal and opposite so that their sum 

is zero. If x is a unit vector in the x-direction, these two boundary relations 

can be written as 

(1.109) p(0,z:r) = 2pj(0,z:t), x-v(0,z:r) = 0 (Rigid boundary). 

An ideal pressure-release boundary corresponds to the situation in which 

Zo2/Zol -» 0. From (1.106) and (1.107) it can be seen that -» 1 and 77 -> 0, 

so that this boundary condition also causes perfect reflection. By following 

similar steps to those described for the rigid boundary, it can be readily shown 

that 

(1.110) p(0, z'-t) = 0, v(0, z'.t) - 2x • v'i(0, z:t) (Pressure-release boundary), 

which shows that there is a doubling of the normal component of the incident 

particle velocity component. 

Transmission Through a Layer for Normal Incidence 

The case of a medium consisting of a layer of thickness € separating two dif¬ 

ferent media is of considerable practical importance. As will be seen, proper 

choice of the thickness and acoustic properties of the layer provides a means 

of impedance matching such that a plane wave can be transmitted from one 

medium to another without any loss of intensity. For the geometry shown in 

Fig. 1.18a and a harmonic plane wave at normal incidence, it can be shown 

that the intensity (and power) transmission coefficient is given by [56, p. 128] 

(1.111) 7} = 
4Z„iZ o3^ ol 

(Zol + Zo3)2 cos2 02 + (Zo2 + Z0l Z03/Zo2) sin2 02 

where Z0l, Zo2, Zo3 are the characteristic impedances of the three regions, 02 = 

2n£Tki, and is the wavelength in the layer. Since normal incidence has been 

assumed, the media in all three layers can be either liquid or solid. If the angle 

of incidence is non-zero a more complex situation exists, particularly if the 

layer is solid. As described in the next subsection, wave-mode conversion can 

occur in which the transmission of both a longitudinal and transverse wave 
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Figure 1.18 Transmission through a layer at normal incidence for various values of 
the thickness to wavelength ratio (€/7/)), as calculated from (1.111). (a) The assumed 
scheme and notation, (b) Transmission from water (Zol = 1.5MRayl) through to 
water (Zo3 = Zol) for a layer with Zol = 4Zo1 and Zo2 = (4/3)Zol. (c) Transmission 
coefficient from a ceramic (PZT, Za = 34.0MRayl) through to water for the 
condition Zo2 = slZolZo3 = 7.141 MRayl. 

must be accounted for. Two conditions for normal incidence are of particular 

importance in (1.111). They are cos202 = 1 and sin~02 = 1, which will now be 
examined. 

The condition cos202 = 1 corresponds to € = nXJ'.2 (n = 0,1,2 ...) and if Zol 
= Zo3 then T[ = 1. This is illustrated in Fig. 1.18b for two values of the layer 

characteristic impedance. It will be noted that if the slab is sufficiently thin 

compaied to a wavelength, i.e., € « X2, then the layer appears transparent. 

Even for a fairly wideband pulse a sufficiently thin layer is nearly transparent, 

and consequently a thin plastic protective layer can be used without seriously 
affecting the transmission properties of an ultrasound transducer. 

The second condition of sin202 = 1 is satisfied when the layer thickness is 

given by € = nXJA, where n = 1,2 ... The smallest slab thickness that satisfies 

this condition is one whose thickness is a quarter wavelength (€ = X2/4). If, in 

addition, the characteristic impedance of layer 2 is given by Z„2 = Vz^Z(,3, 

then it can be readily shown from (1.111) that the transmission coefficient will 

be unity, corresponding to perfect matching between media 1 and 3. For the 

case of a PZT ceramic matched to water through a layer having a character¬ 

istic impedance of 7.141 Mrayl, Fig. 1.18c illustrates how the transmission 

coefficient varies with frequency (ccl/A,). It can be seen that for a fixed layer 

thickness the transmission coefficient falls off fairly rapidly as the frequency 

is changed from the T, = 1 condition, and consequently the layer acts as a nar- 
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rowband filter distorting a wideband pulse as it is transmitted through the 

layer. 

1.6.2 Wave-Mode Conversion 

Wave-mode conversion refers to a phenomenon whereby a wave incident 

on a boundary between two media can result in waves that propagate with a 

different vibrational mode than that incident. For example, a longitudinal 

wave propagating in a fluid toward a solid plane boundary can result in both 

a transmitted longitudinal and transverse wave, as illustrated in Fig. 1.19a. At 

the lower boundary, both the incident longitudinal and transverse waves give 

rise to both reflected longitudinal and transverse waves as well as a transmit¬ 

ted longitudinal wave. Wave-mode conversion results from the boundary 

conditions that must be satisfied when the incident wave interacts with the 

boundary. 

Figure 1.19 Wave-mode conversion for an incident longitudinal wave from fluid that 

does not support transverse wave propagation, (a) A solid slab immersed in a fluid, 

(b) A semi-infinite liquid bounded by a semi-infinite solid, showing the simplified 

notation used for analysis. 
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Using the simplified notation given in Fig. 1.19b, we shall outline the deri¬ 

vation [5,57] and results for the case of a plane harmonic longitudinal wave 

incident from the liquid onto a solid-liquid boundary. Both media are assumed 

to be lossless and the coordinate axes are chosen so that the y-axis is parallel 

to the plane of the incident wave, resulting in no particle displacement com¬ 

ponent normal to the plane of the figure. The particle velocities in the liquid 

can be written in terms of the velocity potential (v = — V<()), and both (j),- and <jy 

must satisfy the Helmholtz equation. In the solid the longitudinal and trans¬ 

verse particle velocities are given by vL = -V^, and vT = V x \|/x, where \j/T is 

a vector potential with zero divergence, which is also governed by Helmholtz’s 

equation. Because the incident wave contains no displacement component 

parallel to the y-axis, the only transverse wave that can exist is one whose 
polarization is parallel to the plane y = 0. 

Expressions for the three longitudinal plane-wave velocity potentials are 

the same as in (1.94), while the only transverse wave that can be present is repre¬ 

sented by the velocity potential \j/r = \\fTmexp{jo)[t - (jc/cr)cos 0r - (z/cr)sin 0r]}. 

The normal components of the velocity and the stresses, and the tangential 

components of the velocity and stresses must be continuous across the bound¬ 

ary at .v = 0. By imposing these conditions on the velocity potential equations, 
it can be shown that 

^^2) sin0, _ sin0L _ sin0r 

c cL cT 

which is the interface refraction law. This equation shows that if cL> c and 

cT > c, there can be two incident angles for which one of the transmitted com¬ 

ponents is extinguished. The first critical angle corresponds to dL = 90° and the 

second to the transverse wave angle 0T - 90°. For cL>c and cT > c, these two 
angles can be expressed as: 

(1.113) 0*cl = sin ~l(c/cL), 0icT = sin-1(c/cr). 

In addition to obtaining the refraction law, application of the boundary con¬ 

ditions also enables the velocity potentials for the reflected wave and the trans¬ 

mitted longitudinal and transverse waves to be obtained. If these expressions 

are divided by the incident wave velocity potential, the reflection (i^) and 

transmission (7),) velocity potential amplitude ratios can be obtained as: 

(1.114) 

ZL cos2(207-) + Zr sin2(20r)-Z 
(a) 

ZL cos2(20r)-i-Zr sin2(20r) + Z ’ 

(2p/p2)xZL cos(20r) 
(b) 

ZL cos2(20r) + Zrsin 2(20r) + Z' 

(2p/p2) x ZT sin(207-) 
(c) 

ZL cos2(20r) + Zr sin2(20r) + Z 

where the following impedances have been defined 
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(1.115) Z = pc/cos0,, Z; = p2cL/cos0L, ZT = p2cr/cos0r . 

With the help of (1.112), the reflection and transmission coefficients can be 

evaluated for a given angle of incidence. It should be noted that beyond the 

first critical angle, 0L becomes complex, and as a result the amplitude ratios 

also become complex. 
Because energy conservation requires that the sum of the time-averaged 

power incident on the boundary should be equal to that leaving the bound¬ 

ary, it makes sense to express the contribution of each component in terms of 

the ratio of its power to that of the incident power. These reflection (Rw) 

and transmission (Tw) power ratios can be found with the help of (1-87) and 

(1.112) as 

(1.116) T&=m 
2 ( p2 tan0, 

V ptan0r ) 

p2 tan0,-' 

ptan0L , 

which can then be evaluated by using (1.112) to (1.115). 
As an example of wave-mode conversion, we consider a longitudinal wave 

incident at various angles from tissue onto bone. As a rough approximation, 

tissue properties are represented by water. Taking the values listed in Table 

1.1 and using (1.112) to (1.116), the results are presented in Fig. 1.20. It will 

be noted that beyond the first critical angle of 21.85 degrees, the longitudinal 

wave is extinguished, and the conversion efficiency to transverse waves 

becomes greater than that for longitudinal waves prior to the critical angle. 

This is because the transverse wave impedance is closer to that of water. 

At and beyond the second critical angle of 64.64 degrees, according to the 
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Figure 1.20 Example of wave-mode conversion for a plane wave incident from 

water onto a water-bone boundary. The power ratios are shown versus angle of 

incidence for the reflected and two transmitted components. The two critical angles 

are 21.85° and 64.64° for c0 = 1500m/s, cL = 4030m/s, cr= 1660m/s, p = 1000kg/m\ 

and p2 = 1960 kg/m1. 
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simplified theory given above all the incident energy is reflected. However, as 

noted earlier (see subsection 1.3.1), just beyond this angle, Rayleigh surface 

waves are excited, and as a result some of the incident energy will not be 

reflected but will propagate along the bone surface. 

1.7 Elements of Diffraction 

1.7.1 Historical Background: Huygens' Principle 

Diffraction is a phenomenon that affects all types of wave propagation in 

bounded space; optical waves, microwaves, and acoustic waves are all affected. 

While several definitions of diffraction have been proposed, one of the most 

concise is that given by Sommerfeld. In his classical book on optics [58, p. 179] 

he states, “Any deviation of light rays from rectilinear paths which cannot be 

interpreted as reflection or refraction is called diffraction.” 

In geometrical optics or acoustics the radiation field is treated in terms of 

rays that obey simple geometric laws, as illustrated in Fig. 1.21a. The first clear 

experimental demonstration that optical rays when confined by boundaries 

did not obey the laws of geometric optics was reported in a book by Grimaldi 

published in 1665.3H Huygens, who was apparently unaware of Grimaldi’s 

work, proposed in his treatise published in 1690 that light was a wave phe¬ 

nomenon whose propagation could be regarded as a sequence of spherical 

disturbances. In essence, the Huygens’ principle [60] provides a means for 

constructing subsequent wavefronts given an initial wavefront such as that 

illustrated in Fig. 1.21b. This principle has been elegantly stated in Born and 

Wolf [59, p. 132] as “each element of a wave-front may be regarded as the 

centre of a secondary disturbance which gives rise to spherical wavelets; and 

moreover that the position of the wave-front at any later time is the envelope 

of all such wavelets. It was not until early in the 19th century that the wave 

nature of light became widely accepted.30 Based on the work of Huygens and 

the concept of wave interference proposed by Thomas Young, Fresnel in 1816 

provided an initial mathematical and physical explanation of diffraction 

effects. But it was not until the second half of the 19th century, with the real¬ 

ization that optical waves were governed by Maxwell’s equations, that the dif¬ 
fraction of light was placed on a sound theoretical basis. 

Except in a limiting case, geometrical acoustics, like geometric optics, 

cannot correctly account for the potential field near a boundary. In the limit 

as the wavelength approaches zero, the behavior of acoustical fields predicted 

from diffraction theory approaches that governed by geometrical acoustics. In 

acoustics, as with optics, is convenient to refer to those regions that lie outside 

the direct illuminated regions predicted by geometric optics as the “geomet¬ 
rical shadow regions.” 

30. See, tor example, the historical introduction in [59]; a very readable account of the early 
19th-century developments is given in [61], 
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Secondary 
Wavefront 

(b) 

Figure 1.21 The effects of diffraction are illustrated, (a) Comparison of the intensity 

distributions produced by a point source through an aperture according to 

geometrical acoustics and in practice, (b) Use of Huygens’ principle for constructing 

a secondary wavefront from a primary wavefront created by a spherical source. 

For a small number of properly posed diffraction problems, rigorous ana¬ 

lytical solutions have been obtained. Among these, the earliest rigorous 

solution is that described by Sommerfeld in 1896 [58] for a plane optical wave 

incident on a perfectly conducting infinite half-plane. But because of the dif¬ 

ficulty in obtaining exact solutions of properly posed problems, approximate 

methods are often used. One of the simplest is that based on the Huygens- 

Fresnel approach, and this will now be illustrated. 

1.7.2 Approximate Analysis of Diffraction by a Half-Plane 

As illustrated in Fig. 1.22, a plane harmonic wave is assumed to be incident on 

an infinite half-plane aperture that consists of a perfectly rigid membrane of 

negligible thickness. Of course, such an aperture cannot be realized in prac¬ 

tice, since an appreciable thickness is required to make the aperture rigid. 
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Figure 1.22 Geometry assumed for calculating the diffraction of a plane wave by an 

infinite half-plane sheet by using the Huygens’ method of constructing secondary 

wavefronts and Fresnel’s assumptions. The aperture is assumed to be a very thin 
perfect rigid reflector. Both side and plan views are shown. 

In accordance with Huygens’ principle, we assume that on the transparent 

portion of aperture there exist an infinite number of point sources. By calcu¬ 

lating the contribution each such source makes at the observation point 

(xo,y0,0), the total pressure amplitude can be obtained. From Table 1.3, the 

pressure due to an elementary area dx dz located at (x,0,z) whose strength is 
A dx dz is given by 

dp = ^ei{m-kR)dxdz, 
R 

where R is the distance of the observation point to the element. It seems rea¬ 

sonable to expect that the contribution such a source makes at the observa¬ 

tion point should depend on the angle <p (see Fig. 1.22) through an inclination 

factor /((p), which should be a maximum in the forward direction and drop to 

zero as ip —> 0 or k/2. If we make the ad hoc assumption that this inclination 

factor is equal to cosip and convert to cylindrical coordinates (r,0), with the 

origin of coordinates at (x0,0,0), then the pressure phasor can be expressed as 
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n - jkR , , 

(1.117) dp = e cos(cp)r dr dO, 

in which it has been assumed that A = 1. It follows from Fig. 1.22 that r = 

R2 - yl and coscp = yJR, so that the total pressure is given by31 

44+y% 
p(x0,y0) = 2j je-*kR(y0/R)dedR = 2n J e~>kR{yjR)dR 

(1.118) 
y o 0 y o 

it—<|>i 

2 J J e~ikR(y0/R)dQdR, 

ho+yo 0 

where 4>i = cos-1 (x0/^JR2 - y2 )• Letting X0 = x0/X, Y0 = ydX, and R0 = R/X in 
(1.118) then, depending on the x-position of the observation point, the pres¬ 

sure is given by: 

(i) for x0 > 0, (a complete circle can be formed) 

(1-119) 

,-;'2tcRo 

XYn 
■ 2n 

■JA0+Yg ^-)2kRo 

I 
Vo j4+yo 

Rn 

[it - cos 1 (Z0 /aIRq — Y02 )\dRo: (a) 

(ii) for x0 = 0, (a semicircle is formed) 

(1.119)32 Ttr = tt f e~'2nRo (l/R0 )dR0: 
XYo i 

(b) 

(iii) for x0 < 0, (a complete circle cannot be formed) 

(1.119) —= 2 f e-/2"«o(x//?„) cos'1 (| A'ol/VKo - Vo2 )dR,. (c) 

XY° MA? 

The normalized pressure amplitude at the observation point is shown in Fig. 

1.23 for three different observation planes. It will be noted that for all three 

cases the normalized pressure magnitude is very close to 0.5 at x = 0. In fact, 

numerical evaluation of (1.119a) shows that provided To > 2, then, to within 

an accuracy of ± 2%, \p\/X = 0.5. As the observation plane distance increases, 

the interference fringes become more widely spaced and the pressure 

amplitude in the shadow region increases. The above equations can be 

31. If the inclination factor had been assumed to be zero, the 1IR term would be absent from 

the integrand and as a result the integral would not converge. 
32. This integral, known as the exponential integral, can be expressed as [62] 

oo f it 1 
J —-—dr = -Ci(27iy)-;|y + Si(27iy)j, 

where Si(x)= f—dr, Ci(x) = y + \nx+ f cos(r)—dr and y= Euler’s constant = 0.5772156649. It 
v ' Jo y jo r 

can be readily shown that as y—>°° Z(y)—>7t. 
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-10 -5 0 5 10 15 

Distance from Edge of Half-Plane, x/x 

Figure 1.23 Approximate diffraction pattern due to a plane harmonic wave incident 
normal to a half-plane rigid baffle that lies on the plane y = 0. The observation 
points are expressed in terms of the wavelength X and are shown for three different 
planes. The pressure axis shows the value of \p\/X as calculated from (1.119). 

readily modified for a plane wave incident on the half-plane at any arbitrary 
angle. 

1.7.3 Sommerfeld's Exact Analysis of Diffraction 
by a Half-Plane 

It was mentioned earlier that Sommerfeld’s analysis [58] for diffraction by a 

half-plane is an exact solution of the wave equation. It is therefore of some 

interest to examine the difference in the predicted results between the exact 

method and the approximate Huygen-Fresnel approach given in the previous 

subsection. Sommerfeld's result has been re-derived by several authors, includ¬ 

ing Born and Wolf [59, Chapter 11] using an angular spectrum approach (see 

Chapter 2) and by Skudrzyk [63], We make use of the equations derived by 

Skudrzyk for a harmonic plane wave incident at an arbitrary angle (p on a half¬ 

plane as shown in Fig. 1.24a. For an incident plane wave of unit pressure ampli¬ 
tude, they can be written as 

(1.120) 

where 

(a) 

(1.120) C(r, 0) = 2-Jkrfn cos 
3tc 

T (b) 

and the positive sign corresponds to the region where £ > 0 and the nega¬ 

tive sign for C < 0. These expressions can be put in terms of the normalized 

Cartesiancqqrdinates for the observation point (X0 = x<A, Y0 - y,A) by means 
of r — vxq +y0 and (p = tan '(xo/yo)- For normal incidence. 
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Plane Wave e'(M 

(a) 

Distance from Edge of Half-Plane, x/x 

Figure 1.24 Comparison of the exact (Sommerfeld) and approximate (Huygens- 

Fresnel) analysis of diffraction by a half-plane, (a) Analysis geometry, (b) For normal 

incidence and observation points on the plane y = 2X, the pressure magnitude was 

calculated from (1.119) for the approximate pattern and from (1.120) for the exact 

result. 

£(Xo,Y0) = 2^2{Xi + Y02jl4 
tan~1(A-o/y'o) 

so that on the shadow boundary where X0 = 0, C, - 0, and consequently from 

(1.120a) the pressure is exactly half of the incident pressure. Moreover, for the 

illuminated region where £ > 0, by writing (1.120a) as 

l\ 0)(-*fCOS —— 

p(r\t)-e 
0—<p 

1 + 
1 j + i ria 

+ 1 - 
2 

— + ^-\U'e-/ns 
Jo 

2h ds : Pi + PcIU 

it can be seen that the total field is the sum of the incident field plus the dif¬ 

fracted field, the latter being given by 
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Pdi = ~e 

On the other hand, the only component that exists in the shadow region 
(C < o) is a diffracted field, and this is given by 

Pd z--e 

Hence, for a rigid half-plane of negligible thickness, the field due to an inci¬ 

dent plane wave can be treated as the superposition of a geometrical optics 
field and a diffraction field. 

Fig. 1.24b compares the predictions of the above exact theory with that of 

the approximate Huygens-Fresnel theory for normal incidence and for obser¬ 

vation points that are TK below the plane. While the general pattern is very 

similar, there are some differences in the detailed nature of the predicted fields. 

1.7.4 Babinet's Principle 

A principle that is attributed to a publication by Babinet in 1837 [59,60] 

concerns the field resulting from diffraction by apertures in a screen and its 

relation to that resulting from a complementary screen. A complementary 

screen is one with the same geometry but with the apertures replaced by 

opaque screens and the screens replaced by transparent apertures. For the 

arrangement illustrated in Fig. 1.25a, the plane screen has an arbitrary-shaped 

transpaient aperture and is illuminated by a source of radiation. In the absence 

of the screen the velocity potential at any point is <l>,(x,y,z). In the presence of 

the screen the velocity potential is denoted by 0,(x,y,z). For the complemen¬ 

tary screen and aperture shown in Fig. 1.25b and the same radiation source as 

in Fig. 1.25a, the velocity potential field is denoted by Oc(x,y,z). Now O, and 

can be expressed as surface integrals33 over the transparent regions, and 

because the entire surface area of the screen is exactly the sum of these two 

regions, it follows that <D, + = O,, i.e., the sum of the two fields is exactly 
equal to the field in the absence of any screen. 

Another form of Babinet’s principle [60,63] is illustrated in Fig. 1.25 for an 

arbitrary aperture in a plane rigid screen that lies on the plane x = 0. Since the 

screen is assumed to be rigid, it acts as a perfect reflector and the normal com¬ 

ponent of the particle velocity on its surface will be zero. The screen is assumed 

to be insonated by a harmonic acoustic source that, in the absence of the 

screen, produces a velocity potential of fl>,(x,y,z). At any location the total 

velocity potential can be expressed as the sum of the incident field and a dif¬ 
fracted field Orf, i.e., 

(1.121) <fi(x, y, z) = O, (x, y, z) + Orf (x, y, z). 

33. The Huygens-Fresnel surface integral, as discussed in section 1.7.2, is an approximate form- 
more exact surface integrals are discussed in Chapter 2. 



Introduction 69 

(a) (b) 
Incident Wave* 

x 
Incident Wave 

<j> 

% 
Opaque Screen with 

Transparent Aperture 
Complementary Screen with 

Identical but Opaque Aperture 

Figure 1.25 Sketches used to illustrate Babinet’s principle, (a) A plane opaque 

screen with a transparent aperture illuminated by a source, (b) A screen and 

aperture that is the complement of (a). The sum of the fields at the same location for 

the two cases is equal to the field in the absence of any screen. 

For a point (0,y,z) that lies within the area of the aperture area, it is evident 

that the diffracted field contribution will be zero (O,,(0,y,z) = 0), so that the 

velocity potential is simply that due to the source, i.e., <J>(0,y,z) = 0,(0,y,z). 

Because the acoustic pressure for an inviscid medium is proportional to the 

velocity potential potential (p = ;coO),this is equivalent to stating that the pres¬ 

sure at a point in the aperture area is equal to the incident pressure at that 

point. On the areas of the rigid opaque screen 3<fl/3x = 0, so that from (1.121) 

30,Idx = -dOJdx on both the upper and lower faces of the screen. If we now 

consider a rigid screen with a plane source replacing the aperture shown in 

Fig. 1.26a (see Fig. 1.26b), and if the source and screen have identical bound¬ 

ary conditions to that of (a), then the field produced by the pressure source 

shown in (b) should be identical to that of (a). An equivalent result is obtained 

for the case in which the baffle in (a) is a soft baffle and the source in (b) is a 

rigid, and this is proven in [63]. 

1.8 Attenuation, Absorption, Scattering, and Dispersion 

During its passage through a medium, an ideal plane wave will be subject to 

energy loss through absorption and a redirection of some of its energy by scat¬ 

tering due to changes in compressibility and density. Absorption is the process 

whereby ultrasound energy is converted into other energy forms such as heat, 

chemical energy, or light: it also includes the effects of heat conduction, which 

is discussed further in subsection 1.8.3. On the other hand, scattering repre¬ 

sents ultrasound wave energy that has been redirected, much of which will be 
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(a) (b) 
Incident Wave 
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Opaque Screen with 

Transparent Aperture 
Source 'Aperture' 
in a Rigid Baffle 

Figure 1.26 Two plane rigid screens are shown that produce the same field for x < 0. 

(a) An incident wave results in a velocity potential that is given by (1.121). (b) A 

plane source of the same shape replaces the aperture. This source has the same 

pressure distribution as that produced by the incident wave within the aperture 
region of (a). 

along paths that differ from the incident wave. The scattered energy can be 

subsequently absorbed and multiple scattering can occur. As discussed in 

section 1.6, it is convenient to consider the processes of reflection and refrac¬ 

tion as special cases of scattering in which some of the incident radiation 

energy is redirected in an organized manner and the shadow region is a result 

of interference between the scattered wave and the incident wave in the 

absence of the scatterer (see Fig. 1.15). Attenuation accounts for the effects of 

both absorption and scattering (which includes reflection and refraction) and 

is most simply treated by considering its effects on a plane incident wave. 

Consider the simple arrangement shown in Fig. 1.27a, in which a plane wave 

is incident on a specimen. If we assume that the coupling medium is perfectly 

matched to the specimen, then the energy that exits from the specimen in the 

direction of the incident wave can be calculated by considering the incre¬ 

mental cross-section of unit area shown in Fig. 1.27b. Over the incremental 

distance dx, the scattered power will be proportional to the time-averaged inci¬ 

dent intensity / and dx, and similarly for the absorbed power. Consequently, 

each of these two components contributes to a loss of the transmitted beam 
intensity of 

dls =-2asI(x)dx, dla = -2aaI(x)dx, 

where oq, oca are coefficients that characterize the two processes. Thus, over the 
thickness of the slab the intensity changes by 
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Scattered radiation 

(b) 

Figure 1.27 Absorption and attenuation, (a) Distinguishing between the absorbed, 

scattered, and attenuated waves for a simple plane specimen, (b) Change in intensity 

for the passage of a plane wave through an incremental distance dx. 

If the incident intensity at * = 0 is 1(0), then the intensity at a location x in the 

specimen can be found by integration as 

(1.122) I(x) = I(Q)e-2{as+a“)x = I(0)e~2cLX 

where a is the amplitude attenuation coefficient, which is simply the sum of 

the scattering and absorption amplitude attenuation coefficients (a = a, = aa). 

The attenuation coefficient is dependent on frequency, temperature, and 

pressure. 
From (1.122) it will be noted that the units for a are m'1, but in practice the 

units are generally expressed as nepers/centimeter, or simply Np/cm.To expe¬ 

dite “back of the envelope” calculations, it is helpful to deal with a logarith¬ 

mic scale. By taking the logarithm to the base 10 of both sides of (1.122) and 

multiplying by 10 we find that 

10 log{/(0)// (*)} = 20oalog(e) = 8.686 ax. 

If we define adB = 8.686a, then the attenuation coefficient can be written in 

terms of either the intensity or pressure and is generally expressed in dB/cm 

(deciBels/cm) as 

(1.123) CtdB = — log{7 (0)/I(x)} 
X 

(a) 

The presence of attenuation results in a phase difference between the pres¬ 

sure and the particle velocity, causing the specific acoustic impedance to 

contain both real and imaginary parts. Nonetheless, for attenuation coefficients 

that are not too large, the pressure amplitude pl(x) * I(x), so that 

ocdB = — log[po(0)/po(x)\ 
x _ 

(1.123) (b) 
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It is convenient to note that the conversion of dB/cm to Np/cm and vice versa 
can be achieved through: 

(1124) adB = 8.686 aNp 

aNp = 0.1151adB. 

An important advantage of the dB scale is that in calculating the total atten¬ 

uation over a path involving several different attenuation coefficients and 

interface reflections and transmissions, the total intensity loss can be quickly 

estimated though a simple addition of the various contributions. 

1.8.1 Absorption and Scattering Attenuation Coefficients 

The attenuation coefficient expressed above was defined in terms of the effects 

of absorption and scattering on an incident plane wave. Ideally, measurements 

should be made using a wave that closely approximates a plane wave; if this 

is not possible, corrections must be applied to account for the nonplanar char¬ 

acteristics of the field.34 Many additional difficulties are encountered in accu¬ 

rately measuring the attenuation coefficient, and even more are encountered 

in attempting to determine the relative contributions of scattering and absorp¬ 

tion. Even with an ideal incident plane wave and perfect impedance matching 

to the specimen, the transmitted wave amplitude will always include a portion 

of the scattered field. A small receiving transducer aperture placed far away 

enables the forward scattered field contribution to be reduced. In practice, 

either a long pulse that is nearly monochromatic or a wide bandwidth pulse 

can be used. For the broadband pulse the frequency spectra of both the inci¬ 

dent and transmitted pulse waveforms are determined, and from these the 

attenuation coefficient can be determined over a range of frequencies. Bamber 

[64-66] has reviewed the merits and problems associated with different meas¬ 

urement techniques and provided an assessment of the sources of error. 

Initially it was widely thought that attenuation in tissue was caused entirely 

by absorption, and consequently many of the early results were reported as 

absorption rather than attenuation measurements. By the mid-1970s it was 

realized [76,77] that tissue scattering could form an appreciable contribution 

to attenuation, and subsequently a number of papers were published showing 

the relative contributions for a variety of tissues. Table 1.7 summarizes some 

of the results published by Nassiri and Hill [78], Additional results have been 

summarized by Bamber [65]. They point out that for some biological fluids 

(amniotic fluid, aqueous humor, and vitreous humour), scattering has not been 

observed at diagnostic ultrasound frequencies, while for lung tissue and tra¬ 

becular bone, with their porous-like structure and very high attenuation coef¬ 

ficients, scattering appears to predominate. However, Wear [79] has reported 

that ovei the range 300 to 700 kHz, the frequency dependence of the backscat- 

tering from the calcaneus (heelbone) is proportional to the cube of the fre- 

34. The effects of diffraction will always be present for a finite-size radiation source, and errors 
as high as 30% can result if corrections are not applied [64], 
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Table 1.7. Contributions of Scattering to the Attenuation Coefficient* 

Medium 2as, cm 1 2a, cm ' a, /a Freq. 

Fresh human liver 0.09 0.72 12% 4 MHz 

Fresh human liver 0.32 1.4 23% 7 MHz 

Human blood. Hct = 40% 0.28 x 10“3 0.17 0.1% 4 MHz 

Human blood, Hct = 40% 1.8 x lO'3 0.37 0.5% 7 MHz 

Fresh skeletal muscle 0.16 0.94 17% 4 MHz 

Fresh skeletal muscle 0.32 1.8 18% 7 MHz 

*Data from Nassari and Hill [78]. 

quency. whereas the attenuation is proportional to the frequency. Based on 

this difference he concluded that absorption is a greater component of atten¬ 

uation than scattering. 

Frequency Dependence of the Attenuation Coefficient 

Our primary purpose in this subsection is to provide an empirical description 

of the frequency dependence of the attenuation coefficient. Since attenuation 

is a combination of the effects of absorption and scattering, its frequency 

dependence combines the frequency dependence of both phenomena. A the¬ 

oretical account of scattering, including the frequency dependence, together 

with a summary of experimental observations on biological media is given in 

Chapter 5. For pure fluids there will be no scattering, and as a result the atten¬ 

uation and absorption characteristics are identical. For many pure fluids, pri¬ 

marily the effects of viscous govern the attenuation and relaxation losses, and 

these are accounted for by the shear and bulk viscosity coefficients p and pB. 

The theoretical analysis presented in Chapter 3 shows that the effects of 

both coefficients give rise to an attenuation frequency dependence that, to a 

first order, varies as the square of the frequency. Thus oc = oi0f~, where cc„ is a 

temperature-dependent factor with units that can be expressed in 

Np/(cm.MHz:) or dB/(cm.MHz2), where / is in MHz. Because pure water is 

frequently used as a reference medium for speed and attenuation measure¬ 

ments, accurate measurement of the speed (see Fig. 1.5) and attenuation is par¬ 

ticularly important. The experimental results reported by Pinkerton [80] are 

frequently used as a standard. He measured the dependence of the attenua¬ 

tion coefficient both on frequency and temperature and showed that over a 

very wide range of temperatures, the square law frequency dependence is 

accurately obeyed. In fact, subsequent measurements [81] showed that a quad¬ 

ratic frequency dependence holds to at least 3 GHz. Pinkerton’s results are 

summarized in Fig. 1.28, where the attenuation values shown on the vertical 

axis are those for 1MHz, and the values at any other frequency can be 

obtained by multiplying by the square of the frequency in MHz. 
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Figure 1.28 Experimental results showing the temperature dependence of the 

attenuation factor for water. The points are those given by Pinkerton [see Table I in 

reference 80]. The vertical axis is the value of the attenuation factor a0 = a//2, where 

/ is expressed in MHz. For example, at 5 MHz and 20°C, the attenuation is 2.53 x 10-4 
x 52 = 0.00633 Np/cm (= 0.055 dB/cm). 

Attenuation of Biological Tissues 

A variety of experimental methods have been used for determining the 

attenuation-versus-frequency characteristics of biological specimens, many of 

which have been reviewed by Bamber [64], It has also been demonstrated that 

in vivo measurements can be made through the extraction and processing of 

data from ultrasonic diagnostic measurement systems. A compilation [64-66] 

of the results from many different sources under a variety of experimental 

conditions is shown in Fig. 1.29. Most of the results have been obtained on 

excised specimens For some media there may be appreciable differences 

between the characteristics measured from an extracted specimen and those 

measured in vivo, perhaps due to the presence of blood flow, though variations 

can also be expected to arise from the conditions under which the specimen 

is stored. It can be seen that a good approximation for the frequency depend¬ 
ence for most soft tissue is given by35 

(1.125) a = a 0fn 

where n lies in the range from 1 to 2. For bone, although the attenuation is 

generally much higher than soft tissue, it also exhibits a power law depend¬ 

ence, though over a more limited frequency range. A great deal of effort has 

been devoted to developing methods that make use of the attenuation-versus- 

frequency characteristics as a means of identifying abnormal tissue. The initial 

expectations for the diagnostic uses of tissue characterization were arguably 

not fulfilled, except perhaps in one area: that of osteoporosis assessment as 
described in the next subsection. 

35. Sometimes this equation is written in terms of the angular frequency i e a 
a0 = a'0(27t)". ’ 

= a'co", so that 
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Figure 1.29 Summary of published experimental results for the attenuation-versus- 

frequency characteristics of various biological media and water. The approximate 

value of the power-law dependence on frequency is also indicated. References to the 

data sources are given in Bamber [64]. (Reproduced, with permission of IOP 

Publishing Ltd., from Bamber [65], Ch. 4 in Ultrasound in Medicine, © 1998 Institute 

of Physics.) 

A useful compilation of measured values for soft human tissue of the speed 

of sound, density, attenuation, and parameter of nonlinearity (see Chapter 4) 

is that that given in Table 1.8. The values are those used by Mast [67] in his 

investigation of the correlation between various acoustic parameters. For 

example, he showed that the density and speed of sound values for a wide 

range of tissue types are quite strongly correlated (corr. coeft. = 0.917). 

Because of the importance of measuring the backscattering by blood and 

because these generally require substantial corrections for the effects of atten¬ 

uation, considerable effort has been made to determine the attenuation char¬ 

acteristics of blood over a range of frequencies and hematocrits. For example, 

Wang and Shung [68] have measured the attenuation of porcine red blood cell 

suspensions and found that the attenuation increases with frequency and to a 

first order increases linearly with hematocrit. This is illustrated in Fig. 1.30. 



76 Biomedical Ultrasound 

Table 1.8. Properties of Certain Soft Human Tissue at 37°C* 

Human 

Tissue Type 
c0 
m/s 

JE 
o 

0") 
C

l adBi 

@1 MHzdB/cm 

B/A 

Parameter of 

Nonlinearity 

Connective 1613 1120 1.57 — 

Muscle 1547 1050 1.09 — 

Fat 1478 950 0.48 — 

Adipose 1450 950 0.29 10.0 

Blood 1584 1060 0.20 6.1 

Brain 1560 1040 0.60 7.1 

Breast 1510 1020 0.75 — 

Eye: lens 1645 1070 0.80 — 

Eye: vitreous 1528 1010 0.1 — 

Kidney 1560 1050 1.0 7.4 

Liver 1595 1060 0.50 6.6 

Muscle, cardiac 1576 1060 0.52 7.1 

Muscle, skeletal 1580 1050 0.74 6.6 

Skin 1615 1090 0.35 7.9 

Fatty 1465 0985 0.40 8.5 

Non-fatty 1575 1055 0.60 7.0 

Blood cells 1627 1093 0.28 — 

Blood plasma 1543 1027 0.069 — 

Eye: cornea 1586 1076 — — 

Spinal cord 1542 1038 — _ 

Spleen 1567 1054 0.4 7.8 

Testis 1595 1044 0.17 — 

* Reproduced, with permission, from Mast [67], Acoustics Res. Lett., 1, 37-42, © 2000 Acoustical Society of 
America. 

Osteoporosis Assessment Using Attenuation and Speed 

Cancellous (trabecular or spongy) bone, unlike compact (cortical) bone, is a 
3-D network of bony plates and columns: fat and bone marrow fills the spaces 
between them. Osteoporosis is a metabolic bone disease characterized by low 
bone mass density and micro architectural deterioration of bone tissue, causing 
increased bone fragility that leads to a greater susceptibility to fractures, espe¬ 
cially of the wrist, spine, and hip. The economic cost associated with the result¬ 
ing treatment and hospitalizations is enormous, and as a result a great deal of 
effort has been expended on developing noninvasive methods for detecting 
those at risk and for monitoring the effects of treatment. Such methods use a 
variety of approaches, including attenuation measurements of photons emitted 
from radionuclide source (e.g., single photon absorptiometry), dual photon X- 
ray absorptiometry, quantitative CT, and quantitative ultrasound [69,70], 
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Figure 1.30 Measured results for the attenuation of porcine red blood cell 
suspensions in a buffered saline solution. To a first order, the attenuation varies 
linearly with hematocrit. (Reproduced, with permission, from Wang and Shung [68], 
IEEE Trans. Biomed. Eng., 44, 549-554, © 1997 IEEE.) 

Ultrasound methods have focused on two variables, the speed of sound 

and broadband attenuation, both of which can be measured noninvasively 

using relatively inexpensive systems. The broadband ultrasonic attenuation 

(BUA) is the slope of the attenuation-frequency characteristics measured in 

dB/(MHz.cm), which is found by linearly fitting the attenuation values over a 

fairly broad frequency range. Both the speed and BUA are related to the bone 

density, and evidence has been presented that this relationship appears to be 

linear [71]. Following publication of the seminal work by Langton et al. [72,73] 

in 1984, much effort has been devoted toward developing measurement 

systems that could be used clinically, and a number of such systems became 

commercially available by the mid-1990s. Many of the clinical studies meas¬ 

ured the speed and attenuation of the calcaneus (heelbone) by transmission. 

The calcaneus, which is 90% cancellous bone, is readily accessible and has 

reasonably flat surfaces. An important advantage of measuring cancellous 

bone is that its attenuation has a frequency dependence that is close to unity 

over a broad frequency range (e.g., 0.2-1 MHz). For example, measurements 

made [74] on 1-cm-thick specimens of trabecular bone taken from the calca¬ 

neus of 14 human cadavers yielded a ~ 14/1 "v over the frequency range from 

0.2 to 1.7 MHz. However, the range of values for a„ was from 2 to 40 (dB/cm) 

and that for n was 0.4 to 2.2. Nonetheless, it was found that a0 was strongly 

correlated to the bone mineral density, which contributes in an important way 

to the bone strength. 
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Some ultrasonic measurement schemes are illustrated in Fig. 1.31. In (a) the 

transmitting and receiving transducers are gel coupled to the skin and are at 

a fixed distance apart. Generally, a speed measurement is made by the time of 

flight of a broadband pulse from transmitter to receiver. The bone thickness, 

which does affect the time of flight, may not be easily measured, and as a result 

the speed is sometimes calculated based on an assumed thickness that can be 

based on normal values for a particular age, size, and sex. A further difficulty 

in speed measurements arise from the large frequency-dependent attenuation 

and phase speed that can cause distortion of the received waveform, making 

it difficult to determine the time of flight [75]. As illustrated in (b), the time 

of flight can be measured with and without the heel: the difference enables 

the speed to be determined. Measurement of the BUA is best made by the 

substitution method, in which a medium with a known frequency-dependent 

attenuation is used as a reference. If degassed water is used, then, over the fre¬ 

quency range normally employed (0.2-0.5MHz), the reference medium can 

Figure 1.31 Methods for measuring speed of sound in bone, (a) Gel-coupled system, 

(b) Water bath system, (c) Axial transmission system. (Reprinted by permission of 

Elsevier from Njeh et al. [69], Ch. 4, in Quantative Ultrasound: Assessment of 

Osteoporosis and Bone Status, Martin Dunitz Ltd, © 1999 Elsevier.) 
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be assumed to be non-attenuating. The frequency-dependent attenuation can 

be calculated by taking the Fourier transform of the received signals with 

and without the reference. Because the bone thickness may not be known, 

and the variation between subjects in a given disease category is small, the 

BUA is generally expressed as raJB (dB/MHz) and might be in the range 40 
to 70 dB/MHz. 

Absorption Mechanism 

Absorption occurs when a phase difference occurs between the pressure and 

density, and this can be caused by classical viscous friction or by relaxation 

processes. Various types of relaxational processes have been proposed and 

theoretically developed. As pointed out by Markham et al. [82], the theories 

fit into four groups: (i) kinetic theory, (ii) irreversible thermodynamics, (iii) 

statistical thermodynamics, and (iv) phenomenological approach. As noted 

earlier, absorption and dispersion are intimately related. Based on causality, 

relations known as the Kramers-Kronig equations can be derived, and these 

enable the phase speed to be expressed in terms of the absorption coefficient 
(see section 3.9). 

For soft tissue, it is generally believed that relaxation mechanisms play a 

dominant role. During the passage of an ultrasound wave through a medium 

that perhaps consists of large molecules of different types, there will be many 

degrees of freedom. The ultrasound energy at a given location at a specific 

time can be redistributed as the molecular translational and vibrational energy 

and the “lattice” energy. The distribution of energy at any given instant 

depends on the coupling of the various modes. Since the rate at which the 

energy from the acoustic wave is redistributed is finite, energy that was redis¬ 

tributed may be returned out of phase with the acoustic wave, constituting 

energy loss. If the frequency is sufficiently low so that the rate of energy redis¬ 

tribution is not a limiting factor, the absorption will be small. Similarly, at very 

high frequencies, there will be insufficient time for significant energy coupling, 

and the loss can be expected to decrease as the frequency is raised. In the 

intermediate range, when the frequency is close to the characteristic relaxation 

frequencies of the processes, the absorption will be high. In a complex medium, 

there would be a wide distribution of relaxation frequencies present such that 

the distribution can be regarded as quasi-continuous. If this is the case, the 

absorption characteristics might be expected to increase with frequency in a 

simple monotonic manner. 

A second type of relaxation—structural relaxation—is associated with 

changes in the short-term order. For water, Hall [83] presented good evidence 

that this could account for the difference between the calculated frequency- 

dependent absorption coefficient and that measured (see subsection 1.8.3). 

Our understanding of the mechanism of absorption in biological tissue is 

far from complete. Accounting for and measuring the absorption characteris¬ 

tics of gases, fluids, and tissue has been an area of considerable scientific effort 

over the past 150 years, and much of this has been summarized in books and 

journal articles [64,82,84,85]. 
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Figure 1.32 Intensity of a harmonic plane wave as it propagates in a tissue-like 

medium at frequencies in the range 2 to 20 MHz. Two typical values have been 

assumed for the frequency-dependent attenuation factor. 

Some Effects of Frequency Dependent-Attenuation 
and Scattering 

The effect of attenuation in the propagation of harmonic plane waves is illus¬ 

trated in Fig. 1.32. This shows the one-way intensity ratio for various frequen¬ 

cies and two different values of the attenuation factor (ac) assuming a power 

law frequency dependence with an exponent n = 1.0. If a perfect reflector were 

placed at a given depth parallel to the plane of the wave, the signal returned 

to the surface would be attenuated twice, and as a result the intensity reduc¬ 
tion expressed in dB's would be doubled. 

An important effect of frequency-dependent attenuation concerns its 

effects on a wide bandwidth transmitted pulse. For n > 0, the center frequency 

of such a pulse will be down-shifted as it progresses, causing the pulse dura¬ 

tion to be increased. As an example we consider the plane-wave Gaussian 

modulated sinusoidal pressure pulse, as expressed by (1.43) and (1.44), with a 

center frequency of/f and a -6dB fractional bandwidth of 0^/(2.66/f). This was 

used in our earlier discussion of the effects of dispersion. By multiplying the 

frequency domain representation of this pulse, as given by (1.45), by the ampli¬ 

tude exponential attenuation factor of e~xa°fn, the attenuated amplitude spec¬ 
trum is given by 

in which it has been assumed that the effects of velocity dispersion are negli¬ 

gible (q = cQ). By differentiating with respect to / and equating to zero, the 
following equation can be obtained: 
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where /max is the peak frequency. For n = 1 and 2, the roots of this equation 

can be obtained analytically, enabling the change in peak frequency to be 
expressed as36 

n = 1 
(1.127) 

n = 2. 

Thus, it can be seen that the center frequency is down-shifted by an amount 

that increases with depth. In the case n - 1, it can be seen that the change in 

peak frequency is directly proportional to the depth, and increases as the 

square of the incident pulse bandwidth. For both cases it can be shown that 

the spectrum is Gaussian [86] and that for n = 1 the variance remains 

unchanged, while for n = 2 it is reduced. 

To illustrate these changes, (1.126) and (1.127) have been evaluated at a 

depth of 6.0cm for a center frequency (fc) of 5.0MHz, a -6dB fractional band¬ 

width of -0.376, corresponding to ora = 5.0 x 106s“\ n - 1, and a0 values of 0, 

1, and 2dB/(cm.MHz).The normalized frequency spectra calculated from the 

magnitude of (1.126) are plotted in Fig. 1.33a. In addition. Fig. 1.33b shows the 

change in center frequency as a function of depth for n = 1 and 2 for two values 

of the attenuation factor. 

As discussed in Chapter 5, backscattering is also a frequency-dependent 

process that can be approximately represented by a power law («/"'), espe¬ 

cially for scatterers whose dimensions are small compared to a wavelength. 

Specifically, for small spherical scatterers, m = 4, while for infinite cylinders 

whose radii are small compared to a wavelength, m = 9/4. Soft tissue meas¬ 

urements indicate that m is typically in the range from 3 to 4. Round and Bates 

[87] studied the influence of scattering on the spectrum when the incident pulse 

is Gaussian and obtained approximate expressions for the center frequency 

and bandwidth. They also investigated the combined effect of scattering and 

attenuation on the spectrum. More recently. Wear [88] performed experimen¬ 

tal and theoretical studies of the combined effect. As can be seen in Fig. 1.34a, 

while the center frequency increases with m, the bandwidth diminishes. 

When the effects of both frequency-dependent scattering and attenuation are 

included, the center frequency can either decrease or increase, depending on 

the depth and other parameters. An example is shown in Fig. 1.34b, in which 

the pulse-echo signal spectrum is shown for a scatterer at a depth of 6 cm. 

1.8.2 Heat Generation 

The process of ultrasound absorption generally involves conversion of virtu¬ 

ally all the absorbed energy into heat rather than into other energy forms. A 

36. If the intensity had been assumed to be Gaussian (rather than the amplitude) with a fre¬ 

quency standard deviation of Gr, the values for A/i and Af2 would be the same as those given by 

(1.127), but with of replacing and V2 replacing (27t)z, in agreement with the equations (11) and 

(13) given by Narayana and Ophir in [86], 
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Figure 1.33 The spectrum of a Gaussian modulated sinusoidal pressure pulse, in the 

form of a plane wave, is down-shifted by the effect of attenuation. The pulse was 

assumed to be characterized by fc = 5.0 MHz and am = 5.0 x 10V1. (a) Spectrum at a 

depth of 6.0 cm for n = 1 and three different values of aa. The spectra have been 

normalized to the center frequency of each. Specifically, at the center frequencies of 

the three spectra the amplitudes are attenuated by: 0, -28.7, and -54.7 dB, 

respectively, (b) The change in center frequency as a function of depth for n = 1 and 
2, as calculated from (1.127). 

variety of ultrasound devices for treatment [89-91] and surgery [92] make use 

of the fact that when the incident intensity is sufficiently high and well focused, 

fairly localized heating of tissue can be achieved in a zone remote from the 

skin surface. Since the 1930s ultrasound has been used in physiotherapy for 

localized tissue heating. In more recent years ultrasound has been used for 

hyperthermia. Hyperthermia is the process of heating a volume to sufficiently 

high temperatures (42 to 46 C) for a sufficient length of time (minutes to 

several hours) to cause cell destruction. As a therapeutic modality for tumor 

destruction, ultrasound hyperthermia can be used alone. However, it is more 

frequently used in combination with other therapeutic modalities such as 
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Frequency, MHz 

Figure 1.34 Changes in the spectra due to frequency-dependent scattering and 

attenuation for a Gaussian modulated incident pulse (fc = 5.0MHz, gm = 5.0 x lOV1). 

(a) Due to frequency-dependent backscattering in the absence of attenuation, (b) 

Due to attenuation and backscattering at a depth of 6cm. 

chemotherapy or radiation therapy. The objective is to induce cell death 

in a localized volume without causing damage to the surrounding tissue. This 

proves to be a rather challenging task, because such factors as heat transport 

by blood, thermal conduction, and the temperature dependence of the atten¬ 

uation coefficient make it difficult to accurately predict the temperature dis¬ 

tribution. Clearly, though, the ability to predict the rate of heat production per 

unit volume for a given incident field is of major importance. 

We shall assume that scattering can be ignored and that all the absorbed 

energy is converted into heat. For simplicity, the incident energy will be 
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assumed to be in the form of a plane harmonic wave. If the medium has an 

amplitude absorption coefficient of afl, the rate of heat production per unit 

volume can be found by differentiating (1.122), 

(1.128) ^=_£ZM = 2aa7(4 
dx 

For a plane harmonic wave, the time-averaged intensity was expressed in terms 

of either the pressure (pa) or velocity (v0) amplitudes by means of (1.87). By 

using this expression, two alternative forms for the average heat production 
rate are given by 

(1.129) 

— _ a“Po 
C]v — 

P o^o 

= p0c0aaVo. 

(a) 

(b) 

If the absorption coefficient has a power-law frequency dependence of afl 
= aaofn, then from (1.122) and (1.128) 

~q~v = 2aaof" I ^0)e~2(Xaof"x. 

By differentiation with respect to/, it can be readily shown that for the same 

incident intensity the heat production rate at a given depth is a maximum when 

the frequency is given by fop,= V(2aaox)lln. As illustrated in Fig. 1.35, for media 

whose absorption coefficient varies either linearly with frequency or as/15, the 

optimal frequency diminishes with increasing depth and decreasing n. These 

and other practical aspects related to ultrasound surgery have been discussed 
by Hill [93], 

Although (1.129a), expressing the rate of heat production in terms of the 

incident pressure amplitude, assumed an incident plane wave, Nyborg has 

shown [94] that the same expression is obtained for an arbitrary incident wave 

provided the shear viscosity (p) is negligible.37 This assumption implies that 

absorption must arise from mechanisms other than viscous shear losses. 

Nonetheless, for a plane wave (1.129a) remains true even in the presence of 
viscous losses. 

1.8.3 Absorption and the Bulk (Volume) Viscosity of Fluids 

In 1845 Stokes first noted the possibility that liquids could possess a bulk vis¬ 

cosity. By assuming that the propagation process for a compressional wave was 

purely adiabatic, and that the effects of bulk viscosity could be ignored, he 

obtained the following classical equation for the absorption coefficient of 
ultrasound in fluids38 

(1.130) a, 2co2Kp 

3c„ 

37. This assumption makes the stress tensor isotropic. Note that that bulk viscosity can still 
have a non-zero value. 

38. See subsection 3.10.3 for a derivation. 
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Figure 1.35 Dependence of the normalized average heat production rate per unit 

volume on frequency at various depths for incident plane waves. The medium 

was assumed to have a frequency-dependent absorption coefficient of either 

ldB/(cm.MHz) or 1 dB/(cm.MHz15) and the same incident intensity. 

where k is the adiabatic compressibility and p is the shear viscosity. Subse¬ 

quently. in 1868 Kirchhoff described how thermal conduction could affect the 

absorption coefficient and showed that 

(1.131) a 

where y = Cp/Cv is the ratio of specific heats and JC is the thermal conductiv¬ 

ity of the medium. For water, the thermal contribution is less than 0.1%, but 

for other liquids it can be considerably higher (~8% for acetone), while for 

gases the two contributions are of similar magnitude (-40% for oxygen at 

NTP) [18, p. 267], 
As previously explained, thermal conduction affects a because heat 

will flow from the crests of the pressure wave towards the valleys, which 

tends to smooth out the temperature fluctuations. Compressed regions on re¬ 

expanding do less work than was expended on compression, and as a result 

energy is lost. Also, as previously noted, a longitudinal wave behaves more 

adiabatically at lower frequencies because the co2 dependence of thermal 

conduction more than compensates for the increased time interval (1/co) over 

which conduction can occur [6, p. 275; 7, p. 45]. 

In practice, the measured absorption coefficients are significantly higher 

than those predicted by (1.130) or (1.131). For example, in water at 20°C, a is 

approximately 3.1 times greater [80], Good evidence has been presented that 

structural relaxation [83,95] processes can play an important role in the 

passage of a compressional wave. For instance, in water the short-range 
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molecular structure will be changed during compression, and these structural 

changes will generally be out of phase with the pressure, leading to energy 

loss. Other loss mechanisms, such as thermal relaxation, can also be important 

[96], Specifically, associated with the passage of a compressional wave, there 

will be very rapid changes in temperature due to the adiabatic nature of the 

propagation process. For example, these temperature changes can cause the 

equilibrium of molecular reaction to be perturbed, or perhaps redistribute 

energy between the vibrational and rotational modes of molecules, all of which 

can result in energy loss. 

To account for these energy loss mechanisms as well as the classical viscous 

shear loss and thermal conduction, an additional bulk (volume) viscous term 

is often introduced whose value, when added to the shear viscosity, gives the 

correct value for a. Inclusion of a bulk viscosity pB in the Navier-Stokes equa¬ 
tion results in: 

(1.132) a, = 
GTK 

2c0 
-p + pB + (y-l) 

3C 

Cp. 

If the measured value of the absorption coefficient is denoted by am, then for 

this to be equal to a„ the ratio of the two viscous components, in the absence 
of thermal loss, can be found from (1.131) and (1.132) as 

(1.133) 
ha = 4 (a„, -qc) 

p 3 ac 

which forms the basis of the method for determining pB. For example, 

Pinkerton [80] has found that for water at 15°C, pfl= 2.81p = 0.0031 kg/m.s, and 

Litovitz and Davis [95] have listed values for pB for a wide variety of fluids. 

1.8.4 Shear Wave Absorption in Fluids and Tissue 

As previously noted, the differential equation describing the particle velocity 

in a fluid medium can be separated into two equations. One describes the lon¬ 

gitudinal component vL which curlvL = 0, the other describing vT for which 

div(vT) = 0, where the total velocity is given by v= vL + vT. The latter is rewrit¬ 
ten here as 

(1-134) p0 -^-L = -pV x V x vT, 
at 

where p is the shear viscosity. 

If we consider a plane transverse (shear) y-polarized wave propagating in 

the x-direction with an attenuation constant a, then, to a first order, there will 

be no pressure or density variations due to such a wave. The particle velocity 
in the y-direction for such a wave can be represented by 

(1-135) vTy = v0ei(m~kx)e~wc, 

where the wave number k = tolcT and cT is the transverse wave speed. By sub¬ 

stituting (1.34) into (1.135), and by noting that vTy is independent of y and z, 

the curl term can be evaluated and we find that y'cop„ = p(jk + a)2. But since 
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V7 = (l + y')/V2 , this results in k = and 
V 2jn V 2jn 

Hence, cr = V2(0p/po , and a = (o/cr = 2k/\t, where is the wavelength. Thus, 

over a distance of one wavelength, the amplitude decreases decreases by e~2n 

= 535. For example, let us calculate the wavelength of a shear wave in water 

at 20°C and 1.0MHz. From Table 1.1 p = 0.001 kg/m.s and p0 = 1000kg/m3, 

yielding XT - 3.7pm. Consequently, high-frequency shear waves in most fluids 

are very rapidly attenuated and it is a good approximation to assume that only 

longitudinal waves are propagated at such frequencies. 

On the other hand, soft biological tissue and tissue-like media have a non¬ 

zero shear modulus (second Lame constant, pf) that results in wave-mode con¬ 

version at abrupt interfaces. By measuring the complex reflection coefficient 

between the sample and an optically flat fused silica surface, Madsen et al. [97] 

have determined the transverse wave speed and attenuation coefficient of a 

number of biological media over a frequency range from 2 to 14 MHz. Some 

of the results from this study are summarized in Table 1.9. It will be noted that 

the transverse wave speeds are a small fraction of the longitudinal speeds. 

Moreover, the attenuation coefficients result in penetration depths on the 

order of 1 pm. 

Problems 

PI. A 4-MHz CW ultrasound plane wave whose intensity is 3mW/cm2 is 

propagated from a planar source into caster oil (a good tissue-mim¬ 

icking fluid) at 28°C. At this temperature and frequency, p„ = 

946 kg/m3, ca = 1452 m/s, and a = 0.7dB/cm. 

At distances: (a) Close to the source and (b) 2.0cm from the source, 

determine: (i) Particle displacement amplitude, (ii) Particle velocity 

amplitude, (iii) Acoustic density amplitude, and (iv) Pressure 

amplitude. 

P2. A small-signal plane wave consisting of a symmetric square waveform 

whose fundamental frequency is 10 MHz is launched into a water-like 

medium whose attenuation constant is 0.5dB/cm at 1.0 MHz and that 

varies with frequency to the power of 1.5. Assuming cQ = 1600m/s and 

Table 1.9. Transverse Wave Speed and Attenuation in Various Biological Media* 

Medium -Speed, m/s -Attenuation, Np/cm Comments 

Bovine striated muscle 20-50 4000-18000 From 3 to 14 MHz: both 

increase with frequency 

Bovine cardiac muscle 16-54 5000-20000 From 3 to 14 MHz: both 

increase with frequency 

Bovine liver 10-75 10000-22000 From 3 to 14 MHz: both 

increase with frequency 

* Values listed are those reported by Madsen et al. [97]. 
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ZQ = 1.7MRay, determine the distance at which the beam intensity is 

reduced to 15% of the value at the launching site, and plot graphs to 

show the waveform at that distance and the power spectrum (in dBs). 

P3. Consider the propagation of a plane sinusoidal wave into carbon 

tetrachloride. This fluid exhibits classical viscous loss over a very wide 

frequency range. Assuming that the attenuation factor is given by a0 

= 0.535Np/[m.(MHz)2], and ca = 926m/s at 10.0MHz, determine the 

frequency at which the imaginary part of the specific acoustic imped¬ 

ance is 10% of the real part. 

P4. A sphere of radius a is pulsates harmonically with a velocity 

amplitude of vQ and radiates into an inviscid medium whose charac¬ 

teristic impedance is ZQ. The velocity potential for r > a is given by 

<t>(r:f) = —-• 
r 

a. Show that the particle velocity for r > a is given by 

v(r:t) = va 
a 1 + jka 

r: 1+jkr 
ytor em, and that the acoustic radiation 

impedance seen by the sphere is Z = ZQ + . 
\ + {kaf 

Note that as ka—>0 the pressure and velocity will be 90 degrees out 

of phase and that as A'<7—>°o the impedance becomes identical to 
the plane-wave impedance. 

b. Show that the real power radiated from the sphere is given by 
2 

(.ka)~ 
VPRe = 2na~v„Z, 

\ + {ka)~ 

This shows that the real power radiated for a given surface velocity 

falls off to zero as ka-^0, and reaches a constant value if ka » 1. 

P5. A plane harmonic wave originating from a semi-infinite medium of 

specific impedance Zx is normally incident on a semi-infinite medium 

of specific impedance Z2. Show that the impedance seen by the inci¬ 

dent wave at a distance € from the interface is given by 

z ,£\ = z g2+,/Z|tan(27tfA,) 

' Zl\ +jZ2 tan(27t^/A,1) ’ 

P6. A plane harmonic wave is incident at normal incidence on a plane 

parallel-sided layer of thickness € and impedance Z2 that separates a 

semi-infinite incident medium of specific impedance Z, from a semi¬ 

infinite medium of specific impedance Z3. The intensity ratio is given 
by equation (1.111), namely 

rj, _ 4Z3Z] 
11 -  -A-:---5-, where <p = 2k€/X2 and X2 

(Zi + Z3) cos“ cp + (Z2 + Z1Z3/Z2) sin2 (p 
is the wavelength in the middle layer. 



Introduction 89 

a. Comment on the use of this expression in relation to impedance 

matching between two media. 

b. Two liquid media, water and carbon tetrachloride, both have 

impedances of 1.48MRayl. To separate them acoustically, a thin 

sheet of Mylar is used (Za = 3.00 MRayl, ca = 2540 m/s). If the thick¬ 

ness is less than a quarter wavelength so that attenuation can be 

ignored, determine the maximum thickness that can be used so 

that the transmitted intensity is reduced by no more than 5% at 

10 MHz. 

c. In transmitting from a piezoelectric ceramic transducer (PZT, 

34 MRayl) into water at 5 MHz, what medium would you choose 

(give the thickness, impedance, and type of material) to achieve 

nearly perfect matching? 

P7. In problem P6, suppose that the load impedance is complex such that 

Z3 = R3 + jX3. Show that if middle layer impedance is real and equal 

to the magnitude of Z3, i.e., Z2 = IZ3I, and its thickness is given by € = 

X2/8, the impedance seen by the incident wave is also real and is given 

by 

7 R^Rl + Xl 

in 4W+xf-x3' 

P8. A plane ultrasound wave in water has an intensity of 50mW/cm2 and 

is incident at an angle of 12 degrees to the normal on a plane semi¬ 

infinite glass slab. Determine the intensity of the reflected and trans¬ 

mitted beams if the effects of attenuation can be neglected, but account¬ 

ing for wave-mode conversion. Assume that: c0(water) = 1480m/s, 

cL(glass) = 5570 m/s, c^glass) = 3520m/s and p„(glass) = 2.6g/cm\ 

P9. If a region has a monotonic change of impedance with no disconti¬ 

nuities, it is possible to calculate the response to a plane incident wave 

of arbitrary waveform by convolving it with the pressure impulse 

response. This figure illustrates a monotonic impedance change from 

Z0 to Z„ over a distance z. Such a change can be approximated by 

steps of impedance change such that the reflection coefficients at each 

step are identical. For this to be the case, the ^-dimension of each step 

will generally differ. Let us consider a unit impulse pressure wave inci¬ 

dent from a region of impedance Z0 in the z-direction. When this 

wave encounters boundary 1, there will be a transmitted and reflected 

component. 
a. If the pressure reflection coefficient is denoted by R (omitting the 

subscript to simplify the notation), show that if multiple reflections 

are ignored, then the total reflected pressure due to reflections at 

all n interfaces of the incident 8-function, i.e., the impulse response, 

is given by 

m=R£(i-R*r*-*>) 
k=1 
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where the impulse has been assumed to be incident on the first 

interface at t = 0, and 2tu 212_2t„ are the total transit times, i.e., 

2tn is the transit time from the first interface to the last interface 
and back again. 

b. Show that by integrating this equation, 

f = nR-(„Rf^ + (nRf -. 
c. The impulse is assumed to come from a half-space region of 

impedance Za and ends up in a half-space region of impedance 

Zn after crossing the region of varying impedance. Noting that 
2 
~ - [(1 + R)/(1 - /?)]" show that in the limit that: 
Zq 

Hmj) h(t)dt = 0.51n(Z„/Z0),i.e.,h(t)dt = 0.5ln[Z(r)/Z0],which 

is the first-order impediography equation. The identity 2tanh~lR = 
ln[(l + R)/( 1 - i?)] may be helpful. 

d. From the above result show that that pressure impulse response is 

, dZ(t)/dt 
given by h{2t) = — , when multiple reflections are ignored 

4Z(/j 

and the impedance change is monotonic. 
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2 

Theoretical Basis for 
Field Calculations 

Of considerable practical importance is the ability to accurately predict the 

field caused by an acoustic source of given dimensions. The changes in pres¬ 

sure, particle velocity, and density can be determined by solving the appro¬ 

priate wave equation subject to the prescribed boundary and initial conditions. 

An appropriate wave equation could be one that accounts for the properties 

of the transmission medium, including nonlinearities, absorption, and disper¬ 

sion, as well as any anisotropic and inhomogeneities present. Solving such an 

equation is often very difficult, and as a result several assumptions and approx¬ 
imations are generally made. 

In the classical approach for linear propagation, a homogeneous, isotropic 

inviscid fluid is assumed and simplifying assumptions are made in regard to 

the boundary conditions. Two different conditions are considered, leading to 

two equations that describe the field distribution in terms of surface integrals 

over the prescribed boundary. They are commonly referred to as the Rayleigh- 

Sommerfeld diffraction equations. One of these leads to the Rayleigh integral, 

which we use to solve for the on-axis field distribution of a circular- 

symmetric source. An alternative approach, of more recent origin, is based on 

the angular spectrum technique. It makes use of the 2-D Fourier transform to 

represent the field on any given plane. Given this field distribution, it provides 

a relatively simple approach for calculating the field on an adjacent plane. As 

will be shown, it is equivalent to the Rayleigh integral method. Examples of 

both methods will be presented in the next chapter. Finally, although not 

described in this chapter, it should be noted that if the field region is divided 

96 
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into a grid of sufficiently fine resolution, numerical methods provide a flexible 

means for determining the field. Such methods are particularly appropriate 

when the source and boundary conditions are complex. 

For soft biological tissue, it is often assumed that ultrasonic wave propaga¬ 

tion is well approximated by assuming that the medium behaves as a fluid and 

that any shear wave propagation can be ignored. However, tissue is an elastic 

medium that can also support low-frequency shear wave propagation. For 

example, the radiation pressure created by ultrasound propagation in a vis¬ 

coelastic medium such as tissue can result in shear wave generation (see 

section 8.8). To predict the manner in which such waves propagate, it is nec¬ 

essary to use a wave equation that accounts for the elastic nature of the 

medium. Such an equation is discussed in section 1.4.3, where the particle dis¬ 

placement field (see (1.66)) is expressed in terms of the Lame constants and 

viscous loss parameters. Even if the medium is assumed to be unbounded and 

inviscid. solving such an equation is a fairly complex task and beyond the scope 

of this book. Nonetheless, it is interesting to note that Stokes [1], in 1849, pub¬ 

lished a general solution (see his eqn. (36)) for the lossless displacement field 

generated by an arbitrary forcing function (in essence, a Green’s function solu¬ 

tion). The solution contained three terms, two of which depend inversely on 

the distance from the source, and these describe far-field longitudinal and 

shear propagation. The final term, which decays rapidly with distance, accounts 

for longitudinal and shear wave propagation in the near field. In his paper 

Stokes acknowledged that Poisson [2] had previously derived a solution but 

indicated that the assumptions used were not entirely satisfactory. 

The much simpler case of longitudinal propagation in an inviscid medium, 

as described by the Rayleigh-Sommerfeld diffraction equations, forms the 

staring point of this chapter. These are then applied to determine the axial 

field distribution due to a simple piston source for sinusoidal and pulse exci¬ 

tations. The final section contains a description of the theory underlying the 

angular spectrum approach, practical examples of which are given in the next 

chapter. 

2.1 Rayleigh-Sommerfeld Diffraction Equations 

To determine the pressure or velocity field produced by a vibrating source 

excited by an arbitrary waveform, we must solve the appropriate wave equa¬ 

tion that characterizes the manner in which the wave is propagated and must 

constrain the solution to meet the boundary conditions defined by the 

problem. Much of what follows is based on the classical works of Goodman 

[4, Chapter 3], Morse and Ingard [6], and Skudrzyk [7]. 
As in Chapter 1, we write our equations in terms of a scalar velocity poten¬ 

tial q(r:r) defined by 

(2.1) v(r:f) = -V<|)(r:f), 

in which V is the gradient operator and v is the “particle” velocity at the posi¬ 

tion r. For small-amplitude compressional waves propagating in a homoge- 
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neous medium of adiabatic compressibility k, shear viscosity p, and bulk vis¬ 

cosity pB, the equation describing the spatial and time dependence of (|) was 

derived in Chapter 1 (1.38), and is 

(2.2) KPo 
d2(j) 

= V2(|) + K V-B+-V 
V 3 y dt 

(V2^)). 

In a homogeneous inviscid (p = pB = 0) medium, the velocity potential 0 at 

r for an arbitrary distribution of sources must satisfy the wave equation with 

an extra term to account for the source distribution [12], i.e., 

(«) -4|^-V2<|> = -/(r:/), 
Co dr 

where cQ = l/is the small-signal wave propagation speed and /(r:t) 

describes the strength of the source distribution. To solve this inhomogeneous 

equation for a given set of boundary conditions, it is simpler to transform (2.3) 

to the frequency domain. The transformation can be accomplished by using 
the Fourier transform, defined by1: 

(2.4) 6(g>)= | q{t)e~iwtdt. 

Once the solution is obtained, then the inverse Fourier transform, 

(2.5) q(t) = ~ j Q((o)eia,d(0 

enables 0(r:/) to be obtained.Transforming (2.3) by using (2.4) yields the inho¬ 
mogeneous form of the Helmholtz equation 

(2.6) (V2 + £2)0 = -T(r:(o), 

in which k = co/c0 is the wave number and O(r:to) and F(r:co) are the Fourier 
transforms of <j) and f respectively. 

The problem of determining the field distribution due to an arbitrary source 

distribution /(r:t) enclosed by a surface Sa reduces to solving the Helmholtz 

equation subject to the boundary conditions on SQ. A convenient method is 

based on the use of a Green’s function [3,8]. Such a function2 G(r|r„) is a par¬ 

ticular solution of (2.6) for a point source located at r0, i.e., it satisfies 

(2-7) (V2 +/r)G(ijr(>) = -8(r-r0), 

1. See Appendix B. A variety of other definitions for the Fourier transform are possible and 

are in use. The choice of a negative-signed exponent for the forward and a positive sign for the 

inverse Fourier transforms should be noted. Definitions with the signs reversed are frequently 

used. The Fourier transform pair <7(/)and Q(co), as with subsequent pairs, are distinguished by 
lower- and upper-case letters. 

2. The notation G(r|r0) is a shorthand for the value of the function G at r for a source at r„. 
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Figure 2.1 Method for determining the velocity potential at r due a distributed 

source vibrating at an angular frequency co enclosed by a surface Sa. The source is 

assumed to have the same propagation characteristics as the surrounding medium. 

where 5(r - r0) is the Dirac delta function,3 whose value is zero for all values 

of r except for r = r0. Fundamentally, the idea is to represent an arbitrary source 

by an infinite collection of point sources. By obtaining the velocity potential 

for each point source, the velocity potential for the entire source can be 

obtained by summation. Evidently, for G(r|r„) to be a Green’s function of the 

problem under study, it must satisfy the same boundary conditions as imposed 

on the original problem. 
The transformed source surrounded by the surface Sa and a unit vector n 

pointing in an outward direction are shown in Fig. 2.1. To obtain an integral 

expression for the velocity potential at an observation point r that lies within 

S0, we multiply (2.6) by G(r|r0) and (2.7) by O(r:oo) and subtract the two equa¬ 

tions, yielding 

(2.8) G(r|r0 )V2d> - 0V2G(r|ro) = 05(r - r0) - G(r|r0 )F(r: to). (a) 

Noting the reciprocal properties, i.e., G(r|r„) = G(r()|r), and 8(r - r0) = 8(r„ - r), 
then r and r„ can be exchanged. The form of (2.8) remains the same, though 

<D(r) transforms to <D(r0) and F(r:co) to F(r„:co), i.e., they are expressed in terms 

of the source coordinates, so that (2.8a) becomes 

(2.8) G(r„ |r)V2#(r0) - <b(r0 )V2G(r„ |r) = 0(ro )8(r„ - r) - G(rc |r)F(r0: to). (b) 

To determine the velocity potential both within the enclosed volume and 

on the surface S0, we first integrate (2.8) over the entire enclosed volume Va 

3. Definition: if f(x) is any well-behaved function, then 

f ' f(x)b{x)dx - 
Jx-, 

/(0) if integration range includes x = 0 

0 if integration range includes x = 0 

This definition of 5(x) is adopted from [3, Chapter 1]; its properties are also discussed in [38, 

Chapter 5], In dimensional analysis it is helpful to remember that the 8-function has dimensions 

that are the inverse of its argument. Thus, for example, the dimension of 5(r) is [L ']. 
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enclosed by SD. Then, by using Green’s theorem (Appendix D), the left-hand 

side of the equation can be converted to a surface integral over S0. Noting that 

the volume integral of 08(r - r0) is simply O(r), we find 

(2.9) jj 
So L dn dn 

dSQ = O(r) — JJJ G(r|rc )F(r0: to )dVQ, 

where d/dn denotes a partial derivative in the outward normal direction for a 

given point on the surface S0.This equation can be rewritten to express in inte¬ 

gral form the velocity potential at r as 

(2.10) 
30 dG 
—-O- 
dn dn 

dS0 + r|r0)F(r0:co)dF0. 

Thus, given a particular source distribution, the velocity potential can be 

found, provided the boundary conditions for the velocity potential and the 

Green’s function are known. In the next three subsections three special cases 
will be examined. 

2.1.1 Volume Source in an Unbounded Medium 

Perhaps the simplest case to consider is one in which the source radiates into 

a medium unimpeded by any boundaries. The absence of an external bound¬ 

ary implies that there will be no reflected waves, i.e., all waves are outgoing. 

The Green’s function for this unbounded case corresponds to a point source 
radiating into space, and consequently 

(2-11) Gp (r|r„) = Gp (|r - r01) = e~mlc° /4 jt R, 

where R = |r - r0| is the magnitude of the distance of the observation point 

from a point in the source distribution. Thus (2.11) corresponds to a harmonic 

point source located at r(( that generates a wave whose amplitude falls off as 

HR. By substituting (2.11) into (2.6) and letting S0 -» it can be shown that 

this Green's function is an unbounded solution to the Helmholtz equation 
[6,12], 

The inverse transform of (2.11) yields the time-dependent free-space 
Green’s function, i.e.. 

(2.12) gp(Rd) 
4kR 

R_' 

Cq ) 

It should be noted that gp(R:t) is also called the free-space impulse response of 

the medium, hf. For an impulse at a time t0 at the position r„, the impulse 
response can be expressed in a more general form as 

(2.13) hf(r\ro:t\t0) - g,(r|ro:f|f0) = —---S[t - (tQ + |r-r0|/c0)l. 
47t|r-r0| " 

This equation makes it clear that the response at r due to an impulse at r0 is 

identical to the response at r„ due to an impulse at r, which is consistent with 
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the principle of reciprocity.4 It should also be noted that (2.13) is the solution 
to 

(2.14) _ r-h = -6(r - r. )8(f 
Co dr 

i.e., the inhomogeneous wave equation with a 5-function source at the point 
r = r0. 

Noting that5 Gp(r|r0) -» 0 and that O(r) -> 0 as r -a the velocity poten¬ 
tial in the frequency domain, as expressed by (2.10), simplifies to 

0(r: to) = JJJ Gp (r|r0 )F( r0: to )dV0, 
Vo 

whose inverse Fourier transform is 

(2.15) <t>(r:f) = ^-JJ| j Gp(r\r0)F(r0:o))eia' dcadV0. 

By making use of the superposition integral as given in Appendix A as (A.6) 
and knowing that the impulse response is given by (2.14), the velocity poten¬ 
tial can be written as the convolution integral 

(2.16) 

J , r - r„ 

dV0, 
r-r„ 

where/(.) is the time-dependent source distribution. 
An alternative way of obtaining this equation is to use the convolution 

theorem enabling the inner portion of the integral in (2.15) to be expressed 

as 

2k 
J Gp(r|r„)F(r0:co)eyoV(0-gp(R:t)* J 

4 kR 
f(r„:t)dx 

and consequently the time-dependent velocity potential to be written as 

(2.16) <t>(r=0 = 
4k 111 

/ ru:t- 
R 

G o J 
R 

dVa. 

4. In his classical treatise, Lord Rayleigh [13, Vol. 2, p. 145] provided the following statement 
of the principle of reciprocity attributed to Helmholtz: “If in a space filled with air which is partly 
bounded by finitely extended fixed bodies and is partially unbounded, sound waves be excited at 
any point A, the resulting velocity-potential at a second point B is the same both in magnitude 

and phase, as it would have been at A, had B been the source of sound. 
5. The Sommerfeld radiation condition [7, section 23.2.3] implies that regions at infinity do 

not contribute to the radiation field. 
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In this equation, (t - RJc0) is generally referred to as the retarded time: it rep¬ 

resents the time taken for a signal transmitted from a source at r0 to arrive at 

the observation point r. Thus, it expresses the fact that the velocity potential 

at the observation point can be found by summing the contributions of each 

elementary volume of the source distribution in a time-retarded sense and 
weighting each by HAtiR. 

An alternative form for the time-dependent velocity potential can also 

obtained from (2.15). From Appendix B, the inner integral to be written as 
2ng(r:t)*f(r:t), enabling (2.15) to be expressed as 

(2-17) <Kr:0 = JJJ j 8p (rlro:t\tQ)/(r|r0 :t\t0 )dt0dVo, 
v0 — 

where the Green’s function (impulse response) is given by (2.13). 

2.1.2 Source Distribution Enclosed by a Surface in an 
Infinite Medium 

As a second example we consider the case illustrated in Fig. 2.2, where a 

surface St encloses all sources and where no external boundary exists. The 

velocity potential at any point exterior to S', is determined by the boundary 

conditions on Sh Since the derivation leading to (2.10) is also valid when the 

observation point lies outside the enclosing surface, the velocity potential is 
given by 

(2.18) 50 dG -O- 
dn dn 

dSt 

If the bounding surface is of a simple form such that no reflections are pro¬ 

duced, then it is appropriate to use the free-space Green’s function as given 

by (2.11). The derivative of this with respect to the normal is given by 

dGp 

dn 
-cos(n,R)[ jk + ^jGp, 

where (n, R) denotes the angle between the outward normal unit vector n and 

the unit vector R= (r — r,)/|r - r,|. When these two expressions are substituted 

into (2.18), the velocity potential at the observation point is given by 

Figure 2.2 A source distribution enclosed by a surface S, in an infinite medium. 
Each point on the surface contributes to the potential at the observation point. 
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(2.19) <Mr:») = ^U 

,-jkR 

R 

d<J> 

dn 
+ o jk + 

n 
R 

COSI (fi.R) dS, . 

which is sometimes referred to as Helmholtz's formula. 
For the particular situation where the surface is quasi-planar, further sim¬ 

plification is possible. If it is assumed that each elementary area dS) is locally 

plane [14. p. 160], then very close to each area the emitted wave will also be 

plane. Now, for a plane wave moving in the direction n, d<E»Idn = -;M>; conse¬ 

quently, (2.19) can be expressed as 

(2.20) O (r: to) = [ [ O ——[1 - (1 +1/jkR) cos(n, R)] dS(. 
4tt v R 

This equation expresses the velocity potential due to a quasi-planar source in 

an infinite medium, and the boundary conditions are commonly referred to as 

Kirchhoff or free-field conditions [15-17]. As will be seen, this expression is 

the geometric mean of the velocity potentials for two other boundary condi¬ 

tions commonly considered. 

2.1.3 Bounded Region With No Internal Sources 

Of particular practical importance is the case in which no sources exist within 

a closed surface S0. If a non-zero velocity potential exists within Sa, portions 

of the boundary must be acting as a source. For example, a piezoelectric trans¬ 

ducer whose surface forms part of the boundary could produce surface veloc¬ 

ity vibrations. As will be seen, exact expressions for the velocity potential 

within and on Sa can be obtained for certain geometric configurations under 

specific boundary conditions. With the help of Fig. 2.3 we will sketch the der¬ 

ivation of an integral expression for the velocity potential in the time domain. 

Although this expression can be obtained in a much simpler way by an inverse 

Fourier transform, it is perhaps instructive to seek an appropriate solution of 

Point P 

Figure 2.3 Obtaining Kirchhoffs integral theorem relating the potential at the 
observation point P to the conditions on the surrounding surface. 
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the homogeneous wave equation given by (2.3). This derivation assumes the 

Huygens' principle and embodies the wave interference ideas of Fresnel, both 
of which were considered in section 1.7. 

Integral Theorem of Kirchhoff 

In 1882 Kirchhoff obtained a general integral expression for the time- 

dependent velocity potential at any point on or within a closed surface SQ in 

terms of the conditions on that surface. This formulation is a generalization of 

the earlier contributions by Helmholtz and Poisson in formulating Huygens’ 

principle for acoustic waves. The outline of the proof that follows is based on 
that given in [7, p. 506; 18, p. 38]. 

Each elementary surface area acts like a Huygens source, emitting radia¬ 

tion consisting of spherical wavelets. Thus, at the observation point P (see Fig. 
2.3), the wave due to a Huygens point source at rj can be written as 

/ | \ .. 1 ( , t-R\ 
(p(r|ri:r) = db = —(J) rfo:- , 

R v c0 ) 

where R is the distance of the observation point from the source. It should be 

noted that while § satisfies the wave equation 1/R does not, though it does 

satisfy the Laplace equation, i.e., V~( 1 lr) = O.The functional form of (j) expresses 

the fact that the wave arriving at r is due to what happened at at an earlier 

time equal to the time taken for the disturbance to travel the distance R. To 

find the potential at P due to Sa, we can surround P with a sphere of radius ax 
and surface area Sx and determine the surface potential that must exist on it 
to give the same potential at P. 

A relation between the functions <|> and d can be obtained by applying 

Green’s theorem (Appendix D) to the region within SQ that is exterior to Sh 
Both functions are well behaved (first and second partial derivatives are con¬ 

tinuous) over this volume and on the surfaces. Recalling that V2(1AR) = 0, 
Green’s theorem gives 

II 
So+Si 

T^-4, 
R dn 

where V0 is the volume enclosed by Sa and Vx that enclosed by Sx. In the limit 

as a, -> 0, the volume integral over Vx goes to zero and the surface integral 

over Sx can be shown to contribute -4ra|>(r:t). Consequently, the Green’s 
theorem expression reduces to: 

f(r:/) = -4 
4tc 11 d(l//?) 

dn R dn 
'dS + ill^dV 

The final steps are to convert the volume integral to a surface integral and to 

express the results in terms of retarded time. Since these are somewhat 

lengthy, we shall proceed directly to the final form, in which Kirchhoff’s inte¬ 
gral theorem can be expressed as 



Theoretical Basis for Field Calculations 105 

(2.21) <Hr:0 
i/M 
R\dn/ 

J-M/MLj 
c,,/? 3/7 \ 3t /J 

and where time-retarded quantities are denoted by (.), i.e., <(J)(r|riT)) = 

(j)(r|rj:r-^/c0). 
A much simpler approach for deriving (2.21) starts with the frequency 

domain expression for the velocity potential as given by (2.10) and assumes 

that the free-space Green's function (2.11) is appropriate. Because there are 

no sources within the surface S0, the second term in (2.10) is zero, and after 

taking appropriate steps to avoid the discontinuity at the observation point, it 

can be shown [4, pp. 4CM-2; 14, pp. 150-153] that 

(2.22) 4.(r:co) = ^j] 
e~’kR 30 . 
-cf) —— 

R dn dn 

a (e~ikR^ 

V R 
dSn 

By taking the inverse Fourier transform of (2.22), it can be shown that (2.21) 

is obtained. 
Both methods of deriving Kirchhoff’s integral theorem assume that the 

effects of wave reflections from the boundary surface can be ignored, and con¬ 

sequently the assumed boundary conditions may not be recovered by the solu¬ 

tion. In essence, the free-space Green’s function, which characterizes outgoing 

spherical waves, is an inappropriate choice. 

Specifying the Green's Function 

Let us consider the expression for the frequency domain velocity potential at 

an observation point r within Sa. In the absence of any sources inside Sa, (2.10) 

simplifies to 

(2.23) O(r:co) = jj 
So 

As noted earlier, a suitable Green’s function must satisfy the Helmholtz equa¬ 

tion as well as the boundary conditions. These requirements make it difficult, 

if not impossible, to obtain an analytic form of the field distribution without 

making any approximations. However, for some simple geometric shapes, 

expressions can be obtained. From (2.23) it can be seen that if either G or 

dG/dn is zero over the bounding surface, then either O or 30/3/1 needs to be 

specified; in other words, it avoids the need for specifying both quantities, 

which can lead to overspecification difficulties. As will be seen, these two types 

of boundary conditions, as summarized in Table 2.1, are good approximations 

for the conditions that occur in practice. 
We shall first consider the homogeneous Dirichlet condition in which G = 

0 and dG/dn * 0 on the surface Sa. This means that the velocity potential O 

must be specified throughout S0. But because the pressure phasor is propor- 

^30 dG 
dSn 
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Table 2.1. Dirichlet and Neumann boundary conditions 

Boundary Condition 
Required Green's Function 
& Partial Derivative To Be Specified: 

Dirichlet (D) Gfl(r;t0)Lo = 0 O0(r:co)]io 

dGD( r:co)" 
-£ 0 i.e., 

dn ■S„ /7(r:to)]io 

Neumann (TV) GN(r:co)]Sc *0 DOyv (r :co) ” 

dn 
So 

dGN( r:co)~ 
= 0 

dn 
So v„(r:co)Sn 

tional to O, this corresponds to prescribing the pressure distribution. In the 

second type of boundary condition 0 = 0 and 3<F/3n ^ 0, which is the homo¬ 

geneous Neumann condition. But 30/dn is equal to the particle velocity phasor 

normal to the surface pointing inward, i.e., in the opposite direction to n. Con¬ 

sequently, the Neumann condition corresponds to specifying the normal 

component of the particle velocity on the surface. Boundary conditions inter¬ 

mediate between these two extremes may also be present. For example, the 

mixed inhomogeneous boundary condition nO(r:co) + b[30(r:co)/3n]0 = s(r:co) 
could be more appropriate. 

Green's Functions for a Plane Surface 

The appropriate Green’s functions for both Neumann and Dirichlet conditions 

can be found if the closed surface containing the observation point is flat over 

a large area and is capped by a semispherical surface of infinite radius. The 

plane boundary causes reflections, and consequently the field produced by a 

point source can be treated as the sum of two components: one from the free- 

space wave and the other from the reflected wave. This suggests that the 

method of images often used in electrical engineering to determine the field 

distribution [see, for example. Chapter 5 in reference 19] could be helpful in 
obtaining the Green’s functions [8, pp. 812-813; 9, pp. 199-201], 

Consider the two point sources P and F shown in Fig. 2.4. If their magni¬ 

tudes and distances from the boundary are identical but they are on opposite 

sides of the surface Sa, the source at F will be an image of that at P. If the 

field on the boundary (z = 0) created by both sources satisfies the boundary 

conditions, then the boundary can be removed and the field in the region 

z > 0 will be the same as that produced by the original source and the 
boundary. 

Consider the free-space Green’s function source e~JkR/(4nR) and its image 

of -e~'AR/(4nR'), both of which are solutions to the Helmholtz equation. The 

sum and difference of the two will also be solutions. From (2.11), the two 
resulting functions can be written as 
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00 

Inside 
x 

Point 
P Source 

Origin 

Figure 2.4 Portion of a flat surface showing a point source and its image on the 

opposite side. The presence of these two sources enables the boundary conditions 

given in Table 2.1 to be met. 

(2.24) 

GD(r) = G,(r|rp)-G,(r|ri:)=T[e-/**/R-e-'“y2i'] 

G„ (r) = Gr (r|rp)+ Gp(r\r;) = 

where R = |r - rp| and R' = |r - r'|. Thus, if the observation point r lies on the 

plane surface, because R = R\ then 

e~ikR 
(2.25) O>«L. = 0, G„(lj\S' = —. 

By taking the normal derivatives of both of the equations given in (2.24), it 

can be readily shown that on the plane surface, 

(2.26) 
3Gp(r) 

dn 

cos (n,R) 

2ji 

' 9 , 
— c 
dRy 

-jkR 

/R) 
dGN( r) 

dn 
= 0, 

in which the angle (n, R) is between the outward normal unit vector n and the 

unit vector R= (r - rp)/|r - rp|. Since (2.25) and (2.26) correspond to the con¬ 

ditions for the two sets of boundary conditions listed in Table 2.1, the two sets 

of Green’s functions given by (2.24) are suitable for solving problems in which 

either the pressure or the normal component of the velocity is specified on the 

boundary. 

2.1.4 Diffraction Equations 

The derivation of the diffraction integral given by (2.21) was based on the 

assumption that the free-space Green’s function was appropriate for solving 
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the Helmholtz equation for any specific boundary conditions. However, as 

noted earlier, depending on the specified conditions, this solution does not nec¬ 

essarily recover the assigned boundary conditions, and consequently when the 

observation point is within a few wavelengths of the boundary, the solution 

may be in error. A self-consistent approach, based on using the Green’s func¬ 

tions of (2.24), was used by Rayleigh [5] and Sommerfeld [9]. When the dimen¬ 

sions of the aperture(s) (excitation region) and distance of the observations 

points from the aperture(s) are many wavelengths, the results predicted by the 

Kirchhoff and Rayleigh-Sommerfeld are in close agreement for moderate 

angles of diffraction [10], For acoustical wavelengths, where the aperture size 

and observation distances may be no more than few wavelengths, most 

researchers have tended to use the Rayleigh-Sommerfeld approach. A fuller 

account of the historical and scientific development of these concepts is pro¬ 
vided in [4, Chapter 3; 11]. 

By substituting (2.25) and (2.26) into (2.23), the velocity potentials for the 
two sets of boundary conditions can be written as 

which are commonly referred to as the Rayleigh-Sommerfeld diffraction equa¬ 

tions. It should be noted that the geometric mean of the two velocity poten¬ 
tials is 

(2.28) 
0D(r:co) + 0/v(r:co) 

2 

1 rre ’kR FdO _ - ( 

4ji ^ R 
—+ Ocos(n, R) 

_ an v 

1 3 

]kRj 
dS,. 

This equation, which is identical to (2.19), simplifies to the Kirchhoff 

free-field solution [15-17] as expressed by (2.20) when the source is 
quasi-planar. 

The time-dependent form of the Rayleigh-Sommerfeld diffraction equa¬ 

tions can be found by taking the inverse Fourier transform of (2.27). After 

changing the order of integration and putting k = co/c, these become: 

Mr:0: [f Jcos(fi,R)-| 
So 

(2.29) 

<Mr:0 = 

v 2jt 

y 2n 

f 

{2nJ J R dn 
■jo 

Ao + l 

Cn R 

. ( R 
e y c° Jd(tidS, O 

J caR 
So 

1 ) rr r 1 dO ] 
— JJ J W — 6, Co d(tidS0, 
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in which (f - R/c„) is retarded time and the approximation assumes the obser¬ 

vation point is such that R » X/2n. Denoting retarded time quantities by (.), 

the following inverse Fourier transform identities can be obtained: 

By substituting these into (2.29), we obtain 

(2.30) 

The final step consists of expressing the two partial derivative terms in 

terms of the boundary pressure and velocity. Since p(r.t) = p0d§/dt, the first 

equation becomes: 

(2.31) 

for R » }J2k. 
The assumptions underlying this equation are that the observation point is 

several wavelengths from the surface, that the surface is plane, and that the 

pressure distribution is specified. This is sometimes referred to as the “pres¬ 

sure release surface problem.” 
For the second equation of (2.30), since the normal outward surface veloc¬ 

ity component is -d<\\>N/dn, the inner directed component will be: v„ = d<\>N/dn, 

and hence 

(2.32) 

This equation, generally referred to as the Rayleigh integral, assumes a flat 

boundary on which the normal component of the velocity is defined. It also 

assumes propagation in an inviscid medium and sufficiently small fluctuations 

so that nonlinear effects can be ignored. It states that the velocity potential at 

the observation point can be found by integrating the normal component of 

the velocity over the entire surface. Evidently, regions where the velocity is 

zero make no contribution. In essence, this integral is a restatement of Huygens’ 
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principle as developed by Fresnel (see section 1.7.1). Specifically, the source 

can be considered to consist of an array of elementary point sources that emit 

spherical waves whose superposition gives rise to the signal at the observation 

point. The use of a different form of Rayleigh’s integral for calculating the field 

distribution for a disk transducer is studied in the next section. 

2.2 The Rayleigh Integral 

It will be shown that the Rayleigh integral can be transformed into a convo¬ 

lution of the normal component of the surface velocity and the velocity poten¬ 

tial impulse response. This provides a powerful method for calculating the field 

distribution due to either pulse or continuous wave excitation of a transducer. 

2.2.1 Impulse Response 

For simplicity we assume that the transducer surface coincides with the plane 

z = 0, and that elsewhere on this plane, the normal component of the surface 

velocity is zero. In addition, it is assumed that everywhere on this plane the 

normal component of the velocity waveform has the same time variation, i.e., 

vz(x, y, O:?) = £»(x, y)vno(t), where t,0(x, y) denotes the spatial variation, called 

the apodization function. Thus, the Rayleigh integral can be written as 

(2.33) 

But vno can be written as the convolution integral: 

which, when substituted into (2.33) and after changing the order of integra¬ 
tion, enables the velocity potential to be written as 

(2.34) <Mr:0= J v„0(x)JJ---dS0dx. 
—00 S0 

We now let 

( R\ 
$o{x,y)5 t- 

(2.35) 

which is simply the velocity potential at the observation point due to a 8- 

function of velocity at each point on the surface, i.e., it is the impulse response. 

This expression for the impulse response can be interpreted with the help of 
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Figure 2.5 The spherical waves emitted from all points on the cross-sectional surface 

from a simple planar transducer at a particular instant of time t = Rlca, when the 

transducer is excited with a 8-function. The total contribution at a given observation 

point and specific time is the sum of all wavelets originating from points on the 

transducer surface that are at a distance of tca from the observation point. 

Fig. 2.5, which shows a cross-sectional view of a simple planar transducer 

excited by a 5-function. Each point on the surface can be considered as an ele¬ 

mentary source of a spherical wave, and the impulse response at a given time 

and location is simply the sum of the contributions weighed by the apodiza- 

tion function. 

By making use of (2.35), (2.34) can be expressed in the compact form 

(2.36) §N{r:t) = vno(t)*h(r:t) , 

which is simply the convolution of the velocity waveform and the impulse 

response.6 From this the pressure and velocity waveforms can be readily 

obtained. Noting that p = pad<\>Nldt and that v(r:t) = -V§N'- 

. , , dh(r\t) 
p(r:t) = p0vn0(t)* , (a) 

(2.37)7 
i / \ r)^«o (0 

or = p„h(r:t)* , 
dt 

(b) 

and v(r:f) = -vno(t)*Vh(r:t). (c) 

6. If the pressure release surface condition had been assumed, then (31) would have formed 

the starting point rather than the Rayleigh integral. The resulting equation for the pressure 

impulse response would be the same as (35) but the integrand would now include a cos(n,R) term. 

The velocity potential would then be expressed as <])fl(r: t) = pn(t) * hD(r,t), where hD(r,t) is the pres¬ 

sure impulse response. 

7. These follow from: —{f(x)*g{x)} = f(x) 
dx 

dg(x) _ df(x); 
g{x), [38, p. 122], 

dx dx 
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For example, if the velocity waveform is a 8-function, i.e., vno = AS(f), then 

p5(r:t) = Ap0dh(r:t)/dt. Alternatively, if the waveform is a Heaviside unit step 

function8, i.e., vno = A3C(f), then, since the derivative of a step function is a 8- 

function, the pressure response is given by px(r:t) = Ap0h(r.t). 

2.2.2 The Piston Transducer: On-Axis 

Many papers have been devoted to the transient response of a circular disk 

embedded in an ideal baffle having zero surface velocity. Freedman [39] pro¬ 

vided a useful review of the contributions up to 1959; these and subsequent 

developments are reviewed in the valuable paper by Harris [40] and the 

chapter by Hutchins and Hayward [41]. Miles [42] was the first to derive an 

expression for the time derivative of the velocity potential in response to a 

step function change in the surface velocity. Subsequently Oberhettinger 

[43,44] and Chadwick andTuphlome [45], using integral transform techniques, 

obtained expressions for the velocity potential in response to a 8-function 

movement. A much more elegant and powerful approach is that based on 

linear systems theory, namely the impulse response method first described by 

Tupholme [46], and independently by Stepanishen [47,48], Using this tech¬ 

nique, more complex geometries have been analyzed: for example, wedges and 

infinite strips by Tupholme [46], rectangles by Lockwood and Willette [49], 

concave and convex surfaces by Ohtsuki [50] and by Penttinen and Luukkala 

[51], and triangles by Jensen [52], 

Impulse Response: On-Axis 

We first consider the straightforward problem of determining the on-axis tran¬ 

sient response of a piston transducer. Such a problem avoids some of the com¬ 

plexities of a more general approach and will allow us to focus on obtaining 

physical insight. Calculation of the field distribution (e.g., pressure) for the cir¬ 

cular disk illustrated in Fig. 2.6 requires that the impulse response be calcu¬ 
lated at each point r. 

The on-axis impulse response can be found by converting to cylindrical 
coordinates (r, z), so that (2.35) becomes 

h{0, z:t) - 
{ 2kR 

Since R2 - r2 + z2, the integral can be transformed to 

4A2? f 
h(0, z:t) - J 8 

R 
t- 

V o Q j 
dR = cr 3C (t-±) 

V C0 J 
3C 

C0 

(2.38) = c03C 
f. z) 

3C 
fv/fl2 + z2 ) 

t- -1 
V Co / V Co J 

8. Defined by: 3C (f) = 1 for t > 0, 3C (0) = 1/2, and 3C (t) = 0 for t < 0. 
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Figure 2.6 Piston transducer of radius a embedded in a perfect baffle. The on-axis 

impulse response at (0,0,z) can be found by calculating the contributions from 

elementary annular rings of radius r and width dr. 

As illustrated in Fig. 2.7a, the first form of this equation consists of two Heav¬ 

iside step functions: the first occurs when the pulse from the transducer center 

arrives at z, and the second starts when the pulse from the edge arrives. In the 

second form, the second step function finishes when the edge pulse arrives. It 

is evident that as the observation point moves further away, the duration of 

the impulse response diminishes, approaching a 5-function as z —» 

If the transducer surface velocity is a 5-function of unit strength. 

1 vno(t)dt = 1 i.e., vno - 5(t), then it follows from (2.37) that the pressure 

waveform consists of the two 5-functions shown in Fig. 2.7b and c, and is given 

by:9 

f 
p5(z-.t) = p0Cob t 

V 

z ) 
P oCf)^ 

f 
t- 

47+7} 

C o J \ Co J 

(2.39) Direct Wave Edge Wave 

the second being an inverted replica of the first. The more general case of an 

arbitrary waveform can be solved by convolving this with the velocity wave¬ 

form, yielding 

p(z:t) = p0c0 f z ) 
^no t- ~Vno 

c Co > V 

77+7) 
Co J 

(2.40) Direct Wave Edge Wave 

9. At first sight the dimensions may appear to be incorrect, since the dimensions of a 8-func¬ 

tion are 1/argument. However, we are considering a unit strength 5-function, in which the “1” has 

dimensions [L]. 
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a3C( {-z/co) 

1. . 
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0 z/c0 t 
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1 
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Ja2+ z2/c0 
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Figure 2.7 On-axis waveforms for a simple piston transducer, (a) Interpretation of 

the impulse response function (2.38). (b) Impulse response and pressure response for 

a 5-function transducer velocity at a z-position fairly close to the transducer (c) 
Pressure waveform further away. 

Thus, the pressure field can be considered to consist of two components: the 

first is always present, while the second (the edge wave) will occur only if the 

transducer is non-infinite. If a pulse excites the transducer, then an on-axis 

observer will see a plane wave arriving at a time zlcQ and will know that the 

transducer has finite dimensions only when the edge wave arrives at a subse¬ 

quent time. It is the interference between the two components emanating from 
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Figure 2.8 On-axis pressure response close to a disk transducer for a rectangular 

velocity excitation. The shaded areas correspond to those regions of the transducer 

that contribute to the pressure at the times indicated. 

the center and periphery of the disk10 that gives rise to the resulting waveform. 

Although the above analysis was restricted to on-axis locations, this concept 

is also valuable in understanding and describing the off-axis transient response 

[41,53], Kozina and Makarov [54], in their development and discussion of 

equations for the step function response of a plane transducer, recognized and 

properly interpreted the existence of these two components. Subsequently, 

Tupholme [55], in his study of the transient radiation from a spherical cap, 

introduced the direct and edge wave terminology and later made use of this 

in a study of the transient radiation characteristics of other transducer geome¬ 

tries [46], 

Visualizing the Response 

A useful means of visualizing the contribution to the pressure at a given 

instant of time is based on the work of Beaver [56]. In calculating the pres¬ 

sure waveform, he summed the contributions made by each elementary area 

of the transducer surface at each instant of time. Though this technique is more 

complex than the impulse response method, it has the advantage of providing 

additional insight into the process by which the response is generated. The 

sketch of Fig. 2.8 illustrates this for a rectangular velocity pulse and an obser¬ 

vation point close to the transducer. The shaded areas of the transducer surface 

indicate the region that contributed to the pressure waveform at the indicated 

time. Because the velocity pulse duration was assumed to be roughly two times 

less than that of the velocity potential impulse pulse response (see Fig. 2.7b), 

the times when there is no pressure response can be seen to correspond to the 

times at which the shaded annular ring is entirely within the disk. Thus, a pres¬ 

sure response is seen to occur only when the center or the periphery of the 

transducer is contributing. 

10. Sometimes the component from the center is simply referred to as the plane or center 

wave. See also the discussion associated with eqn. (3.19). 
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53.3 t, pS 54.7 

Figure 2.9 On-axis pressure response for a disk transducer (a = 5 mm) transmitting 

into water and excited to give the velocity waveform shown near the left margin, and 

described by (2.4f).The velocity and pressure waveform amplitudes have been 

normalized: all time scales have been retained. 

An Example 

We shall consider a 5.0 MHz (center frequency) velocity pulse produced by a 

1.0cm diameter disk transducer and determine the pressure pulse at various 
on-axis locations. If the pulse is given by 

(2.41) vno (t) = vGsin2 (0.25cor) sin(cof), 

for 0 < t < 0.4 ps and vno(t) - 0 elsewhere, then its derivative is: 

dvno /dt = 0.125v0co[4 cos(otf) - 3 cos( 1.5cof) - cos(0.5cof)]. 

As indicated in Fig. 2.9, this velocity pulse is much like that used for B-mode 

ultrasound imaging. By convolving it with the pressure response impulse, as 

given by (2.39), the responses at various on-axis positions were calculated, and 

these are shown in Fig. 2.9. It will be noted that close to the transducer, the 

pulses from the center and edge are distinct, the second being an inverted 

replica of the first. At z = 4 cm interference is present, while at z = 8 cm (~a2l)i) 
the interference is constructive, resulting a doubling of the positive peak 

amplitude. At 32 cm, the amplitude is reduced due to destructive interference 
between the direct and edge waves. 

The on-axis peak pressure magnitude presented in Fig. 2.10 clearly shows 

the effect ol interference. Also shown in this figure is the on-axis energy 

delivered per unit area |ocJT p2(0:t)dt). This also has a maximum at the 
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Figure 2.10 Normalized on-axis peak pressure magnitude and energy delivered per 
unit area for the same transducer and excitation waveform given in Fig. 2.9. The 
peak occurs close to a2IX - 8.33 cm. 

near-field/far-field transition point. In the near-held region, the shape of both 

plots depends on the excitation waveform. 

Limiting Conditions 

Let us suppose that the piston radius a —> As the observation point 

approaches the transducer, dh/dt —> c08(f), so that from (2.37a) the pressure is 

given by p(t) = pOcavno(t), i.e., the Pressure waveform = Characteristic imped¬ 

ance x Velocity, which is the classical relation for a plane wave. 
A second condition of interest occurs when the observation point is far 

removed (z » a). Under this circumstance, as noted earlier, the impulse 

response approaches a 8-function and is given by [58]: 

h(z:t)~ z 8 
f z ) 
t- ~ —8 ̂ --1 [V z2 J v Cq v 2 z \ Cq ) 

, for z » a. 

Consequently, from (2.37b) the pressure can be expressed as 

(2.42) p(z:t) 
p0a2 dvno{t) 

2 z dt t-z/co 

As expected, this shows that the pressure falls off inversely with the distance: 

a result that is identical to the limiting result (2.46) obtained in the next sub¬ 

section for sinusoidal excitation. 

Sinusoidal Response 

Pressure and Velocity The response to a sinusoidal transducer velocity 

waveform of angular frequency co0 is a straightforward extension of the results 
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just obtained. If we assume that vno{t) - v0eia>0‘, where vc is the velocity ampli¬ 

tude, then the pressure response given by (2.37a), or by (2.40), can be 
expressed as 

(2.43) 
p(z:t) = p0v0c0 e)V>ot * 

dh(z:t) 

dt 

= Pc 
eje>o(t-z/c0) _ o(t-4 z-+a2 /c0) 

The frequency domain response can be found by rewriting this as 

p(z:t) = p0v0c0 7-j(S>oz/c0 _ ~j{m0/co)^z2+a2 

from which it is immediately evident that the pressure phasor (denoted by an 
underscore) is given by 

(2.44) p(z:co0) = p0v0cc e~ia0z/c0 _ e-j{a>0/c0)-Jz2+a2 

Dropping the subscript on to0, this can be written in either of the following two 
forms: 

p{z: to) = p0v0ce(l - e-'(»/Co)V?4?-z (a) 
(2.45) v 1 w 

p(z:co) = 2jp0c„v0 sin[(co/2c0 )(V^TF - . (b) 

When the z-location is such that argument of the sine function is an odd mul¬ 

tiple of Jt/2, the pressure will have a maximum value given by |p|max=2p0c0v0. 

The variation of the pressure magnitude squared with z is shown in the graph 

of Fig. 2.11a, and this will be discussed shortly. For far distant points such that 
z » a, (2.45) reduces to 

(2.46) p(z: co) * e( 2 T); 

2 z 

which states that the pressure varies inversely with the axial distance and as 
the square of the disk radius. 

To calculate the particle velocity vector, we first note that on the axis the 

radial component of v is zero. Since v = -grad^, and because = p/(/cop0), 

the velocity phasor is given by v(z) = -(dp/dz)/(J(0po). By substituting (2.45a) 

into this expression and evaluating, we find that the particle velocity phasor 
is 

(2.47) v(z: to) 
Z ^-;(co/c0)(i/a2+z2-z) 

^Tz^e 

\ 
e~j(S)z/c0 

Intensity In Chapter 1 (subsection 1.5.3) it was pointed out that the 

intensity I(r:t) is a vector quantity that represents the magnitude and direc¬ 

tion of energy flow. For a sinusoidal field the time average of the intensity was 
written in (1.85) as 

I(r) = ^Re{py*}, (2.48) 
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Normalized Axial Distance, Zn= z/(a2/X) 

Figure 2.11 On-axis, normalized CW pressure magnitude squared and time-averaged 

intensity profiles for a 5.0 MHz circular transducer of 4mm diameter (a = 6.67 X) 
transmitting into water (ca = 1500m/s, pD = 1000kg/m3), as calculated from (2.45), 

(2.48), and (2.50). (a) Square of the normalized pressure magnitude 

[\Pn\2 =[\p\/(PoCoVo)]2} versus the axial distance (linear scale), (b) Log scale showing 

both the true intensity (solid line) and the plane-wave assumption value (broken 

line). Both /(z,co) and Ip(z,a>) have been normalized by dividing by 2p0c0v20. For 

example, if the maximum intensity is 50mW/crrr, the velocity and displacement 

amplitudes at the transducer surface are: v0 - 1.29cm/s, 2,0 = 4.11 x l(L10m, 

respectively, and the maximum pressure amplitude is pmax = 19.36 kPa. 

where the superscript * denotes the complex conjugate, Re{.} denotes the real 

part of the argument, and the overscore denotes a time-averaged value. For 

an elementary surface area of dS, the dot product I(r) • dS is equal to the power 

(in Watts) that flows through it in the direction of dS. 
For a plane harmonic wave propagating in a lossless medium/? = p0c„|v|, i.e., 

v and p are in phase, and consequently, by substitution into (2.48), the plane- 

wave intensity is given by 

(2.49) Ip = \p\2/{2p0c0). 

In regions reasonably far from a source such that the wavefront is approxi¬ 

mately plane, this is a good approximation [57], For other situations, one must 

take care to properly account for any phase difference; this becomes particu¬ 

larly important in the near-field region [41]. 
To illustrate the above point we consider the on-axis intensity of a piston 

transducer. On the axis of symmetry the plane-wave intensity can be obtained 

by substituting (2.45b) into (2.49), yielding 
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(2.50) Ip (z:a)) = 2p0c0v20 sin2[(co/2cG)(V«2 + z2 - z)], 

which is plotted in Fig. 2.11b for a 5.0MHz transducer with a radius of 2.0mm. 

On the other hand, noting that the velocity vector is directed along the z-axis, 

then the intensity can be evaluated from (2.48) by using (2.45a) and (2.47), 

and this is also shown in Fig. 2.11b. It can be seen that the difference between 

the true axial intensity profile (solid line) and that calculated using the 

plane-wave approximation (dashed line) becomes large very close to the 
transducer. 

Maxima and Minima The log and linear graphs of Fig. 2.11 illustrate 

some important features of this simple transducer, providing a useful frame¬ 

work for understanding the behavior of transducers with more complex geom¬ 

etry. The presence of seven maxima and six minima (excluding that at z = °°) 

is caused by the effects of constructive and destructive interference of the 

wavelets arriving from different annuli on the transducer. These maxima and 

minima correspond to path differences of about IX, which is approximately 

equal to the transducer radius expressed in terms of X (a = 6.77X). Thus, with 

increasing radius, the number of maxima and minima increase proportionately. 

A second observation is that the z-positions of the intensity maxima and 

minima correspond closely to the pressure maxima and exactly to the minima, 

and these can be found by equating the argument of the sine function in 

(2.45b) to odd or even multiples of tu/2, respectively. As a result we find: 

Maxima Condition: Z™ax = 
1 ( X 

(2.51) a2 X 
-n - 

n \2a 

Minima Condition: Z,?in = 
zmm 1 ( X ' 

a2,/X 
=-n 

n 2 a 

,n = 1, 3, 5_ 

, n = 2, 4,6. 

where Z„ is the normalized axial distance. Beyond the last maximum at Z„ = 

1 - {XI2af ~ 1 (for a » X), the intensity begins to diminish and approaches a 

rate «l/z2. A third observation is that very close to the transducer surface, the 

effects of interference are also very evident. If the transducer radius is exactly 

equal to an even integer multiple of A/2, the intensity will approach zero at 

the center, while if it is an odd multiple, it will be a maximum. For the values 

given in Fig. 2.11, the intensity at the center is 7(0) = 18.75 mW/cm2, corre¬ 
sponding to a normalized value of 0.375. 

Additional insight into the process that gives rise to the maxima and 

minima can be gained by writing the surface velocity as vno = v0sin(cof). With 
the help of (2.39) the on-axis pressure can be expressed as 

P(z:t) = v0p0c0 
V Cg J 

-5 t- 
xla2 + z2 ^ 

Now the interval of time between these two 5-functions 

-z)/c0, 

sin(cor). 

is 
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so that when this interval is exactly equal to 1, 2..n periods, i.e., when 

nX = Vz2 + a2 - z, the pressure will be zero. Similarly, maxima occur when the 

interval is exactly 1,3,5 ... m half periods, i.e., when mX/2 = Vz2 + a~ - z. This 

is illustrated in Fig. 2.12 for the last maximum and the last minimum. 

2.3 Angular Spectrum Method 

It is well known that a 2-D aperture distribution of a field quantity, such as 

the velocity potential or pressure, can be represented by its spatial frequency 

components in that plane. Booker and Clemmow [20,21], in seeking to obtain 

a better understanding of the Fourier transform of an antenna aperture, 

observed that the propagation from a 2-D aperture can be exactly represented 

by an infinite set of plane waves whose angular directions encompass the 

entire 2k solid angle associated with the propagation half-space. The distribu¬ 

tion of such a set is their angular spectrum, and the technique is called the 

plane-wave angular spectrum method [4, pp. 55-61]. In acoustics, the plane- 

wave spectrum has been used to calculate the radiation from transducers 

[22-24] and to calculate the transmit-receive response [28]. The equivalence 

of the angular spectrum and the Rayleigh integral representations for both 

monochromatic [23] and time-dependent [25] velocity sources has also been 

established. Liu and Waag [29] have presented a comparison of the angular 

spectrum approach with other methods, together with a discussion ot the 

limitations. 
If the harmonic field pattern on a given plane is known, then the field dis¬ 

tribution on a parallel plane can be calculated by using the angular spectrum 

approach. Williams and Maynard [35] showed that by making use of a highly 

efficient 2-D FFT algorithm, the computation time needed for calculating the 

harmonic field profile could be reduced by several orders of magnitude as 

Figure 2.12 The convolution of a sinusoidal signal with the derivative of the velocity 

potential impulse response at two on-axis locations: the last minimum and the last 

maximum (z ~ a2!X). 
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compared to a numerical evaluation using the 2-D Rayleigh integral. The plane 

to be determined can be either behind (closer to the source) or in front of the 

known plane. If it is behind, then the problem is one of back-projection; oth¬ 

erwise it is a forward projection problem. One application of this technique is 

to determine the field distribution on the surface of an ultrasound source from 

measurements made on a more convenient plane away from the source. 

Schafer and Lewin [30] have used this method to determine the surface veloc¬ 

ity patterns of transducers having both simple and complex geometries. More¬ 

over, by measuring the spatial and temporal field distribution on a given plane, 

the method can be extended to wide-band excitation conditions. More 

recently, Wu and Stepinski [31] have proposed extensions to the angular spec¬ 

trum approach that enable the spectrum to be obtained for curved radiation 
sources. 

2.3.1 Basic Principles 

The arbitrary monochromatic source illustrated in Fig. 2.13 with a wave 

number k = co/c will give rise to a certain field distribution on the plane z = 0. 

Let us assume that the spatial frequencies in the x- and y-directions are 

denoted by kx and ky, respectively. Then the velocity potential on this plane 

can be expressed in terms of the spatial frequency spectral density function 
S(kx, ky) by using the 2-D inverse Fourier transform relation. 

z=0 Z=Z\ 

Multiply by Array 

2-D FFT 2-D Inverse FFT 

Figure 2.13 An arbitrary harmonic source gives rise to a field pattern on the plane 

z = 0. By taking a 2-D Fourier transform of this field, the 2-D spatial angular 

spectrum is obtained. By multiplying by an array and then taking the inverse 

transform, the field pattern in the plane z = Z\ can be obtained. Based in Vecchio 
et al. [34], 
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(2.52) <F(x, y, z) = [[ S(kx, kv: z)el{kxX+kyy)dkxdkv, 
4tt “ 

and the spectral density function is given by the 2-D Fourier transform 

definition: 

(2.53) S(kx, ky: z) = j] 0(x, y, z)e~i{kxX+kyy)dxdy. 

To obtain a physical interpretation of (2.52), we first note that a unit ampli¬ 

tude plane harmonic wave propagating in the direction of the wave vector 

k = kA = xkx + yky + zk. can be expressed as 

y _ e;'(cor-k.r) _ gjtot e~jk{cvc+f,y+yz), 

in which the direction cosines of the plane wave are a, (3, and y, e.g., a = cos0 

= k x, and unit vectors are indicated by the overscore ~. Since only two angles 

are needed to define the direction of a plane wave, it follows that 

y = Vl-(or + (32). By comparing the above plane-wave expression with (2.52), 

it can be seen that on the plane z = 0 the terms under the integral sign repre¬ 

sent a complex plane-wave component that has an amplitude of S(kx,ky)dkxdky 

and direction cosines of a = -kjk, (3 = -ky/k, y = -kzlk, where 

(2.54) kz = -fcV l-(a2 + (32) = -ky. 

Hence, on this plane (2.53) can be written as 

(2.55) S(a, (3:0) = j]0(x, y, 0)e+jk^+Mdxdy, 

which is the angular spectrum of O(x,y,0). Thus, the velocity potential can be 

represented by plane waves whose directions have an angular distribution 

over a solid angle of 2k steradians. 

2.3.2 Angular Spectrum of the Velocity Potential and its 

Relation to the Velocity 

To determine the velocity potential on any plane z = const., in terms of that 

on the plane z = 0, we note that both O(x,y,0) and 0(x,y,z) must both satisfy the 

homogeneous Helmholtz equation given by (1.56). From (2.52), the velocity 

potential can be expressed in terms of the angular spectrum on the plane z: 

(2.56) ®(x, y, z) -= Jj S(a. P: z)e-«<“^d<xdp. 

By substituting this into the Helmholtz equation and making use of (2.54), a 

differential equation results: 

a, (3:z)} + y2k2S(a, (3:z) = 0, 
dz 

(2.57) 
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the elementary solution to which gives the angular spectrum on the plane 

z as 

(2.58) S{ a, (3: z) = Cxe~^z + C2e+ilc*z, 

where the two constants depend on kx and ky only. 
Two conditions governing y are important. First, suppose y is real, i.e., or + 

P2 < 1, then the two exponents in (2.58) represent waves in the +z and -z direc¬ 

tions, respectively. Since there is no wave in the negative z-direction, C2 - 0, 

and therefore Cx = S(a,|3:0). Consequently, the angular spectra on the planes 

z - const, and z = 0 are related by 

(2.59) 5(a,p:z) = %,P:0)e’^. 

By substituting this into (2.52) and recalling that y = -kzlk, we obtain 

(2.60) 0(x, y, z) = ^TJJS(kx,ky:0)e^x+k^dkxdky. 

On the other hand, if y is imaginary, i.e. or + (32 > 1, then, letting y = jy = 

Vor+ p:-l, (2.58) becomes 

(2.61) S{ a, p: z) = Cxe~** + C2e+^z = S{ a, (3:0>r^, 

since C2 = 0 and Cx = S(a,P:0). Thus, for imaginary values of y the angular 

spectrum consists of exponentially decaying waves that are generally referred 

to as evanescent waves. Since the maximum value of ky is equal to k( - 2k/X), 

it can be seen that these waves decay rapidly with distance, becoming negligi¬ 

ble a few wavelengths away from the plane z = 0. By substituting (2.61) into 

(2.52) and noting that ky - -jkz, the velocity potential due to these evanescent 

waves is also given by (2.60). Thus, on the plane z = const, the total velocity 

potential, as given by (2.60), is the sum of the contributions due to the homo¬ 

geneous and evanescent components. The evanescent waves carry no net 

energy11 and can be regarded as a nonphysical outcome of the method. In the 

forward direction their influence can often be disregarded, but for back- 

projecting the held they give rise to exponentially increasing terms that can 

create computational difficulties. These problems have been considered by 

Leeman and Healey [33], who showed that through appropriate pivoted angle 

projections of the held, the evanescent components can be eliminated. 

Since the normal component of the velocity distribution on the surface of 

a transducer is related to the driving waveform, it is useful to express the 

angular spectrum on the plane z = 0 in terms of the normal component of the 

velocity in that plane, i.e. vz(x,y,0).This can be achieved by differentiating both 

(2.59) and (2.53), equating, noting that vz - -d<t>/dz, and evaluating at z = 0. 

11. Evanescent means “quickly fading.” Bracewell [32, p. 225] has given a helpful discussion 

and has pointed out that such waves are present in a hollow microwave rectangular waveguide. 

When excited at a wavelength such that the lateral dimensions are too small to support propa¬ 

gation, the field decays exponentially from the plane of excitation and all the incident power is 

reflected. 
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Thus, on the plane z = 0, the velocity potential angular spectrum and the 
normal velocity distribution can be expressed as 

(2.62) S(kx, ky: 0) = —IT v, (x, y, 0 )e~i(kxX^y)dxdy. 
—jkz 

Similarly, by differentiating (2.60), the z-component of the particle velocity on 
the plane z can be expressed in terms of the angular spectrum on the plane 

Z = 0 by 

(2.63) vz{x, y, z) = ^r\\S{kx,ky:0)e^x+kyy+k^dkxdky. 

It should be noted that S(kx,ky: z) is the angular spectrum of the velocity poten¬ 

tial, so that the angular spectrum of the normal component of the velocity is 
-jkz times that of the velocity potential. 

A difficulty with evaluating (2.62) arises from the singularity produced by 
kz on the circle ky + ky = k2, which, as shown by Williams and Maynard [35], 
can cause serious numerical errors in the case of a rectangular transducer. 
Since (2.63) is valid for negative values of z, it can also be used to determine 
the velocity field needed to produce a specified field on the plane z = 0. This 
is referred to as the backward projection problem. For example, if we know 
the field distribution needed to achieve a certain imaging task, then, by back 
projection, the field at the source can be determined. 

2.3.3 Transfer and Point Spread Function Representations 

Transfer Function 

Now the angular spectrum of a 2-D field at any arbitrary z-position can be 
written in terms of that on the plane z = 0, or, for that matter, any other plane. 
Equations (2.59) and (2.61) expressing these relationships for the homoge¬ 
neous and evanescent waves can be rewritten in terms of the angular spectra 
at a plane z-Z\ with respect to that at a plane z = z0, ke., 

S(kx,ky:zi) = S(kx,ky:zo)e~illCzl{zi~Zo\ior k2z> 0 

S(kx,ky:zi) = S(kx,ky:z0)e NUl Zo),for k\<0 . 

We define the ratio of the spectra on the two planes as the spatial frequency 

transfer function (also called the propagation lunction). Consequently, the 
spectrum on the plane z = Zi can be written as 

(2.65) S(kx ,ky:zi) = H(kx,ky: z, |z0 )S{kx, ky: z0). 

As noted earlier, if the observation plane is several wavelengths distant from 
the plane at Zo, the evanescent component can be neglected, and consequently, 
using just the first equation in (2.64), the spatial frequency transfer function is 

approximately given by 

(2.66) H(kx,ky:zi\z0)~e /Nfil-Zo) _ g-/(* 1 -zo) (a) 



126 Biomedical Ultrasound 

whose magnitude is unity and that varies only in phase. Thus, the angular spec¬ 
trum on the plane Z\ is related to that on the plane zo by the phase changes 
that take place to each spatial frequency component. As a result, the steps that 
must taken to determine the field on Zi, given the field pattern on the plane 
Zo, are those illustrated in Fig. 2.13. 

It should be noted that the transfer function between planes Zo and Zi for 
both the pressure and normal component of velocity is also given (2.66). In 
addition, the normal component of the velocity to pressure transfer function 
can be found from: 

(2.66) Hp\V (kj; , k.y . Z\ | Zo ) ' 
COpc 

y'k2 ~(kl + ky) 
~j(z i-zo) -zjk2~{k*+kl) 

(b) 

The derivative of phase angle with respect to the spatial frequency magni¬ 
tude (kl + ky)m is known as the phase dispersion. By taking the derivative of 
the exponent in (2.66), it can be seen that the system phase dispersion 
increases with the spatial frequency magnitude: it approaches infinity as 
(kl + k2y)V2 k and vanishes as (k\ + kf)m -» 0. 

Point Spread Function 

An alternative way of representing the relation between the two angular 
spectra is through the point spread function (PSF, also called the impulse 

response function) hp(x,y,z) of the propagation process. The PSF describes the 
manner in which the field at a given point on the plane z = Zo is mapped into 
the field on the plane z = zi- If we take the inverse Fourier transform of (2.65) 
and make use of the convolution theorem, the velocity potential can be written 
as the 2-D convolution: 

(2 67) y>Zl) = jj °(x’ y> zo )hp (x -x',y- /; Zi\zo)dx'dy' 

= 0(x,y, z0)*hp(x, y;zi|z0), 

where the impulse response function is simply the inverse Fourier transform 
of the transfer function, i.e., 

(2.68) hp(x, y; zi|z0) = H(kx,ky: Zi\z0)ei{kxX+k>y)dkxdky. 

Thus, a knowledge of the PSF throughout the plane z = z0 enables the poten¬ 
tial distribution to be found on the plane z = Zj. 

An expression for the PSF can be obtained by first finding the angular spec¬ 
trum for the free-space Green’s function by making use of (2.55) and (2.11). 
Apart from a dimensioned constant (which subsequently cancels out), the 
spectral density function is given by 

S(kx,ky-.z)=\\ —-e-i{k*x+k^dxdy, 
4kR 

(2.69) 
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where R = •\Jx2 +y2 + z2 ■ If the field is cylindrically symmetrical, then, by means 

of a transformationi: to cylindrical coordinates, the above 2-D integral can be 

shown to reduce to 

e~jk4r2+z2 

2 Vr2 + z2 
J0(ra)rdr, 

where o = Vk2 + k2 and r = ^x2 +y2. With reference to Appendix B, this can 

be recognized as a zero-order Hankel transform of [e~ik^r~+z~ /(2*Jr2 + *2)]-By 

means of standard transform tables [36, p. 9, eqn. 25] this can be evaluated as 

(2.70) S(kx,ky:z) 
_je-i^k2-(kl+ky) 

2 ^k2-(k2 + k2) 

In view of the self-reciprocal nature of the Hankel transform, the inverse 

Hankel transform of S(kx,ky:z) is equal to the free-field Green’s function, i.e.. 

(2.71) 
,-JkR 

4 UR 
~]e 

-jz4k4 

2Vk2 -< 
-J0(ar)odo. 

Taking the partial derivative of this with respect to z gives 

(2.72) 
a \e-’kR\ 

dz I 4kR j 

-jz4k2-a2 

-J0(<3r)od<3 

If we now substitute (2.66) into the PSF definition given by (2.68) and trans¬ 

form the coordinates [4, pp. 11-12] to put it in the form of an inverse Hankel 

transform, the following equation results: 

(2.73) hp(x, y,z) = fe iz^_c2 JQ{or)odo. 
o 

Comparison of this equation with the right hand side of (2.72) shows that the 

PSF is given by 

(2.74) hp (x, y, z) = -2 
dz 

ze -jkR 

2nR2 R 
+ jk 

This result was originally obtained by Waag et al. [37] and subsequently re¬ 

derived by Liu and Waag [29] using a slightly different approach. At distances 

large compared to X, the HR term can be neglected. 
Let us suppose that an aperture Q is present on the plane z-0, such that 

the aperture transmission function u = 1 for (x,y) on Q, and u = 0 elsewhere, 

and that the aperture is irradiated by monochromatic sources. Then the veloc¬ 

ity potential on the plane z = Az, just beyond the aperture, can be expressed 

12. Proof of this transformation is given in subsection 3.1.1, as well as in [4, pp. 11-12], 
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in terms of that incident by 0(x,y,Az) = O(x,y,0)«(x,y). Using the convolution 

theorem, the angular spectrum just beyond the aperture is given by 

(2.75) S(kx ,ky:Az) = S{kx,ky:0)*U{kx,ky), 

where 

U{kx,ky) = JJu(x, y)e-i(k*x+k>y)dxdy. 

For the special case where a plane wave is incident normal to the aperture, 

the incident angular spectrum is given by S(kx,ky:0) = 8(kx,ky), so that the 

transmitted angular spectrum is simply the Fourier transform of the aperture 
function. 

2.3.4 Relation to the Rayleigh Integral 

That the angular spectrum method for determining the velocity field is related 

to the Rayleigh integral can be established by showing their equivalence in 

the frequency domain [23,25]. By substituting (2.62) into (2.60) and changing 

the order of integration, the velocity potential can be expressed as 

<*>(*, y, z) 

(2.76) OO . oo - 

J]u(x0,yo,0) ~j\\ )^dkxdky 
471 Kr 

dx0dy0. 

To evaluate the term in square brackets we make use of an expression for the 

point source Green's function that was originally obtained by Sommerfeld [26] 
and subsequently quoted by Weyl [27], 

e~ikR 

R 
zl 
2k 

2n n 

J | £sin[3<? -/q.vcosasinp+ysinasinp+zcos ^dobdfi 
0 0 

By using the transform relations: kx = k cos a sin (3, ky = k sin a sin [3, kz = k cos (3 
and noting that 

JJ F(a, p>/ar/[3 = JJ F(a(kx, ky), p(U, ky ))| J(kx, ky )\dkxdky, 

da da 

where the Jacobian is given by\J(kx,ky)\ 
dkx 

iP 
dkx 

dky 

a[3 
, the expression for the 

dky 

Green’s function at R - V(x-x0) +(y-y0) + z2 can be expressed as 

,-jkR 
] ff -L-P~ilkx(x-^o)+l<y(y-yo)+kzz]^^ ji 

4kR 87t2jJU xdky- 

But this equation is of the same form as the inner integral in (2.76), so that by 
substitution, (2.76) can be written as 
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(2.77) <D(r: to) = [ [ vz (x0, y0,0) —— dx0dy0 

Now v,(xo,y0'0) is the velocity in the direction of -n, i.e., vz = +d&/dn, and 

because dx0dy0 = dSa, it follows that (2.27) and (2.77) are identical. But since 

the Rayleigh integral, as expressed by (2.32), was obtained by taking the 

inverse Fourier transform of (2.27), it follows that the angular spectrum 

approach and that expressed by the Rayleigh integral are identical. 

Problems 

PI. A simple and useful form for the time-dependent transducer surface 

velocity is the Gaussian modulated cosine given by 

in which co0 is the center angular frequency and a is a constant, 

a. Prove that the frequency spectrum is given by 

and find an expression for the fractional -6dB bandwidth, 

b. For a 5.0mm diameter transducer, the pulse defined in part (a) has 

a -6dB bandwidth of 5 MHz and center frequency of 10 MHz. 

For a medium with p0 = 1000 kg/m3, ca = 1500 m/s, and for 

vG = 1.0 cm/s, compute the on-axis pressure waveform at z = 5 mm 

and z = 50 mm 
(i) by convolution of the derivative of velocity impulse response 

with v„(0; 
(ii) by determining the spectrum and taking the inverse Fourier 

transform. 

P2. If a disk of radius a on the x-y plane centered at z - 0 is excited such 

that its normal velocity component is a circularly symmetric sinu¬ 

soidal function ^0(r)v0eia>‘ prove that the velocity potential on the 

z-axis is given by 

Check this by evaluating the case in which the disk is uniformly 

excited, obtaining an expression for the pressure phasor response and 

comparing it with (2.45a). 
(The above equation is used in Chapter 3, (see 3.74), for obtaining the 

axial response when the apodization is a Gaussian function.) 

P3. The suface velocity of a disk of radius a is given by v(r,0:t) = v0(l - 

r/a2)eim! for r < a. 
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a. Using the result of P2, prove that the on-axis pressure response 
phasor is given by 

p{0, z:co) = ~'^2° {e~’kz[a2k2 + 2 + 2jkz)- 2e~ik^z2+“2 [l + jk^z2 + a2 ^ 

b. Plot a normalized graph for a = 15X/7U, showing |p|/(p0vocc) versus 

Z = kz from Z = 0 to 500, and determine the value of Z at which 
the last maximum occurs. 

c. Determine the on-axis velocity impulse response if the apodiza- 

tion function is t,a(r) - (1 - r2/^2) for r < a, and from this obtain the 

equation derived in part (a) for the on-axis sinusoidal velocity 
pressure response. 

P4 a. Prove that the Rayleigh integral (2.32) can be expressed in the 

form of the following 3-D convolution: 

<t>(x.y, z:t) = vn (x, y, 0:t)***co§(cot - R)/(2nR), 
x y t 

where the source is on the plane z = 0, R is the distance of the field 

point from the origin, and vn(x,y,0:t) is the normal component of 
the velocity on the boundary. 

b. If v„ is separable, i.e., vn(x,y,0:t) = ^o(x,y,0)vno(t), show that the 
velocity potential can be expressed as 

<\>(x.y,z:t) = vno(t)*h(r:t), 

where h(r:t) = ^o(x,y,0)**co6(cot-R)/(2nR) is the impulse 
x y 

response. 

c. If the source velocity is axially symmetric, show that the spatial 
Fourier transform of h(r:t) is given by 

%, z:t) = co^0(p)/0{pV(c2r2-z2)}, for cj > z, 

where p- =/2 +f2,fx and fy are the spatial frequencies, /0{-} is a cylin¬ 

drical Bessel function of the first kind of zero order, and the bar 
denotes the spatial transform. 

Hint: First make use of a property of the 5 function given in Appen¬ 

dix B to transform the right hand side of the x-y convolution in 

part (b) to a form whose Hankel transform (as defined in Appen¬ 
dix B) can be readily evaluated. 

P5. Derive (2.57) from (2.56) with the help of the Helmholtz equation. 

P6. a. Obtain the Fresnel approximation for the PSF from the angular 

spectrum tiansfer function by assuming that the distribution of 

angles for the plane-wave spectrum is fairly narrow. Specifically, 

expand the exponent in (2.66), which expresses the transfer func¬ 

tion for the angular spectrum at Zi in terms of that at z0, and show 

that the resulting PSF for a plane z with respect to the plane z = 0 
is given by: 
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hp(x, y;Z\\zq) ~ 
jke'kz -jk(x^/)/2z 

2nz 

b. Obtain an approximate expression (the Fraunhofer approxima¬ 

tion) for the velocity potential that is valid for locations far from 

an aperture on the plane z = 0 and not far off axis. Specifically, by 

starting with (2.65) and (2.66), assuming z2 » (x2 + y2)/2 and that 

the dimensions of the aperture are small compared to the obser¬ 

vation plane distance {more severe restrictions than those assumed 

in part (a)}, show that 

0(.v, y, z) « 3{0(x, y, 0)} w 

where the transform is evaluated at kx = -xk/z, ky = -yklz. 

The Fresnel and Fraunhofer approximations, which provide a valu¬ 

able means for calculating the approximate field distributions on 

planes not too close to a transducer, will be discussed more fully in 

section 3.4. 

P7. By using the 2-D form of the convolution theorem, show that the 

velocity potential angular spectrum formula given by (2.60) can be 

derived from the Rayleigh-Sommerfeld diffraction equation (2.29), 

1 rre~ikR 
specifically: O(r:co) = — -v,(x0, y0,0)dSo. In evaluating a 

2k r 
So 

R 

Fourier transform, the following relation should prove useful: 

si/a2 +b2 +c2 

-u 
^j^ax+by+cjs2 -{A +y2)] 

si a2 +b2 +c2 2n {{ ■sjs2-(x2 + y2) 
- dxdy, for c > 0. 

In addition, (2.62) should also be noted (see: Sherman, G.C., Appli¬ 

cation of the convolution theorem to Rayleigh’s integral formulas, J. 

Opt. Soc. Am., 57, 546-547,1967). 
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3 

Field Profile Analysis 

This chapter primarily focuses on the application of the methods developed in 

the previous chapter for analyzing the field distribution produced by a variety 

of single acoustic sources, ranging from piston transducers to those with more 

complex geometries. For an inviscid propagation medium, exact and approxi¬ 

mate methods are examined, including the Fresnel and Fraunhofer approxi¬ 

mations. The Fraunhofer approximation allows a greatly simplified approach 

to calculating the far-field response. On the other hand, the Fresnel approxi¬ 

mation is fairly accurate much closer to the source, though it generally results 

in more complex expressions. An account of the use of apodization as a means 

for reducing the effects of diffraction is presented, and this leads to a descrip¬ 

tion of diffractionless and minimally diffracting sources. The important practi¬ 

cal issue of the effects of attenuation and the accompanying dispersion is then 

addressed, dealing first with classical viscous losses, and then addressing the 

question as to how the effects of attenuation and dispersion in soft tissue can 

be accounted for. 

3.1 Angular Spectrum Method 

The angular spectrum technique is particularly important from a computational 

perspective, since modern algorithms allow 2-D Fourier transforms to be per¬ 

formed very efficiently. Even though it is essentially a frequency domain method, 

transient problems can also be efficiently solved. 
The fundamental aspects of the angular spectrum method were described 

in Chapter 2, where it was shown that the field on a given plane can be 

expressed in terms of an angular distribution of plane waves. We shall first 
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136 Biomedical Ultrasound 

illustrate this technique by evaluating the continuous wave (CW) field of a cir¬ 

cular piston transducer. Although such an approach for this particular problem 

is more complex than the integral method described in section 3.2, it is impor¬ 

tant to note that problems such as determining the scattering from a sphere 

or infinite cylinder are most simply solved in terms of an incident plane wave. 

Thus, by describing the radiation pattern of a transducer in terms of an angular 

distribution of plane waves, the overall problem of determining the scattered 

field arising from the presence of a sphere or cylinder can be solved. For 

instance, the method has been used for describing the CW transmit-receive 

response for a baffled piston transducer and various targets with circular 

geometry [6], It has also been used for studying the sample volume sensitiv¬ 

ity for ultrasound beams incident on a cylindrical vessel [7], A second example 

illustrates the use of a 2-D Fast Fourier Transform (FFT) to calculate the 

angular spectrum of the velocity on the plane of a disk transducer and then, 

following the scheme shown in Fig. 2.13, to obtain the field on a distal plane. 

3.1.1 Spatial Spectrum of a Piston 

We shall assume a piston transducer of radius a that lies on the plane z = 0. 

Moreover, the amplitude of the normal component of the surface velocity will 

be assumed to be constant over the piston surface and to be denoted by vG: 

elsewhere on this plane the velocity is zero. Such a cylindrically symmetric dis¬ 

tribution can be described by v*(r,0) = v0circ(r/a), where circ(q) = 1 for q < 1 
and is zero elsewhere. 

An expression for the velocity potential angular spectrum of the piston can 
be obtained by first recalling (2.62): 

S(kx,ky: 0) = f Jk (x, y, 0 )e~kk*x+k^dxdy, 

in which k. - k - (k2 + k;). Now the cylindrical symmetry of the geometry 

enables the following coordinate transform relations to be used: 

(31^ r2=x2 + y\ x = r cos0, y = r sinQ, dxdy = rdrdQ 

k;. = kx + k2, kx = kr coscp, ky = kr sincp, 

so that the angular spectrum can be written as 

_ . 
S(kr:0) = ■■ 7 ? J Jvz (r,O)e^H>(cos<pcose+sin<psm9VJrr/0 

V/r -k; 0 0 

• 2n °o 

= 7 ~3 j Jvz{r,0)e-irkrCO<^rdrde. 
VA. kr q q 

By means of the Bessel identity J0(<;) = ~ f* e^^dd, this reduces to 
2n 
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S(kr:0) = ^=rl vz{r,0)J0(rkr)rdr, 

where /0(.) is a cylindrical Bessel function of order zero. This can be recog¬ 

nized as the zero-order Hankel transform of v,(r,0). For a uniformly excited 

disk of radius a, the spectrum is therefore given by 

(3.2) S(kr:0) = J0 v0circ(r/a)J0(rkr )rdr =£v0h{rkr)rdr. 

By letting £ = rkr, this can be written as 

s-(kr'° )= 

which, by using the Bessel function identity ^^(c,) = JV0(x)X^X enables the 

spatial spectrum can be expressed as 

(3.3) S(k -Qj- \2Makr)} 
{ r ’ 4k^kf 1 akr r 

This expresses the spectrum in a cylindrical spatial frequency coordinate 

system, and the term in braces, which is the Fourier transform of circ(r/a), is 

sometimes referred to as a jinc function. At x = y - 0 it has a value of 1. Alter¬ 

natively, by using (3.1), (3.3) can be expressed in Cartesian coordinates as 

(3.4) S{kx,ky: 0) = 

The Cartesian form of the 

-nja2v0 f2 J\(a4k;x + k2 )| 
^k2 -(k\ + k2) l a4k\ +k2 J 
jinc function (the term in braces) is plotted in 

Fig. 3.1. 

Figure 3.1 The 2-D Fourier transform of the circ(r/a) function yields the jinc 

function, which is plotted for a = 1 in Cartesian spatial frequency coordinates. 
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3.1.2 Angular Spectrum in Spherical Coordinates 

To obtain an expression for the angular spectrum it is helpful to convert to a 

spherical coordinate system (£,0,tp) by using the transform relations: 

kx = /csin0cos(p, kv = &sin0sincp, k7~k cos0, 
(3.5) 

dkx dky = k - cos 0 sin 0d0dtp. 

It should be noted that because kz becomes imaginary when k2x + k2y< k2 (cor¬ 

responding to the evanescent component in the plane-wave spectrum), the 

angle 0 also becomes complex. With this consideration it can be shown that 
(2.60) transforms to [6] 

2 

(3.6) 0(r)= J 5(0,(p)e;k rr/(pd0, 
o 

in which the angular spectral density function is 

(3.7) 5(0,(p) = -^-j&2cosO sin0 xS(k sin0 cos (p, k sin0 sin(p), 

and where k = (kx,ky,kz) and r = (x,y,z). The integration contour on the complex 

0 plane, which was chosen by using Cauchy’s integral theorem, is from 0 to k/2 

along the real axis and from 0 to —j<x> along the imaginary axis. By substitut¬ 

ing (3.4) into (3.7) and noting that kz = /ccos0, the angular spectrum is given 
by 

(3-8) 5(0)= (^asin0), 
2k 

which is plotted in Fig. 3.2 for real values of 0, i.e., for the homogeneous 
component. 

3.1.3 Field Profile 

The pressure field profile can be found by first noting that 5(.) is cylindrically 

symmetric, so that in cylindrical coordinates (r,z), the pressure can be written 

as p(r,z) = p(x,0,z). By substituting (3.8) into (3.6) and noting that the phasor 
pressure p=jp0c0k^> we obtain 

71 

2~J°° 

p(r,z) = -Po^ V° J Jy(kasin0)ey<:(rsin0cos<l>+jcose)d<p<70. 

Using the standard Bessel function relation /0(q) = — fe^Vcp, this can be 
rewritten as ttJo 
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-90° -90° 

Figure 3.2 Homogeneous component of the angular spectra for a disk transducer 

with two different disk radii: (a) a = 5A., (b) a = 2X. The magnitudes are normalized 

to av0/2n. 

p(r,z) = -ap0c0kv0 J J0(krsinQ)Jl(kasinQ)eikzcosedQ. 
o 

Noting that sin(rc/2 + ;0,) = cosh0„ and cos(7t/2 + ;0,) = -/'sinh0„ where 0, is the 

imaginary part of 0. the above equation can be written as: 

p(r,z) = -ap0c0kv0 

'nil 

J 70 (kr sin 0)7! (ka sin 0)e;fccos070 

(3.9) 
—jj J0(kr cosh 0, )7, (£acosh 0, )e~kzsinh<)'dQl 

where the first and second terms correspond to the homogeneous and evanes¬ 

cent components, respectively. Evaluation of this equation1 shows that the 

evanescent component has a significant influence on the field profile close to 

the transducer but becomes negligible further away. This is illustrated in Fig. 

3.3 for a transducer of radius a = 2.5k. 

3.1.4 Fourier Transform Method 

Of considerable significance is the ability to calculate the field profile on a 

given plane given the field on another plane. This will be illustrated with two 

examples for a uniformly excited circular disk transducer. In the first, we make 

1. An alternative form that is more suitable for numerical computation is given in [6]. 



»> 

Figure 3.3 3-D representation of the normalized pressure magnitude from a 

uniformly vibrating piston with a radius of 2.5k, as calculated from (3.9). The 

normalization constant is p0c£,v0. (a) Sum of the two components, (b) Homogeneous 

component, (c) Evanescent component (note the change in scale). (Reproduced, 

with permission, from Fung et al. [6], J. Acoust. Soc. Am., 92, 2239-2247, © 1992 
Acoustical Society of America.) 
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use of the cylindrical symmetry to analytically perform an inverse Fourier 

transform; in the second, the 2-D Fourier transform and its inverse are per¬ 

formed numerically. 

Analytical Approach 

If the field to be determined is several wavelengths distal to the known plane, 

the evanescent component can be ignored, and the calculation requires 

multiplication of the angular spectrum on the known plane by the spatial 

frequency transfer function as given by (2.66), and then recovery of the field 

pattern by an inverse transform. This process will first be illustrated by using 

the equation for the spatial frequency transfer function of a piston transducer 

derived in the last chapter. 

Now (2.65) and (2.66) can be rewritten as 

(3.10) S(kx, ky :z) = H(kx, ky: z|0)5(^, ky: 0) 

(3.11) H{kx,ky:z\0) ^ e~iz^2^ki+k2y\ 

where S is the angular spectrum and H is the spatial frequency transfer func¬ 

tion from the plane z = 0 to the plane z, which is assumed to be several wave¬ 

lengths beyond z = 0. For a uniformly excited disk of radius a, the angular 

spectrum on the z-plane can be obtained by substituting (3.3) and (3.10) into 

(3.11) , yielding 

(3.12) S(kr) = e~iz4^. 
Vk2-k} akr 

Now the 2-D inverse Fourier transform of this angular spectrum can be 

found by first applying the coordinate transformation equations given by (3.1) 

to the 2-D inverse Fourier transform expression for the velocity potential 

given by (2.52). Then, following the same steps outlined in section 3.1.1, and 

noting that J()(q) = — f V’?cos(<|,_e)d(p> the velocity potential simplifies to2 
2k 

(3.13) <fi(r,z) = jav0 f ^ \ e~iz^J0(rkr )dkr, 
o <kl-k; 

in which the integral upper limit has been chosen to exclude the evanescent 

component. This enables the pressure to be expressed as 

(3.14) p(r, z) = ycop„0 = (op0«v0 J e-Wfc2 T0{vkr )dkr. 

On-axis, this reduces to 

2. This equation, but with an upper limit of can be obtained from King’s integral (3.70). 

See subsection 3.8.1 and footnote 20. 
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(3.15) £>(0,z) = (£>p0av0 J ^ k} dkr 

for z > 3A,, which is plotted in Fig. 3.4a together with the exact expression given 

by (2.45).The agreement between the two is excellent provided z > ~2A, where 

the evanescent component starts to become significant. In Fig. 3.4b the radial 

pressure field calculated from (3.14) is shown for two axial distances corre¬ 

sponding to the last maximum and the last but one minimum. 

r=2.5A z-25k 

Normalized Radial Distance, rlk 

Figure 3.4 Calculated axial and radial pressure profiles using the angular spectrum 
method for a piston transducer with a = 5A. The pressure magnitude scale has been 
normalized by dividing by 2poc0v0, which is the pressure magnitude at the last 
maximum (i.e., at z = a2/X). Because the evanescent wave has been ignored, the 
results become inaccurate for z < ~3A. (a) Exact and approximate profiles as 
calculated from (2.45) and (3.15), respectively, (b) Radial profiles at the last 
maximum and the last but one minimum as calculated from (3.14). 
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Numerical 2-D FFT 

In the above example, the cylindrical symmetry of the disk transducer allowed 

the field profile to be numerically evaluated from a single integral. For a more 

complex transducer geometry that lacks symmetry, the angular spectrum 

approach can also be used but now requires the evaluation of a 2-D FFT. As 

described in section 2.3.3, the velocity on a plane z for a given velocity distri¬ 

bution on the plane z = 0 can be found by means of the following steps: 

1. Perform a 2-D FFT of the velocity on the source plane. 
2. Multiply this by the transfer function H from the source plane to the plane 

of interest. 
3. Take the inverse 2D-FFT of the product. 

These steps are summarized in 

(3.16) v, {x, y, z) = 3-1 [e^ ^ +kj ] 3{v0 (*, y, 0)}}, 

where ${.} and $“’{.} stand for a 2-D Fourier transform and its inverse. For a 

circular piston transducer, the steps in this process are described in the caption 

to Fig. 3.5. Because of the large axial distance step (Az - a2/X), the effects of 

the evanescent component could be neglected. 

3.2 Integral Methods 

Direct use of the Rayleigh integral requires the numerical evaluation of a 

double integral over the transducer surface area [1], A more economical 

approach is to make use of the approach described in 1941 by Schoch [19] in 

which he transformed the Rayleigh surface integral into a line integral over 

the transducer rim. For CW excitation and a plane transducer of arbitrary 

shape in a rigid baffle, he obtained expressions for the pressure field distribu¬ 

tion both within and outside the transducer geometrical shadow. Part of this 

work and extensions from it are described in this section. 

3.2.1 Rigid Baffle Boundary Condition 

In Fig. 3.6 we consider a field point that lies within the geometric shadow of 

a plane transducer of arbitrary shape in a rigid baffle, and we assume uniform 

excitation by a sinusoidal waveform such that the normal component of the 

surface velocity is given by vno(t) - v0e’M. Substituting this into (2.32) and noting 

that the pressure is given by p = p0dtyldt, the pressure phasor at the field point 

is given by 

p(r,z:u>) 
j^PoVg rr e_ 

2 * J5J 
(3.17) 

R 
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kx, rad./cm x, cm 

Figure 3.5 Field computation with the angular spectrum method using a 2-D FFT 

for a piston transducer with a radius a = 1 cm, excited at 5 MHz with a normal 

velocity v0 = 1 cm/s. The axial component of the particle velocity was computed on a 

plane at z = a2lk(= 33.3 cm). (a) Normal particle velocity profile on the transducer 

plane at z = 0. Sampling out to +5 cm using 256 x 256 samples over the entire plane, 

i.e., Ax = Ay = 0.39 mm per sample. (See color insert.) (b) Angular spectrum of the 

source obtained by taking the 2-D Fourier transform of the source. The source plane 

was zero padded to ±10 cm and the scale is the logarithmic magnitude of the 2-D 

FFT. The maximum spatial frequencies represent n/Ax and n/Ay and have 512 x 512 

samples across the domain, (c) Complex argument of the transfer function H(kx,ky: 
a2fk), plotted in the spatial frequency domain using 512 x 512 points. The map range 

is from -n to n. (d) Normal component of the particle velocity (cm/s) field on the 

plane z = a2Ik. This was obtained by taking the 2-D inverse discrete Fourier 

transform of the product of the transfer function H and the source angular spectrum. 

Results are shown out to ±5 cm using 256 x 256 points. Note that the distribution 

peaks at 2.0cm/s (twice the normal particle velocity), as expected. 
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Since the element of area dS = rdrd0, 

(3.i8) E(r,z:m)=m^2fft^rdrd 9. 

where rj(0) denotes the boundary location and the other quantities are defined 

in Fig. 3.6. Now r2 + z1 = R~, so that (3.18) transforms to 

(3.19) 

p(r, z:co) 

27t«l(0) 

f f e->kRdRd6 
2k i J 

P 
-jkz __ PoC qV o 

2n 
j e-,kRl(e)dQ. 
o 

Schoch [19] originally obtained this expression for the pressure at field 

points that lie within the geometric shadow. The two terms that make up the 

total pressure response consist of a plane wave pocov„e/(t0r_A:z) and a diffraction 

term that originates from the periphery (the edge wave). An expression for 

the pressure outside the geometric shadow [2, p. 522; 19] shows that the plane 

wave is absent in this region and the contributions are only from the periph¬ 

ery. Wright and Berry [28] subsequently used a similar approach in analyzing 

the field response of a circular plane transducer in a rigid baffle. Moreover, 

their analysis treated the more general case of an arbitrary transducer dis¬ 

placement waveform For the geometry illustrated in Fig. 3.7, they showed 

that the velocity potential for a disk of radius a is given by 

Figure 3.6 Geometry used for calculating the CW pressure response due to a plane 

transducer of arbitrary shape in a rigid baffle. The field point is assumed to lie within 

the geometric shadow. 
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Figure 3.7 Geometry for calculating the response for a piston transducer of radius a 
at an off-axis position. Cylindrical polar coordinates are used, and the case of r > a is 
illustrated. Both a cross-sectional (top) and a plane view (bottom) are shown. 

(3.20) 4>(r, z:t) = c3C(a-r)d t + 
Co J 

II 

C° f 
it J 

ar cosQ - a- 

k Jn a +r" -2ar cos0 

r R 
t- 

V C o J 
dd. 

where 3C(.) is the Heaviside step function, and R2 = z2 + b2 = z2 + a2 +12 - 2arcos0. 

Based on the work by Schoch [19], the more general case of a plane trans¬ 

ducer of arbitrary shape excited by an arbitrary waveform to produce the same 

velocity vno{t) over the transducer surface (no apodization) was described in 

1961 by Kozina and Makarov [17]. Cathignol et al. [20] have derived their 

results in a simpler and more general manner so that they can also be applied 

to concave and convex radiators. For an observation point lying in the geo¬ 

metric shadow of the transducer shown in Fig. 3.6, the pressure is given by 

(3.21a) p(r,z:t) = p0c0vn0 
\ Co J 

flmax(ep 

Co J 
where Rmax corresponds to the maximum distance of the observation point to 

the transducer surface for a given value of 0. For points lying outside the geo¬ 
metric shadow, the pressure is given by the contour integral: 

(3.21b) 
2 K 

fimax(0) 
dQ. 

These two equations enable the response to be calculated by means of line 

integrals, which as shown by Cathignol et al. [20] imposes a much smaller com¬ 

putational burden than evaluating the Rayleigh surface integral. 



Field Profile Analysis 147 

3.2.2 Three Sets of Boundary Conditions 

In this subsection we shall examine how the three sets of boundary conditions 

described in the last chapter affect the field response for uniform CW excita¬ 

tion. For a disk transducer surrounded by an infinite ideal baffle, the velocity 

was taken to be zero on the baffle. Specifically, if the ratio of specific acoustic 

impedance of the baffle to that of the propagation medium is very large, i.e., 

ZB » ZM, then the velocity will be small, corresponding to the conditions for 

the validity of the Rayleigh integral (Case i).The second condition previously 

examined was that in which the pressure is specified throughout the transducer 

plane (see (2.31)). If the medium surrounding the transducer is acoustically 

soft, i.e., ZB —> 0, the pressure will be approximately zero on this boundary 

(Case ii). Finally, if a transducer that produces no radiation from its back 

surface is suspended in a uniform infinite medium, i.e., ZB = ZM, the Kirchhoff 

or free-field conditions (see (2.20)) are present (Case iii). 

For all three conditions. Archer-Flail and Gee [4] have shown that at any 

arbitrary point the double surface integrals for the CW response of a uni¬ 

formly excited disk can be reduced to single integral expressions. Specifically, 

for the geometry shown in Fig. 3.7, they have shown that if the normal com¬ 

ponent of the transducer surface velocity amplitude is va, the pressure phasors 

for the three cases are given by: 

(3.22) p(r,z:t) = p0c0v0 
1 r 

5C(a-r)e~ikz + - f 
K ' 

-jkR ar cos 0-flb 

a2 + r2 ■2arcosG 
fr(z,R)de 

where R2 = z2 + b2 = z2 + a2 + r2 - 2urcos0 and fr(z,R) is given in Table 3.1. In 

fact, for Case i this expression can be obtained from (3.20) by putting E,(t) = 

noting that vc = Jcot;a, p = p0dty/dt, and differentiating. Equation (3.22) 

clearly shows that for all three cases the pressure wave consists of two com¬ 

ponents: a plane wave p0c0v0eii<£“~kz) that is present only when the observation 

point r < a, and an edge-wave component that is present everywhere [10]. For 

on-axis observation points (r = 0), the square of the pressure amplitude mag¬ 

nitudes can be obtained from (3.22) as 

(3.23) 

Case i 

Case ii 

2 2 
|Pn (0,z)| = 2(p0c0v0)~{1 - cos[A:(za - z)]} 

|Pd (0,zf = (poCoVo Y11 + j-[l - 2cos[k(za ~ z)]]| 

Case iii 

< 

\Pk (0, z)\ =(poCoVo) 

-0.25 fl z 21 
1 + — 

V Za ) J 

1 + —lcos[£(zfl -z)] 
V Za ) 

where za = VZ2 + a2. These equations were used to calculate the normalized 

pressure amplitudes [P = p/(p0c„v0)} shown in Fig. 3.8 for a disk of radius 
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Table 3.1. Effect of the Assumed Boundary Condition on fr(z,R) 

Case Boundary Condition Uz,R) 

(i) Rayleigh: Rigid Baffle 1 

(ii) Pressure Release Surface zJR 

(iii) Kirchhoff: Free Field (1 + z/R)I2 

Normalized Axial Distance, z/a 

Figure 3.8 On-axis CW normalized pressure amplitudes for the three sets of 

boundary conditions given in Table 3.1 and a transducer whose radius a = 5k. Note 
the log scale for the axial distance. 

a = 5k. It will be noted that the differences become significant only well into 

the near-field region. A more detailed examination of both the amplitude and 

phase variations for all three cases has been presented by Markiewicz and 

Chivers [5], who point out that while the far-field amplitude differences are 
small, the phases can differ appreciably, especially in the near-field. 

3.2.3 Pressure Distribution On- and Off-Axis 

In Fig. 3.9 the radial variations of the pressure amplitudes are shown for three 

different z-axis locations. Close to the transducer (z/a = 0.2) the beam is 

roughly cylindrical in shape extending to the edge of the disk. At the near- 

field/far-field transition point (z/a = 5) the beam is significantly narrower, 

beyond which (z/a = 10) the amplitude reduces and the beam spreads out. 

Finally, in Fig. 3.10 we show the computed CW contours for a disk whose 

radius is also equal to 5k. These clearly show that close to the near-field/far- 

field transition position, the beam width is a minimum and that beyond this 
point the contours display a more disciplined nature. 

3.3 Impulse Response Method 

To obtain the velocity potential impulse response for any arbitrary location 

from a plane transducer, we shall follow the method of Ohtsuki [14] and start 



Figure 3.9 Normalized CW pressure amplitude variation in the radial direction for 

a = 5X and Rayleigh (i) boundary conditions at three different distances along the 

axis. Equation (3.22) was used for the calculations. 

Axial Distance, Z 
25 X 50?. 

Normalized Axial Distance, z/(Cl2/\) 
Figure 3.10 Encoded contour map for a disk transducer (a = 5A,) showing the CW 

spatial pressure distribution for Rayleigh (i) boundary conditions. Both the axial and 

radial distances are normalized to the disk radius. The contour lines are expressed in 

dB’s relative to the value at (0,5a). (See also color insert.) 
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(x,yz) 

R 

Figure 3.11 Calculating the velocity impulse response at (x,y,z) for a plane 

transducer S0 that lies on the plane z = 0. At an instant of time t, the shaded area 

subtending an angle a contributes to the signal at the observation point. Note that R 

is a function of time, as is the angle a. 

with the defining equation for the impulse function, namely (2.35), which we 
repeat here for convenience: 

( R\ 
tJx,y)S t — 

(3.24) 

The more general case in which the apodization function ^0(x,y) is not con¬ 

stant over the transducer surface has been considered by several authors 

[21,22]. Since this somewhat complicates matters, for the present3 we shall 

consider the simpler case in which the normal component of the transducer 

surface velocity is constant over the transducer surface, i.e.,^0(x,y) = 1. As illus¬ 

trated in Fig. 3.11, the contribution at a time t comes from the portion of the 

annular ring that subtends an angle a from the projection of the observation 

point on the plane z = 0. For the field point illustrated, 0 < a < 2k. If the annular 

ring lies entirely within S0, i.e., a = 2n from t = z/c0 up to tu then h(x,y,z\t) = 

c0- Also, if the ring lies outside of Sa, i.e., a = 0 from a time t2 up to °°, then 

h(x,y,z:t) = 0. In the more general case there will be several regions of inter¬ 

section, and consequently several angles will be subtended, oq, a2,. 

Now RdR = bdb, so that dSa = aRdR, and consequently for the case illus¬ 
trated, (3.24) can be expressed as 

3. The more general case is considered in problem PI,following the treatment given by Tjptta 
and Tjptta [22]. 
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(3.25) h(x,y,z:t) = ^f-a(t), 
Ik 

for Rmin < cj < Rmax, i.e., tx < t < t2, where Rmin and Rmax denote the initial and 
final (minimum and maximum) values of R that occur at times tx - RmJc0 and 
t2 = RmJc0, respectively. For the case where there are multiple values of a, a 
similar result holds, except that if the times overlap then the impulse response 
of each during the overlap times must be added to obtain the total response 
during this interval. 

3.3.1 Piston Transducer 

The problem of determining general impulse response for the piston trans¬ 
ducer. whose on-axis impulse response was obtained in Chapter 2, reduces to 
the problem of finding an expression for the angle a. With the help of Fig. 3.7, 
straightforward geometric analysis enables a(f) to be expressed as [14] 

(3.26) a(r) = 2cos 1 
r2-a2 - z2 + c2t2' 

_ 2 r^c2t2-z2 _ 

for r > a and t{ < t < t2, in which 

h = Rmin I c0 = 4z2 +{r - a)~ /cG 

ti = Rmax I Co = Jz2 + {r + a)2 /c0 

For the entire range of possible radial positions r, the impulse response can 

be expressed as [12]: 

(3.27) 

h(r,z:t) = c0, if r<a and t0<t<tx 

h(r,z'.t) = — cos 1 
K 

■z2 + c2at2 

2 r^c2t2 

h(r,z:t) = 0, elsewhere. 

if tx <t <t2, 

where t0 = z/c0, and tx and t2 are defined above. Fig. 3.12 shows the impulse 
response for a 0.5 cm radius transducer at various radial locations and at z = 
8cm (corresponding to the last maximum for a 5 MHz transducer). It should 
be noted that a rapid reduction in the maximum value of the response occurs 
when the radial position exceeds the transducer radius, and that at that loca¬ 
tion, the delay to the first appearance of the pulse starts to increase. 

Examination of the pressure response for different burst lengths having the 
same center frequency shows that the effects of interference in the near-field 
region is diminished as the number of cycles in the pulse is reduced. As shown 
in Fig. 3.13, the far-field response remains virtually unchanged, while the near¬ 
field exhibits a much smoother response. If the number of cycles in the exci¬ 
tation waveform is greater than approximately six, it is reasonable to assume 
that the field response can be approximated by the CW response. Interpreta¬ 
tion of these results is aided by considering both the direct and edge-wave 
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Figure 3.12 Off-axis velocity impulse response of a 5.0mm radius disk transducer 
for z = 8.0 cm at radial distance increments of 1.0 mm. 

Figure 3.13 Comparison of the CW on-axis pressure response with that obtained 
using two different pulse waveforms whose center frequencies were 5 MHz. The 
transducer radius was assumed to be given by a = 5X. For the pulsed excitation, the 
peak value of the pressure has been plotted normalized to the maximum on-axis 
value. 

components. On the axis, close to the transducer the edge and direct waves 

are sufficiently separated in time so that no interference occurs, and as a result 

the peak pressure magnitude is determined by either the direct or edge wave 

in this region. Further along the axis, a point is reached where the transit times 

are sufficiently close that the edge and direct waves overlap. 

3.3.2 Experimental and Theoretical Results 

In general, good agreement has been observed with theory for both transient 

and CW excitation, and these have been described in a number of papers. 
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However, significant discrepancies have been observed due to the excitation 

of transducer vibration modes that are not normal to the surface. Specifically, 

Delannoy et al. [23] studied the CW radiation behavior of transducers with 

small lateral dimensions and found parasitic side lobes, which they properly 

attributed to parasitic Lamb waves propagation in the transducer medium and 

radiating into the fluid. An important contribution in comparing theoretical 

and experimental results was the work of Weight [24]. Using a f9mm diame¬ 

ter piston transducer with no apodization, the transmit and transmit-receive 

profiles were measured and compared using both single-cycle pulse and 

2.0-MHz CW excitation. Some of the measured and predicted results for the 

lateral peak pressure profiles are shown in Fig. 3.14. For pulse excitation, the 

response exhibits a smoothly varying characteristic both in the near and far 

field. 
Experimental observations of the transient response, especially with very 

brief pulses and observation points in the near field, have shown significant 

discrepancies with theoretical predictions based on the simple piston model. 

Hayman and Weight [25], in their experimental and theoretical studies of 

direct and edge waves from thin circular and square piezoceramic transduc¬ 

ers, reported the presence of a head wave whose arrival time could precede 

that of the edge wave, provided the observation point was sufficiently close to 

the transducer. They proposed that this wave was caused by the presence of 

laterally propagating plate waves that originate from the rim of the transducer 

and that radiate into the surrounding fluid medium. By means of stroboscopic 

Schliern photographs, together with hydrophone pressure measurements and 

transit time calculations, they showed that the head wave arrival time was con¬ 

sistent with plate waves originating at the rim, propagating in the piezoce¬ 

ramic, and radiating compressional waves into the surrounding fluid medium. 

To understand this effect we shall follow the approach used by Baboux et 

al. [26] and suppose that the disk transducer shown in Fig. 3.15 is excited by a 

pulse of very short duration. We wish to determine the path that corresponds 

to the minimum transit time of the pulse from the rim to a given axial loca¬ 

tion z. The simplest way of doing this is to make use of Fermat’s principle, 

which states that the geometric path taken by a ray is that with the smallest 

transit time. Let us denote the group speed of a radial wave in or on the surface 

of the ceramic by cg and that in the surrounding liquid medium by ca. If 

cg > c0, then this wave will radiate a leaky wave into the medium as it pro¬ 

gresses from the rim. With the aid of Fig. 3.15, the transit time from the rim to 

the observation point can then be written as 

a- ztan0 z 

cg CoCOS0 

for z<acot0. 

By differentiating with respect to 0 and equating to 0, the minimum time is 

found to occur when 

(3.28) 9 = 0(. = sin ‘(co/cg), 
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Distance off Axis, mm Distance off Axis, mm 

Figure 3.14 (a) Measured and (b) calculated CW (2.0MHz) and pulsed pressure 

profiles for a 1.9 cm diameter piston transducer in water. The lateral profiles are 

shown at a point in the near-held region (z = 30 mm) and at the last axial maximum 

(z = ci2/X = 120 mm). Using a miniature hydrophone, the pulsed waveforms were 

measured for a single cycle of excitation, and several of these are shown. The 

calculated pulsed profiles were obtained using the source velocity indicated. For both 

the measured and calculated pulse response, the peak value of the pressure 

magnitude is plotted. (Modified version reproduced, with permission, from Weight 

[24], /. Acoust. Soc. Am., 76,1184-1191, © 1984 Acoustical Society of America.) 

which is the well-known equation for the critical angle, i.e., Snell’s law, when 

the angle of refraction is 90 degrees. Thus, the path taken by those leaky waves 

that reach on-axis observation points ahead of the edge wave lie on the surface 

of a cone whose half-angle is given by (3.28) and whose apex lies at the obser¬ 

vation point. It is also evident from Fig. 3.15 that for observation points 

z > ncote, the radiation produced by the radial waves can no longer arrive 
earlier than the edge wave. 

In the case of a thick piezoceramic disk as studied by Baboux et al. [26], it 

is likely that the radial wave consists of a Rayleigh-type surface wave; 
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Figure 3.15 The manner in which head waves are produced from a piezoceramic 

disk immersed in a fluid medium. At and beyond z-Z\ the head wave no longer 

precedes the edge wave. 

however, for a disk that is thin compared to the radius, there is good evidence 

that the waves responsible for generating the head wave consist of Lamb 

waves. By an optical interference measurement technique Jia et al. [27] 

recorded the transient displacement at the center of a thin (1mm), large- 

diameter (20 mm) piezoceramic disk that was excited by a very brief pulse. 

They also measured the pressure pulse by means of a small hydrophone. Com¬ 

parison of these experiments with the known properties of Lamb waves pro¬ 

vided good evidence that the radiation produced by these waves was 

responsible for the head wave phenomenon in thin disks.4 

3.4 Approximate Methods 

3.4.1 Fresnel and Fraunhofer Approximations 

Approximate methods for quickly predicting the behavior of transducers, 

especially when the observation point is beyond the near-field zone, have tra¬ 

ditionally played an important role in design. Such methods can often provide 

a clearer insight into the parameters that govern the field distribution than the 

computationally more complex “exact” methods. Two approximations that 

have been widely used for sinusoidal excitation are based on the Fraunhofer 

(far-field) and Fresnel (mid- and far-field) approximations. 

With reference to the geometry illustrated in Fig. 3.16, we first write down 

the velocity potential at {x0,y0,z) due to the transducer of area S that is excited 

over its entire area, but not necessarily in a uniform manner. If the excitation 

is sinusoidal, then the normal component of its velocity will be given by 

4. See also the discussion in subsection 3.5.7 and the evidence for Lamb wave effects in thin 

concave transducers. 
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Figure 3.16 An arbitrary plane radiating surface 5 that lies on the plane foo'i.O), an 

element of area dS at (x^y^O), which is at a distance of R from an observation point 
that lies on the plane (xo,y0,z). 

vno(t) - £,o(xi,yi)v0e*Mo', in which £,0(.) denotes the spatial variation, i.e., the 

apodization function. Consequently, from the Rayleigh integral given by 
(2.33), the velocity potential is 

(3.29) 

provided that the observation point is sufficiently distant in comparison to the 

dimensions of S so that the variation of R for the surface integration process 
can be ignored.5 

Using the coordinate system shown in Fig. 3.16, the distance R can be 
written as 

R = 4z2 + (x0-xl)2 + (y0-ylf = 

which can be expanded as 

1 + 
XQ X\ \2 f 

+ 
V z J 

y0-y i 
v z 

1/2 

(3.30) R - Z<11 + ~~ [(xl + y20)-2(x0x1 + yayx) + (x,2 + yl)] +.1 

If terms of order higher than those shown above are ignored, then we have 

the Fresnel approximation. If it is also is assumed that "*’Fi)rnay 

x-” <<: 
where the subscript indicates the maximum value, then the (4 + y]) term can 
be neglected and we have the Fraunhofer approximation. 

5. Simply taking the R outside the integral may not be consistent with the Fresnel approxi¬ 
mation over the z-range for which it is valid; this is considered in [29], 
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3.4.2 Fraunhofer Approximation 

Neglecting the (x\ + y\) term in (3.30), noting that k = co/c0, dS = dxxdyu and 

substituting into (3.29) yields 

§N{x0,yo,z:t)~ 
v0e 

/mi -)k £+- Nzi] 

2jiR 

2 z ffr / \ +yoy\) 
)]$0{xi,yi)e z dxxdyx. 

In this equation, integration is over the surface area of the source. To express 

the integral in terms of an integral over all space, it is necessary that either E,0 

be defined over all space or that the kernel be multiplied by an aperture func¬ 

tion Q(xi,yi) that is zero outside S and unity inside. Using the latter approach, 

the velocity potential is given by 

§N(x0,y0,z:t) 
,jm -jk 

2kR 

4+zl] 
2* J n, \i- / \ j-(x<>xi+yoyi) . . 

Qfo.yusoC*i>yi)e z dxidy 

If we define the spatial frequencies in the x- and y-directions by kx = -kxjz 

and ky = -kyjz and note that pressure phasor is related to the velocity poten¬ 

tial phasor by p = j(0po§N, then the pressure at the observation point can be 

expressed as 

p(x0,y0,z:(.o)« 
jnpoVo ~’k 

2kR 

2 . 7 1 
| Xq +yz oo oo 

2' q 

By comparison with the definition of the 2-D Fourier transform given by 

(2.53), the integral portion of this equation can be recognized as the 2-D 

Fourier transform of the product of the aperture and apodization functions, 

evaluated at the spatial frequencies kx and kr Consequently the pressure 

phasor can be written as 

(3.31) p(x0,y0,z:«) 
jtOp qVq 

2 kR 

-jk 
xl +yl 

2 z 3[^0(xi,yi )Q(xi,yi)], 

where #(.) denotes the 2-D Fourier transform. 
That the far-field response for a uniformly excited transducer surface can be 

obtained by taking the Fourier transform of the product of the aperture and 

apodization functions is a particularly valuable result. It enables the response 

of a variety of geometries to be very simply determined, especially when 

= 1. Some simple examples will be considered in the next two subsections. 

3.4.3 Fraunhofer Approximation for a Piston Transducer: 

Directivity Function 

For a uniformly excited (^ = 1) piston transducer of radius a, the use of cylin¬ 

drical coordinates (r,z) enables the aperture function to be written as D(r,) = 
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circ(rj/fl), where the circ function was defined in section 3.1.1. In the same 

section it was also shown that for a cylindrically symmetric function the 2-D 

Fourier transform reduces to a zero-order Hankel transform that can be 

denoted by H0(.), i.e., 

3[Q(ri)] = 27i|( rlD.{rl)jQ{rlkr)dr] = 2KH(]{n(rl)}. 

Thus, from (3.31) the pressure phasor can be written as 

p(r,0)« {circ(r] /„)}. 

Evaluating this transform at the spatial frequency of kr = kr/z yields6 

fCIcirc(„/<.)]-«> ^0. 
karj z 

which enables the pressure phasor to be written as 

(3.32) p(r,z: oo) 
](0povoa‘ 

2 R 

2/i (kar/z) 

karj z 

-jk[z+r2/(2z)] 

Noting that [2/!(<;)/<;]lim^0 = 1, it can be seen that for on-axis points {r = 0), this 

expression reduces to (2.46), which is the approximate expression previously 

derived for distant axial points. The question as the accuracy of the Fraunhofer 

approximation can be estimated by determining the pressure magnitude at the 

location of the last maximum, which occurs at z ~ a2/k. At this point the pres¬ 

sure predicted by (3.32) is a factor of n/2 greater than that obtained from 

(2.45), corresponding to an error of 57%. As is illustrated in Fig. 3.17, for a 
distance such that z > 2.3a2Ik, the error is less than 5%. 

It should be noted that (3.32) represents the far-field pressure distribution 

in a cylindrical coordinate system. A particularly useful way of representing 

the far-field pattern is to use the polar coordinate system (Ro,0) illustrated in 

Fig. 3.18. To obtain an approximate expression for the Rayleigh integral for 

harmonic excitation, consider the geometry illustrated in Fig. 3.19. Because of 

the cylindrical symmetry it will be noted that the field for the general polar 

coordinate observation point (R0,Q,cp) will be identical to that at (Ro,0,O). If 

the observation point is such that the disk radius a « R0, then neglecting the 

second- and higher-order terms in the binomial expansion, we find 

R = Ro ^h+[rj R„y - ~2(p/ R„) cos tp, sin 0 

= R0{l-(fi/R0)costpj sin0}, 

which corresponds to the Fraunhofer approximation. From (3.29) and p = 
/0)po(j)N, the pressure phasor is given by 

6. See Appendix B. 
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Figure 3.17 The accuracy of the Fraunhofer and Fresnel approximations for on-axis 
locations. CW excitation, and a = 5X, in comparison with the exact expression. For 
the Fresnel approximation, the accuracy at a given normalized distance increases 
with a/X. At the normalized distance of 3.0, the pressure is 50% of the maximum 
pressure. Note the use of a logarithmic normalized distance axis. 

◄- 

Fraunhofer Zone 
•4- 

Fresnel Zone 

Figure 3.18 The various zones for a simple piston transducer, and the polar 
coordinate system (i?o,0) used for obtaining a far-field expression based on the 
Fraunhofer approximation. The angle 0« is beam divergence half-angle, and the 
Rayleigh distance (zR =na2/X) is approximately the location where the pressure has 
decreased by nearly 50% from the maximum value. 

e~ikR 
p(/?,0:co) = ;cop0vJJ 

2kR0 
Jr1^1J02^o(ri)e^[/?o-'lcos<plsin9W i 

= ;(0poV° e ikRo f t,o(n )J0{kn sin 0)r,dr}, 
Ro 0 

where the integral was evaluated with the help of Appendix C. For no apodiza- 

tion ^00 = 1, and also with the help of Appendix C, 



160 Biomedical Ultrasound 

Figure 3.19 Sketch showing the geometry used in obtaining an expression for the 
far-held profile of a disk transducer of radius a. 

p(R0,Q: (o)» 
;rap0v0fl2 jkRn 

2 R„ 

2J\(kRa sin9) 

kR„ sin 9 

This can be rewritten as 

p(Ro, 9: to) * D{%)e-’kRo, 
2R„ (3.33) 

where D,Q\ = 2/i(fegsin9) 

kasinQ 

(a) 

(b) 

is the directivity function. It should be noted that the factor of 2 has been incor¬ 

porated in the definition so that D(9) will be unity when 9 = 0. The far-held 
pressure response can be written in the form 

(3.34) [p(fl0,9:o))|oc^M 

which expi esses the fact that the directivity function determines the angular 

pressure distribution for any radial location, and that the magnitude dimin¬ 

ishes inversely with the radial distance. This useful result was obtained by King 

[68] in 1934 as a special case (^0(^i) = 1) in his treatment of an arbitrary cir¬ 
cularly symmetric apodization function. 

Tire diiectivity function is plotted in Fig. 3.20a, b, and c for three different 

values of ka. It shows that as the transducer radius diminishes, the main lobe 

response becomes dominant and approaches a constant value over 180 



a a 0 c. 

-30 ka=4 7i 

-45 0^=17.8° 

-60 

ka=8n 

Figure 3.20 The far-field pressure directivity function D(Q) and the lateral profile for 
a disk transducer. Polar graphs obtained from (3.33) for (a) a = X, (b) a = 2X, and (c) 
a = AX. The value of -10 loglo[Z)(0)] is plotted and the beam divergence angle 9W is 
oiven. (d) Pressure magnitude profile in the lateral direction obtained from (3.32). 

161 



162 Biomedical Ultrasound 

degrees. For larger radii the main lobe narrows and the number of side lobes 

increases. Fig. 3.20d shows the pressure response in the lateral direction as cal¬ 

culated from (3.32). A useful measure of the lateral resolution is thefull width 

at half maximum (FWHM) of the central lobe, and this can be expressed as 

FWHM = 4.41— = 1.4—. 
I3-35) ka 2 a 

Note that the FWHM in the Fraunhofer zone increases linearly with the axial 

distance z. For example, if ka = 8tc (a = AX), and z = 15cm (which is in the far 
held if X < 1mm), then FWHM - 2.6cm. 

Tlie directivity function is of importance in the design of hydrophones used 

for measuring held prohles. Accurate measurements in the near held of a 

source require that the effective dimensions (as opposed to the physical 

dimensions) be much smaller than a wavelength, a goal that may be difficult 

to achieve in practice. As pointed out by Flarris [30], two of the problematic 

characteristics of hydrophones are the frequency response and the effective 

dimensions. For a disk hydrophone, the effective radius can be determined by 

comparing the measured angular response to that predicted by theory. 

However, for a very-small-diameter transducer, the boundary and mounting 

conditions become very important factors in determining the response. For 

a disk with a diameter equal to the wavelength (ka = n), the theoretical 

responses for three different boundary conditions previously discussed (see 

Table 3.1) are shown in Fig. 3.21. For larger values of ka the three response 

curves approach one another, while for smaller values they diverge. Measure¬ 

ments of the angular response for small hydrophones frequently show angular 

characteristics that differ significantly from the theoretical response [31]. 

Figure 3.21 Directivity pattern for a disk transducer whose diameter is equal to the 

wavelength ka - n for three different boundary conditions corresponding to (i) a 

rigid baffle (3.33b), (ii) a pressure release surface (3.33b) x cosO, and (iii) Kirchhoff 
(free-held) condition (3.33b) x [(1 + cos6)/2]. 
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The various zones frequently referred to in the literature [39] are those 

shown in Fig. 3.18. Generally, the near- and far-held boundary is taken as the 

position of the last maximum, which in the case of a piston transducer is at 

Z = tf2/X.The zone where the Fraunhofer approximation is reasonably accurate 

extends from around z ~ 2a2/X, and the Fresnel approximation, as discussed 

below, provides sufficient accuracy for predicting the response well into the 

near-held zone. In addition, 0R = sin"'(0.6\X/a) is the angle at which the beam 

diverges in the far-held as measured from the center of the transducer 

and corresponds to the hrst minimum of the directivity function, i.e., when 

Ji(kasmQ) hrst becomes zero. Finally, the Rayleigh distance (Zr = na2/X), is 

approximately the location beyond the last maximum where the amplitude has 

reduced by 50%. 

3.4.4 Fresnel Approximation for a Piston Transducer 

The relative accuracy of the Fresnel approximation can be determined by com¬ 

parison of the on-axis response. This can be achieved by substituting all the 

terms given in (3.30) into (3.29), assuming that = 1 and noting that p - 

;cop0(j),v, yielding 

(3.31) p(x0,y0,z: ©) = 
JMPqVq 

2nR 

-jk 

.2^,21 xi+yt 

2* J 
Ue' 

—f*o*i +yoyi-x\-y\' 

dxxdyx 

On the axis, x0 = yQ = 0, and by letting r\ = x\ + y\ so that dxxdyx = 2nrxdru the 

integral can be evaluated as 

(3.34) /?(0,z:co) = c0p0v0e~ikz{\ -e ;*fl2/2z), 

which is also plotted in Fig. 3.17. It can be clearly seen that for the assumed 

disk radius of a = 5X, this equation is an excellent approximation to the exact 

equation as expressed by (2.45) for normalized axial distances of greater than 

0.5. However, it should be noted that the agreement depends on the a/X ratio: 

as it increases the agreement improves, and vice versa. 

3.5 Concave and Convex Transducers 

It has been long recognized that transducers with a concave geometry are par¬ 

ticularly efficient in concentrating much of their radiated energy in a highly 

localized focal zone. They have found many uses in medical diagnostic and 

therapeutic systems, and substantial efforts have been made to develop 

efficient methods for predicting their behavior for both sinusoidal and tran¬ 

sient excitations [34], For concave transducers, the field distribution for sinu¬ 

soidal excitation was explored analytically by Williams [32] in 1946. However, 

O'Neil [33], in his classic paper of 1949, presented a much more extensive 

analysis. 
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3.5.1 Fundamental Approximations 

In considering the response of a nonplanar transducer, it is important to recall 

that the Rayleigh integral was derived under the assumption that the trans¬ 

ducer and the medium in which it is imbedded was a flat surface. Thus, the 

question arises as to how close to flat the surface must be in order that the 

Rayleigh integral approach gives a good approximation to the actual response. 

The possible influence of the effects of a curved surface can be appreciated by 

noting that other portions of the surface will diffract a wavelet emitted from 

an elementary area of a concave surface. This secondary diffraction is not 

accounted for by the Rayleigh integral, which assumes that the source lies on 

an infinite planar surface and that each incremental area acts as a hemispher¬ 

ical source that contributes in a simple time-retarded sense to the velocity 

potential at the observation point. O’Neil [33] and Penttinen and Luukkala 

[15] have discussed these limitations and point out that if the aperture is large 

compared to the acoustic wavelength, and for gently curved sources, the 

Rayleigh integral should be a good approximation. Nonetheless, because of 

this approximation it should not be surprising to find that the assumed bound¬ 

ary conditions are not recovered by the solution. For example, O’Neil [33] 

showed that for a sinusoidal surface velocity, the expression for the axial par¬ 

ticle velocity does not reduce to the assumed velocity magnitude and phase at 
the transducer surface. 

Using the above assumptions, a number of different methods have been 

described for calculating the CW and the transient response for concave and 

convex radiators [14,15,20,33-37], In the formulation presented by de Hoop 

et al. [37] and Schmerr et al. [38] for a concave radiator, the pressure field was 

expressed in terms of the sum of a spherically convergent or divergent direct 

wave and an edge wave7, similar to that originally discussed by Tupholme [18] 
for transient radiation from a spherical cap. 

3.5.2 Impulse Response Using the Ring Function Method 

With the assumptions noted above, we can make use of the ring function 

method of Ohtsuki [14] that was described in section 3.3. The ring function 

a(0 is equal to the fractional arc length of a circle that lies on the transducer 

surface. For a transducer surface that forms part of the spherical surface, the 

ring function can be determined by making use of spherical geometry. We shall 

initially consider the simpler case of the convex spherical radiator shown in 

Fig. 3.22 that has a radius of curvature a and that suspends a half-angle of 6r 

at the center of curvature. The observation point is specified by the radial coor¬ 

dinate R and the angle 0, using the center of curvature as the origin of coor¬ 

dinates. As will be seen, the results for a concave radiator can be obtained by 

using the same equations, though additional considerations are needed 
depending on the angular position of the field point. 

7. This approach is similar to that described in sections 2.2.2 and 3.2 for a piston transducer. 
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Figure 3.22 A convex radiator of area SR with a half-angle of QT and radius of 

curvature a. The origin of coordinates is the center of curvature. All points on the 

elementary area dS are equidistant from the observation point (R,0). The 

contribution from dS at time t arrives at the observation point at a time (t + r/c„). 

With reference to Fig. 3.22, the element of area that contributes to the signal 

at the observation point at a given instant of time is shown as arising from the 

area dS. To find an expression for dS, we first obtain an expression for the area 

of the semispherical cap formed by the intersection of the periphery of the 

base of the cone that suspends a half-angle of \\i at the center of curvature. 

This is given by Sc = n(a/R) r2-{R-a)2 . By differentiating this with respect 

to r, and noting that dS = a(t)dS„ the elementary area is given by 

(3.38) dS -2naa(\\i)rdr/R. 

The velocity impulse response for a uniformly excited transducer (^(R,0) = 1) 

is therefore given by substituting (3.38) into (2.37): 

(3.39) fc(fl,0:f) = JJ 

5 If- — 
_^-o_ ) 
2nr 

dS=-\'?m“a(\|/)6 
R JRmin 

( r 
t- 

V Co 

r ~c0 -^a(R,Q:t), 

where Rmax and Rmin are the maximum and minimum distances, respectively, 

from the observation point to the transducer surface. To determine a(R,Q:t) it 

is necessary to make use of spherical triangle geometry, which yields 

a (R,d:t) — cos 
K 

COS0T -COS\\l COS0 
(a) (3.40) 

v sin \|/ sin 0 
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where 

cosy = 
R +az -t Co R2 + a2-r2 

2aR 2 aR 
(b) 

These equations are valid provided the arc area dS does not form a complete 

circle. When a complete circle is formed, corresponding either to the condi¬ 

tion 0 < y < 0r - 0 and 0 < 0r, or the condition (2m - 0r - 0) < y < n and (n - 

dT) < 0 < n, then a(R,G:t) = 1. Consequently, the velocity impulse response for 
the entire range of angles is given by: 

c0(a//?), 0 < V|/ < (0r - 0) and 0 < 0r, or 

(2k - 0r - 0) < y < k and 

(k - 0r) < 0 < K, 

co(a/R)a(R,0:t), |0r - 0| < y < (0r + 0), 

.0, otherwise. 

For on-axis locations, where 0 = 0, the impulse response is the rectangular 
function 

(3-41) h(R,Q:t) = < 

(3.42) 

in which 

h(R,0:t) = c0 (a/ R) rect j ~ (tmax + tmin)/2 

tmax tm[n 

(a) 

tminC„ = Rmin (0 = 0) = R - a, and tmaxcQ = Rmax (0 = 0) 

= vlR2 +a1 ~2aRcosQr , 

and where the equations for Rmax and Rmin, as given in Fig. 3.23d, have been 
used. 

For the case of a concave radiator, R remains as the distance from the center 

of curvature, and the equations for the impulse response are also given by 

(3.40) and (3.41). Three cases can be identified depending on 0, and these are 

illustrated in Fig. 3.23a, b, and c, together with the equations for Rmax and R 

For on-axis cases (0 = 0 or k), the equations for Rmax and Rmin given in 

Fig. 3.23a and c must be used in (3.42b). It is evident that for R = 0, tnnn = tnun, 

and as expected the impulse response at the geometrical focus is a 8-function. 

3.5.3 Sinusoidal Response 

If the transducer excitation is given by vjt) = v0da\ where vc is the velocity 

amplitude, then the velocity potential response can be obtained by direct sub¬ 
stitution of (3.38) into (2.32), yielding 

(3.43) <|>jv (R, 0:<a) = aV°^ \Rm°* a(\|f)e~i(arlc°dr (a) 
f\ J Rmin ^ ' 

where a(\j/) is given by 
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er >0>O: 

Rmax = -Ja2 + R2 -2aRcos(Qj- +9) 

n-Qf >Q>Qy'. 

Rmm = Ja2 + R2-2aRcos(QT-Q) 

Rmax = -ja2 + R2 -2aRcos(QT +9) 

Rmin = -Ja2 + R2 - 2aRcos(Qf -9) 

Rmax = yja2 + R2 -2aRcos(Qj +6) 

7?max = -Ja2 + R2 -2aRcos(Q r - 0) 

Figure 3.23 Geometry for (a), (b), (c) concave and (d) convex radiators, giving the 

minimum and maximum distances from the observation point (/?,0) to the radiator 

surface. The origin of coordinates is the center of curvature. 

(3.43) a(fl,0:y) 

1, 0 < y < (0r - 0) and 0 < 0r, or 

(27t - 0r - 0) < y < k and 

(k-0t) < 0 < 7t:, 

Equation (3.40), |0r-0| < y < (0r + 9), 

0, otherwise. 

(b) 

In addition, Rmax and Rmin are the maximum and minimum distances, respec¬ 

tively, from the observation point to the transducer surface, and equations for 

these are given in Fig. 3.23 for both concave and convex geometries. 
For the particular case of axial observation points (0 = 0 or 7t), (3.43) can 

be simplified to 

, , av0eiM _j(ar/cn , av0em r 
(3.44) l-dr = -~~[ 

y—jkRtr, _g—jkRmax j 
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where k = (o/c0 and Rmax and Rmin for a concave transducer are given by putting 

either 0 = 0 in Fig. 3.23a, or 0 = n in Fig. 3.23c, and for a convex geometry, by 

putting 0 = 0 in Fig. 3.23d. Thus, the pressure phasor is given by 

(3.45) p(R,0;co) = ?°ac°v° jg-jkR„un _e-jkRmax] (a) 
R 

or 

(3.45) (b) 
K 

Alternatively, this result can be obtained by substituting (3.42a) into (2.37b) 

and then taking the Fourier transform, yielding for the phasor pressure 

p(R,0: co0) = ;'2rcco0p0v0c0 (a/ 7?)3{rect[(r -x1 )/x2 

where x, = (tmax + tmin)l2, and x2 = tmax - tmin. After some algebra and on drop¬ 
ping the subscript on to, this reduces to (3.45). 

As an example, the pressure magnitude axial distribution is shown in 

Fig. 3.24a for a concave transducer with a 4.0cm radius of curvature and a 

half-angle of 30 degrees, uniformly excited with a velocity of l.Omm/s and 

radiating into water. In addition, a contour map for the same transducer is 
shown in Fig. 3.25. 

On examining (3.45b) it will be noted that the magnitude of the pressure 

response at the geometric focus (R = 0) can be obtained by making use of Rnmx 

and Rmin as given in Fig. 3.23a and then taking the limit of (3.45b) as R 

Figure 3.24 Axial CW pressure and velocity profiles for a 1-MHz concave 

transducer with a 4.0cm radius of curvature and a half-angle of 30 degrees, 

uniformly excited with a velocity of l.Omm/s radiating into water, (a) Pressure 

magnitude, calculated from (3.45). (b) Velocity magnitude, calculated from (3.49). 
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Figure 3.25 Gray-scale-encoded CW pressure magnitude contours obtained from 

(3.43) for a 1MHz concave transducer with a 4.0cm radius of curvature and a half¬ 

angle of 30 degrees, uniformly excited with a velocity of l.Omm/s radiating into 

water. Contours are given in -3 dB steps relative to that at the focal point, which is 

0.92 mm closer to the transducer than the geometric focus. Note the different scales 

for the radial and axial directions. The region examined has a radius of 7 mm and a 

length of 125 mm. (See also color insert.) 

If the gain G of a transducer is defined as the ratio of the pressure at the focus 

to that on the transducer surface,8 and assuming that the geometric focus a 

and the actual focal point are nearly coincident, the transducer gain can be 

expressed as 

(3.46) 

|p(0.0)1 

PO^O^O 

ka( 1 - cos Bp), 

= kfi = 2nfi/'k 

where d = a(l- cos Op) is the height of the rim. From this, it can be seen that 

the pressure can be increased by using a higher frequency and/or for a fixed 

a, by making 0r = 90 degrees (i.e., by using a hemispherical shell). Typically, 

the maximum pressure does not occur at the geometric focus: it is somewhat 

8. It should be noted that for a plane piston source, if the focal point is taken to be the last 

pressure maximum, then from (2.45), G = 2. 
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closer to the transducer. Although an exact implicit expression can be found 

by differentiating (3.45b) and equating to zero, O’Neil [33] has obtained the 

following approximate expressions for the normalized maximum pressure and 
its axial location are 

(3.47) 
|p(7?,„,rc)| 

PoCoVo 

, r 12 kk + —7r, 
kfl 

R„ 
12 a 

12 + k2f2 ’ 

for kfl > 4. 

Taking the example shown in Fig. 3.24a, for which, if fi = 3.573k, the gain is 

22.45, and the maximum is located about 2.3% closer to the transducer and 

the pressure is 1.5% greater than that at the geometric focus. In the limit as 

kfl-» 0, corresponding to a flat piston source that has a geometric focus at 
infinity, the maximum pressure is equal to 2p„c0v0. 

Further examination of (3.45b) in comparison to the pressure response of 

a piston transducer, as given by (2.45b), shows that the ratio of the maximum 

pressure amplitudes for the same excitation velocity are given by 

(3.48) 
|p(0, 0:co)| 

Concave 

\p(a2/k:(jd)\ K 1 ''Piston 

nf 

T 

for kfl > 4, which, for the case shown in Fig. 3.24a, is a factor of 11.2. 

3.5.4 Velocity and Intensity 

At any point (R,9) the velocity vector is given by v =-grad(0/v) = 

, where R and 0 are unit vectors. Thus, the velocity can be R 
6 do 

dR r ae 
obtained by numerically evaluating the derivatives of (3.43a). For the on-axis 

observation points, symmetry requires that dfiydO = 0, and consequently, by 

evaluating the derivative of (3.44), we find that the velocity phasor is given by 

v(R, 0:co) = 
jav0 

(3.49) 

kR 
M 

jkRn. (R-a cos0r)e 11 

R2 + a2 - 2a/?cos07 
■ + e -jkR,r 

jkRmin _jkRmax ^ 

which is plotted in Fig. 3.24b. It can be shown that in the limit as R a the 

velocity phasor differs from that assumed value of v().This was noted by O’Neil 

[33], who pointed out that this arose from violating the flat surface assump¬ 

tion of the Rayleigh integral, which formed the starting point of the above 
analysis. 

To calculate the intensity distribution, it is necessary to recall that (2.48) 

gives the time average of the instantaneous intensity vector, I(r:t) for a sinu¬ 

soidal field, i.e., I(r) = Since an expression for p(R,0:to) has already 
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been derived as (3.45), it is simpler to obtain the intensity from the pressure 

and its phase angle tp by noting that the intensity can be written as: 

(3.50) 

Now the pressure phase angle can be obtained from (3.45b) as 

K 
cp = — — — (Rmax + Rmin) • By substituting its derivative into (3.50), the magnitude 

of the intensity is 

(3.51) I(R, 0 or k) 
\p\ ( 1 Cl COS Oy ~R\ 

2p^U+ 2 Rmax f 

where Rmax is given in Fig. 3.23a and the pressure magnitude can be obtained 

from (3.45). This is plotted in Fig. 3.26 for the same transducer that was con¬ 

sidered in Fig. 3.24. At the geometric focus (R - 0), (3.51) reduces to 

(3.52) 7(0, 0) = p0c0(kvoyfl2 (1 + cos0T)/4. 

Thus, the ratio of the peak intensity produced by the concave transducer to 

that produced by a disk transducer is given by 

(3.53) 
7(Q- 0:M)lc,,c„, 

7,(0, 02A:a>)L,ol, 

For the same transducer considered in Fig. 3.24 and Fig. 3.26, this ratio is 118. 

Distance from Transducer, cm 

Figure 3.26 Axial CW intensity profile as calculated from (3.51) for a 1MHz 
concave transducer with a 4.0cm radius of curvature, a half-angle of 30 degrees, 
uniformly excited with a velocity of l.Omm/s, and radiating into water. Note the log 

scale in the lower graph. 
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3.5.5 Approximate Axial and Lateral Fields Near the Focus 

Of particular interest is the pressure field distribution on the focal plane (a 

plane normal to the axis at the focal point). Using the Fresnel approximation, 

an approximate expression valid for points close to the axis can be obtained 

[40, pp. 183-185]. This expression, which was originally derived by O'Neil [33] 

using a different approach, is given by 

(3.54) 
< K ) 

p 
[ 2 J 

~ 2p0c0v0kfi 
~J,{kR^l2a) 

kR^lla 

where °D = ^A(i(2a-fi) is the aperture diameter. Equation (3.54) is plotted in 

Fig. 3.27 for the same transducer assumed in Fig. 3.26. For this transducer, the 

difference between the approximate values predicted by (3.54) and those 

obtained numerically at the geometric focus were negligible. However, it is to 

be expected that when the true focal point deviates significantly from the geo¬ 

metric focus, (3.54) will no longer provide a good estimate of the focal plane 

distribution. Convenient approximate expressions for the intensity distribu¬ 

tion in both the axial and lateral planes are those obtained by Cline et al. [41] 

using the Fresnel approximation. When normalized to the intensity at the 
geometric focus, these are given by 

(3.55) 

7 W Arid Jsin[kfiR/2(a + R)n 
/(0) L kfiR/2a 

mLateral -.r2/i(^/2fl)l2 

7(0) L kRLD/2a 

Distance from Geometric Focus, mm 

Figure 3.27 Approximate magnitude of the pressure distribution on the geometric 

focal plane as calculated from (3.54) for a concave transducer with a 4.0 cm radius of 

curvature, a half-angle of 30 degrees, uniformly excited with a velocity of l.Omm/s, 
and radiating into water. 
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Figure 3.5 Field computation with the angular spectrum method using a 2-D FFT for a 

piston transducer with a radius a = 1 cm, excited at 5 MHz with a normal velocity v = 1 cnt/s. 

The axial component of the particle velocity was computed on a plane at z = cr/k (=33.3 cm), 

(a) Normal particle velocity profile on the transducer plane at z=0. Sampling out to ±5 cm 

using 256x256 samples over the entire plane, i.e.. Ax = Ay = 0.39 mm per sample. Red cor¬ 

responds to v = 1 cm/s, blue to v =0. (b) Angular spectrum of the source obtained by taking 

the 2-D Fourier transform of the source. The source plane was zero padded to ±10 cm and 

the color scale is the logarithmic magnitude of the 2-D FFT. The maximum spatial frequen¬ 

cies represent n/Ax and Til Ay and have 512x512 samples across the domain, (c) Complex 

argument of the transfer function H(k^k : a2/X), plotted in the spatial frequency domain using 

512x512 points. The color map range is from-n to n. (d) Normal component of the particle 

velocity (cm/s) field on the plane z = a2/A.. This was obtained by taking the 2-D inverse 

discrete Fourier transform of the product of the transfer function H and the source angular 

spectrum. Results are shown out to ±5 cm using 256x256 points. Note that the distribution 

peaks at 2.0 cm/s (twice the normal particle velocity), as expected. (See text, p. 144.) 
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Figure 3.10 Contour map for a disk transducer (a = 5\) showing the CW spatial pressure 

distribution for Rayleigh (i) boundary conditions. Both the axial and radial distances are 

normalized to the disk radius. The contour lines are expressed in dB’s relative to the value at 
(0, 5a). (See text, p. 149.) 
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Figure 3.25 Color-encoded CW pressure magnitude contours obtained front (3.43) for a 

1 MHz concave transducer with a 4.0 cm radius of curvature and a half-angle of 30 degrees, 

uniformly excited with a velocity of 1.0 mm/s radiating into water. Contours are given in 

-3 dB steps relative to that at the focal point, which is 0.92 mm closer to the transducer than 

the geometric focus. Note the different scales for the radial and axial directions. The region 

examined has a radius of 7 mm and a length of 125 mm. (See text, p. 169.) 
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Figure 8.41 Computed transmit profiles for nonlinear propagation in a liver-like medium 

from a linear phased array excited with a 2-MHz CW signal. Fundamental and second 

harmonic profiles in: (a), (b) azimuthal plane and (c), (d) elevation plane. The array had 

64 elements, each with a height of 20 mm, width of A./2, and spacing of X/4, giving a total 

length-3.7cm. Focusing in both the azimuthal and elevation directions was at a depth of 

4 cm. The properties of the medium are the same as those listed Fig. 8.40. The color scale 

gives the pressuie in MPa. The source velocity amplitude was 0.23 m/s (source pressure 

amplitude = 347 kPa). (Reproduced, with permission, from Zemp et al. [142], J. Acoust. Soc. 

Am., 113, 139-152, © 2003, Acoustical Society of America.) (See text, p. 552.) 



Figure 10.24 Two examples of 

color flow imaging. For both, 

the color flow image is added 

to the gray-scale B-mode image 

and the color bar scale gives the 

flow velocity component in the 

beam direction in cm/s. Vertical 

tick marks are 1 cm apart, (a) 

Common carotid artery (red 

scale) and the jugular vein (blue 

scale): 15 frames/s, 5.0-MHz 

center frequency; the focal point 

is marked by a < close to the 

RHS. (b) Sector scan showing 

the umbilical cord (two arter¬ 

ies and one vein) at 29 weeks: 

4 frames/s, 2.5-MHz center 

frequency. (Courtesy Philips 

Ultrasound.) (See text, p. 695.) 

Figure 10.25 Example of a 

spectral flow display from a 

sample volume located near the 

center of the common carotid 

artery. Two small white lines 

mark the range-gate boundar¬ 

ies and the white dots show the 

spectral beam direction. The 

beam/flow angle was estimated 

to be 59 degrees, resulting in a 

peak flow velocity of 43 cm/s. 

The envelope of the spectral dis¬ 

play, indicated by the gray line, 

wives the variation from within 
O 

the sample volume of the peak 

flow velocity over each cycle. 

(Courtesy Siemens Ultrasound.) 

(See text, p. 696.) 



Figure 10.27 Early color-encoded flow images, (a) Common carotid artery flow image 

superimposed on a gray-scale B-mode image, (b) Three-second M-mode recording show¬ 

ing the movement of tissue and vessel walls in gray scale and blood flow in color. The 

beam passes through the jugular vein (blue) and then through the common carotid artery. 

(Reprinted by permission of Elsevier, from Eyer et al. [92], Ultrasound Med. Biol., 7, 21-31. 

©1981 World Federation of Ultrasound in Medicine and Biology.) (See text, p. 698.) 



Figure 10.39 Nondirectional power flow image of a kidney. The hue and brightness of the 

colors indicate the relative power. Note that close to the vessel walls, where the segment volume 

is only partially in the vessel, the power falls and, in this region, the power scale merges from 

orange to purple through to black. (Courtesy Siemens Ultrasound.) (See text, p. 722.) 

Figure 10.41 Color-encoded tissue velocity image of the heart. The time in the cardiac 

cycle at which the image was obtained is indicated by the green line. A low-pass filter has 

been used to suppress the blood flow information. (Courtesy Piofessor McDicken.) (See text, 

p. 724.) 



Figure 10.51 Color flow image of a bypass graft model with superimposed vectors show¬ 

ing the 2-D velocity distribution for steady flow (1.4 1/min, Reynolds number = 1600). The 

B-mode image (7 MHz) and the flow image (5 MHz) are those obtained with a linear-array 

transducer with the beam in the vertical direction. The color flow image scale gives the 

flow velocity component in the horizontal direction. The 2-D vectors were calculated from 

information obtained from color flow images obtained at -20, 0, and +20 degrees. (Reprinted 

by permission of Elsevier from Maniatis et al. [182], Ultrasound Med. Biol., 20, 559-569, 

©1994 World Federation of Ultrasound in Medicine and Biology.) (See text' p. 741.) 
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3.5.6 Lateral Resolution and Depth of Field 

The lateral resolution can be characterized by the full width at half maximum 
(FWHM). From (3.54) it can be readily shown that for a concave transducer 
the pressure is reduced by 50% when kR^D/(2a) = 2.215. Consequently, at the 
focus F ~ a 

(3.56) FWHM = 1.4 A. Focal Len_gt_ = 1.4W®, 
Aperture 1) 

which is equal to 2.1mm for the assumed transducer geometry. The ratio of 
the focal length to the aperture diameter is generally referred to as the /- 
number of the transducer. Along with the wavelength, it determines the lateral 
resolution, and as a result it is a very important parameter in specifying the 
performance of an imaging system. By comparing the FWHM for a concave 
transducer to that of an unfocused disk transducer with the same aperture (2a 
= °D), it can be seen that at the same axial location, the lateral resolutions are 
identical, i.e., for zdisk - F, then (3.56) and (3.35) are identical. Thus, in the 
Fraunhofer zone, a focused concave transducer does not result in any 
improvement in the lateral resolution over that of a simple disk with the same 
aperture. 

The Rayleigh resolution criterion for distinguishing the images of two inco¬ 
herent point sources created by circular aperture can also be used [40, pp. 
185-189]. Specifically, this requires that the maximum of one image lies on the 
first zero of the other. Since the first zero of the Bessel function in (3.54) occurs 
when its argument is 3.83, this yields 

(3.57) Rl = 1.22A, Length ^ i22hr/cD= 1.22A, x f-number 
Aperture 

for the lateral resolution. In the case of the 4 cm geometric focal length trans¬ 
ducer considered above, RL = 1.83 mm. 

Like the lateral resolution, the depth of field is of major importance in ultra¬ 
sound imaging system design. It provides a measure of the range of depths 
over which the transducer maintains reasonably good focusing properties. In 
the case of a concave transducer Kino [40, p. 191] has shown that a good 
approximation for the depth of field corresponding to the 3-dB points on the 

axial pressure response profile is: 

1 H 2 
(3.58) ZF (3 dB) - —— = 7.2A, x (f-number) , 

sin 0r 

where the second form makes use of the fact that sin 67-= cDl(2a). 
For the 1-MFlz transducer with a half-angle of 30 degrees, ZF ~ 11mm, 

which is in approximate agreement with that measured from the pressure 

response curve in Fig. 3.24a. 
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3.5.7 Comparison with Experimental Results 

A number of comparisons of the experimentally measured characteristics of 

concave transducers with the theoretical predictions have been made for both 

CW and pulsed conditions [42-44], In general, the experimental measurements 

show good quantitative agreement in the focal plane, but significant discrep¬ 

ancies have been found on-axis close to the transducer surface. For example, 

the on-axis minima of the measured CW response were not found to be zero 

(see Fig. 3.24). Several possible reasons for these discrepancies have been care¬ 

fully examined by Cathignol et al. [44], and these include using the Rayleigh 

integral, which ignores secondary diffraction. They reported carefully con¬ 

ducted experimental measurements on the field and surface displacements 

produced by a thin piezoceramic bowl using both CW and pulsed excitation. 

Measurements of the displacement amplitude over the transducer surface 

were performed with a laser beam and optical interferometer. By means of 

these measurements, together with theoretical predictions, they showed that a 

major source of the discrepancy is the generation of Lamb waves.9 These 

guided waves appear to originate at the rim of the ceramic where the electric 

field is non-uniform, resulting in a non-uniform stress. They travel toward the 

center of the bowl with negligible attenuation, and the resulting focusing effect 

produces a displacement maximum that can be comparable to the thickness¬ 

mode displacement. Since the Lamb waves travel much faster in the ceramic 

than in the fluid propagation medium, a pressure signal results whose arrival 
time can precede the edge wave. 

Fig. 3.28 illustrates these findings by showing the surface displacement 

waveform measured at the center of a concave piezoelectric created by a 5- 

0 10 20 30 40 
Timers 

Figure 3.28 Displacement waveform at the center of a concave ceramic piezoelectric 

transducer with an aperture diameter of 10 cm and a focal length of 10 cm. 

Measurements were performed using an optical interferometer for an excitation 

consisting of a 5-cycle 1.0MHz burst. The first burst, which starts at 5ps, is due to the 

thickness mode vibration. Lamb waves from the periphery reach the center at the 

time marked by the arrow. (Reproduced, with permission, from Cathignol et al. [44], 

J. Acoust. Soc. Am., 101, 1286-1297, © 1997 Acoustical Society of America.) 

9. See also the discussion in subsection 3.3.2, which describes evidence for Lamb wave effects 
in thin disk transducers. 
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cycle 1 MHz excitation signal. The start of the displacement due to arrival of 

the Lamb waves from the periphery begins at about 15 ps after the start of the 

excitation, corresponding to a speed of -0.35 cm/ps in the ceramic. Fig. 3.29 

shows the results of pressure measurements made using a hydrophone placed 

on-axis close to the transducer using a very short excitation pulse. Compari¬ 

son of (b) and (c) shows that the head wave, which arrives prior to the edge 

wave, consists of a component with a lower characteristic frequency (which 

arrives first) followed by higher-frequency components. Cathignol et al. [44] 

proposed that the first-arriving component corresponds to the lowest-order 

symmetrical Lamb waves, whose low-frequency group velocity is -0.37 cm/ps. 

All of these measurements provide convincing evidence that Lamb waves play 

a dominant role in accounting for the discrepancy between the theoretical 

predictions (based on simple thickness-mode oscillations) and experimental 

observations. 
In a subsequent paper, Cathignol et al. [45] compared the radiated field 

under pulsed and CW conditions for three spherical transducers of the same 

geometry: (i) a piezoceramic with air backing, (ii) a piezoceramic with an 

absorbing backing, and (iii) a piezocomposite material. The piezocomposite 

material consisted of piezoceramic and a polymer in the form of a matrix. They 

found that the addition of an absorbing backing layer for the piezoceramic 

transducer reduced the peak value of the head wave. For the piezocomposite 

material, the head wave was completely eliminated. When account was taken 

of the non-sphericity of the piezocomposite transducer, they found that the 

Rayleigh integral model accurately predicted the on-axis pressure field. In fact. 

(a) 

0 s_ 
3 
(/) 
cn 
0 
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CL 
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Figure 3.29 Measurement of the on-axis pressure at a distance of 1.0cm from the 

center of the concave transducer described in Fig. 3.28. (a) Excitation waveform, (b) 

Hydrophone signal showing the direct wave, the head wave (arriving before the edge 

wave), and the edge wave, (c) Reproduction of the hydrophone direct wave signal 

combined with an inverted replica (thin line) starting at the expected arrival time of 

the edge wave. (Modified version reproduced, with permission, from Cathignol et al. 

[44],/. Acoust. Soc. Am., 101,1286-1297, © 1997 Acoustical Society of America.) 
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this is in agreement with the earlier work of Coulouvrat [46], who developed 

a model that takes proper account of secondary diffraction. Comparison of 

the numerical results with those obtained using the approximate method that 

neglects secondary diffraction have shown that even for relatively large half¬ 

aperture angles, e.g., QT < 60°, and over the range 20 < k2) < 100, where CD is 

the aperture, the differences were small, especially in the neighborhood of the 

focal zone. 

3.6 Annular Ring, Annulus, and Conical Transducers 

The simplest form of a 2-D transducer array consists of annuli of differing radii 

and a common axis. Because of its cylindrical symmetry, the lateral resolution 

at a given z-location is angle independent. The idea of using an annular array 

for achieving a variable focal length originated with a suggestion by Schuck,"’ 

and the subsequent expansion of this idea by Reid and Wild [47]. Since the 

basic element of such an array is an annulus, an understanding of its associ¬ 

ated field pattern is a useful starting point in phased array design. But even 

more fundamental is an annular ring whose thickness is small compared to a 

wavelength. The idea of using a thin annular ring for radio astronomy imaging 

was reported in the 1960s by Wild [48]. Of key importance was a method for 

partial cancellation of the high side lobes associated with the /0 response (see 

below) of a simple ring structure. Initial reports [49,50,52] on the practical 

application of this method for ultrasound imaging indicated that major 

improvements could be achieved in terms of lateral resolution and depth of 

field. However, implementing this method required that the ring be divided 

into a number of segments that could be individually addressed, which would 

have greatly increased the fabrication complexity. In addition, because of the 

small area, the sensitivity would be significantly reduced. In this subsection we 

shall start by considering the properties of a simple ring. 

3.6.1 Annular Ring 

Impulse Response [51 ] 

For an annular ring (Fig. 3.30a) of radius a whose width A a is small compared 

to a wavelength, it can be shown (Problem P3) that the velocity impulse 
response function at (r,z) is given by: 

(3.59) 

for 

and h(r,z) = 0 elsewhere. 

10. It is sometimes suggested that this idea originated with Reid and Wild [47], but, as clearly 
stated their 1958 paper, the idea originated with Schuck. 
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Figure 3.30 Calculation of the far-held response due to CW excitation of a ring of 

radius a, whose width is A a and which lies on the plane z = 0. (a) Cylindrical 

geometry used for deriving the response, (b) Bessel function |/0(C)I lateral pressure 

response in the Fraunhofer zone. Shown for comparison is the 2\JX{Q\IC, lateral 

response of a circular disk, as given by (3.32), of the same radius. 

Fresnel and Fraunhofer Zone Response 

One method of obtaining an approximate expression for the harmonic 

response in the Fraunhofer zone is by taking the Fourier transform of the aper¬ 

ture function and making use of (3.31). Now the aperture function of an infin¬ 

itesimally narrow ring of radius a is given by the unit-strength impulse of Q(r,) 

= 5([r1/a] - a), and consequently the pressure response can be found by taking 

the zero-order Hankel transform. From the sifting property of the 5-function 

and the definition of this transform (Appendix B), at a spatial frequency of kr 

= kr/z: Ho{8([r,/fl] - 1)} = a%(kar/z). By substituting this transform into (3.31) 

and recalling that #[Q(r,)] = 27tHo[^(c)], the pressure phasor is given by 
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(3.60) 

from which the lateral beam width can be evaluated as FWHM = 0.48/Vz/a. 

To compare the lateral beam profiles of the ring with that of a disk of the 

same diameter, the magnitudes of both /0(Q and 2/1(Q/C, are plotted in Fig. 

3.30b. It can be seen that FWHM is about 25% smaller than the disk; however, 

the first side lobe amplitude is around 3.5 times larger and is only about 8dB 

below the central lobe. In medical imaging applications, the use of a transducer 

that has such large side lobes for both transmission and reception would be 

unacceptable, since scattering of ultrasound by the annular region surround¬ 

ing a target could easily create a returned signal that would mask the image 
information. 

The directivity function can be obtained by following the same procedure 

that led to (3.33) for the disk transducer, though in this case only a single inte¬ 

gration is needed. If the ring has an incremental width of A a, then it can be 
shown (see Problem P4) that within the Fresnel zone 

where the directivity function is given by Z)(0) = 

3.6.2 Annulus 

Plane 

The response of a plane annulus of outer radius a0 and inner radius a, can be 

obtained by using the superposition principle illustrated in Fig. 3.31 and one 

of the previously described equations for the field profile of a disk. Thus, for 

example, the impulse response of the annulus can be written as h(r:t) = ha(r:t) 

-h,(r:t) where the impulse responses of the two disks can be found from (3.27). 

Similarly, the CW pressure response can be found from p(r,z:to) = pa(r,z:co) - 

Pi(r,z:(o) by making use of (3.22). As an example, Fig. 332 shows the on-axis 

CW pressure magnitude response for a annulus with a0 = 81 and a, = 5X at 

5 MHz radiating into water. The axial distance has been normalized to the 

z-location where the path difference shown in Fig. 3.31 is equal to A/2, which 
is exactly the location of the last maximum. 

Concave 

A concave annulus forms the basic element of a concave phased-array imaging 

transducer such as that described by Foster et al. [53]. Arditi et al. [35] have 

provided a detailed analysis of the annulus and have presented the equations 

needed to calculate the field profile for both pulsed and CW excitation. The 

advantage of using such an element as opposed to a plane annulus is that it 



Field Profile Analysis 1 79 

(a) 

Figure 3.31 (a) Use of the superposition principle for calculating the response of a 

plane annulus. By using the equations for the field profile of a simple disk, the 

profile for an annulus can be obtained by subtraction, (b) The on-axis z-location 

corresponding to a path difference between the inner and outer radii of 7J2 

corresponds to the last maximum. 

Figure 3.32 Normalized axial pressure magnitude CW response of an annulus with 

a0 = 8A, and a, = 5X at 5MHz radiating into water. Solid line shows the annulus; the 

dashed and dotted curves correspond to disks with radii equal to the outer and inner 

radii of the annulus, respectively. The logarithmic horizontal axis has been 

normalized to the z-location where the path length difference between the inner and 

outer radii is equal to X/2. 

has a natural (geometric) focal point, and as a result the number of elements 

needed to achieve a given/-number can be significantly reduced and a smaller 

time delay is needed to move the focal point over the range of practical inter¬ 

est. Analysis of the field pattern of a concave annulus follows the same 
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approach as used for a plane annulus. Using superposition, the impulse 

response can be found by using (3.41), while the CW response can be found 
from (3.43). 

3.6.3 Conical (Axicon) Geometry 

An important property of the conical transducer geometry shown in Fig. 3.33a 

is a greatly extended depth of field for the main lobe: approximately the same 

as the geometric focal range of z[ < z < z'2, shown in Fig. 3.33b. If the cone angle 

is denoted by 0C and, TX and T)2 are the inner and outer diameters, it can be 

readily shown that the geometric depth of field is given by 

ZF - (tan 0C + cot 0C). 

The use of a conical ultrasound transducer was first investigated by Burck- 

hardt et al. [54], based on the earlier proposal by McLeod [55] for a new optical 

element that he called an axicon. Subsequently, Patterson and Foster [56] 

provided a detailed analysis of the field properties for both pulsed and CW 

excitation and showed that the predicted patterns were very close to those 

experimentally measured. Their derivation of expressions for the impulse 

response assumed was based on the assumption that the integrand in the 

Rayleigh integral was multiplied by an obliquity factor11 of cos(n, R). In fact, 

the inclusion of this factor corresponds to the assumption that the cone 

behaves like a pressure-release baffle; in other words, they made use of (2.31). 

Patterson [57] subsequently realized that this factor was not consistent with 

the rigid baffle assumption and derived the correct equations for the impulse 

response based on the Rayleigh integral. Moreover, he stated that this factor 
does not materially affect the results given in [56], 

Harmonic Response 

Starting from the Rayleigh integral and assuming that the observation point 

(r,z) radial coordinate r is small compared to the distance from (0,z) to any 

point on the surface of the cone, Patterson and Foster [56] obtained the 

following approximate expression for the pressure phasor due to a uniform 
sinusoidal excitation with a normal velocity amplitude of v„: 

(3.61) 
^2cosec0c 

p(r,z:co) ~ 27tcop0v„ cos0c J 
£lcosec0c 

l 
— e 
d 

-jlnd/X i 
J0 

' 2nrdcosQc' 

v Xd j 
dl, 

where d = V^2 + z2-2z£sin0t. is the distance from a point on the cone surface 

to the axis at (0,z), and it has been assumed that r « d. For on-axis observa¬ 

tion points, /0(0) = 1 and the above expression is exact. For the cone dimen- 

11. See Section 7.2.6 for a discussion of this factor. 
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Figure 3.33 Conical transducer (axicon) with aperture c2)2 and angle 0,. (a) General 

view of structure: the heavy line encloses the transducer element, (b) Cross-sectional 

view in the plane x = 0 for calculating the on-axis impulse response. The portion of a 

circle (dashed curve) centered at (0,0,z) shows that the two annular rings of radii a, 

and a2 on the surface of the cone contribute to the impulse response at the on-axis 

observation point z at the time t = R/c0, provided z\< z < z'2. 

sions used by Patterson and Foster in their experimental measurements, the 

normalized on-axis pressure magnitude variation is shown in Fig. 3.34. 

When approximations are made to the integral in (3.61), the pressure close 

to the axis can be expressed as p(r,z'.co)^ /(0C ,X)Vz/o{27trsin0c./^}, showing 
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Figure 3.34 Calculated on-axis CW normalized pressure magnitude versus axial 

distance for a 45-degree cone at 4.0 MHz with z\ = 25, and z2 = 50 mm. The pressure 

is normalized to that at z = 75 mm. The curved line shows that the variation within 

the geometric focal zone is proportional to zm. 

that the lateral response variation is identical to that of a ring (see (3.60)) 

whose radius is a is equal to zsin0t.. In addition, it will be noted that the axial 

variation in the geometric focal zone is proportional to z1/2, which is plotted 

in Fig. 3.34. By apodizing the cone, Dietz [58] has shown that this variation can 

be approximately compensated for, yielding a nearly constant on-axis response 

over the focal zone. But perhaps of greater significance is that the lateral beam 

shape is constant over most of the geometric focal zone and the FWHM is 
given by 

FWHM = 0.483./sin 0C. 

For example, if we consider a 45-degree cone at 4 MHz, then FWHM = 
0.25 mm and the side lobes are >8dB below the maximum. 

3.7 Line, Strip, Triangular, and Rectangular Elements 

Our previous discussions of the impulse response have focused on specific 

geometric shapes. A general method for calculating the impulse response of 

arbitrary-shaped transducers has been developed by Jensen [16]. It is based 

on dividing the surface into suitable triangular elements and then calculating 

the overall impulse response from the impulse response of each. The advan¬ 

tage of this method is that both complex and simple shapes can be readily con¬ 

structed from a relatively small number of such elements, in much the same 

manner as that used in many finite-element computational programs; as a 

result, economies in computational time can be achieved. To obtain an expres¬ 

sion for the impulse response of a triangular element. Jensen made use of the 
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(b) 

Figure 3.35 Division of a rectangular transducer into (a) four triangular elements, 

(b) line elements. 

acoustic reciprocity theorem.12 If the field point is considered to act as a point 

source of a spherical wave, this wave will travel to the transducer element, 

where the wavefront will form a sequence of arcs. Each point on a given arc 

corresponds to the same transit time from the point source. From the relative 

lengths of each arc formed on the transducer surface, Jensen showed how the 

impulse response could be determined. 
From a practical perspective, rectangular transducer shapes are particularly 

important since medical ultrasound arrays generally use rectangular elements 

as the basic building blocks. As illustrated in Fig. 3.35a, a rectangular trans¬ 

ducer can be synthesized from four triangular elements, and consequently a 

knowledge of the impulse response of the element enables the overall 

response to be determined. Alternatively (see Fig. 3.35b), a rectangular trans¬ 

ducer can be synthesized from a number of lines [59]. Knowledge of the 

impulse response of a line element provides an alternative means for calcu¬ 

lating the impulse response of transducers, especially those with rectangular 

and cylindrical geometry. 

3.7.1 Line Element 

Consider a source of incremental width Ay that is coincident with the x-axis 

and that extends from xmm to xmax. For the observation point (x0,y0,z) shown 

in Fig. 3.36, the velocity potential impulse response as given by (2.35) can be 

written as 

( R\ 
'cn(x)'5r- 

h(xuyuz:t) = \\-c° dSa, 

12. In his classical treatise. Lord Rayleigh [3, Vol. 2, p. 145] provided the following statement 
of the principle of reciprocity attributed to Helmholtz: “If in a space filled with air which is partly 
bounded by finitely extended fixed bodies and is partially unbounded, sound waves be excited at 
any point A, the resulting velocity-potential at a second point B is the same both in magnitude 

and phase, as it would have been at A, had B been the source of sound.” 
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Figure 3.36 Calculating the impulse response at {x0,yQ,z) of a line element parallel to 
the x-axis at a height yx. 

where £,0(x) is the apodizing function, which we shall take to be unity. But 
dS = dxAy, so that the velocity potential 

Ayb 
t ^l(xo-x)2 +{y0-y1)2 + zz 

By letting x = 

transformed to 

h(x0,y0,z:t)= f ,---— _ 
min 2 n^Xo-x)2 + (y0-yi)2 + z2 

 ^{x0-xy +(y0-yx)2 + z2 

-dx 

h(x0,y0,z:t)= f 
max 

^min 

the impulse response integral can be 

c0Ay5(/-x) 
-c/x, 

2n^c;x2-(y0-yxy -z2 

where c0xmax — (xmax — xa) + (y0 — y\) + z~, 

(■o'tmin — V{Xmin — Xa ) + (yo — yx ) + Z" 

If the 8-function product is evaluated, the response due to an impulse of veloc¬ 
ity on the line is given by 

c0 Ay 
h{x0,y0,Z:t) =-j= _ 

(3.62) 2^l(cy-(y„-yi) 

= 0 elsewhere. 

for t g (xmax, xmin ), 

3.7.2 Infinite Strip 

If we consider an infinitely long strip of width 2Wy, located symmetrically on 

the plane z- 0, the impulse response can be found by integrating (3.62): 
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Figure 3.37 Impulse response at z = 1.0cm for a 2.0cm wide (W4 = 1.0cm), infinitely 

long baffled strip, as calculated from (3.63). The response is shown for two 

observation points: one in the geometric shadow, the other outside. 

Wi/2 

h(y0,z:t)= f —--—---dy, for c0t>c0tl 
-WH2 2n(c2t2-(y0-y) - z2 

where cQtx - V(|yc | - Wy2)~ + z2. This can be evaluated yielding, for the entire 

range of variables, 

(3.63) h(y0,z\t) = ^%{t-zlc0)?iC{tx-t)%(WxA-\y0\) + %(t-h)K(yo,z-t), (a) 

where 

C0 ( (w»+y0)] 
— sin i 

f(y0-Ww)X 

2n Wc2t2 -z2 ) IVc2t2-z2 J. 
The graph of Fig. 3.37 shows the impulse response for two conditions: one 

in which the observation point lies in the strip shadow and the second where 

it lies outside. These conditions and results are the same as those presented by 

Tupholme [11]. For y0 = VFy/2, it will be noted that there are three times at 

which there is a change in the shape: the first when the pulse reaches the strip 

surface, the second when the circle reaches the edge of the strip on the same 

side as the observation point, and the third when the partial circle reaches the 

opposite edge. 

3.7.3 Rectangular Transducer 

In a classic paper published in 1952, Stenzel [60] provided a detailed analysis 

of the on- and off-axis harmonic response of a rectangular transducer. By using 

the approach developed by Tupholme [11] and Stepanishen [12], Lockwood 

and Willette [13] first described a method for calculating the exact impulse 

response of a rectangular element. Their expressions involved evaluating the 
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integrals of cos-1 functions, and as a result the computation burden was fairly 

high for ultrasound arrays containing many such elements. A subsequent 

analysis by San Emeterio and Ullate [61] resulted in analytical expressions, as 

did the method developed by Jensen [16] using triangular elements. To further 

reduce the computational burden for 2-D arrays of rectangular elements, 

methods that approximate the exact impulse function by trapezoidal functions 

have been described by Turnbull and Foster [62]. All of these techniques are 
based on evaluation in the time domain. 

An alternative approach for obtaining the field response for an arbitrary 

surface velocity waveform is through a frequency domain approach. This 

requires that the sinusoidal response of the transducer, i.e., the transfer func¬ 

tion, be determined. Since the frequency spectrum of the velocity waveform 

can be obtained by taking its Fourier transform, the spectrum at the observa¬ 

tion point can be obtained. If this is multiplied by the transfer function, then, 

by an inverse Fourier transform, the temporal signal at the observation point 

can be recovered. To determine the transfer function in a form that can be 

readily evaluated, it is usually assumed that the observation point is sufficiently 

distant so that either the Fresnel or Fraunhofer approximations can be used. 

It was noted earlier (see Fig. 3.17) that the Fresnel approximation gives good 

agreement for a piston transducer even when the observation point is quite 

close to the surface. Consequently, we shall start with this approximation in 
determining the response of a rectangular transducer. 

The Fraunhofer and Fresnel approximation for a rectangular transducer of 
width W and height H can be obtained from (3.36) as 

(3.64) 

p{x0,y0,z:co) = 
jtoPoVp 

2n R 

-jk 

e 
Z+ 

2 2 
+yo 

2 z 

rect 
6 Vi 3 /—(*oxi+yoW) 
— e z t 
H) 

dx{dyu 

where the product of the two rect(.) functions defines the rectangular aper¬ 
ture over the entire plane z = 0. 

Fraunhofer Approximation 

In the Fraunhofer approximation, it is assumed that the exponential term in 

(x\ + yj) can be ignored, and consequently the integral in (3.64) is simply the 

2-D Fourier transform of the aperture function evaluated at the spatial fre¬ 

quencies of kx = —kxjz and ky = —kyjz. Consequently, the pressure phasor can 
be expressed as 
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Now 3{rect(*,/W0} = W sin(Wy2> = W = Wsinc(W^/lz) and 
1 v ;; WkJ 2 nWxJkz 

a similar expression for ^>{rect(y1///)}, where sinc(<;) is defined by:11 sinc(q) = 

sin(Ti:q)/7tQ. As a result, (3.65) reduces to 

(3.66) p(x0,y0,z: co) 
;top0v0 

2kR 

-jk 

JW//sinc 
(Wxa5 

kz 
sine 

Hy0 

kz 

Now it can be seen that the dependence of the pressure field profile on the 

x-y location of the observation point is determined by the sinc(.) terms only, 

and consequently the directivity function (see (3.33)) can be expressed in 

terms of the lateral and elevation angles shown in Fig. 3.38a: 

(3.67) 
, , . f WsinG) . 

£>(0,(p) = sincl—-—Isinc 
( //sin 0 i 

where sin0 ~ xJR, sincp = yJR and it has been assumed that z ~ R- Thus, the 

directivity depends only on the angles subtended by the observation point to 

the source. 
It can be seen from Fig. 3.38b that the angle subtended at the transducer 

corresponding to the FWHM is given by Qfwhm ~ 2sin~'(0.67VW), and there¬ 

fore a measure of the lateral resolution is 

(3.68) FWHM = 2 R sin"1 (0.6 k/W). 

It is useful to compare the FWHM of two transducers, A and B, at the same 

far-field radial distance R. If transducer A has a width WA = 5k and B has a 

width of WB = 1.0A,, then FWHMA = 0.187FW//MB, i.e., the wider transducer 

has the smallest beam width. However, since R must be in the far field of both 

transducers, the minimum distance will be set by the wider transducer (A), 

and this is 25 times greater {(WB/WA)2} than the minimum distance for trans¬ 

ducer B. 

Fresnel Approximation 

An expression for the sinusoidal response in the Fresnel region can be 

obtained from (3.64) by first noting that it can be written as [29]: 

(3.69) p(x0,y0,z:(o)« 
jiOPoVo 

2 kR 

-jk z+ 
2 z J3 rect 

w 
recti 

H 
(a) 

where the transform is evaluated at the angular spatial frequencies ol 

kx = -kxjz and ky = -kyjz. Now with the help of a symbolic math 

program (MAPLE ) it can be readily shown that 

13. It should be noted that some authors use the definition sinc(q) = sin(q)lq. 
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Figure 3.38 Fraunhofer approximation for a rectangular transducer, (a) Geometry 

defining the spherical coordinate system (R.O.tp). (b) Response in the lateral 

direction for ye = 0 as given by the sinc(.) function. 

(3.69) p{xa, y0, z: to)« ~^’R X e~ikz {erf [a(W - 2xa)] - erf [-c( W + 2x0)]} 

x {erf[o(// - 2y0)] - erf [-o(tf + 2y0)]}, 
(b) 

where ° _ V and erf(.) is the error function defined by:14 

Although this expression for the pressure is in integral form, the error func¬ 

tion is very simple to numerically evaluate, and as a result this form is signif¬ 

icantly more computationally efficient than direct numerical evaluation of 

(3.64). To illustrate the accuracy of the Fresnel expression in comparison to 

the exact (Rayleigh integral) and Fraunhofer approximation, the on-axis 

harmonic response is shown in Fig. 3.39 for a square transducer of 2 x 2 cm 

uniformly excited with a velocity of 1.0 cm/s. It is evident that the Fresnel 

14. For application in the above equation, it should be noted that Z is complex, leading to a 
complex value for erf(Z). 
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Figure 3.39 Accuracy of the Fresnel approximation in comparison to the Fraunhofer 

and exact (Rayleigh integral) methods for calculating the on-axis response of a 

square transducer excited by a 5.0MHz sinusoid that generates a surface velocity of 

l.Ocm/s. The Fresnel approximation was calculated using (3.69) and the Fraunhofer 

response from (3.66). 

approximation gives accurate results well into the near-held region, while the 

Fraunhofer approximation is accurate only beyond the Rayleigh distance 

{k{WI2)2IX * 105 cm), similar to the disk transducer results shown in Fig. 3.17. 

3.8 Transducer Apodization 

3.8.1 Gaussian Apodization 

It has long been known that the side lobes that occur with uniform excitation 

can be greatly reduced by using certain forms of apodization. The primary 

difficulty with implementing such schemes has been the development of a 

practical means of achieving such functions without having to use multiple ele¬ 

ments. Von Haselberg and Krautkramer [63] appear to have been the first to 

theoretically analyze the use of a Gaussian excitation function and to have 

described an approximate means of achieving it in practice. Their analysis was 

restricted to far-held or on-axis points. Greenspan [67], based on an extension 

of King’s theory [68], developed a more general harmonic analysis of a plane 

disk radiator having an axisymmetric apodization function. Filipczynski and 

Etienne [70] demonstrated the use of Gaussian apodization for reducing the 

side lobes on a concave focusing transducer. They developed approximate 

equations describing the held characteristics and, with the help of the fabri¬ 

cation technique described by von Haselberg and Krautkramer [63], obtained 

good qualitative agreement with experimental measurements. 
In addition to analyzing the harmonic excitation of a rigid piston with 

Gaussian apodization, Greenspan [67] also analyzed the transient case by 

taking the Laplace transform of the harmonic solution, and thereby obtained 
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an expression for the velocity potential impulse response. As noted in section 

3.3, the impulse response method was extended by Harris [21] and Tjptta and 

Tjptta [22] to allow for an arbitrary apodization function. For the particular 

case of a Gaussian apodized axisymmetric transducer with an infinite radius, 

the velocity impulse response is that given in Problem Pld. In the following, 

the harmonic solution for a disk of finite size will be considered. 

The starting point of King’s harmonic analysis15 was the cylindrical form of 

the homogeneous Helmholtz free-space wave equation as expressed by (1.63). 

He pointed out that a solution for the velocity potential could be expressed 
as16 

(3.70) 0(r,z:co) = J“(a2-k2)_1/2e-zVW/0(m)<7(o)arfa, 

where the function q(a) can be established from the boundary conditions spec¬ 

ified for the plane z = 0. If a disk of radius a exists on the plane z = 0 and is 

excited such that the normal component of the velocity is given by the circu¬ 

larly symmetric distribution ^o(r1)v0eia‘, then q(a) can be found by noting that 

. By differentiating (3.70) with respect to z and putting 

z = 0 we find that17 

F^o0i) = - 
0<t> 

dz 

v<Ao(n) = JQ q{a)J0(na)adc = U0l{q(c>)}, 

i.e., it is the inverse Hankel transform of <7(0). In view of the self-reciprocal 

properties of this transform [8], the function q(o) can be expressed as the 
Hankel transform18 of vj;0(ri): 

(3-71) ^(a) = v°J0 Ko{n)J0(n(5)rxdrx. 

15. King’s 1934 classical paper made use of the fact that integral solutions in terms of Bessel 

functions for the cylindrical form of the wave equation were well established in electromagnetic 

theory. In this regard he gave as a reference a 1915 book by Bateman [71]. Nonetheless, it is clear 

that King was the first to apply this approach to acoustics, in particular for predicting the radia¬ 

tion from an apodized disk. Using this as a starting point he obtained some of the classical equa¬ 

tions for the field of a uniformly excited disk, including the far-field directivity function. 

16. This integral is often referred to as King’s integral: a helpful derivation is given bv 
Harris [9], 6 y 

17. It should be noted that Ho'(5(a)/a) = 1. Consequently, if q(o) = v„5(a)/a, then = 1 

which corresponds to a constant velocity over the plane z = 0. If this value of q(o) is substituted 

into (3.70), the velocity potential is given by <D(z:cd) = -jv0e~ikz/k, which describes a plane wave 
propagating in the +z-direction. 

18. If v0t,0(ri) = K8(rx)/(rx), then <7(0) = K, where K is a dimensioned constant. If q(a) = K 
is substituted into (3.70), the resulting inverse Hankel transform is of a standard form (see 

Appendix B). Consequently, 0(7? :co) oc e-'kRLR, corresponds to spherical wave emanating from a 
point source at R = 0. 
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Thus, the velocity potential14 can be determined at any field point (r,z) by sub¬ 

stituting (3.71) into (3.70), yielding20 

(3.72) 0(r, z:co) = [ 

Let us assume that the apodization is a Gaussian function ^„(ri) = 

circ(ri/a)e~'f/(Ea)2 where e describes the degree of truncation (e = °° for uniform 

excitation) and the circ function sets b,a(ri) to zero outside the transducer area. 

With this function, the integral expression for q(c) is not in a standard form. 

However, it should be noted that if £ < 0.5, then ZJja) ® 0, and consequently 

^0(/-j) ~ e_rr/(ea)“. With this approximation (3.71) can be evaluated [72, eqn. 

11.4.29], yielding q(c) = (v0z2a2/2)e~(£aal2)2. Consequently, by substituting this 

into (3.70) the pressure phasor (p - jcop„<t>) can be expressed in terms of a 

single integral: 

(3.73) p(r,z: co) = 
;(0povo(e«)“ 

r<°2-*2) 
2 \ 72 a2 -k2 -(eaapy J0(ro)odo, 

for £ < 0.5. 
For on-axis observation points (r = 0) and any value of £, it can be easily 

shown that the following much simpler expression can be obtained directly 

from the Rayleigh integral (see Problem P2 in Chapter 2): 

(3.74) 
r'J 

p(0,z:<o) = /a)p0v0J -jkR, - R1 -z2 (ea) dR, 

which can be readily evaluated. From the examples shown in Fig. 3.40 it is 

evident that if a nearly complete Gaussian apodization function is present on 

the disk (e < 0.5), the near-field fluctuations are essentially eliminated. The 

removal of side lobes can be understood by noting that for a Gaussian 

apodized transducer, the velocity amplitude undergoes a smooth reduction to 

near zero at the edge of the disk, whereas for a uniformly excited disk there 

is an abrupt transition at the edge. Because of the smooth reduction the effects 

of the edge-wave contribution are reduced. However, it should be pointed out 

that because the transmitted power for the Gaussian apodized transducer will 

be less (for the same v0), the maximum pressure is reduced. 
To calculate the off-axis profile, the double integral in (3.72) must be eval¬ 

uated. As noted earlier, for Gaussian apodization such that £ < 0.5, a good 

approximation for the inner integral is available; however, the presence of a 

pole at k = o complicates the evaluation. Fortunately, the contributions of this 

19. That the Rayleigh integral expression for an apodized disk can be reduced to King’s form 

of solution was first shown by Bouwkamp [69]; the reverse of this statement was proven by 

Greenspan [67]. 
20. For a uniformly apodized disk of radius a, i.e., q0(o) = circ(rja), it can be readily shown 

that this equation simplifies to an equation for the velocity potential identical to (3.13), which was 

obtained by the angular spectrum method. 
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0.1 10 
Normalized Axial Distance, Z„= =/(a2/X) 

Figure 3.40 The normalized pressure magnitude versus normalized axial distance for 

various degrees of Gaussian apodization on a disk of radius a = 10A.. The value e = oo 

corresponds to no apodization and e = 0.5 to a nearly complete Gaussian on the 

disk. Exact pressure magnitudes were calculated from (3.74) and normalized by 
2p0cva. 

pole and beyond are negligible, and it is sufficient to replace the upper limit 

by 0.99k. The graph of Fig. 3.41 clearly shows the greatly reduced side lobes 

for the Gaussian apodized transducer and the relatively constant pressure dis¬ 

tribution profile up to Zn = 0.3. It is also clear that the beam diverges in the 

far-field region. A uniformly excited disk of the same radius and the same peak 

excitation velocity gives twice the peak pressure, but side lobes are clearly 

evident and, as indicated by Fig. 3.40, the profile shows large fluctuations in 
the near-field region. 

A number of methods have been proposed for achieving a Gaussian 

apodization. In one scheme, Du and Breazeale [64] used a quartz crystal with 

a back electrode that was much smaller than the front. The resulting electric 

field distribution approximated a Gaussian function. On the other hand, 

Hsu et al. [65] used non-uniform poling of a lead zirconate titanate (PZT) 

piezoelectric rod. Both groups reported good agreement with theoretical 
predictions. 

In the Fraunhofer zone, it can be shown that for a circularly symmetric 

apodization £0(ri), the directivity function can be expressed as [2, p. 600; 66, 
pp. 475-476; also see the derivation leading to (3.33)] 

D(e) (#i )/0 (krx sin Qfrdn, (3.75) 

which, as noted earlier, is the zero-order Hankel transform of the apodization 

function. By letting w = kr\, this can be written in the more convenient form 

(3.76) 

If the transducer is uniformly excited (^(n) = 1), then, in view of the Bessel 

function identity: fQxJ0(x)dx = y/i(y), it can be readily shown that (3.76) 
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Figure 3.41 The effects of Gaussian apodization on the near- and far-held radial 
pressure profile for a disk of radius a = 107.. The response is shown for four different 
normalized axial distances, Z„ = zl(a2fk), as calculated from (3.73) using a 
normalizing pressure of pQcv(, and e = 0.5. In addition, the radial profile is shown for 
a uniformly excited disk with the pressure normalized to 2p0cv0. 

reduces to the previously derived expression for the directivity function, 
namely (3.33b). For the Gaussian apodization ^(/y) = e"r'/(ea)2, considered pre¬ 
viously, the directivity function is 

(3.77) D(0)»--—£%-(»'/(*“)) J0(wsinQ)wdw, 
(ka)D0 0 

where division by D0 = e2(l - <T1/e2) ensures that D(0) = 1. This is plotted in 
Fig. 3.42 for three different values of 8. In (a) the degree of truncation is quite 
small, and as a result most of the Gaussian function is close to the center of 
the disk, and thus the beam divergence as measured by the half-angle 0R is 
large. For (c) the Gaussian is highly truncated and consequently the directiv¬ 
ity function is almost identical to the uniform apodization case shown in Fig. 

3.20b. 

Depth of Field and Lateral Resolution: Unfocused 

The depth of field corresponds roughly to the region over which the lateral 
beam width remains substantially constant. From Fig. 3.40 it can be seen that 
this extends from the transducer surface to the location where the pressure 
magnitude starts to diminish substantially, e.g., the Rayleigh distance. Since the 
effective aperture radius is approximately ea, the depth of field is roughly given 

by [39] 

ZF = n(ea)2/X. 

The lateral resolution is also governed by the effective aperture radius and is 
[39] FWHM ~ 1.67ea. For example, if these results are applied to the trans¬ 
ducer considered in Figs. 3.40 and 3.41 (a = 10X, 8 = 0.5,/= 5.0MHz), we find 

that ZF - 24 mm and FWHM = 2.5 mm. 
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0 0 

Figure 3.42 Far-field directivity function for Gaussian apodization for disks of the 

same radius but different degrees of truncation, (a) e = 0.5, (b) e = 1.0, (c) e = 10. The 

truncation in (c) is very large, so that it corresponds approximately to a uniform 
distribution. 

Depth of Field and Lateral Resolution: Focused 

A focused field pattern can be achieved with a piston transducer through the 

use of a radial dependent phase shift or delay. For example, in the case of CW 
excitation, the complex apodization function 

= circ 
frA -jk^F2 +rf-F) 

\ a J 

where F is the focal length and a is the piston radius, corresponds to a spher¬ 

ical phase shifter that causes the waves originating from each incremental ring 

on the piston to arrive with the same phase at F. For such a scheme, the lateral 

beam profile at the focal point can be shown to be given approximately by 

" J^kr^/2 F)~\ 67. 
~kr®fa F ’ where ^ = 2a is the aPerture diameter. Since this is the same 

as for a concave transducer, the FWHM is given by (3.56), i.e., 

FWHM = 1.4A, F°Cal Length « i.4M7/<2) 
Aperture 

If Gaussian apodization is also included with the focusing phase shift, then the 
apodization equation is modulated as follows: 

^(h): circ 
a J 

'■(/(“J2 FL +rr-F\ 
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where e is the factor governing the truncation of the Gaussian function on the 

disk. If e2 « 1 corresponding to a small degree of truncation, and F2 » (en)2, 

then Lu and Greenleaf [87] have shown that the lateral resolution on the focal 

plane is given by 
(krcD/2F)' 

krFdil F 
, where cDe = 2za is the effective aperture 

diameter. In addition, the depth of field is given approximately by [39] 

ZF (3 dB)« 2 
XF2 

1 4- 9 
f XF 

7t(ea)“ 

1 Z_ 

y K(ea)~, 

for (X/nea)2 « (ea)2/F2. 

3.9 Diffractionless and Limited Diffraction Beams 

The question as to whether it is possible to generate beams with a small diver¬ 

gence angle, much like a laser beam, is of considerable practical interest. As 

will be seen, if the transducer is of infinite extent and is appropriately excited 

throughout its surface area, the resulting beam should show no diffractive 

spreading. When the same excitation is applied to a transducer of finite extent, 

diffraction will be present and the resulting beam is generally described as a 

limited diffraction beam. Thus, the search for solutions to the homogeneous 

wave equation that could enable beams to be achieved that have a very large 

depth of field has been actively pursued. 
In 1987 Durnin [76] proposed solutions to the free-space wave equation 

that predicted diffractionless optical wave propagation, and he and his col¬ 

leagues [77] described experiments to verify the beam properties. This work 

sparked a great deal of interest. In essence, the starting point was the inviscid 

form of the wave equation, i.e., 

1 a2 

c2 dt2 
d(r:t) = 0 

In Cartesian coordinates they proposed a separable solution (one that had 

been obtained some 46 years earlier by Stratton [78, p. 365]), which can be 

written as 

(3.78) <[> = 2n^ei{a>ot) [K 

where = k/a, aB = kVl-a~2, a£ + % = k2 = (to„/cG)2, tp is the polar angle, and 

A(cp) is an arbitrary complex function. Stratton pointed out that the integrand 

represents a plane wave with wave-vector components (aBcostp, aBsin(p, (3B), 

traveling in a direction that makes an angle 0 with respect to the z-axis. Thus, 

the integral represents plane waves whose directions form a cone about the 

z-axis and that are weighted by A(cp). In symmetrical cylindrical coordinates 
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such that * = rcos0,y = rsinO, and since A(cp) is independent of <p, (3.78) trans¬ 
forms to 

0 = 2K<\>oei((0o,-M f Vyas''cos(9-<p)r/(p, 
JO 

which can be evaluated with the help of Appendix C to yield 

tyB(r,z:t) = <\>uel(u>o‘^Bz)J0(aBr). (3.79) 

From this form, which was derived by Durnin [76], it can be seen that the 

transverse profile retains the same shape in the radial direction for all z > 0 and 

aB determines the central beam width. Moreover, it is necessary that 0 < aB < 

k to avoid having an evanescent beam. Durnin noted that if aB = 0, then (3.79) 

corresponds to a plane wave and that as aB —> k, the central region diameter 

approaches 3A./4. The above-noted papers created much interest and were 

responsible for initiating research projects in several areas, including ultrasound. 

The Bessel beam is one of many solutions to the homogeneous wave equa¬ 

tion that have been investigated. It is a highly localized solution in space, 

though not in time. More generally, solutions that are highly localized both in 

space and time are often referred to as localized wave solutions. Much earlier 

work, which went unnoticed for several years, was the fundamental paper of 

1983 by Brittingham [79], It is generally considered to be the first to describe 

localized wave nondiffracting solutions and was followed shortly thereafter by 
the work of Ziolkowski [80], 

The first ultrasonic proposals and experimental investigations appear to be 

those reported in the Russian scientific literature in 1988 by Karpelson [81,82], 

In these papers, which were accepted before Durnin’s publications appeared, 

he specified the requirement for a non-divergent beam in the far field and 

then, though a synthesis approach based on a far-field approximation to the 

Rayleigh integral, specifically (3.75), he derived the Bessel function apodiza- 

tion equation. Subsequent ultrasound experimental work has been reported 

by FIsu et al. [83] and Campbell and Soloway [84]: both groups described the 

fabrication of a Bessel beam transducer and reported good agreement of the 

experimental results with calculations. Theoretical performance comparisons 

of the approximate Bessel beam transducer with an axicon have been 
described by Holm [85], 

In what follows, a more general approach is used to construct a variety of 

diffractionless solutions to (3.78), and some of the solutions previously noted 

will be obtained. The joint 2-D spatial Fourier transform and Fourier trans¬ 

form with respect to time in a symmetric cylindrical coordinate system (r,z) 

can be defined. Denoting the spatial-temporal Fourier transform operator by 
the transform of the velocity potential is 

o 

(3.80) 
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where r2 = x2 + y2, the spatial frequencies [L '] are denoted by kz and kn and 

k2r = k\ + k). In addition, the inverse spatio-temporal Fourier transform is: 

<j)(r, z:r) = 3^:f{0(fcr,fcz:o))} 

(3-81) = \dkr k, J0(k,r) J dkz e~’k*z j dco 0(fcr, kz:a)eim. 
(2tc) o — 

Now the wave equation in symmetrical cylindrical coordinates can be written 

as 

~ d2 \d_ d^_ 

dr2 r dr dz2 

1 d2 

c2 dt2 
ty(r,z:t) = 0, 

and by taking the spatio-temporal Fourier transform we find that 

(3.82) \k2+k2~ 0(Ay, kz :co) = 0 
c L ^0 J 

Donnelly and Ziolkowski [73,74] have formulated a systematic method of 

obtaining solutions to the above “algebraic” equation through the use of gen¬ 

eralized functions [8, pp. 92-98], and several examples are given in the fol¬ 

lowing subsections, leading to some of the solutions previously mentioned. 

Specifically, suitable functions O(kr,kz: co) need to be determined that will con¬ 

strain the transformation variables so that k2 + kj - to2/c2 in (3.82) will be zero. 

For example, a solution to (3.82) can be written as 

(3.83) 0(/q,/q:co) = a(/q:co)8{co/ca - g(kr)}${kz-f(kr)}, 

where g(kr),f(kr), and c(kr:to) are well-behaved functions. In (3.82), if the O 

term is nonzero, the term in square brackets must be zero, which occurs when 

COlc0 = g(kr) and kz =f(kr). By substituting these into the term in square brack¬ 

ets, it can be seen that g(kr) and f(k,) are related by 

(3.84) kf + f2(kr)-g2(kr) = 0. 

By making appropriate choices for one of these functions as well as for o(kr:co) 

and then taking the inverse spatio-temporal Fourier transform of (3.83), 

(j)(r,z't) can be determined. Donnelly and Ziolkowski used this approach for 

constructing a variety of nondiffracting localized wave solutions. Sushilov et 

al. [86] also used this approach for generating the solutions described in the 

subsequent subsections, together with new X-wave solutions. 

3.9.1 Plane Wave Solution 

One of the simplest solutions to (3.82) occurs when the second 8-function in 

(3.83) is 5(R2 ± co/ca). Because kf + k\ - co2/c2 = 0, it follows that the other 5- 

function is b(k,). If it is also assumed that o(/c,:co) = (2k) tyoo0i((d)/kn where (|)0 

is the velocity potential amplitude, the solution to (3.82) can be written as 
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(3.85) 0(/c,.,kz:co) = ^(C0) 5(kr)3(kz ±co/c0), 
Kr 

By substituting (3.85) into (3.81), the inverse spatio-temporal Fourier trans¬ 
form is given by 

<M*:0 = J dk* J da Jo(krr)§oa<0((i))§(kr)5(kz±(£>/co)e i{kzZ “r), 

which simplifies to the following equation for the weighted sum of plane waves 
traveling in the positive z-direction: 

(3-86) §B(z:t) = §0 j a(0(co)e/ ^ Co Wo. 

If oC0 = 8(co - co0), then (3.86) reduces to 

/ \ ;'co0[r-— ] 
<1)B{z:t) = ty0e 1 CoJ, 

which is a simple plane wave of frequency co0 propagating in the positive z- 
direction. 

3.9.2 Bessel Function Beam 

As a second example we will derive Durnin’s Bessel beam equation by fol¬ 

lowing the assumptions proposed by Li and Bharath [75], Specifically, in (3.83) 

we assume that g(kr)-±akr/-\la2 -1, where a is a constant. By substituting 

this into (3.84), the other function can be found as f(kr) = ±kr/^a2 -1 , and 
therefore the solution to (3.82) is 

(3.87) 0(/q,kz:co) = o(kr:co)8j— ± — I5Ik, ± 
[c0 Va2-1J l Va2-lJ 

As will be shown, by an appropriate choice of the parameter a, this solution 
enables several field profiles to be produced. 

For monochromatic waves of angular frequency (0„, it will be assumed that 

(3.88) <*(kr: co) = e~’krr-,-f— (>05(cd - co0), 
Kr V d~ — 1 

where <|>0 is the velocity potential amplitude, and that \a\ > 1. From (3.88) and 

(3.87) the transform domain solution can be obtained by using (3.81) and 
written as 

$B(r,z:t)~ jdkr j dkz \ ^co Jo(A:rr)<))05{co — co0}5<[A:z — 
0 l Va2-lJ 

x6jio_ 

U0 Va2 -1J 
e~'kzieim 
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Evaluating the integrals results in 

V co / 

By using the notation used earlier,i.e., aB = k'll-a 2 and (3S = kl 

coJc0 and noting that a| + = A;2, (3.89) transforms to (3.79), i.e. 

= kla, where k = 
4 0 21 

(3.79) (j)B(r,z:t) = §0el(m°‘ p^)70(as/'). 

To generate this diffractionless beam on the plane z - 0, the transducer must 

have an infinite radius and the normal component of velocity on that plane 

must be: 

v^(ro:0 = -% =^Bei<o°‘MaBr0). (3.90) 

From (3.89) it can be seen that the speed with which the wave propagates 

is given by c = ac„, which, since a > 1 for waves in the -i-z-direction waves, 

implies a phase speed greater than cQ. Flowever, because a steady-state situa¬ 

tion is being considered, the field at any given location on the z-axis consists 

of all contributions out to infinity from the source plane, and consequently it 

can be argued that it is really a group speed that is being measured. 

Both aB and (3g in (3.79) are proportional to the frequency, and this has 

important implications when pulse excitation is considered. The frequency 

dependence of aB makes the beam width frequency-dependent. To make it 

independent over a given range of frequencies such as those associated with 

a pulse, (1 - a“2)1/2 to-1. However, because the phase speed is given by c = 

ac0, the frequency dependence of a causes dispersion, resulting in distortion 

as the pulse travels down the z-axis. Campbell and Soloway [84] pointed out 

that under these conditions the group speed will be less than cQ. 

The beam lateral characteristics at any z-location are shown in Fig. 3.43a 

for a 2.5 MHz transducer of infinite radius apodized by t,0(ri) = (Wo^bA"!), as 

given by (3.90). To show how the frequency affects the apodization, the 

required apodization for 2.0MHz is also shown. From this it is clear that there 

will be some deterioration of the beam characteristics under pulsed conditions. 

In practice, the transducer diameter is limited and the influence of truncating 

the Bessel function must be considered. For example, if we consider a trans¬ 

ducer of radius a = 25 mm, and assume that aB = 1224 nr1, then the truncated 

Bessel function will contain the 10 annular regions shown in Fig. 3.43c. The 

exact on-axis pressure response for this function was calculated from (see 

Problem P2 in Chapter 2) 

p(0,z:co) = ;topv0 J' +" J0(ajR2 -z2 )e ikRdR, 

21. Lu and Greenleaf [89] have given a more general form as = ....C(otsr), 
where n = 0,1,2,... The axisymmetric form, given in (3.79), corresponds to n = 0. 
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Figure 3.43 (a) Lateral beam profile for Bessel apodization (solid line) for 2.5 MHz 

excitation and aB= 1224 mA Dashed curve is for 2.0MHz. (b) On-axis normalized 

pressure response for a 50 mm diameter disk excited at 2.5 MHz with 1224 nr1 

using the truncated apodization function given in (c). A practical approximation to 
the truncated function is shown. 

and this is illustrated in Fig. 3.43b. It is apparent that the beam retains its orig¬ 

inal narrow divergence up to about 200 mm (i.e., the depth of field is about 

200mm). As reported by Lu and Greenleaf [87,88] in their experiments and 

simulations with a 10-element 50-mm-diameter annular array used under both 

CW and pulsed conditions, it is necessary to use a constant excitation ampli- 
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tude in each of the 10 zones (see Fig. 3.43c). The depth of field and lateral 

beam width are given by [87] ZF ~asj(k/aB) -1, and FWHM = 3/as. For 

example, for the 50 mmdiameter disk and apodization considered in Fig. 3.43, 

ZF = 212 mm and FWHM = 2.5 mm. 

3.9.3 Superluminal Pulse 

Up to this point we have considered only monochromatic localized waves. Of 

great importance in ultrasound is the use of pulses to generate minimally dif¬ 

fracting beams. As will be seen, the solutions are nonseparable and the result¬ 

ing waves are localized both in time and space. In this and the next subsection, 

two types of waves will be considered [74,90]. 

If we let y = 1/a, where 0 < y < 1, and assume that o(kna>) 

c(kr) (2rc)V 
1 — y2 

e~z0ykr/F-y2 

where za > 0 is arbitrary, then (3.87) can be written as 

(3.91) <P(krJcz: to) = 
(2k)3 y2 

1-Y2 

ykr ]«, [ to kr \ 

Vu^j U Vi-y^J 

By substituting (3.91) into (3.81) and evaluating the integrals over kz and co, 

it can be shown that the velocity potential can be expressed as 

4>(r,z:f) = -^Vf 
1-Y2 o 

With the help of I kMmkr)e~nkrdkr = n(n2 + m2)-3* [91, eq. 6.623.2], this can 
o 

be evaluated as 

(3.92) 

which, on 

<\>{r,z:t) = 
z0 + j(z-c0 t/y) 

{z0 +j(z- ca t/y)}“ + r1 (1 - y2)/y 

the z-axis, reduces to 

p(0,z:t) = [z0+j(z-c0t/y)\ \ 

To interpret the properties of the pulse represented by this velocity poten¬ 

tial, it is helpful to consider what an observer would see when moving with 

the pulse center, i.e., with a speed of c0/y. By setting z = c0tly, it can be seen 

that the observer in this moving coordinate system will see a pulse whose 

shape is independent of time. At any on-axis observation point, the imaginary 

term is zero, so that |6(0,z:zy/co)| = l/zl Because 0 < y < 1, the group speed 

along the z-axis (cjy) is greater than the speed of sound, and by analogy with 

the optical case, the pulse is said to be superluminal. The incremental compo- 
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nents produced on the source plane all move with the speed of sound, but the 

axially directed pulse produced as a result of constructive or destructive inter¬ 

ference of these components can move at a speed that is substantially greater. 

In Fig. 3.44a, the real part of the velocity potential is shown for four dif¬ 

ferent ^-locations and y = 0.2, as calculated from (3.92). All four waveforms 

are identical but occur at different times corresponding to a propagation speed 

of 5c0 = 7500m/s. Figure 3.44b shows the normalized surface velocity wave¬ 

forms in the z-direction at z = 0 for three different radial locations. These were 

calculated from (3.90) using vno = Rej-grad^)}^- Because these waveforms 

differ both in their time and radial dependence, significant difficulties exist in 

realizing such a source. Moreover, a finite aperture transducer can be expected 

to result in some performance deterioration. In Fig. 3.44c are shown the nor¬ 

malized pressure waveforms at z = 50 mm for three different radial locations. 

It will be noted that the amplitude decays rapidly in the radial direction, 
approximately as 1/r3. 

3.9.4 X-Waves 

These were first described by Lu and Greenleaf [89] and experimentally ver¬ 

ified by them [92]. Additional forms of X-waves propagating in inviscid media 

and media with classical loss originating from both infinite- and finite-size 

apertures have been described by Sushilov et al. [86,93]. Let us assume that y 

= cos£, k - kjsin^, where 0 < cos^ < 1, and k = co/c0, and that a(kr,to) is given 
by 

(3.93) 

where b0 is a constant with dimensions of length and B(.) is any function of k. 

Substitution into (3.91) yields an expression for the transformed velocity 

potential, which can be inverse-transformed to yield an expression identical 

to the zero-order equation originally obtained by Lu and Greenleaf [89] 

If B(k) = 0(, (a constant) and noting that f~J0(mk)e-nkdk = (n2 + m2)~m [91, eq 
6.611.1], this evaluates to 

(3.94) 

If we set z = c0tlcos C, in (3.94), corresponding the center of the pulse, it will be 

noted that the amplitude is independent of the z-location. In addition, it can 

be seen that the speed of propagation is c0/cosi^, which is greater than c0, cor¬ 
responding to a superluminal pulse. 
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Figure 3.44 Superluminal pulse waveforms for y= 0.2, za = 1.0mm, c0 = 1500m/s, 

originating from a disk of infinite radius, (a) The normalized real part of the velocity 

potential waveform is shown at four z-axis locations, (b) Normal component of the 

surface velocity waveform for three radial locations. Note the presence of waveforms 

at negative times, (c) Normalized pressure waveforms at three radial locations for 

z = 50 mm. 

203 
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t 
Velocity 
Potential 

Figure 3.45 X-wave velocity potential for C, = 22.5 degrees, b0 = 0.05 mm. The values 
of z and c0 are in mm and mm/s, respectively. 

In Fig. 3.45 the velocity potential pulse for £ = 22.5 degrees, b0= 0.05 mm is 

shown as a function of the radial distance and (z-c0f/cosQ and clearly demon¬ 

strates the X-shape of the waveform. Because the shape is independent of z, the 

graph shows both the time variation of velocity potential at a fixed z- 

location and the velocity potential ^-variation at a specified time, i.e., a snapshot. 

Shown in Fig. 3.46a are the velocity potentials at various radial locations on 

the plane z = 0. These were calculated from the real part of (3.94) using the 

values of C, and b0 assumed by Lu and Greenleaf [92] in their simulation and 

experimental studies of X-waves. The value of £ corresponds to a pulse speed 

of 1.00244co, which is just superluminal. For an infinite radius transducer, the 

lateral beam characteristics are independent of the z-location and decay 

inversely with the radial distance (see Fig. 3.46b). The latter should be con¬ 

trasted with the superluminal pulse described in the previous subsection, 
whose lateral profile decays as l/r\ 

Experimental verification of the predicted behavior of X-waves using a 

5 cm diameter, 10-element annular array has been described by Lu and 

Greenleaf [92], Because of the non-zero element size and the limited number 

of annular rings, the on-axis waveform was found to suffer appreciable decay. 

At approximately 35 cm from the source plane, the signal was reduced by 

6dB, which was in agreement with the predicted depth of field (ZF = acotQ 

[89] of a finite-aperture source of radius a. In addition, measurement of the 

lateral and axial beam —6dB widths showed good agreement with those 

predicted [89], specifically with the values: RL = 2h0V3/sin £ = 2.5 mm, 

and Ra = 2h0V3/cos^ = 0.17 mm , respectively. 

For a finite-aperture realization, generating the required pulse waveforms 

on the source plane presents a number of practical difficulties. Specifically, 
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Figure 3.46 X-wave simulations for C, = 4.0 degrees, b„ = 0.05 mm, an infinite-radius 
disk at z = 0, and ca = 1500 m/s. (a) Normalized velocity potential on the surface z = 0 
at four different radii, (b) Normalized pressure waveforms at 100mm from the disk 
showing the amplitude decay. 

because the transducer bandwidth will be limited, special attention must be 

paid to the spectral characteristics of the velocity waveforms needed to gen¬ 

erate a limited diffraction beam and to the manner in which the driving wave¬ 

forms are modified by the transducer transfer function. 

3.10 Effects of Attenuation 

Absorption is the process of conversion of the ultrasound energy into heat or 

other energy forms. During its passage through a medium, an ideal plane wave 

will be subject to energy loss through absorption and a redirection of some of 

its energy by scattering due to non-uniformities in compressibility and density. 

The effects of both absorption and scattering are incorporated into the atten¬ 

uation coefficient. Methods for measuring absorption and attenuation in bio¬ 

logical tissue, together with experimental results, have been reviewed by 

Bamber [94] and earlier by Wells [95]. 



206 Biomedical Ultrasound 

So far in this chapter, the field response from transducers of various geo¬ 

metric shapes has been described by assuming that adsorption and the related 

phenomenon of dispersion can be ignored. Since the attenuation of soft tissue 

can be large, especially at higher frequencies, it is particularly important that 

its effects be properly accounted for. Complications arise in seeking to derive 

a wave equation whose solution can represent the frequency dependence of 

both absorption and dispersion corresponding to the characteristics of a 

variety of tissues and fluids. Part of the difficulty is due to an incomplete under¬ 

standing of the physical processes involved. As will be seen, the classical 

viscous loss equation gives rise to an absorption coefficient that has very nearly 

a square-law frequency dependence. While water and other fluids exhibit this 

dependence, this is not the case for most biological soft tissues. A number of 

approximate methods for dealing with the effects of attenuation have been 

described, and these will be reviewed following a brief discussion of the rela¬ 

tion between dispersion and absorption. 

3.10.1 Kramers-Kronig Relationships 

The change in the phase velocity of a propagated wave with frequency is 

known as dispersion. In an unbounded medium, dispersion is caused by 

absorption. In fact, absorption is a necessary and sufficient condition for dis¬ 

persion to exist, and as a result it is not surprising to find that there exists a 

direct relation between the two quantities. Kronig and Kramers independently 

obtained the relations for electromagnetic waves, and these are generally 

known as the Kramers-Kronig (K-K) relationships. Since they are a direct 

result of linearity and causality (an effect cannot precede its cause), they are 

independent of the detailed mechanisms and are applicable to other types of 

waves, including acoustic waves. It appears that Ginzberg [96] in 1955 was the 

first to formulate a form of the K-K equations applicable to acoustic waves. 

Since then, a number of derivations have been given, among which are those 

of Futerman [97], O’Donnell et al. [98], and Weaver and Pao [99], Generally, 

a frequency-domain approach is used to arrive at the integral form of the K- 

K relations. However, a time-domain analysis can also be used to arrive at dis¬ 

persion relations for media whose attenuation obeys a power law frequency 

dependence [101-103]. 

For acoustic waves, the K-K equations can be expressed in terms of the 

components of a complex propagation constant that can be defined by 

(3.95) 

in which c0(co) denotes the phase speed and oc(co) is the attenuation coefficient. 

The pair of equations relating these two quantities can be expressed in the fol¬ 
lowing form: 

_c0(co') c0(co)J co'2 -co2 

1 1 1 daV 
(a) 
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(3.96) 77-7 = \ Jo"M®') ~ “N]' ,f° 2 (b) 
v ' Co((0) 7tJ0 (0 -00 

From these it is evident that given the functional form of the attenuation coef¬ 

ficient, the form of the dispersion can be determined, and vice versa. 

As noted in 1.8.1 (see footnote 35), longitudinal wave propagation in most 

soft tissue is found to have a frequency-dependent attenuation that is gener¬ 
ally well approximated by 

(3.97) a = a'0 Icol 

where a' is the angular frequency attenuation factor and n is a real positive 

number that typically lies in the range 1 < n < 2. By making use of generalized 

functions, Szabo [102] obtained equations that relate a(co) and c0(co) for values 

of n in the range from 0 to 3. Similar relations, valid for positive frequencies 

but based on the differential K-K relations, were subsequently obtained by 

Waters et al. [100,101], For both positive and negative frequencies, these rela¬ 

tions can be written as 

(3.98) 
c0(co) 

+ a' tan| 
f Tin 

K 2 
(|co|" * — |co0 [" 1 j, for 0 < n < 1 

and 1 < n < 3, 
(a) 

(3.98) 
1 _ 1 

(®) 

1 
—a'0 In 
71 

(0 

(0o 
for n = 1, (b) 

where cQ is the phase velocity at the reference frequency cd0. In fact, in the limit 

as n —> 1, (3.98a) reduces to (b). 

The case n = 2 corresponds closely to that of water and certain other fluids. 

Since tan(7t) = 0, it follows from (3.98a) that dispersion should be absent. On 

the other hand, for n = 1, corresponding to that frequently observed in soft 

tissue, dispersion is present. Fig. 3.47 shows the fractional change in speed, as 

predicted by (3.98), for various values of n. It should be noted that at the ref¬ 

erence frequency of 1.0 MHz, the attenuation for all values of n is assumed to 

have the same value of a = 5.756Np/m, corresponding to that typically seen 

in soft tissue. It will be noted that for n > 2 the speed decreases with increas¬ 

ing frequency and normal dispersion is said to be present. For n < 2 the oppo¬ 

site is true, and the dispersion is said to be anomalous. The presence of 

dispersion increases the difficulty of obtaining an exact account of its effects, 

and consequently it is sometimes ignored. For narrow-band signals the effect 

of this simplification on the resulting transient wave is likely to be small. 

3.10.2 Transfer Function and Impulse Response 

To determine the transient response due to plane wave propagating in tissue, 

one can simply convolve the tissue impulse response with the incident wave- 
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Figure 3.47 Fractional change in phase propagation speed versus frequency for 

different values of the exponent n. At the assumed reference frequency of 1.0MHz, 

ca = 1500 m/s. An attenuation coefficient of 0.5 dB/[cm.(MHz)''] was assumed. This 

corresponds to an angular frequency coefficient of a'0 = 5.76/(271 x 106)”, m_1(rad/s)”. 

(Reproduced, with permission, from Cobbold et al. [111],/. Acoust. Soc. Am., 116, 

3294—3303, © 2004 Acoustical Society of America.) 

form. The impulse response can be determined by taking the inverse Fourier 

transform of the transfer function. However, this may not be a straightforward 

process. For example, if we assume that the attenuation varies linearly with 

frequency, then the transfer function for transmission of a harmonic wave 

through a thickness z of tissue might be written as 

(3.99) Ha(f) « Ke-a°inze~i2nfz,c°, 

where the approximation sign serves to emphasize the fact that the phase term 

has been assumed to be a linear function of distance. The difficulty arises from 

the fact that this expression does not account for the effects of dispersion, 

which, in view of the K-K relations, will be present if attenuation is non-zero. 

Even though the effects of dispersion may be small, especially for narrow-band 

waveforms, failure to account for it in the above expression will generally 

result in a noncausal impulse response. For example, the inverse Fourier trans¬ 

form of (3.99) can be obtained using a symbolic math program (e.g., 
MAPLE®), yielding 

K{t) = 
2Kaz 

2 f 
(azY + 4k2 t 

V 

2 ■ 

For t < z/c0, it can be seen that ha(t) is non-zero, and consequently this expres¬ 

sion for the impulse response is noncausal and may not properly represent the 
actual response. 
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To obtain a causal expression for the impulse response, Gurumurthy and 

Arthur [112] and Knc [113] assumed that the tissue phase response is that of 

a causal minimum phase filter. Because the log-magnitude and the phase char¬ 

acteristics of such a filter form a Hilbert transform pair, the phase response of 

the transfer function can be calculated from the magnitude response. By taking 

the inverse Fourier transform of this self-consistent transfer function, the 

impulse response ha(t) can be computed. The transfer function obtained by 

Gurumurthy and Arthur [112] is 

(3.100) 
Ha{f) = Ke-a° W e-j2nfznejnfai>Zln{2Kf\ 

where r\ = l/cG + 20ajn2. 

The results illustrated in Fig. 3.48 were obtained by taking the in¬ 

verse Fourier transform of (3.100) and assuming an attenuation of 

0.87 dB/(cm.MHz). For both graphs the actual start of each waveform is 

(b) 

Figure 3.48 Impulse response of a medium with a propagation speed of 1500m/s 

(6.67 ps/cm) and with an attenuation that varies linearly with frequency and is given 

by a = 0.1 Np/(cm.MHz) or a = 0.87 dB/(cm.MHz). The calculations used the Hilbert 

dispersive model of the transfer function as given by (3.100). (a) Response at 1,2, 

and 4 cm. The pulses have been displaced so as to align their starting times, e.g., for 

the 1 cm depth the delay is 6.67 ps. (b) The impulse response over a range of depths 

(steps of 1.5 mm): each response has been displaced so that the peaks are aligned. 

(Reproduced, with permission, from Gurumurthy and Arthur [112], Ultrasonic 

Imaging, 4, 355-377, © 1982 Dynamedia Inc.) 
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delayed in time by nearly zlcQ, but for convenience in presentation the wave¬ 

forms have been aligned. It can be seen from that with increasing depth, the 

higher frequencies are more heavily attenuated, thereby causing the pulse 

duration to increase with increasing depth. 

3.10.3 Some Simplified Models 

If the fractional bandwidth of the time-domain signal is small, then it is prob¬ 

ably sufficient to assume that the attenuation is constant and equal to that at 

the center frequency. This suggests that the impulse response function (see 
(2.35)) can be written as 

(3.101) 

£o{x,y)e acRb 
R 

t- 
V C 0 

So 
2kR 

dS o, 

where ac is the attenuation constant at the center frequency, C,Q is the apodiza- 

tion function, and dispersion effects are assumed negligible. In the case of a 

simple disk transducer of radius a, for on-axis locations this simplifies to 

(3.102) h(0,z:t) = co% 
f 

t- 
V c0j 

3C 
+ z 

-t z,o(^{c0t)2 - z2 y acc°‘. 

For a uniformly apodized disk, an analytic expression for the on-axis har¬ 

monic response can be obtained (see problem P7b). The response for a disk 

of radius a = 5A, at 5.0 MHz is shown in Fig. 3.49a for: ac = 0, ac = 0.288 cm'1 

(2.5dB.cnr'), and ac = 0.576cm'1 (5.0dB.cm_1). It will be noted that while the 

general characteristics of the zero attenuation response are maintained, 

the positions of the maxima shift toward the transducer with increasing 
attenuation. 

A more accurate model to account for frequency-dependent attenuation is 

based on linear systems theory (assuming linear propagation) [106]. This sug¬ 
gests that (3.101) can be rewritten as 

(3.103) h(r:t) = 
T S0 

Z,o(x,y) 5 
f 

x 
_y_ 

2nR 

tv 

dS0dx, 

where ha(.) is the attenuation impulse response that can be calculated from 

the attenuation transfer function, as described in the previous subsection. 

If the field point is sufficiently far from the transducer surface so that 

all the wavelets arriving there have approximately the same attenuation, the 

task is considerably simplified. Specifically, (3.103) can be replaced by the 
convolution 

(3.104) h(r:t) = ham(r:t)*hs(r:t), 
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Figure 3.49 Effects of attenuation on the axial CW and transient response for a 
uniformly excited disk transducer with a radius of 5A, (a = 1.5 mm) at 5.0 MHz, 
propagating into media with different attenuation, (a) Response for CW excitation 
at 5.0 MHz. (b) Pressure response for a wideband (o = 1 x 10V = 75% bandwidth) 
Gaussian transmitted pulse with a center frequency of 5.0 MHz, propagating into 
media whose attenuation is proportional to the frequency. 

where hs is the spatial velocity impulse response in the absence of attenuation 

and ham is the attenuation impulse response corresponding to the mean dis¬ 

tance of the observation point from the transducer surface. However, since ham 

is a function of time, (3.104) is a non-stationary convolution. As described by 

Jensen et al. [106], the computational task can be simplified if it is also assumed 

that hom remains constant for non-zero values hs, and its value is taken to be 

equal to that corresponding to the mid-point of hs. 
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3.10.4 Accounting for Attenuation and Dispersion 

One method of obtaining the response due to a wideband transient is to make 

use of the Rayleigh-Sommerfeld diffraction equations appropriate to the case 

where the normal component of the velocity is specified on the boundary 

[105]. If the normal inward component of the velocity spectrum on the bound¬ 

ary is denoted by v„(co), then, from (2.29), the velocity potential at r is given 

by the modified Rayleigh-Sommerfeld diffraction equation 

1 rre~'-R 

(3.105) <D(r:co) = —JJ —^—vn((o)dS0, 
So 

where k is now the complex wave number, as defined in (3.95). Justification 

for replacing the real wave number in the original Rayleigh-Sommerfeld dif¬ 

fraction equation has been given in [104], 

As an example, we consider a piston source of radius a, excited by a Gauss¬ 

ian waveform. The particle velocity at z - 0 can be written as 

vn{0:t) = vnoe^o,e-°2,2/2 

so that the spectrum is given by 

(3.106) v„ (0:co) = vno3{e^e^2} = vno ^2*Le-i™oih* 

If the propagation medium has an attenuation that is proportional to the 

frequency (n = 1), then from (3.95) and (3.98b) 

(3.107) 
/ ® 2,. 
k = —:—r — a„coln 

■'o(®o) tt 

CO 

CO, 
■;a0 to . 

The pressure waveform can be obtained from (3.105) by recalling that p 

po0<])(r:t)/dt and by an inverse Fourier transform, yielding 

- jkR 

\\~-vA«)dSc 

So 

If the observation point is on the z-axis, this reduces to 

3" = ;p03 
-i rl z2+a2 

j coe v„(co)dR 

Substituting (3.106), this simplifies to 

(3.108) p(z:t) = p0v„0-^L3~1 
C0e-(co-co0)7(2c2)(e-jkZ _e-ik4?^ 

k \ 
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which accounts for both attenuation and dispersion.The CW response of a disk 

transducer is illustrated in Fig. 3.49a. For this narrow-band case, there is no dis¬ 

persion. and an analytical expression can be obtained either by evaluating the 

transform or more directly as described in [105], For a wide-band Gaussian 

pulse, the peak pressure response as calculated from (3.108) is shown in Fig. 

3.49b. While the waveforms are affected by dispersion at the greater depths, 

over the range of axial distances shown, the peak pressure remains virtually 

independent. To illustrate the effects of dispersion on the waveforms. Fig. 3.50 

shows the influence of including and excluding the dispersion term. Significant 

changes in the wave shape are present, and in addition the waveform is slightly 

expanded in duration as compared to that close to the transducer. 

3.10.5 Classical Viscous Loss 

In a seminal paper published in 1845 [107], Stokes derived an equation for 

wave propagation in a classical viscous medium in the absence of thermal con¬ 

duction. For a plane wave propagating in the x-direction, his equation can be 

written as (see Chapter 1 (1.38)): 

(3.109) 
1 32(j) a24> 

dx2 
f 4 1 a Q2(t>) 

dt V dx2 J 

Although the steady-state solution of this equation is well known, having been 

studied in the mid-1800s, transient problems have proven rather more difficult 

to address. It is well established that approximate solutions to such problems 

do not satisfy causality in the strict sense, i.e., a propagated pulse does not have 

a sharp front but extends asymptotically to plus and minus infinity, similar to 

solutions of the second-order diffusion equation. Exact transient solutions 

Figure 3.50 Effects of dispersion on the on-axis waveform for the same conditions 

illustrated in Fig. 3.49. The initial Gaussian wideband waveform is shown together 

with the waveforms at a normalized distance of 10 with and without the dispersion 

term (the second term in (3.107)). 
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have been obtained using the Laplace transform. Of particular importance is 

the work of Hanin [108] in 1957, who obtained a solution for a 8-function 

source in terms of power series expansions. More recently, Ludwig and Levin 

[109] also obtained a 5-function solution, which they expressed in terms of two 

real integrals suitable for numerical evaluations for a wide range of conditions. 

Approximation methods have also been used to obtain solutions valid for 

small absorption coefficients and observation points that are not very close to 

the source. In an important contribution, Blackstock [110] considered the 1- 

D problem in which a sinusoidal source was abruptly switched on. By assum¬ 

ing the absorption to be small, specifically that ato « c0, where a is the 

absorption coefficient, he showed that (3.109) could be reduced to a second- 

order parabolic diffusion or heat conduction equation. If a = a^oo2, the above 

approximation can be written as a0to3 « c0, from which it can be seen that for 

a transient source the observation point must not be too close. 

The much simpler steady-state solution for a sinusoidal source on the plane 

x = 0 can be found by letting <t> = enabling (3.109) to be reduced to 

2 (TO 

(3.110) k® + —- = 0, 
ox 

where k is the complex propagation constant as defined in (3.95). Thus 

(3.111) 
k2 = 

or 

1 + /CQK |IB+-p 1 + /(OK |Ll+ — p 
V 

in which k„ = co/c0, cQ{= 1/Vkp7) is the propagation speed in the absence of 

dispersion, and the compressibility k is taken to be real. If the imaginary term 

in the denominator is much less than unity, then (3.111) can be expanded as: 

(3.112) 
k = ±k 1- 

/COK 4 ) 3cl>2k2 ( 

+ / 8~ 

4 'l 
be 

3 7 

= ±(p-/a), 

where a is given by 

(3.113) a 
00 K 

2 cn 

4 ^ 
be+-b 

3 J 

oo- 

2p0cl V 
be+-b |, 

so that the absorption coefficient increases as the square of the 

( 4 \ 
provided 1 »/cok p B + — p , and the attenuation factor is 

v 3 J 

OL„ = 

4 ^ 
be+~b 

3 7 

2p0c0 

frequency 

given by 
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The real part of the propagation constant is 

(3.114) (3 = /c0 
3co"K2 

8 

( 4 ) 
Fb+~F 

V 3 ) 

2A 

For a plane wave propagating in the +x-direction, the velocity potential is 

0(jv.t) = <S>0ei{e*-k-x] 

But the phase speed is given by cm = co/p, which from (3.114) can be expressed 

as 

(3.115) ca(a) = cc 1- 
3co2k2 ( 

,-i 

8 
1 + 

3co"k 2v2 f 4 
Fb+~F 

3 7 

2X 

consequently, if the same approximation holds true, the dispersion, which can 

be expressed by the excess speed Ac(co) = cw — cQ, also increases as the square 

of the frequency. If the absorption varied exactly as the square of the fre¬ 

quency, then, according to the K-K equations (see subsection 3.10.1), there 

should be no dispersion. However, because the dependence is not exactly par¬ 

abolic, dispersion is predicted, though it can be very small. 

Thus, the differential equation expressed by (3.109) has a plane wave solu¬ 

tion characterized by absorption coefficient and excess speed, both of which 

increase approximately as the square of the frequency. As noted earlier, pure 

water has been found to have an absorption coefficient that accurately obeys 

the square-law frequency dependence over a very wide frequency range 

extending from the sub-MHz range to above 1GHz [114]. This is used as the 

basis for determining the p# for water as well as for other fluids whose absorp¬ 

tion coefficients have quadratic frequency dependence. A quick calculation of 

the excess speed at 10MHz for water at 15°C using k = 4.7 x 10_10Pa_1 and pB 

= 2.81 p = 0.0031 kg/m.s yields 1.0 x 1 O'5 m/s, which is well beyond the range of 

current measurement techniques. Such a small value is in agreement with 

(3.98a), which predicts that for n = 2 there should be no dispersion. 

3.10.6 Formulations for an Attenuation Power Law 

As noted earlier, many of the experimental measurements for soft biological 

media indicate that the frequency dependence of the attenuation can be 

approximately represented by a = a'aj", where n lies in the range from 1 to 2. 

Consequently, the simple viscous loss mechanism assumed in the classical dis¬ 

sipative wave equation of (3.109) cannot properly account for propagation in 

such media unless n = 2. 
A number of efforts have been made to develop a wave equation that prop¬ 

erly accounts for the attenuation characteristics of tissue. Some initial work is 

that published in the early 1980s by Leeman and his colleagues [115,116]. 

Based on the assumption that the attenuation arises from a multiplicity of 
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relaxation processes, Nachman et al. [117] derived a causal linearized wave 

equation for fluids from first principles. By a suitable choice of the relaxation 

processes, it is possible to obtain a good fit to a variety of the experimentally 

observed frequency-dependent attenuation characteristics. However, for N 

relaxation mechanisms, the equation is of the order N + 2, making analytical 

solutions difficult to obtain. 

Berkhoff et al. [118] used this multiple relaxation model in simulating ultra¬ 

sound B-mode image formation with a 132-element linear array. To represent 

the complex wave number of homogenized beef liver, they used a two- 

parameter model and obtained the parameter values by a best fit to the exper¬ 

imentally measured [119] attenuation versus frequency characteristics. From 

this model they calculated the dispersion and found that the speed of sound 

increased by approximately 2.2m/s (a fractional change of 0.14%) over the 

frequency range 1 to 10MHz. Although this is small, it can significantly affect 

a wideband signal (see Fig. 3.50) such as that used in a B-mode imaging system. 

By including dispersion, Berkhoff et al. found that the computed pulse wave¬ 

forms were affected, although the B-mode image quality was unaffected. 

In 1994 Szabo [103] proposed the causal linear convolutional wave equa¬ 

tion to describe the ultrasound radiation propagation in media whose attenu¬ 

ation obeys a frequency power law. In 1-D, his equation for the pressure can 
be written as 

(3.116) “ P(rt) - p(r:t) + £(t) * p(r.r) = 0. 

where cQ is the phase velocity at a reference frequency of co(, and L(t) is the 

loss operator that guarantees causality and that accounts for the effects of dis¬ 

persion and attenuation. More recently, an integral solution to this equation 
has been obtained [105], which can be expressed as 

(3.117) p(a)=~ 
2k 

j P( 0;») g-jMca-ja(e>)]z+j<ot 

By substituting this into (3.116), the loss operator can be obtained as 

£(t) = 
2k j 

— - 7«(w) 

-i2 

-^rie^dco 
cl J 

When the attenuation is governed by the power law given by (3.97) and n is 

in the range 0 < n < 3, the equations for a(co) and cM are given by (3.98). 

If n in the range for 0 < n < 3, it has been shown that the particle velocity 
can be expressed as [111] 

v(% 0 

(3.118) 

3 '< 3[v(0, t)]exp 

x 0) 
,n-l 

0), 
lrt-1 

})}' 

ll«. [1 , ( K ^ co| - j(£>x< — + a0tan ft — 

l ca v 2 J 
(a) 
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Figure 3.51 Effects of dispersion on the propagation of a Gaussian pulse with a 75% 

bandwidth in a tissue-like medium (n = 1.0). The results were calculated from 

(3.118). The transmitted pulse and the received pulse when dispersion is ignored and 

included are shown for depths of (a) 5.0cm and (b) 30cm. (Reproduced, with 

permission, from Cobbold et al. [111],/. Acoust. Soc. Am., 116, 3294-3303, © 2004 

Acoustical Society of America.) 
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When n = 1, a more convenient computational form is 

The effect of dispersion on the transmission of a Gaussian pulse with a band¬ 
width of 50% in a tissue-like medium is illustrated in Fig. 3.51. It can be seen 
that the particle velocity waveform suffers significant changes due to the 
effects of attenuation, even when the effects of dispersion are ignored and the 
two-way path is 5 cm. Flowever, when the two-way path is 30 cm, the effects of 
dispersion produce major changes in the shape and its spectrum. 

Problems 

PI. This problem concerns a generalization of the impulse response 
method to take account of the case where an arbitrary planar source 
is apodized [22], 

a. Using the figure shown below, show that (3.24) can be transformed 

o 2n-\lb2 + z 

in which ^(x^yj) is the apodization function, where the subscript 
has been used to avoid confusion with the coordinates of the obser¬ 
vation point. 

r 

y 

x 
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b. If £o(xi,yi) contains no discontinuities, show that the above expres¬ 

sion for the velocity impulse response reduces to 

h(r, z'-t) = ^-Z(^Cot2 - r) for cDt>z 
2n 

= 0 for cat < z. 

c. If the source is axisymmetric, show that the on-axis impulse 

response is given by 

h(0, z:f) = c0^0(Vc„f2-z2) for cat>z 

= 0 for c0t < z. 

d. If it is assumed that the apodization function is given by 

circ — \e 
\a 

'f/M' , where 8 describes the degree of truncation 

(e = °° for uniform excitation), a is the transducer radius, and the 

circ function sets £0(ri) to zero for rx > a, then the apodization func¬ 

tion is discontinuous. However, the analysis is much simpler if the 

transducer is assumed to have an infinite radius, and the apodiza¬ 

tion is taken to be the continuous Gaussian function - e~^lc2, 

where o is a constant. With this assumption show that: 

. , \ i ( 2r I 2.2 2 1 -(''2+<3(2-z2)/a2 / / t 
h(r, z'.t) - coJ0 —r^ctv-v e[ 11 3C(c0f-z), 

\o~ 

where 70(.) is a cylindrical Bessel function of the first kind and zero 

order and 3C(.) is the Heaviside step function. Appendix C may be 

helpful. 

P2. Consider an infinite narrow strip of width Ay whose center of symme¬ 

try coincides with the x-axis and whose surface is on the plane z = 0. 

Assuming CW excitation of angular frequency to with a surface veloc¬ 

ity amplitude of vc, a medium of density of p0, and propagation speed 

c0, derive an expression for the z-axis pressure assuming that z » Ay. 

If pa = 1000 kg/m3, cG = 1500 m/s, v0 = 0.1 m/s. Ay = 1mm, and a / = 

5 MHz, plot a graph of the pressure amplitude along the z-axis from 1 

to 100cm and show that the far-field pressure falls off as l/Vz- 

P3. Show that the velocity impulse response at the cylindical coordinate 

(r,z) due to a thin annulus of radius a and width A a that lies on the 

plane z = 0 is given by: 

h(r, z) = 
c0Aa \ \a2+ r2 + z2-c20t2\ 

nr | 4a2r2 

for [(a - rf + z2]1/2 < c0t < [(a + rf + z2]1/2, and h(r,z) = 0 elsewhere. 

See [51] for further details. 
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P4. a. By making use of the fact that the aperture weighting function 

for a ring of radius rn is given by 8(rn - r{), and that the Fraunhofer 

far-held response is proportional to the Fourier transform of the 

aperture function, show that for a disk of radius a whose aperture 

weighting is the circularly symmetric function £0(ri), the directivity 

function is given by (3.75). 

b. For a uniformly excited transducer [£,0(r,) = 1], show that (3.75) 

reduces to (3.33b). 

c. Show that the pressure response in the Fresnel zone due to CW 

excitation of a narrow ring of radius a and incremental width A a is 
given by 

Ap(R, 0:co) ;'top0v0 
2kRq 

e 
,»(W/2*.)aAa£)( 

where the directivity function is given by 

c<eH 
2n jkac os<pisin 

e 
in 0 1+—~ 

L 2 R„ cos (pi sin 0j 

dcpl. 

P5. Starting from (3.22), which gives the pressure phasor for a piston 

transducer of radius a at any cylindrical coordinate location (r,z), and 

assuming the hard baffle boundary condition, derive (3.32) giving the 

far-held (Fraunhofer) approximation for the pressure phasor, i.e.. 

p{r,z: to) 
ytop0v0fl2 

2 R 

7J\ (,kar/z) 

karj z 

e~jk[z+r2/( 2z)\ 
, where k = co/cG, Jx is 

a cylindrical Bessel function of the hrst kind, and (r,z) are the cylin¬ 

drical coordinates of the held point. You will hnd it helpful to make 

use of a “standard” result that expresses the Bessel function as an 
integral. 

P6. The concave transducer shown above has a radius of curvature of 10 
mm and a half-angle of 0r = 20 degrees. 

a. Starting from the Rayleigh integral, derive an expression for the 

on-axis velocity potential response for a 8-function of velocity at 
the surface, and state any approximations used. 
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b. The transducer is excited such that the normal component of the 

surface velocity is a single cycle of a 10MHz sinusoidal waveform. 

From the result of part (a), determine the on-axis pressure wave¬ 

form. at z = -5.0, 0 and 100mm. 

P7. Using the simplified model for the frequency-independent attenua¬ 

tion given by (3.101) and assuming a simple disk of radius a with an 

apodization function £,0: 
a. Obtain the equation for the axial velocity impulse response as 

given by (3.102). 
b. Show that the axial harmonic pressure response for a uniformly 

excited disk is given by 

p(0, z:oo) = 
P O^O^O 

1 - jc0at (0 

e-[ac+;co/co]z _ e-[ac+WcD]Vz2+fl2 
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Nonlinear Ultrasonics 

Up to this point, it has generally been assumed that the excitation is sufficiently 

small so that linearity can be assumed. In practice, for both ultrasound diag¬ 

nostic and therapeutic applications, this condition is frequently exceeded. For 

diagnostic applications where a short, high-amplitude transmit pulse is used 

to obtain good resolution and sensitivity, the amplitude is often sufficiently 

large that nonlinear effects become apparent [7-9]. As will be discussed in 

Chapter 8 (section 8.6), the presence of nonlinearity in B-mode imaging 

enables harmonic imaging to be achieved with the potential advantage of 

improved spatial resolution [10]. In therapeutic use, such as in lithotripsy, 

where a shock wave is generated near the focal zone for the purpose of kidney 

stone fragmentation, a high degree of nonlinearity occurs in the propagation 

process, especially as the wavefront approaches the focal zone. Similarly, when 

high-intensity focused ultrasound is used to raise the temperature of a local¬ 

ized zone, nonlinear effects often become important. Further details of the bio¬ 

medical aspects of nonlinear ultrasound are contained in the reviews by 

Carstensen and Bacon [11] and Duck [12], A number of excellent books and 

chapters devoted to nonlinear acoustics provide a much more detailed account 

at both the advanced and introductory levels [1-6], 

4.1 Introduction 

In his classic chapter on the propagation of finite amplitude acoustic waves in 

viscous media, Lighthill [13] points out that there are two influences at work 
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that tend to change the shape of a waveform as it propagates. The first con¬ 

cerns the effect of a frequency-dependent attenuation. This was discussed in 

Chapter 1 (subsection 1.8.1) in the context of linear propagation theory and 

typically causes a down-shift in the transmitted center frequency. The second 

arises from a combination of the effects of changes in the speed of propaga¬ 

tion and the effects of convection (see section 4.4). Because the speed with 

which a wave propagates varies with the density of the medium, it propagates 

faster during the compression phase and diminishes during rarefaction. This 

causes portions of the waveform to become steeper as the wave progress, 

resulting in the generation of higher harmonics. Because the medium moves 

in the direction of wave propagation during compression and in the opposite 

direction during expansion, the propagating wave is also convected. This 

causes waveform distortion similar to that created by the speed variation. Both 

of these nonlinear effects can lead to the formation of a shock wave, depend¬ 
ing on the attenuation characteristics of the medium. 

Incorporating the effects of nonlinearity into the propagation process 

makes the theoretical analysis1 a good deal more complex, and as a result it is 

usually necessary to make certain simplifying approximations to arrive at algo¬ 

rithms that enable computational evaluation to be carried out in a reasonable 

time. When the pressure is sufficiently high that the effects of nonlinearity 

dominate, a shock wave can form. For example, such a wave is characterized 

by an abrupt change in the pressure and density. Shock waves can form, for 

example, in the focal zone region of a lithotripsy system, and they provide the 

means for disintegrating the kidney stone. An exact analysis is made particu¬ 

larly difficult when the effects of attenuation and diffraction are incorporated. 

In this chapter we shall begin by examining the propagation of finite-ampli¬ 

tude plane waves in an ideal nonlinear fluid, and we will study the changes 

that occur in the particle velocity, density, and pressure during this process. 

4.2 Lagrangian and Eulerian Coordinate Systems 

In previous chapters it was generally assumed that the amplitudes of the vari¬ 

ables were sufficiently small compared to their undisturbed values that non¬ 

linear propagation effects could be ignored. When this approximation is no 

longer valid, it is helpful to express the equations in terms of a coordinate 

system that tracks the behavior of a particular acoustic particle rather than by 

using a fixed coordinate that describes what happens at a specific location. As 

first explained in Chapter 1, an equation is said to have the Lagrangian form 

when it describes what happens to a particular acoustic particle. For example, 

the Lagrangian form of the expression for acoustic velocity describes how the 

velocity of a particle varies with time. This should be contrasted with the fixed 

(Eulerian or laboratory) coordinate system, in which the velocity at a specific 

location is described. To avoid possible confusion, we shall begin by discussing 

1. A valuable historical account that also serves as a useful introduction to the field has been 
written by Blackstock [14], 
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the relation between these two systems, and this will be based on the very clear 

presentation given in the paper by Lee and Wang [15]. 
For an incident plane wave, the displacements can be examined by using a 

1-D sequence of acoustic particles to represent the elements of volume. In 

Fig. 4.1a, the equilibrium positions of particles A and B are denoted by aA and 

aB. The presence of an acoustic wave will cause the positions of A and B to 

change and, as shown in Fig. 4.1b, at a particular instant of time t their posi¬ 

tions are XA(t) = aA + ^(f) and XB(t) = aB + where £, is the displacement. 

In general, the position of any particle can be written as X(a: t) - a + £,(a:t), in 

which the independent variables a and t are called the Lagrangian coordinates. 

If field quantities such as the particle velocity or pressure are expressed in terms 

of these variables, then the resulting expressions correspond to the Lagrangian 

form. Field quantities, when expressed in Lagrangian coordinates, will be dis¬ 

tinguished from the Eulerian form through the use of a subscript L. For example, 

the particle velocity is given by vL(a,t) = dX(a:t)/dt = dL,(a:t)/dt. The Eulerian 

velocity will be simply denoted by v(jr.f), without the use of a subscript. 

It is useful to relate the field quantities expressed in one coordinate system 

to those of the other. If the field quantity is denoted by q, then qL{a'-t) can be 

related to the Eulerian form q(x:t) by using a Taylor series expansion and 

retaining just the lowest-order term in i.e., 

qL{a:t) = q{x:t)\x=a+^au) q(a:t) + 5M- 

aA . A a 
Equilibrium State 

(a) _, 
i i I 1 1 i M 
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Figure 4.1 Illustrating how the acoustic particles (representing volume elements) 

move for an incident plane wave, (a) Under equilibrium (unperturbed) conditions, 

particles A and B are separated by A a. (b) In the presence of a plane wave and at a 

particular instant of time, particle A has been displaced from its equilibrium by % 

and particle B by £, + A£. The volume between A and B is shown as having increased 

(corresponding to a reduction in pressure), so that the density would be decreased. 
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Similarly, the Eulerian form can be written as 

q(x:t) = qL(a:t)\ « qL(x:t) dqL 
da 

tfct). 

For example, with the help of the above equations, the particle velocity rela¬ 
tions can be written as: 

vL(a:t) = v(a:t) + ~ 
dx 

£,(a:t) and v(x:t) = vL(x:t)~ 
dVr 

da 
^(x:t). 

4.2.1 Density in Terms of Displacement 

To obtain a wave equation in Lagrangian coordinates, we shall need to express 

the Lagrangian density in terms of the particle displacement. In Fig. 4.1a, 

the volume associated with each particle is the volume between successive 

parallel planes normal to the x-axis. If the y-z area is dydz, then the equi¬ 

librium volume associated with the particles that lie between A and B is AV„ 

- Aadydz, which in the limit as Aa —> 0 can be written as dV„ = dadydz. At a 

time t in the presence of a plane wave (see Fig. 4.1b), the volume changes 

to AV(t) = (A£ + Aa)dydz, which in the limit as Aa -» 0 can be expressed as 
f 

dydz. But, since the mass between two planes remains dV{t) = da 1 + 
V da 

constant and the y- and z-dimensions are unchanged, p0dV0 = pLdV(t) and 
hence 

p0dadydz = pLda 
f 

1 + 
da 

dydz, 

yielding 

(4.1) 

Alternatively, noting that dX — da + da, this can also be written as 
da 

(4.2) (dXX1 
P L ~ Po 

y da ) 

4.3 Exact 1-D Wave Equation for an Inviscid Medium 

The Lagrangian form of the 1-D momentum equation can be readily derived2 

by noting that the force per unit area acting on a plane at X is equal to the 

2. The 3-D form of the momentum equation was previously derived in Chapter 1 as (1.191 
from which the 1-D form could have been written down. However, because the 1-D form can be 
so readily derived, we have chosen to do this. 
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Lagrangian pressure pL, while that acting on a plane at X + bX is pL + 

8X(dpL/dX). Consequently, the net force acting in the positive x-direction on 

this unit area incremental volume is equal to -bX(dpLldX). Because the 

element has a mass of pLdX and its Lagrangian acceleration is d^/dt2, it follows 

from Newton’s law that 

(4.3) 
d% dpL 

In view of (4.2), this can be written as: 

d2E, _ dpL 

dt2 da 

Because it can be assumed that pL is a function only of pL, it follows that 

(4.4) 
32£, _ dpL dpL 

dt2 dpL da 

Taking the partial derivative of (4.2) yields 
dp;. 

da 
which can 

then be substituted into (4.4) to give 

(4.5) 
dt2 dpL V da) da2 

This is an “exact” wave equation for an inviscid uniform medium for finite- 

amplitude disturbances due to a plane wave. It describes the time behavior of 

a particle whose equilibrium position is a in terms of its displacement, density, 

and pressure. 
It should be noted that for small-displacement amplitudes, such that 1 » 

d£/da, it is unnecessary to distinguish between a and x; consequently, (4.5) 

reduces to the 1-D wave equation for an inviscid medium under small-signal 

conditions: 

(4.6) 
n=C2#i 
dt2 ° dx2 ’ 

where c2 = — is defined to be the small-signal speed of sound under 

?>P s 
isentropic conditions. 

4.3.1 Exact Equation for an Adiabatic Gas 

We shall assume that the propagation medium is an ideal gas whose equation 

of state under adiabatic conditions is 

Po V p oJ 
(4.7) 
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where y is the ratio of the specific heats. This relation applies in both Euler- 

ian and Lagrangian coordinate systems. Thus, under adiabatic conditions, the 
partial derivatives give 

(4.8) <}P 
dp 

II ’ 
l3

 

O 

>
- II 3)3 43) 

, dpL J P o Vpo J 4 da J 

i-y 

in which c„ - v/yp0/p„ is the small-signal adiabatic speed and the right-hand 

side results from using (4.2). By substituting (4.8) into the wave equation as 
given by (4.5) yields 

(4.9) 
d'1=4 43) 
dr2 da J da2 

This is an exact form of the wave equation for a perfect gas. 

4.3.2 First Integral of Exact Wave Equation 

To obtain the first partial integral of (4.9), we shall follow the procedure used 

by Eainshaw [24] in his classic paper of 1859. Specifically, we shall tentatively 

assume that the Lagrangian particle velocity vL (= dXIdt = dfydt) can be 
expressed as a function of BtJBa, i.e., 

(4.10) 
*MI) 

Differentiating this first with respect to t and then with respect to a yields the 
following two equations: 

(4.11) 

resulting in 

d2^ 

dt2 dadt 

f d^4 d2^ 
33 

fd^ 

[da J dadt da2 Ida) 

d2^ 

dr2 -1 
d a j 

d% 

da2 

If this is compared to (4.9), it can be seen that the assumed form of (4.10) is 
valid provided 

(4.12) F' 
fd^ 

= ±cQ 43) 
Kdaj l da) 

and consequently (4.10) is a partial first integral of (4.9). 

By integrating (4.12) and noting (4.10), the particle velocity can then be 
obtained as 
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Hr 

vl = F | -1 Ci + 
2c„ __ o 

y-i 
1 + 

ay2 

y 

The integration constant C, can be found by first observing that if vL = 0, then 

the Lagrangian particle density = p0, and thus by using (4.2), we find that 

Ci = ±2c0/(y - 1), yielding 

(4.13) vl = F 
\da ) 

: +- 
2c„ 

Y-l 

( 
1- 

III 

2 
1 + T“ 

V da j 

Alternatively, this can be written in terms of the pressure, by making use of 

(4.1) and substituting into the adiabatic gas law (4.7), yielding 

(4.14) El 

Po 

(y-iK 
LL 
Y-l 

4.4 Wave Propagation Speed in a Gas 

The propagation speed of a wave can be defined as the rate at which any given 

phase point on the wave propagates. For example, the speed can be found by 

determining the rate at which a specific value of the particle velocity, pressure, 

or density is propagated. We shall do this for a gas under adiabatic conditions 

by first determining the Lagrangian wave propagation speed and, from this, 

the Eulerian speed [17, pp. 177-186]. 
Consider two acoustic particles separated by a known distance. The 

Lagrangian speed can be found by determining the time taken for a specific 

value of the Lagrangian particle velocity vL to occur on the second particle 

after it occurred on the first. Since Vl is a function of a and t, we can write the 

total differential relation as 

dvL = (dvL/dt)dt + (dvL/da)da. 

The condition dvL = 0 corresponds to the same acoustic particle velocity vL 

being transmitted from the particle at a to that at a + da in a time interval of 

dt. Consequently, Lagrangian wave propagation speed is given by 

da 'dvL 
(4.15) 

dt v£=const. v dt / da j 

But (4.11) and (4.12) state ^ 

so that (4.15) reduces to 

dvr 

da 
F' 

da 
.andf'lf ±Cr 63 

v da 

-(Y+l)/2 
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(4.16) 
da 

dt 
— +Cr 

i7.=const. da 

-(Y+l)/2 

Making use of (4.1) to express this equation in terms of the Lagrangian density 

and denoting the Lagrangian wave propagation speed by CL, we obtain 

(4.17) c^u+f' 
-(Y+l)/2 

= ±c„\SL 
P o J 

(r+i)/2 

It should be noted that C£ is exactly equal to the coefficient of (d%/da2) in 

(4.9), so that the exact wave equation is identical in form to the small-signal 

equation, except that CL is no longer a constant. The Lagrangian speed can 

also be expressed in terms of the Lagrangian particle velocity by substituting 
(4.13) into (4.17), yielding 

(4.18) Ci, — +cr 1 + Y-l 
-VL 
2 c0 j 

7+1 

7-1 

To obtain the Eulerian speed [17, pp. 177—186], the total change in 
x (= a + £) can be expressed as 

dx 
da dt 

dt = 1 + |'i)da + ^dt. 
da dt 

or 

(4.19) 
dx (, d^)da 

1 + — — 
V da j dt v£=const. 

+A 
dt 

By substituting (4.16) and (4.8) into (4.19), noting that vL = dljdt, and observ¬ 

ing that the difference between vL and v is small, the Eulerian wave speed can 
be expressed as 

dx 

dt 
+ 
rdp^ 

v=const. V dp J 
+ v(t) = +c0\ — 

P oJ 
+ v(t). 

Alternatively, by making use of (4.13) and (4.16), (4.19) can also be expressed 
as 

(4-20) C£ = +co+X±iv(0. 

It therefore follows that for an observer at a fixed location, the speed with 

which the wave propagates fluctuates about cG and will vary spatially, as illus¬ 

trated in Fig. 4.2. Moreover, an observer moving with a speed of c0, instead of 

seeing a constant density, will see changes in the density that vary in time and 
that depend on the excitation amplitude. 
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Figure 4.2 Variation in the speed of propagation versus distance for an triangular 

particle velocity waveform. 

4.4.1 Why Does the Speed Vary? 

If isothermal conditions exist and the medium obeys Boyle’s law, the pres¬ 

sure/density relation will be linear. The Lagrangian and Eulerian speed equa¬ 

tions can then be obtained by putting y = 1 in (4.18) and (4.20), and these 

are listed in Table 4.1 for outgoing waves (positive x-direction). Evidently, 

since different parts of a given waveform move at different speeds, waveform 

distortion occurs. In the case of propagation under isothermal conditions, 

the speed is modulated by the particle velocity in a simple additive manner. 

At a fixed point in space, during times when there are positive particle veloc¬ 

ities the speed is increased, while during the times of negative velocities 

the speed is diminished. This suggests that the wave is transported by the par¬ 

ticle motion, i.e., it is convected, and is generally referred to as the convection 

contribution to the nonlinear propagation. The expression for the speed in 

Lagrangian coordinates under isothermal propagation conditions depends on 

the particle density: the denser the region, the greater the speed, and vice 

Table 4.1. Wave Propagation Speeds in Ideal Gases for Isothermal and Adiabatic Conditions 

Coordinate 

System 

Isothermal 

JL^SL 
Po Po 

Adiabatic 

Po \ Po / 

lit 

Lagrangian 
C PL ^L — Co 

po 

 Y + l 
Eulerian CE-c0 + v CE = c0 + 1j-v-c0 + v + - 
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versa. Thus, for example, a specific value of pressure takes less time to move 

through a crowded portion of the medium than through a portion that is less 
crowded. 

Under adiabatic conditions the Eulerian speed has been written in two 

forms, the second of which indicates that the propagation speed is modulated 

by the effects of both convection and the nonlinearity of the medium. The non¬ 

linearity of the medium refers to the nonlinear pressure/density relation, which 

is present for an adiabatic gas as well as for most fluids. In the case of a gas 

such as air, y = 1.4, and consequently the ratio of the nonlinearity of the 

medium to that of convection is (y- l)/2 = 0.2, i.e., the convective effect dom¬ 

inates. However, for liquids, as will be seen, the reverse is generally true, so 

that the nonlinearity of the medium dominates the change in propagation 
speed with the particle velocity. 

4.4.2 Coefficient of Nonlinearity and Parameter of 
Nonlinearity for Liquids and Gases 

In the above analysis, the pressure/density relation has been assumed to be 

that of an ideal gas, under either isothermal or adiabatic conditions. For liquids, 

the pressure/density relation can be written as p = p(p,s), where p — pa + px 

and p = p0 + pi. The subscripts refer to the equilibrium and excess values, 
respectively, and s is the entropy. A Taylor series expansion leads to 

(4.21) = ^ 
3P 

1 d2P 
Pi +-~ 

0 2!dp2 
Pi +• 

o Po 2! Vp0 ) 

v Cf* v 
H- 

3! 
Pi 

V Po ) 
+ .. 

where A- pc 
dp 

dp 
■ B = p l/f ,C = (,A? 

0 3p2 0 5P7! 
+ ... 

and the subscript 0 indicates that the partial derivatives are evaluated 

at the equilibrium density, pressure, and entropy. In the above it should be 

noted that A = po(dp/dp)|0 = p0c20, where c0 is the small-signal adiabatic speed 
of sound. 

Now, (4.7) for an adiabatic gas can be written as: 1 + pfPo = (1 + Pl/p„)Y 
which can be expanded as 

(4.22) Pl = Po y —+ 
Po 2! 

y(Y-l)f Pi A + 
y(y-l)(y-2)( Pl 3 

v Po y 3! 
+ • 

v Po 7 

By comparing (4.22) term by term with (4.21), it can be seen that: 

c° = JyPo/p? > B/A = y - 1, and CIA = (y - l)(y - 2). The first-order measure 

of nonlinearity, B/A, is the parameter of nonlinearity, though it is often simply 

referred to as the B/A ratio. Using this parameter, the “exact” wave equation 

as given by (4.9) can now be expressed in a form that is approximate for liquids 
and is “exact” for gases by substituting y = B/A + 1, yielding 
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(4.23) 

yiB/A+Z) 

1+ 
da 3a2 

Subsequent equations can similarly be re-expressed in terms of B/A. Specifi¬ 

cally, from Table 4.1, the Eulerian propagation speed under adiabatic condi¬ 

tions can now be written as 

(4.24) Cf c0 + v + 
B 

2A 
v, 

from which it can be seen that the ratio of the nonlinearity of the medium to 

the convective nonlinearity is simply B/2A. Generally, a coefficient of nonlin¬ 

earity is introduced, defined by 

(4.25) (3 = 1 + 
B 

2A 

so that (4.24) can be written as 

(4.26) CE = c0 + (3v 

Note that for a linear medium, (3 = 1, which from (4.25) corresponds to 

B/A = 0. 
The two most widely used methods for measuring the B/A ratio are the 

finite-amplitude and the thermodynamic methods. In the finite-amplitude 

method, the relative amplitude of the second harmonic is measured, and this 

can be shown to be related to B/A. On the other hand, the thermodynamic 

method makes use of an expansion of the B/A ratio in terms of both the 

change in speed of sound with hydrostatic pressure (dc0ldp)T and with tem¬ 

perature (dcJdT)p, both of which can be measured. Details for both measure¬ 

ment techniques have been described by Law et al. [20] for biological media. 

Listed in Table 4.2 are some representative values, but a much more complete 

tabulation is given in [21] and in Table 1.8 for biological media. 

Table 4.2. Representative Values of the Nonlinearity Parameter, B/A 

Substance H
 O n
 

col m/s B/A Ref. 

Distilled water 20 1482 5.0 [21] 

Distilled water 30 1509 5.3 [20] 

Glycerol 20 1923 8.8 [22] 

Glycerol 30 1901 9.1 [22] 

Whole beef liver 30 1573 6.5 [22] 

Human breast fat 37 1436 9.6 [22] 

Pig fatty tissue 30 1447 11.1 [20] 

Pig whole blood 30 — 6.3 [23] 
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4.5 Reduced Equations 

4.5.1 Exact Form 

In considering 1-D small-signal waves, it was noted in section 1.4.2 that the 

general solution consisted of the superposition of outgoing and incoming 

waves, each of which are solutions to two reduced first-order equations for the 

velocity potential. For large-displacement amplitudes, the reduced wave 

equation in Eulerian coordinates for outgoing plane waves in a non- 

dissipative medium is [19, p. 67] 

(4.27) |( + (co+Pv)^ = 0. 
dt dx 

This can be regarded as an extension of the linear reduced equation by making 

the propagation speed linearly dependent on the particle velocity, i.e., by 

replacing c0 by (ca + |3v) as given by (4.26), thereby resulting in a nonlinear 

equation. Equation 4.27 is exact for an ideal gas and a very good approxima¬ 

tion for most liquids [19, p. 67], To determine the speed with which a given 

phase point propagates, this equation can be combined with the differential 

relation dv = (dv/dt)dt + (dv/dx)dx. Noting that for a given phase point, 
dv = 0, yields 

dx 
= ca + pv. 

which shows that the propagation speed varies from point to point on the 
waveform. 

Three different implicit forms of the solution to (4.27) will be considered. 
The first two can be expressed in the functional forms 

(4.28) v = G{x-(pv + c0)t} 

and 

(4.29) v = f\i--^— X. 
I pv + Co J 

That these are solutions can be verified by substitution into (4.27). The first 

form is the solution for an initial value problem in which the velocity is spec¬ 

ified for all values of x > 0 at time t = 0, i.e., the boundary value v(x,0) = G(x) 

is given. Even though Poisson obtained it for isothermal conditions, it is gen¬ 

erally referred to as the Poisson solution. The second form, which is a modi¬ 

fied form of the Poisson solution, is a boundary value solution since the 

velocity v is specified at a specific plane (x = 0), i.e., v(0: t) = F(t) is given. The 

third form of solution, as first described by Earnshaw [24] in 1860, is the solu¬ 

tion to the classic piston problem in which a source consisting of a planar 

piston starts moving at t = 0. If the location of the piston face at any time t is 

given by X(/), then Earnshaw s solution of (4.27) for outgoing waves is 
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(4.30) v — ——— 5C(c0t — x), 
dt 

where 

|33X((p) dt + c„ 

(a) 

(b) 

and 3C(.) is the unit step function. 

In the expression for (p, the term X(cp) accounts for the fact that the piston 

face is a moving source whose location at a given time t generally differs from 

X = 0. In addition, it should be noted that (p is the time at which a specific value 

of the velocity left the piston face. For example, the leading edge of the veloc¬ 

ity wave corresponds to cp = 0. If the piston displacement is small compared to 

x, then (4.30) reduces to (4.29), i.e., 3X(tp)/3r = F. 

4.5.2 Approximate Form: Quadratic Nonlinearity 

An approximate reduced equation [27, pp. 46-47] can be obtained from the 

“exact” form by rearranging (4.27) as 

(4.31) 
3v _ -1 3v 

dx cD(l + (3v/c0) 31 

and then by assuming that (3v/c0 « 1, yielding 

(4.32) 
dv _ -l(l-(3v/c0) 3v 

dx c0 3t 

An alternative and simpler form can be obtained by transforming to a retarded 

time coordinate system, (x',x) in which x' = x and x = t - x/c0. Since the partial 

derivatives in (4.32) can be written as 

3v 3v dx' 3v dx 

dx dx' dx dx dx 

dv dv 1 , 3v 
--, and — 
dx' dx c0 dt 

dv dx' + 3v 3t _ 3v 

dx' dt dx dt dx 

we find that the approximate equation describing the particle velocity in the 

new coordinate system v(x',x) - v(x,x)is given by 

(4.33) 
3v _ [)v 3v 

dx cl 3x 

A solution to this is given by Blackstock [16] as 

(4.34) v(x,x) = G{x + pvx/c02}. 
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4.6 Sinusoidal Excitation 

4.6.1 Particle Velocity 

Consider a 1-D piston whose displacement is given by X(f) = ^,(1 - cos tof)3C(f), 

i.e., the position of the piston face is at * = 0 at time t = 0 and has a total dis¬ 

placement of X„. Consequently, for t > 0 the piston velocity is K(t)/dt = eoX,, 

sin(o)f)3C(f), and from (4.30), the implicit solution is 

.. . , w, , , x - X„(l- cosoxp) 
(4.35) v = coX0 sin(t0(p)3C(cot-x), where cp=t- 

(3coX0 sincocp + cQ 

From (4.27), it is evident that this solution is valid only up to times or distances 

where dv/dx or dvldt remain finite. 

As an example we consider the piston velocity and displacement waveforms 

shown in Fig. 4.3 for a lossless water-like medium. The spatial distribution of 

v, as calculated from (4.35), is plotted in Fig. 4.4a for the parameters given in 

the caption. Also shown is the small-signal spatial distribution of v, i.e., the 

peak velocity is many times less than ca. The graph is a snapshot of the veloc¬ 

ity distribution from the source location at x ~ 0 to the position where the 

slope becomes infinite. Since the piston movement is very small (~4pm), the 

fact that the source location is moving could have been ignored in the calcu¬ 

lation without incurring a significant error. It is clearly seen that those por¬ 

tions of the waveform that correspond to the higher particle velocities travel 

faster than the small-signal wave, while those with negative velocities travel 

slower. At the location where the slope becomes infinite, a shock wave forms 

Figure 4.3 Velocity and displacement profile for an infinite plane piston source, (a) 
Sinusoidal velocity waveform that is initiated at t = 0, with an amplitude of 25 m/s. 
(b) Source displacement waveform. 



Nonlinear Ultrasonics 241 

Figure 4.4 Particle velocity waveforms, (a) Snapshot view of sinusoidal wave 

propagation into a lossless water medium showing the nonlinear distortion of the 

particle velocity waveform as a function of distance from the source as calculated 

from (4.35) for the excitation waveform shown in Fig. 4.3. It was assumed that [3 = 

3.5, ca = 1500m/s, and the following conditions at the piston: vc = 25 m/s (X,, = 

3.98pm), f0 = 1.0MHz (ka = 1.5 mm). The snapshot is at t = 2.73 ps, corresponding to 

the time at which the leading edge reaches 4.09 mm. Note that at x ~ 4.09 mm, dv/dx 

—oo, corresponding to the development of a shock wave at the leading edge. The 

small-signal velocity is shown as the dashed curve. The graphs in (b) and (c) show 

the time waveforms at the spatial positions indicated in (a). In (c) the slope is nearly 

infinite at the leading edge. 

consisting of a discontinuity in the pressure, density, and velocity. At the two 

indicated x-locations, the velocity waveforms are plotted as a function of time 

in Fig. 4.4b and c. These also clearly demonstrate the increasing harmonic dis¬ 

tortion with distance from the source. 

4.6.2 Pressure Distribution 

To determine the pressure distribution, we can make use of the perfect gas 

relation between v and p, as given by (4.14). A binomial expansion of (4.14) 

yields to a second order in v 

iv+i(x±!)v>, 
Po Co 4 Co 

where p + pa is the total instantaneous pressure. Since pa = p0c„/y, the pressure 

signal can be expressed as 
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P~PoC2o 
(y + l)f v V 

4 \c0) 

It was previously noted that approximate expressions for a liquid can be 

obtained from those for an ideal gas by substituting (3 = (y+ l)/2. Hence the 
pressure signal is 

(4.36) P^PoCo 
v (3 f v 

— + — 
\ 

V C o ) 

which reduces to the usual small-signal impedance relation plv = p0c0 if v <$c 

2c0/(3. It can be seen from (4.36) that the pressure waveform deviates from the 

velocity waveform only if v becomes comparable to ca. For the case consid¬ 

ered in Fig. 4.4, the shape of the spatial pressure distribution is very similar to 

the velocity distribution, except that the pressure varies from +38.6 MPa to 

-36.4 MPa, i.e., the mean pressure is somewhat higher than p0, and the small- 

signal peak pressures (p0c0v0) of ±37.5 MPa lies between the two. 

4.7 Harmonic Content 

4.7.1 Inviscid Medium 

For ultrasound transducers that make use of the piezoelectric effect, the source 

displacement is generally very small compared to a wavelength. With this 

assumption Fubini [25] obtained an explicit form for the steady-state Earn- 

shaw solution [24], Taking the sinusoidal piston excitation assumed earlier, 

namely X(t) = AC(1 - coscot), and assuming small piston displacements, the 
steady-state form of (4.35) is 

(4.37) v = v0 sin(cocp). 

where cocp = cot-75--- 
(3Vosincocp + Co 

and in which va = coX, is the piston velocity amplitude. By assuming that 

(3v0/c0 « 1, the second term in the expression for cocp can be expanded and 
higher-order terms can be neglected. This yields 

and consequently 

cocp ~ cot- 
cox (3v0 sin cocp 

c0 V 

(4.38) v = vQ sin 
(OX,. _ / . 

cot-(l-(3 v/c0) 

By expressing this in terms of the wave number k = co/c0 and the shock for¬ 

mation distance x = c20/(\3cov0) as derived in the next section, it is found that 
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(4.39) — - sin tot -kx + 
Vo 

XV 

Since this is an odd function of (cor - kx), a solution to this transcendental 
V ’rn 

equation can be obtained by expressing v/vc as the Fourier series: — = ^ Am 

sin m(cat - kx). If the standard integral expression for the coefficients Am is 
evaluated by making use of the properties of Bessel functions, it can be readily 
shown that 

(4.40) 

for xlx < 1, (3v0/c0« 1, and where Jm{.) is an ra’th-order cylindrical Bessel func¬ 
tion. Consequently, the velocity amplitude of the m’th harmonic is given by 
vm = 2v0Jm(mx/x)/(mx/x). 

Changes in the fundamental and four harmonics of the particle velocity are 
shown in Fig. 4.5a. It will be noted that the fundamental amplitude decreases 
by only 12% at the shock formation distance. From the linear plot of Fig. 4.5b 
it is clear that the amplitude ratio of the second harmonic to the first is nearly 
a linear function of the normalized distance. Using an approximate analysis of 
nonlinear plane wave propagation in a non-attenuating medium, Thuras et al. 
[26] showed that the ratio of the second harmonic to the first was proportional 
to the distance from the source. Their expression for the pressure amplitude 
is valid provided that x is much less than the shock formation distance so that 
harmonics higher than the second could be neglected. Moreover, in their 1935 
publication they experimentally confirmed this behavior. Their expression can 

be written as 

(4.41) 

where co is the fundamental frequency, px and p2 are the fundamental and 
second harmonic pressure amplitudes, and p0 and v0 are the pressure and 

velocity amplitudes at the source. 

4.7.2 Effect of Attenuation 

To account for the effects of attenuation, Thuras et al. [26] assumed that the 
fundamental and the second harmonic were attenuated as though each was 

the only wave present. They obtained 

(4.42) 



244 Biomedical Ultrasound 

Figure 4.5 Amplitudes vn of the particle velocity harmonics generated by an initially 
sinusoidal plane wave as the shock formation distance is approached, (a) First five 
harmonics assuming that the fundamental component, m = 1, had a unit velocity 
amplitude at x = 0. (b) The ratio of the second to the first harmonic is close to linear 
for x/x < 0.4. 

in which a, and a2 are the attenuation coefficients at the fundamental and 

second harmonic frequencies. Subsequently other derivations of the same 

equation have been described [19], Fig. 4.6 shows an example of a medium 

whose acoustical properties are not too far different from tissue. The shock 

formation distances for the three source pressure amplitudes assumed in the 

figure are *(0.04 MPa) = 230cm, x(0.4MPa) = 23cm, *(0.8 MPa) = 11.5cm. 

4.8 Shock Wave Formation [16] 

A shock wave consists of a very abrupt change in the pressure and particle 

velocity that propagates spatially in such a manner as to cause large and highly 
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Figure 4.6 Ratio of the second harmonic pressure amplitude to the fundamental 
versus distance from the source for a plane CW 2.0 MHz wave as calculated from 
(4.42). Curves are shown for three different values of the source pressure amplitude. 
The medium was assumed to be castor oil at 20°C. For castor oil: BIA = 8.96, a = 
0.096/5/3Np/(cm.MHz’3), ca = 1492m/s, and p0 = 953kg/m’. Thus, ai = 0.305Np/cm 
and a2 = 0.968 Np/cm for 2 and 4 MHz, respectively. 

localized stresses in the propagating medium. In the application of shock-wave 

therapy to kidney stone destruction (lithotripsy), it is currently believed that 

the stresses created by the passage and reflection of the shock wave, together 

with the secondary shock waves due to cavitation, are primarily responsible 

for stone disintegration. 

4.8.1 Plane Shock Waves 

For plane waves traveling in a non-attenuating medium, a shock wave forms 

when dv/df —> and this first occurs at the shock formation distance x cor¬ 

responding to a time t. Expressions for both these quantities can be obtained 

for a piston source by making use of Earnshaw’s equation (4.30). In the dis¬ 

cussion that followed the earlier presentation of this equation, it was noted 

that the value of (p is the time at which a particular incremental portion of the 

signal left the piston face. Evidently, at the shock formation distance there will 

be no change of x with an incremental change in cp, i.e., (dx/d(p)* = 0 and at the 

corresponding time t, (df/dcp),- = 0. These conditions, when applied to (4.30), 

enable both x and t to be found for any given excitation. This will be illus¬ 

trated for the particular case of the sinusoidal excitation shown in Fig. 4.3. By 

finding dx/d(p and df/dtp from (4.35) and equating each to zero, it can be readily 

shown that 

(4.43a) 
cQ + (p-l)X„(osin(Qxp) 

Pto2X0 cos(to(p) 

and 
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(4.43b) i=X0(l cosoxp) + 
[c0 + (|3 - l)X0o> sin Gxp][c0 + pX0co sin cocp] 

pC02Xo cos(co(p) 

From (4.43) it can be seen that the minimum value of t = cj(Pco2Xr,) occurs 

when (p = 0, which corresponds to the leading edge of the excitation wave. 

Consequently, t = c0/(Pco2X„) and x - c2/(p(02Xo). For the conditions listed in 

the caption of Fig. 4.4, we find that x - 4.09 mm and t = 2.73 ps, in agreement 

with the curves shown in Fig. 4.4a and c. Since the assumed excitation wave¬ 

form is periodic, subsequent shocks will also be present, but these will occur 

at distances that are closer to the source, depending on the amplitude of the 

source movement (-0.5% reduction for the case considered above). This is 

because the initial shock front forms in an undisturbed medium, while subse¬ 

quent shocks form in a medium that has already been disturbed. 

4.8.2 Shock Parameter 

The shock formation distance for a sinusoidal plane wave can be expressed in 

terms of the ratio of the source velocity amplitude to the small-signal speed 

of sound, i.e., v0lc0 = eM, which is called the acoustic Mach number. Since 

the source velocity for the sinusoidal excitation being considered is given by 

va = coX; and k = co/cG, the shock formation distance for a plane sinusoidal wave 
traveling in a non-attenuating medium can be written as 

(4.44) x = l/(p keM). 

It is helpful to define a plane wave normalized shock parameter by 

(4.45) oJ = ^ = p/r£Mx, 
x 

so that at the shock formation distance x, as - 1, while os < 1 corresponds to 

the pre-shock regime. For regions beyond x the originally sinusoidal wave¬ 

form becomes more distorted and energy is lost, especially in the shock tran¬ 

sition region (shock front). Thus, os provides a convenient means for 

characterizing the various stages of shock formation. In the case of a spheri¬ 

cally converging wave, it can be shown [19] that when the effects of absorp¬ 

tion are not significant, the radial distance (from the center of curvature) 
where the shock first occurs is given by 

(4.46) r = ae-1/(ptew), 

where a is the radius of curvature of the wave. The shock parameter for this 
case is given by 

(4-47) os = l + fika£M \n(r/r) = -fikaeM In(r/a), 

where r is measured from the center of curvature. Note that for this case 
as = 1 at r - r and os - 0 at r = a. 

As noted earlier, the shock region is a transition region where the pressure 

and velocity change very rapidly. For real fluids, in locations where dv/dt 
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becomes large, energy is more rapidly dissipated, and as a result dv/dt is large 

but not infinite. Analyses of what happens to the wave beyond x have to take 

into account the absorption, and this has been addressed though several 

approximate approaches [19]. One of the simplest is the weak shock theory 

[18], which among other things assumes that dissipation of energy is associ¬ 

ated only with the shock region. Since this assumption implies that the energy 

loss due to ordinary absorption is much smaller, it is evident that this theory 

does not apply to very weak shocks, as its name would seem to imply. It 

requires that the nonlinearity must be sufficiently strong that shocks of sig¬ 

nificant strength can be formed. Based on the Fubini solution given by (4.40), 

which is valid for <3S < 1, and other approximate analyses that are valid for os 

> 1, the waveforms over a full range of distances from the source can be esti¬ 

mated. Sketches [19] for a strong wave are shown in Fig. 4.7. It should be noted 

that at os = 3 a sawtooth wave forms that has a rich harmonic content. Beyond 

os = 3 the higher harmonics of the sawtooth wave are rapidly dissipated and 

the shock front disappears. It can be shown that the amplitude of the wave at 

as » 1 becomes independent of the source amplitude, a phenomenon called 

acoustical saturation. The explanation for this is that any further increase in 

the source energy is exactly balanced by the increased energy lost in the shock 

front over the preceding region. 

4.9 Effects of Nonlinearity, Diffraction, and Attenuation 

In the last chapter we examined the influence of diffraction and attenuation 

on the radiation field characteristics of different transducer geometries under 

small-signal conditions. It therefore remains to extend this discussion to the 

nonlinear propagation regime. 

GS =° 

(a) 
Source waveform 

(9) (h) 
Shock starting Old age 
to disperse 

Figure 4.7 Sketches of the time-domain velocity waveform at increasing distances 
from a sinusoidal source when the amplitude is sufficient to create a strong wave 
(based on Blackstock et al. [4.19]). The shock parameter as is unity at the shock 
formation distance x and is directly proportional to the distance from the source. 
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Because nonlinear effects are involved in diagnostic ultrasound and are an 

inherent part of many therapeutic ultrasound methods, considerable efforts 

have been made to develop theoretical models that provide reasonably 

accurate predictions of the held profiles. The approximations used to arrive at 

methods that can be transformed into computationally efficient algorithms 

often limit the range of spatial locations where good accuracy can be 

expected. 

4.9.1 Burgers' Equations 

An evolution equation, as the name implies, describes the manner in which a 

process develops temporally, spatially, or both. A nonlinear evolution equa¬ 

tion, such as the reduced wave equation of (4.27), describes how the particle 

velocity changes both in time and space. In the framework of quadratic non¬ 

linearity, the reduced wave equation in retarded time3 (x = t - ztc0), as given 

by (4.33), can be rewritten as 

dv(z, t) _ (3v dv 

dz cl ch 
(4.48) 

where the right-hand side of the equation describes the nonlinearity. In the 

case P = 0, the solution is simply a plane progressive wave traveling in the z- 

direction. An exact solution of (4.48) can be written as 

v(z, t) = /(t + P zv/cl). 

For a sinusoidal excitation of v(0,f) = v0sin(cof), the solution is 

(4.39) v(z, t) = va sin[co(f - z/c0) + o>Pzv/cl], 

which is identical to the approximate form of Earnshaw’s solution derived 
earlier. 

To account for the effects of weak absorption due to viscous loss, it can be 

shown [28] that an additional term should be added to the right-hand side of 
(4.48), resulting in 

(4.49) (a) 

where p and pB are the shear and bulk viscosity coefficients. This equation, 

often referred to as Burgers’ equation,4 is one of the simplest models used to 

describe the propagation of a finite-amplitude plane progressive wave in a 

3. Since 3-D propagation is considered in this section and most authors take the z-direction 
as the beam axis, we have switched to this system. 

4. The full form includes a term that accounts for thermal conduction loss, but in the case of 
water-like fluids, this term is much smaller than the viscous loss term and consequently is ignored 
in this and subsequent equations. 
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classic viscous loss medium [27]. An interesting historical account of its devel¬ 

opment has been given by Blackstock et al. [19]. Derivations from first prin¬ 

ciples are given in [32, Chapter 2] as well as in [13]. 

By using the classic linear relation p = poc0v, this equation can also be 

written in terms of the pressure 

(4.49) dp = P 3? , 5 d2P 
dz p0c30 dr 2cl dx2 

(b) 

4 7 
where 8 = 1 pB + —p 'Po- 

A further form can be obtained that expresses the excess wave speed (u = 

(3v) in terms of a frame of reference that moves with the speed c0. Using slightly 

different approximations from those used to obtain (a) and (b), Lighthill [13] 

has shown that 

(4.49) 
du du 
-t-u- 
dt dZ 

5 d2u 

2 dZ2 
(c) 

where Z = z- c0t. It should be noted that although (c) does not directly trans¬ 

form into (a), they were both derived using the same order of approximation. 

A useful method of obtaining a frequency domain solution to (4.49a) is to 

assume a complex Fourier series solution of the form [33, 34, 37, p. 313] 

v(z,t) = i t Uz)*'2”*', 
^ m=-o° 

where vm{z) is the amplitude of the particle velocity of the ra’th harmonic of 

the fundamental/!. Substituting this into (4.49) and from (3.113), noting that 

2 n2f 
the attenuation coefficient is given by a ~ 

p oCo 

shown that [33] 

dvm (z) _ . $2nfi 

2 f 4 

v 
a0f2, it can be 

dz 
= J^~TLy (rn-/)v,vm_; -oc0(m/i) vm. 

2c, 

Now, to a first order, 

vm (z + Az) = vm (z) + Az. 

which enables the iterative description of the propagating wave to be written 

as 

,(z + Az) = vm(z) + j Y.{m-/)v,vm_, - oc0(ra/i f vn 
9 rl 

L z-to t=-°o 

A z. 

The summation term can be rewritten in a form that is more convenient for 

computation, yielding 
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(4.50) vm(z + Az) = vm(z) + 2Zv4V-i + 2. mv4V-i -«oH) v„ 
2Cc V t=l t=m+l / 

Az, 

where the star indicates the complex conjugate, N is the number of harmon¬ 

ics to be retained in the computation process, and we have assumed vm=0 = 0 

[37]. In addition, it has been assumed that the frequency dependence of the 

attenuation coefficient can be more generally written as a(f) - a0fn. 

As an example, we consider an initial 1 MHz sinusoidal plane wave with a 

velocity amplitude of 0.4 m/s propagating in a medium whose attenuation 

increases linearly (n = 1) with frequency with values of 0.3 and 1.0 dB/ 

(cm.MHz). The magnitude of the harmonic amplitudes were calculated using 

(4.50) and are plotted as a function of the normalized distance from the source 

in Fig. 4.8 for two attenuation values. It will be noted that the harmonics reach 

a maximum at a distance from the source that increases with harmonic 

number. Moreover, it can be shown that for zero attenuation the results 

are the same as those obtained with the Fubini method, i.e., vm = 2vJm 
(mx/x)/(mxlx), as discussed earlier (see subsection 4.7.1). 

The 1-D Burgers’ equation can be extended to apply for convergent (+) or 

divergent (-), spherical (n' = 1) or cylindrical waves \n' - 2) and takes the form 
[29] 

(4.51) 
3v(r,x) | v(r,T) 

dr n'r 

(3v dv 1 -1- 
cl dt 2CoPc dr2 

d2v( 4 3 

Ms+3M yj 

for kr » 1, which is known as the generalized Burgers’ equation [21]. In addi¬ 

tion, it should be noted that an augmented form that accounts for nonlinear¬ 

ity, thermoviscous absorption, and multiple relaxation phenomena has been 

derived by Pierce [35], Cleveland et al. [36] have used this formulation and 

have obtained time-domain numerical solutions that are in excellent agree¬ 

ment with a previously derived analytic solution for the special case of a ther¬ 
moviscous mono-relaxing fluid. 

4.9.2 Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation 

To account for the combined effects of diffraction, absorption, and non¬ 

linearity, Kuznetsov [30] extended the work of Zabolotskaya and Khokhlov 

[31] through the inclusion of the viscous loss term and arrived at the follow¬ 

ing approximate 3-D equation for the velocity potential expressed in real 
time: 

(4.52) ^-c|V> = A 
dt2 dt 

1 r 

V P o 

4 ^1 

3 7 
V2<j> + (V<|))‘ + (P-i)fa4> 

cl ydt j 

where the right-hand side accounts for absorption and nonlinearity. In seeking 

a quasi-planar solution for a wave propagating in the z-direction of a Carte- 



Figure 4.8 Frequency-domain solution of Burgers’ equation for a plane wave with 

a fundamental frequency of 1 MHz propagating in a medium with (3 = 3.5, p„ = 

1000 kg/m3, ca = 1500 m/s, and an initial particle velocity amplitude of 0.4 m/s 

corresponding to a peak pressure of 0.6 MPa. The distance is with respect to the 

source and is normalized to the shock distance of 25.6 cm. The particle velocity, 

normalized to 0.4 m/s, is shown for the fundamental and each harmonic. Calculations 

were performed using (4.50). (a) Attenuation of 0.3dB/(cm.MHz). The dashed line 

corresponds to exp[-aof0z]. (b) Attenuation of 1.0dB/(cm.MHz). 

251 
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sian coordinate system, Kuznetsov showed that when expressed in retarded 

time (t = t - z/c0) this could be expressed as5 

(453) 2clp0 

4 ^ 

3 7 

, P 
+ - 

dr2 2 c30 

(c*j>N 
l dr 

in which Vi = + —7 is a transverse Laplacian that operates in a plane 
dx2 dy2 

normal to the direction of propagation. In regard to the viscosity term (pB + 

4p/3), it should be recalled (from Chapter 1) that the presence of the same 

term for a 1-D linear wave gives rise to an attenuation proportional to or. Con¬ 

sequently, the presence of this term in (4.53) can be expected to result in 

approximately the same frequency dependence. To express this parabolic wave 

equation in terms of the pressure distribution, we can assume that p ~ 

p0(3(()/dt) = pG(d(|)/dx), which is consistent with the order of the approximations 

used in (4.53). Taking the partial derivative of (4.53) with respect to time and 

substituting in this the relation between p and d$/dx yields 

(4.54) 1 lX_£iLvip =- 
drdz 2 2c\p0 dr 

4 

dr2 dr 

which is widely known as the KZK [30,31] equation. 

As stated by Hamilton and Morfey [27], the KZK equation is an augmen¬ 

tation of Burgers’ equation that accounts for the combined effects of diffrac¬ 

tion, absorption, and nonlinearity in directional beams. It is frequently used 

for calculating the radiated field when nonlinear effects must be accounted 

for. Moreover, it provides a reasonably good approximation to the field dis¬ 

tribution for sources whose apertures are large compared to a wavelength (ka 

» 1) so that they produce fairly directional waves (quasi-plane), for observa¬ 

tion points that are not too close to the source {z > a(ka)113}, and for points 

that lie within a reasonably narrow cone so that their off-axis locations are not 

too large [38]. It should also be noted that to express the KZK equation in 

terms of the z-component of the particle velocity, we can substitute v, ~ 

p/(p0c0), which is an approximation that is also consistent with the approxi¬ 

mations used in obtaining (4.54). For sources with cylindrical symmetry, cylin¬ 

drical coordinates (r,z) can be used, in which case (4.54) is still applicable, but 
2 i 

now the transverse Laplacian is given by Vy = —7 + ——. 
dr2 r dr 

4.9.3 Attenuation 

The assumption of a simple viscous loss model (which as noted earlier implies 

an to2 frequency dependence) for the attenuation presents problems if absorp- 

5. In obtaining this equation the parabolic approximation has been made, which implies that 

the angular spectrum is narrow so that the wave will be close to planar. 
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tion is to be incorporated in a more general manner. For most biological tissues 

the attenuation can be characterized by an attenuation constant oc(co) = a,/", 

where n is generally around 1 but may lie in the range 1 < n < 2. As noted in 

the last subsection, incorporating such a dependence into a frequency-domain 

method of solution is straightforward, but for a time-domain method it is more 

complex. When a finite difference method is used, the effects of some general 

frequency-dependent absorption processes can be represented by first deter¬ 

mining the transfer function between two incrementally separated planes [39] 

and then obtaining the impulse response. Finally, by convolving this with the 

waveform at a point on the plane at z, the waveform at the corresponding 

point on the plane z + dz can be calculated. The computational burden of this 

approach can be reduced through the use of a wavelet (time-frequency) 

method described by He [40], which uses a bank of digitally implemented 

Gaussian filters to decompose the original signal into a number of narrow- 

band components. Each narrow-band component propagates at a speed 

determined by the dispersion relation associated with the attenuation charac¬ 

teristics and is subject to attenuation governed by the frequency dependence 

of the attenuation coefficient. An alternative approach is to Fourier transform 

the waveform, multiply by the transfer function, and then perform an inverse 

Fourier transform to obtain the attenuated waveform. 
An augmented version of the KZK equation in cylindrical coordinates 

that includes the effects of absorption and dispersion by a medium with 

multiple independent relaxation processes has been presented by Cleveland 

et al. [36]. 

4.10 Numerical Methods and Results 

4.10.1 Using the KZK Equation 

A number of techniques have been developed to enable reasonably efficient 

numerical prediction of the field profiles under conditions that result in sig¬ 

nificant nonlinear behavior. Moreover, comparisons of experimental and 

numerical predictions indicate that within the domain of validity, methods 

based on the KZK equation enable good agreement to be achieved for both 

pulsed and CW excited ultrasound transducers. The original work of 

Bakhvalov et al. in the application of numerical methods for solving the KZK 

equation has been summarized in their book [5]. More recently, Ginsberg and 

Hamilton [37] have reviewed many of the computational methods and have 

pointed out that in general the techniques can be divided into three categories: 

frequency-domain, time-domain, and combined time- and frequency-domain 

methods. 
Frequency-domain methods are appropriate when the source waveform is 

either periodic or quasi-periodic. Since the waveform maintains its periodic¬ 

ity as it progresses from the source, a Fourier series can be used to represent 

the waveform, and consequently the explicit time dependence can be elimi- 
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nated. Basically, this technique leads to a system of coupled differential equa¬ 

tions that can be solved by marching forward in incremental steps. The solu¬ 

tion enables the Fourier coefficient to be determined, and from this the 

time-domain waveform can be calculated. 

For solving the KZK equation in the time domain, the starting point is the 
integral of (4.54), i.e., 

(4.55) 
dz 

= xrf Vipdx + 
1 

2c0p0 _ j y 

d2p adp 

dl2 
p- 

dl 

where the first term on the right-hand side represents the effects of diffrac¬ 

tion. Time-domain methods enable pulsed or short-burst source waveforms to 

be treated and generally employ a finite difference computational approach. 

If the operator-splitting technique is used (also called the method of fractional 

steps: see, for example [47, pp. 847-848]), then (4.55) is split into the follow¬ 
ing three equations: 

(4.56) 

dp _ pp dP-L 

dz clpn dl 

dp 

dz 

f 4 3 

v j J 
2Cop0 

a2_p 

dr2 
= £2 ■ p 

dp _ -ce 

dz 2 

L 

J V{pdx = £3 ■ p, 

(a) 

(b) 

(c) 

and the total change in pressure is assumed to be given by 

(4.57) |?- = £p+£2p + £,-p, 
dz 

in which £n denotes an operator that can be nonlinear. Thus, this method 

assumes that over an incremental distance Az, all three effects are independ¬ 

ent of each other, and the total change in pressure can be approximated by 

their sum. Partial justification for its use is based on the fact that by integrat¬ 

ing the KZK equation with respect to retarded time, a form equivalent to 

(4.57) is obtained. A second-order operator-splitting approach is illustrated 

in Fig. 4.9 [41]. Over each incremental distance Az, three calculations are 

performed. Two of these account for the effects of attenuation and diffraction 

over two half-steps and can be in the frequency domain using the angular spec¬ 

trum approach for diffraction and the frequency-dependent power-law for 

attenuation. The third calculation accounts for nonlinear propagation over a 

full step, and this can be performed in either the time or frequency domain 
using an appropriate form of Burgers’ equation. 

It should be noted that the first of the three equations is identical in form 

to the reduced wave equation of (4.33), so that its analytical solution, as given 
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Figure 4.9 Fractional step marching scheme and the second-order operator-splitting 

approach described by (4.57). The acoustic field from the transducer (Tx) is 

propagated plane by plane in incremental steps. Each step involves the propagation 

of diffraction (D), attenuation (.4), and nonlinearity (AO- (Reproduced, with 

permission, from Zemp et al. [41], J. Acoust. Soc. Am., 113,139-152, © 2003 

Acoustical Society of America.) 

by (4.34), can be used in an incremental form. For a transient waveform, the 

waveform is generally uniformly sampled, but following evaluation of (4.56a) 

these uniform samples become non-uniformly spaced at z + Az because their 

local speed of propagation will differ from cQ, and therefore the waveform at 

z + Az must be resampled before continuing with subsequent steps in the 

procedure. 
Measurements of the harmonic field patterns generated by piston trans¬ 

ducers using large-signal CW excitation were reported by Gould et al. [42] in 

1966. They stated, “The higher harmonics in a definitely nonlinear case have 

as their source the whole three-dimensional fundamental beam, not the piston, 

and so it is not evident that these harmonic components should either closely 

resemble or greatly differ from a linear fundamental beam.” Comparisons of 

experimental results with those predicted by numerical solution of the KZK 

equation have been presented by a number of authors. Some of the on-axis 

measurements of the various harmonic components of the pressure, as 

reported by Nachef et al. [43], are shown in Fig. 4.10. It is evident that one of 

the effects of high excitation levels is to shift the near-field structures closer 

to the transducer. For example, the last maximum under small-signal condi¬ 

tions occurs approximately at 36 cm (a2/X), whereas the measured value for the 

fundamental shown in Fig. 4.10a is close to 26 cm. This shift can be readily 

understood from the observation that the nonlinearity causes energy to be 

depleted from the fundamental to feed the harmonics. From the graphs shown 

in Fig. 4.10b it can be seen that, except in the near-field region, the KZK the¬ 

oretical predictions are in good qualitative agreement with the measured 

values. 
The off-axis measurements for CW excited piston transducers compared 

with numerical predictions have been reported byTenCate [44], Shown in Fig. 

4.11a is the transverse field under small-signal conditions. For high excitation 
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Figure 4.10 Measured on-axis pressure distributions in degassed, deionized water for 

the fundamental, second, third, fourth, and fifth harmonics from a CW excited 

(1.0MHz) plane piston transducer with an effective radius of 23.2 mm. The 

theoretical results were obtained from numerical solutions to the KZK equation 

using the following: coefficient of nonlinearity, (1 = 3.5; Rayleigh distance, zR = na2IX 

= 112.6 cm; absorption coefficient at 1 MHz, a = 6.04 x 10“4Np/cm. (a) Comparison 

of measured results for five harmonics. The arrow marks the location of the last 

maximum for small-signal excitation conditions, (b) Comparison of measured and 

computed results for the first four harmonics. (Reproduced, with permission, from 

Nachef et al. [43], J. Acoust. Soc. Am., 98, 2303-2323, © 1995 Acoustical Society of 
America.) 
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levels it can be seen from Fig. 4.11b that harmonics are generated that have 

transverse profiles with unexpected extra side lobes, which have been termed 

“fingers.” As explained by Berntsen et al. [45], these arise from the scattering 

of sound by sound. In the absence of absorption and far from the source, it 

has been predicted that they should decay with the axial distance as 1 lz, which 

has been experimentally confirmed [44], It should also be observed that the 

harmonic side lobes fall off more quickly than the fundamental. It is likely that 

this is due to the harmonic generation being amplitude-dependent: in loca¬ 

tions where the fundamental amplitude is reduced, the harmonic amplitude 

will be much smaller. 

4.10.2 Other Frequency- and Time-Domain Methods 

Methods that avoid the use of the KZK equation, with the limitations that are 

imposed by the parabolic approximation, have been described by several 

groups [37], and two of these will now be described. 

Frequency Domain 

In the method proposed and studied by Christopher and Parker [46], a phe¬ 

nomenological approach was taken in which over incremental distances the 

individual processes involved (diffraction, absorption, nonlinear propagation) 
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Transverse Distance, mm 

Figure 4.11 Measured off-axis pressure distributions for a CW excited (1.0 MHz) 

plane piston transducer with a radius of 12.1mm in water compared to theory, (a) At 

a range z — 1000 mm for small-signal radiation conditions, (b) The fundamental and 

three harmonics for a source level of 223 dB relative to 1 pPa at a range z = 894 mm. 

The theoretical results were obtained from numerical solutions to the KZK 

equation. (Reproduced, with permission, from TenCate [45], J. Acoust. Soc. Am. 94 
1084-1089, © 1993 Acoustical Society of America.) 
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Velocity field atz -► After 
diffraction 
over Az 

* After -* After 
attenuation nonlinearity 
overAz overAz 

Figure 4.12 Computation process developed by Christopher and Parker [47] for a 

step size of Az. The solid curves show the fundamental normal component of the 

particle velocity as a function of the radial position for a cylindrically symmetrical 

transducer. The dashed and dotted curves are the harmonics. (Based on similar 

drawings in Christopher and Parker [47].) 

are assumed to be independent and can be superimposed, i.e., the operator¬ 

splitting technique just described. In calculating the effects of diffraction 

they made use of the equation for the point-spread function derived on the 

basis of the free space wave equation in Chapter 2 as (2.74). This can be 

written as 

Aze~'kmR f 1 
hp{x,y,z\z + Az) = 2 - + ikm , 

where R = sjx2 + y2 + (Az)2, and the index corresponds to the m’th harmonic 

of the fundamental. According to (2.67), by convolving this with the velocity 

potential on the plane z, the velocity potential on the plane at z + Az can be 

obtained, i.e., 

0(x, y, z + Az) = 0(x, y, z) * hp (x, y, z\z + Az). 

This can be evaluated6 by taking the spatial Fourier transforms of both quan¬ 

tities, and then taking the inverse transform of the product of the two trans¬ 

formed quantities. The result of this step is illustrated by the left-hand side of 

Fig. 4.12. Also illustrated are the attenuation and nonlinearity calculations, 

details of which are given in [46]. 
The results obtained with this technique are illustrated in Fig. 4.13 for 

a simple uniformly apodized piston transducer radiating into water, it was 

assumed that the CW source intensity was 3.3W/cm2, corresponding to a 

source pressure of lOOkPa. With increasing distance from the transducer the 

6. To improve the computational efficiency for their assumed axisymmetric geometry, Christo¬ 

pher and Parker used the discrete Hankel transform as described in [48], 
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Figure 4.13 On-axis CW computed pressure profile for a 2.25 MHz piston transducer 

with a radius of 1.9 cm and an initial pressure amplitude of 100 kPa, and radiating 

into water (ca = 1500 m/s, a = 0.00025 Np/cm). The fundamental and two harmonics 

are shown. (Reproduced, with permission, from Christopher and Parker [7],/. 

Acoust. Soc. Am., 90,488-499, © 1991 Acoustical Society of America.) 

waveform can be expected to become increasingly distorted, and this is 

reflected in the increasing amplitudes of the harmonics. The fundamental 

reaches its last maximum somewhat prior to a2/X, while for the harmonics they 

lie beyond it. Good agreement was demonstrated with experimental meas¬ 

urements, and these results suggest that the field can be more accurately com¬ 

puted close to the source, where the parabolic approximation used for the 
KZK equation breaks down. 

Computed results for the normal component of the acoustic particle veloc¬ 

ity in both the axial and radial directions are shown in Fig. 4.14 for a focused 

transducer, details of which are given in the caption. It should be noted from 

Fig. 4.14b that for the higher harmonics the lateral beam width is reduced, 

a result that might have been expected from considering the reduction in 

wavelength. In addition, the figure clearly shows the presence of the fingers 
discussed earlier. 

Time Domain 

Tavakkoli et al. [49] have described a time-domain technique that is well suited 

for calculating the field for transient transmitted waveforms from both focused 

and plane transducers. They also used the operator-splitting technique but 

employed a second-order method using a gridding scheme with planes normal 

to the z-direction and a step size that depended on the operator being used. 

All calculations were performed in the time domain. The attenuation term was 

evaluated by calculating the convolution of the acoustic velocity and the 

impulse response of a causal minimum-phase filter that characterized the dis- 
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Figure 4.14 Computed field profiles in the axial and radial directions showing the 

normal component of the acoustic particle velocity for a 3.0 MHz focused transducer 

using uniform CW excitation. The transducer was assumed to have an aperture 

diameter of 2.0cm and a geometric focal length of 10cm and to be radiating into 

water (c0 = 1500m/s, a = 0.00025Np/cm, p = 3.5). In addition, a spherically 

symmetrical focusing phase factor was used. The profiles for the fundamental and 

three harmonics are shown for (a) the axial direction at a source intensity of 3 W/cm2 

and (b) the radial direction at the focal plane (z ~ 7.7 cm) for 10 W/cm2. 

(Reproduced, with permission, from Christopher and Parker [47],/. Acoust. Soc. 

Am., 90, 488-499, © 1991 Acoustical Society of America.) 
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sipative and dispersive characteristics of soft tissue, as described in section 

4.9.3. By numerical evaluation of the Rayleigh integral they calculated the 

change in pressure and normal component of the velocity between the grid- 

ding planes. The nonlinear term was evaluated from the approximate form of 

the Earnshaw equation as given by (4.34). The technique has been validated 

by comparison with the nonlinear results obtained for a piston transducer 

using the KZK equation and with experimental measurements [52]. 

Experimental and computational field profiles have been compared for a 

large-aperture multi-element concave transducer that was used for high- 

energy shock-wave therapy [50]. The dimensions of this transducer are given 

in Fig. 4.15. Also shown in this figure are the fluid media and their character¬ 

istics. For the water, the attenuation coefficient is proportional to to2, while for 

the tissue-mimicking fluid (1,3-Butandiol) it is approximately proportional to 

to. For the measurements shown in Fig. 4.16, all the elements were excited with 

an impulse, giving rise to the pressure waveform shown in Fig. 4.16a close to 

the surface. Measurements of the pressure waveform at the focal point were 

performed using a 1-mnr PVDF hydrophone specifically developed for 

recording shock wave pressures [51], and these are shown in Fig. 4.16b and c 

Figure 4.15 Geometry of a 0.36 MHz concave composite transducer used to 

generate shock waves in the volume around the focal point [50], The transducer 

small-signal gain was -30. The transducer field was measured and simulated in the 

focal zone. The medium was degassed, deionized water up to 5 cm from the focal 

point. Beyond this, a tissue-mimicking fluid (1,3-Butandiol) was used. Simulations 

were performed using the time-domain scheme developed by Tavakkoli et al. [4.50]; 

measurements were performed using a PVDF hydrophone specifically developed for 
recording shock wave pressures [51], 



Figure 4.16 Comparison of experimental and calculated results at the focal point of 

the concave transducer shown in Fig. 4.15. (a) Measured pressure waveform at the 

surface of the source. This waveform was used as the input for the computations. 

Measured and computed results for a peak input pressure of (b) 0.476 MPa and (c) 

0.85 MPa. (Reproduced, with permission, from Tavakkoli et al. [4.50],/ Acoust. Soc. 

Am., 104, 2061-2072, © 1998 Acoustical Society of America.) 
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for two different input pressures. For both inputs the field becomes highly non¬ 

linear in the volume surrounding the focal point and a very rapid increase in 
pressure occurs, which is characteristic of a shock wave. 
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5 

Scattering of Ultrasound 

Because of the complex structure of most biological media, the scattered signal 
arising from an incident pulsed ultrasound beam is generally difficult to fully 
interpret, even when details of the structure are available. To address this 
problem, it is helpful to start by assuming a plane harmonic wave incident on 
a simple symmetrical scattering structure. Now any incident harmonic wave 
can be treated as a superposition of plane harmonic waves, and any pulse can 
be transformed into a spectrum of frequencies, so that a solution to the plane 
harmonic wave scattering problem enables a more general problem to be 
solved. Many methods of solution have been used, all of which are based on 
either exact or approximate solution of the wave equation. The boundary 
value method, initially used by Rayleigh [1,2] to obtain approximate solutions 
for spherical and cylindrical scatterers by acoustic waves, will first be studied. 
Small spherical scatterers are frequently used to model the structure of soft 
biological media [3], and in addition a simple spherical scatterer or a small- 
diameter wire is sometimes used to measure the pulse-echo response of an 
ultrasound transducer. Moreover, an array of such objects can be used to 
determine the performance of an imaging system. A Green’s function 
approach can be used to arrive at an integral solution for the scattered wave, 
and this is especially helpful when the density and compressibility of the scat¬ 
tering region vary in a continuous manner. Since the integrand involves the 
sum of the incident and scattered fields, it is generally appropriate to make 
the Born approximation in which the scattered field is assumed to be small 
compared to that incident. Other approximations, such as the assumption of 
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an observation point in the far field and scatterer dimensions that are small 

compared to a wavelength, enable explicit equations to be written for the scat¬ 

tered field. These methods, along with the boundary value approach, are 

reviewed in standard texts [4-6]. For CW scattering by structures with rela¬ 

tively simple shapes such as spheres and cylinders, the volume edited by 

Bowman et al. [7] and the chapter by Varadan et al. [8] are particularly helpful. 

Matrix methods can also be used and can be applied to structures of complex 

shape. One such method will be described and illustrated for calculating the 
scattering by a red blood cell (RBC). 

Based on the assumptions of linear systems theory, a general model for the 

pulse-echo response can be obtained by combining the impulse response for 

the transmission, scattering, and reception processes. Both 1-D and 3-D 

approaches will be discussed. In the final part of this chapter, some approaches 

are described for determining the backscattered signal from a volume that 

contains a distribution of scatterers whose maximum dimensions are small 

compared to a wavelength. The particular case of backscattering by blood is 

examined in some detail. 

5.1 Spherical and Cylindrical Representations of a 
Plane Wave 

One method for obtaining exact solutions for scattering of a plane wave inci¬ 

dent on spheres and cylinders is to express the incident wave as the sum of 

either spherical or cylindrical components. Alternatively, in the case of spher¬ 

ical scatterers, a point source can be assumed and the scattered field calcu¬ 

lated. If the source is moved very far away from the scatterer, the incident field 

will be nearly plane, enabling the plane wave scattered field to be obtained. 

For the first method, the wave expansion expressions are given below. 

For a harmonic plane incident wave propagating in the z-direction with an 

amplitude pim, the pressure can be written as p(z:t) = P;me,to(f~z/Co). If the polar 

coordinates r and 0 are used to specify the plane z, then z = rcosG, so that 

p(r,Q:t) = p,ffle',(0''i,cos9,. It can be shown that this can be expressed as the sum 

of a series of spherical waves given by [2, pp. 272-273] 

(5.1) p(r,G:t) = pime 
j((tit-kr cos 0) 

P im^ 
jot ^Z(-j)n(2n + l)?n(cosQ)J ,(kr), 

2kr «=o 

in which Tn{.) is a Legendre polynomial of the first kind of order n and J„+1/2(.) 

is a cylindrical Bessel function of non-integer order. The latter can be 

expressed in terms of an nth-order spherical Bessel function through the 

relation Jn(kr) = J—^-/„+1/2(Ar). We shall also need an expression for the 
v 2 kr 

radial component of the particle velocity, which can be obtained from (1.37) 

and (1.39) as vy = (j/(i>pN)dp/dr, and the derivative of Bessel functions as given 



270 Biomedical Ultrasound 

in Appendix C. Applying these to (5.1) enables the radial velocity phasor com¬ 

ponent to be expressed as 

(5.2) vr(f,0) = - 
P„nk 
cop0 

n 

2 kr XH)"+1 (2«+]) 
n—0 

JnAkr)-T~JnAkr) 
2 kr 2 

^(cosb). 

Similarly, a plane wave traveling in the z-direction when expressed in cylin¬ 

drical coordinates (r,cp) can be expanded in terms of cylindrical waves [2, 

p. 309]: 

(5.3) J0(kr) + 2^(-j)“j„ (<rr)cos(«<p) 
n=l 

and the radial component of the particle velocity phasor is 

(5.4) v,(r,<f>) = -^ 
C0po 

jJi (kr) + £ (-y)"+1 [/„-! (kr) - Jn+1 (kr)] cos(w<p) 
n=1 

In both the spherical and cylindrical expansions, it should be noted that a 

given component, e.g., n = 1, has an amplitude that depends on the radial dis¬ 

tance through a Bessel function, but which also is angle-dependent through 

either the Legendre polynomial or the cosine function. 

5.2 Scattering Cross-Sections 

In discussing the scattered field characteristics, it is helpful to define the fol¬ 

lowing quantities for an incident plane wave: (i) total cross-section, (ii) scat¬ 

tering cross-section, and (iii) differential scattering cross-section. 

For an incident plane wave, the total cross-section is defined as 

(5.5) 
Time Averaged Total (Scattered + Absorbed) Power 

Time Averaged Incident Intensity 

Because the intensity can be expressed in Watts/nr and the power in Watts, 

the units of o, are square meters, as implied by the use of the term “cross- 

section.” Physically, c, is that area of the incident wavefront that contains an 

amount of incident power equal to the total scattered power plus the power 

absorbed by the scatterer. Thus, the ratio of the total scattering cross-section 

to the physical cross-sectional area of the scatterer provides a useful measure 
of the scattering strength. 

In a similar manner, the scattering cross-section is defined by 

Time Averaged Total Scattered Power Ws 

Time Averaged Incident Intensity J 
(5.5) (b) 



Scattering of Ultrasound 271 

If the absorption cross-section (oa) is defined as the ratio of the time- 

averaged total absorbed power to the average incident intensity, then it 
follows from (a) and (b) that 

G, + Ga . 

The differential scattering cross-section describes the variation of the scattered 

power with angular direction. It can be defined by 

Time Averaged Scattered Power in the 
, , Direction (9, cp) per Unit Solid Angle 

(7,/ (0, (p) =-;-. 
Time Averaged Incident Intensity 

It should be noted that a sphere has a solid angle of 4k steradians (sr), while 

an elementary solid angle is given by dQ - sin QdQdq. If dW(Q,cp) is the power 

scattered in the direction (0.tp) into a solid angle of dQ, then the above defi¬ 

nition is equivalent to 

(5.5) cb(e,(p) 
dW 1 

dQ 7 
da, 
dQ ' 

(c) 

Of major importance is the differential scattering in the opposite direction 

to the incident beam: this is called the (differential) backscattering cross- 

section and is given by 

G6 = Gf/(7r,0). 

The differential and backscattering cross-sections are often expressed in 

cm2/sr. 

5.3 Exact Analysis: Boundary Value Method 

A well-established method for obtaining an exact solution for the scattered 

field due to a plane, cylindrical, or spherical wave incident on a scatterer of 

relatively simple geometry consists of expressing the Helmholtz equation solu¬ 

tion in terms of an infinite series of orthogonal polynomials. Appropriate 

boundary conditions can then be imposed on the scatterer surface to deter¬ 

mine the expansion coefficients. This method will be first illustrated for a plane 

wave incident on a rigid sphere. Two situations will be discussed, both of which 

were originally examined by Rayleigh [1] in his classic paper of 1872. In the 

first, the sphere is assumed to be infinitely dense so that the force created by 

the incident wave will cause no movement, while in the second the density 

condition is relaxed. The same approach will then be used to obtain a solution 

for scattering of a plane wave by an infinitely long compressible cylinder. 

Similar methods can be used for the prolate spheroid [9], of which the sphere 

and cylindrical rod are special cases. 
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5.3.1 Rigid Spherical Scatterer 

Immobile Sphere 

It should be recalled from Chapter 1 that the pressure at a given location r is 

the sum of the incident pressure p, (when the scatterer is absent) and the 

scattered pressure ps, i.e., 

(5.6) p(r:t) = pi(r:t) + ps(r:t). 

As illustrated in Fig. 5.1, we shall assume an incident plane harmonic wave, a 

spherical scatterer of radius a, zero compressibility (kv = 0), and infinite density 

(pv = oo). Tire last condition ensures that the sphere will remain stationary. 

To obtain an expression for the scattered pressure p5, we shall take the 

center of the sphere as the origin of a spherical coordinate system (r,0,tp) and 

note that due to symmetry, the field at any location r is independent of tp. For 

a harmonic wave p(r,0) must satisfy the spherical form of the Helmholtz equa¬ 

tion given by (1.61). Because p(r,Q) is independent of (p, this simplifies to 

(5.7) 
]_d_ 

r2 dr dr 
+ ■ 

1 ( 

r2 sin0 50 

dp 
sin0 — 

50 
+ k2p(r,Q) = 0. 

If the variables in the solution are assumed to be separable, we can write 

(5.8) p(r) = R(r)T(Q). 

Substituting this into (5.7), it can be shown that two independent differential 

equations result, the first of which is the Legendre equation given by 

(5.9) (1 - I2) ■^ - 21) ■^ + n(n + l)J>(ri) = 0, 
dr|2 dr\ 

where n = 0,1,2, 3 ... and q = cos0. Solutions to this are the Legendre poly¬ 

nomials of the first kind, !P„(cos0).The second is Bessel’s equation, which can 
be expressed as 

Figure 5.1 Geometry for calculating the pressure field that results from the 
scattering of an incident plane wave by a rigid sphere. 
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(5.10) 
d2R | 2 dR 

d{kr)2 kr d(kr) 

f 

1 + 

v 

n(n +1) 

(krf 

\ 

R(kr) = 0: 

a solution to which can be expressed in terms of spherical Bessel and Neumann 

functions. If the wave is traveling away from the source, then a solution is 

(5.11) Rn = A„[jn(kr)-jn„(kr)\, (a) 

where the A„ is a constant, and the spherical Bessel and Neumann functions 

J„(.) and n„(.) can be expressed in terms of the cylindrical Bessel and 

Neumann functions by 

(5.11) Jn(kr) (b) 

A complete solution to (5.7) is therefore given by substituting into (5.8) the 

sum of all elementary solutions to Legendre’s and Bessel’s equations. Making 

use of the above relations, the scattered pressure at r can be expressed as 

(5.12) 
71=0 

71 

2 kr 
J i(kr)-j!N i (kr) 

n+—x ' n+- v 7 
2 2 

T^cosG). 

The values of expansion coefficients A„ can be determined by making use of 

the boundary conditions on the surface of the sphere. Since the sphere has 

been assumed to have zero compressibility and to be infinitely dense, the radial 

component of the velocity will be zero. Now the radial velocity component is 

given by vr = (j/(opn)dp/dr, so that by differentiating (5.6) and equating to zero 

the required boundary condition can be written as 

vn(a) + (dpjdr)r=a = 0. 

By evaluating the partial derivative of (5.12) at r- a and substituting (5.2) for 

the previously derived expression for radial velocity of an incident plane wave, 

an equation is obtained that contains all the terms of the summation. Because 

the wave functions are orthogonal, the boundary condition applies to each har¬ 

monic component, enabling the expansion coefficients to be expressed by 

p0 
(-]T2(2n +1) 

1 + jKn (ka) 

where Kn(ka)= 

n 

ka 
!N Aka)-J\f 3(ka) 

' 7 IIJ ' ' n+— 
2 

J 3 (ka)- 
n+—s ' 

2 

n 

ka n+ 
J j(ka) 

By substituting this into (5.12), the scattered pressure phasor is given by 
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(5.13) p(r)=pu 
n (~j)n+2 (2n + l) 

2krj^ \ + jKn{ka) 
J x{kr)-j2N ! 

n+— n+— 
2 2 

(kr) Tn{ cos0). 

For observation points sufficiently distant such that kr » 1, this can be sim¬ 

plified by making use of the fact that the Bessel and Neumann functions can 

be replaced by their limiting forms. Moreover, for scatterers that are much 

smaller than a wavelength (ka « 1), it can be shown that in the far field (5.13) 

simplifies to 

(5.14) Ps(r,Q)~-Pim 
; f 3 

k a e ,kr 1 — cos 0 
3 r { 2 

(a) 

so that the scattered time-averaged intensity, / = psp*/(2p0c0), is given by 

(5.14) Is(r,Q)~p?m k4a6 r 

18p0c0r2 ^ 

3 4 
1 — COS0 

2 

2 

(b) 

This shows that the intensity falls off as the square of the distance, increases as 

the sixth power of the radius {or as the square of the volume) and varies 

inversely as the fourth power of the wavelength1 {or is proportional to the fourth 
power of the frequency). 

The scattering and differential scattering cross-sections can be found from 

the definitions given by (5.5). The total scattered power can be found by 
_ n 

evaluating Ws = |7s(/-,0)27tr2sin 0d0 and this, with the help of (5.14b) and 
o 

(5.5b), enables the scattering cross-section to be expressed as 

(5.15) <T = 
7jtkV 

9 
(a) 

The average power scattered at an angle 0 into an elementary area 

rNinOdOr/cp on the surface of a sphere of radius r can be written as dW = 

iy sin QdQdg). Now, the definition of a solid angle enables an incremental solid 

angle to be expressed as dQ = sin0d0c/cp. Consequently, dW/dQ = fr2 and from 

(5.5c) and (5.14) the differential scattering cross-section is given by 

(5.15) <*rf(0) 
iV 

9 

( 3 
1 — COS0 

l 2 
for ka « 1, r » 1. (b) 

To illustrate the angle dependence of the scattered pressure, we show in 

Fig. 5.2 polar graphs for kr = 50 and six different values of ka, all results being 

computed directly from (5.13). For ka = 0.1, the results are virtually identical 

1. For incident light, the inverse fourth-power intensity dependence on wavelength for small 

scatterers formed the basis of Rayleigh's celebrated explanation as to why the sky is blue [10], 
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ka=OA 
kr =50 

45° 

ka = 1.0 
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Figure 5.2 Polar plots illustrating the scattering of a plane incident wave (direction 

given by arrow) by a small rigid sphere that is fixed in space. The magnitudes of the 

ratios of the scattered to the incident pressures for six different values of ka are 

shown: the numerical values of the ratios are given on the horizontal and vertical 

axes. 
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ka= 3 

At=50 
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90° 45° ka= 5 

Arfl=10 

Figure 5.2 Continued 

to that given by (5.14a). With increasing ka it can be seen that the scattered 

wave contains an increasing component in the forward scattering direction, 

which as expected corresponds to the field that destructively interferes with 
the incident field in the shadow region. 

Free Rigid Sphere 

In the last subsection it was assumed that the sphere was infinitely dense, 

thereby enabling the effect of the incident pressure on its vibration to be 
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neglected. Rayleigh [1] relaxed this assumption but did not account for the 

influence of viscous damping on the movement, which was subsequently 

included by Sewell [11] in a paper published in 1910. It can be shown that for 

a small sphere and in the far field, this results in [12] 

(5.16) Ps(r,Q)~Pim 
kV 

3 r 
.i-2 

2 

(Pv P»)^|J 
cos 9 

3 ,, 
pv Po + 2 Po-^n 

for ka « 1, kr » 1, in which - 1 
a V /(op0 a 

and where p is 

the shear viscosity. For an infinitely dense sphere the term in brackets reduces 

to unity, making the equation identical in magnitude to (5.14a), while for an 

inviscid fluid it reduces to 

(5.17) p Ar, e)~/?„, 
k2a3 . f 3 
-e~,k \ 1- 

3r I 2 

Pr P<> 

.Pv + Po/2 

COS0 

for ka « 1, kr » 1, and p = 0. This shows that if the scatterer and fluid den¬ 

sities are the same, the scattering will be isotropic. 

5.3.2 Compressible Spherical Scatterer 

A similar approach used for the rigid sphere can also be used to determine 

the scattered field caused by a sphere of finite density and non-zero com¬ 

pressibility freely suspended in a fluid medium. As mentioned earlier, move¬ 

ment of the center of the sphere is caused by the net effect of the incident and 

scattered waves and will be in the direction of the incident wave. In addition, 

movement of the sphere causes a movement of the surrounding fluid, and this 

depends on the fluid viscosity. In the case of a solid sphere, wave-mode con¬ 

version can occur at the boundary, making it necessary to account for the pres¬ 

ence of both longitudinal and transverse waves in the sphere. As first discussed 

by Faran [14], the presence of these waves becomes particularly significant 

when the incident frequency approaches that associated with certain normal 

modes of free vibration. In fact, for a transient incident wave, the received 

waveform appears to bear little relationship to that transmitted. Hickling [15] 

corrected an error in Faran’s original paper and reported a comparison of pre¬ 

dictions with experimental measurements for both CW and transient condi¬ 

tions. Similar comparisons have been reported by Neubauer et al. [16] and 

Dragonette et al. [17]. Subsequently, Lin and Raptis [18] accounted for the 

effects of the fluid viscosity. More recently, Numrich and Uberall [19] and 

Hackman [20] have provided extensive reviews of scattering by elastic solids 

that also include an analysis of the effects of Rayleigh surface waves and other 

modes of vibration in spheres and cylinders. 
To simplify the analysis, we shall ignore the above effects and will begin the 

analysis by using (5.12) to write the scattered pressure outside the sphere as 
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p,(r) = X^« 
n=0 

n 

2 knr 
J i(k0r)-j2N~ i(k0r) Tn(c °S0), 

for r > a+, in which the subscript o on the wave number k denotes its value 

outside the sphere and a+ denotes the outer surface of the scatterer. Due to 

the differing speed of propagation, this wave number will generally differ from 

that inside, for which we will use the subscript v. 

Inside the sphere there are no sources and the solution must be continu¬ 

ous at r = 0. Because the spherical Neumann function is discontinuous when 

the argument is zero = -<*>}, it would be inappropriate to use this func¬ 

tion in constructing an expansion for the field in the sphere. Consequently, we 
write the pressure as 

n=0 ' 

~i(kvr)Tn(cosQ), 
2 kvr n+2 

for r < a 

To determine the constants An and B„ in the above equations, it is necessary 

to make use of the surface boundary conditions. These express the equalities 

of the pressures and the normal velocity components on the two sides of the 
surface and can be expressed as 

p.(k0a+) + ps(kQa+) = pv(k0a~) 

vri{k0a+) + vrs (k0a+) = v„(kva~). 

Implicit in these equations is the assumption that the displacement of the 

spherical surface is very small in comparison to the equilibrium radius a. 
Because vr = (j/(op0)dp/dr, the latter can be written as 

P„ + -=L 

dr dr 
k0r=k0a+ 

dp — y 

dr 
kvr=kva 

By applying these to the n’th harmonic component, the values of A„ and B„ 

can be obtained. After considerable algebra, it can be shown that the scattered 
pressure field is given by 

(5T8) Ps{r) = Pin^Cn{-])" {2n + l)h°{k0r)Tn(cosQ), 
n=0 

where 

(5.18) K{kj) 1 71 
v 2 kar 

J n+i{k0r)- n+i{k0r) 
2 2 J 

(a) 

(b) 

is a spherical Hankel function of the second kind of order n, and 
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(5.18) C„ = 
PyCyjnjn°-PoC0jn jn 

p0C0K jn - pyCvjnh'n 

(c) 

in which the prime indicates the partial derivative with respect to r evaluated 

either just inside (superscript v) or just outside (superscript o) the spherical 

boundary.2 In the far field (kar » 1) and for small scatterers (kva « 1), it can 

be shown that (5.18) reduces to 

(5.19) p (r,Q)~ pime -jkr /ra3 

3 r 

Ky~Kc 

K,, 

_l_ ^(pr Po) 

2pv + Po 

which was originally derived by Rayleigh [1, 2, pp. 282-284], 

The above equation will appear again in a slightly different form in describ¬ 

ing the Green's function approach to solving the inhomogeneous wave equa¬ 

tion and will prove to be valuable in discussing the scattering from blood.' 

Consequently, it is profitable to consider its interpretation and physical 

meaning at this point. First, it can be seen that (5.19) comprises two terms rep¬ 

resenting the fractional changes in compressibility and density. The compress¬ 

ibility term is independent of the angle 0 and is referred to as a monopole term 

since it corresponds to a pulsating point source. On the other hand, the density 

term is angle-dependent and is known as the dipole term because it arises from 

oscillatory motion like a dipole source. Thus, one can see that mismatches in 

the mechanical properties will cause the obstacle to undergo different modes 

of vibrations. A mismatch in density causes the obstacle to oscillate back and 

forth about the undisturbed position, whereas a mismatch in compressibility 

causes the obstacle to pulsate (expand and contract). For most soft biological 

media, the dipole term contributes less than the monopole. For example, Fig. 

5.3 shows the scattering of a plane wave by a single RBC in plasma when the 

wavelength is much greater than the maximum dimensions (ka = 0.1). It is 

evident that the dipole contribution is relatively small compared to the mono¬ 

pole contribution. 
For an infinitely dense and incompressible scatterer, it can be seen that 

(5.19) reduces to (5.14a), as expected. The opposite extreme is that of small 

spherical gaseous bubble in a fluid. For example, using the values given in Table 

1.1 for an air bubble in water, the monopole term is (k„ - kg)/k„ ~ (7047 - 

0.46)/0.46 ~ 15000, while the dipole term is 3(pv - p„)/(2p,, + p„) ~ 3(1.2 - 

1000)(2.4 + 1000) « 3. Hence the dipole term can be neglected and because 

Kv » to,, (5.19) simplifies to 

p(r,Q)~pime]kr 
k2a3 K„ 

3r k„ ‘ 

2. By using (5.11b), the spherical Bessel functions in the expression for C„ can be expressed 

in terms of cylindrical Bessel functions of non-integer order, which are more commonly available 

in packages for numerical computation. 

3. A major portion of this paragraph has been extracted from [21]. 
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Figure 5.3 Monopole and dipole contributions to scattering by a single RBC in 

blood plasma when insonated by a plane wave. The RBC was modeled as a sphere 

and the graph shows the pressure distribution (|p| ■>= Vo7) as a function of the 

scattering angle. The dipole and monopole contributions to the total pressure were 

calculated from (5.19) using the following values for horse blood RBCs in plasma 

as measured by Urick [13]: p„ = 1021 kg/m3, pv = 1091 kg/m3, k„ = 0.409 GPa-1, 

k„ = 0.341 GPa1, together with ka = 0.1, kr = 50. If the RBC equivalent radius is 

taken to be 2.7 pm (volume = 82 pm3), then ka = 0.1 corresponds to a frequency 
of ~8.8MHz. 

Comparison of the ratio of the scattered intensity for an air bubble to that of 

a rigid sphere of the same radius in water shows that the air bubble has a scat¬ 
tering strength that is ~108 greater. 

In a similar manner to that for a rigid sphere, the scattering cross-section 

and the differential scattering cross-section for the compressible sphere can 

be obtained from (5.19) and the definitions of (5.5), yielding 

(5.20) _ _ Auk*a 
U c 

9 

(5.20) 

K„ —K,- 

Kr 
+ 3 Pv Pc 

2pv + po 

K,~K0 3(p„ -po) 

K„ 2pv + p0 
COS0 

(a) 

(b) 

As a further example. Fig. 5.4 shows the backscattering cross-section vari¬ 

ation as a function of ka for sphere with a radius of 2.7 pm, making its volume 

the same as that of 82 pm' RBC. The calculations were made with the series 

expansion equation of (5.18) using the parameters given in the figure caption. 

It can be seen that the backscattering cross-section obeys the approximate 

equation of (5.20b) even for values of ka considerably beyond 0.1. For ka > 1, 

e-g-,/> 90MHz, the behavior is dominated by resonance effects. 
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Figure 5.4 Backscattering cross-section for a 2.7 pm radius compressible “RBC” 

sphere in saline over a wide range of ka values using (5.18) with 20 terms in the 

expansion (no change occurred with further terms). The dashed line shows the 

results given by the approximate (small ka) equation, which corresponds to an /4 

frequency dependence. The following parameters were used: pv = 1078 kg/m3, kv = 

0.39115 GPa-1, pc = 1004 kg/m3, k„ = 0.44206 GPa^1, kr = 50, a = 2.7 pm. 

5.3.3 Compressible Cylindrical Scatterer 

With reference to Fig. 5.5, the general problem consists of a plane wave inci¬ 

dent at an arbitrary angle a on an infinitely long cylinder of radius a, whose 

axis coincides with the z-axis. In general, both longitudinal and transverse 

waves will be excited in the cylinder; and, depending on the fluid viscosity, a 

transverse wave can also be propagated in the surrounding fluid. For normal 

incidence (a = 0), the problem becomes much simpler if the fluid is assumed 

to be inviscid and wave-mode conversion effects are neglected. Indeed, 

Rayleigh [2, pp. 309-311] was the first to analyze the scattering for this case, 

though with the added assumptions that the observation point was in the far 

field and the radius was small compared to the wavelength. The effects of fluid 

viscosity [18,22], wave-mode conversion for both normally [14] and obliquely 

incident [23,24] waves, and anisotropy of the cylindrical scatterer [25] have 

also been described. 
The analysis of this problem follows the same scheme used for the sphere. 

Expressions are written for the incident wave in terms of cylindrical harmon¬ 

ics, the scattered wave, and the wave inside the cylinder. The incident wave is 

given by modifying (5.3) to include the incident angle: 

J0(kr) + 2^(-j)n Jn(kr cos a)cos(mp) 
n=1 

p(r,z,(?) = pime 
- jkz sin a 



282 Biomedical Ultrasound 

Figure 5.5 Geometry used in discussing the scattering of a plane wave incident at an 
angle a on an infinitely long cylinder. 

The scattered wave can be expressed in terms of cylindrical Bessel and 
Neumann functions as 

Ps(r'Z,ty) ~ Pime Jk' sma^ An[Jn(kr cos a) - jAfn(kr cos a)] cos(n<p), 
n=0 

and, if wave mode conversion can be ignored, then the wave inside the cylin¬ 
der is represented by 

Pv (r, z, (p) = pime ikz sin “ £ Bn Jn (kr cos a) cos(/Mp). 
n= 0 

By applying the boundary conditions, the constants A„ and B„ can be deter¬ 

mined and it can be shown that the scattered wave pressure in the far field 

(kr » 1) and for a small-radius cylinder (ka « 1) reduces to [4, p. 464] 

(5.21) 

ps(r,z^)~pim k2a2 

2 

j K cos3 a ( K„-K0 

v 2 kr 1 k„ 
+ 2(py-po) cos(pL“;l5+/c(rcosa+zsin“) 

Pv + p o J 

It should be noted that this expression contains a compressibility term giving 

isotropic scattering and a density term that is angle-dependent, similar to that 

of a small sphere. But in contrast to a sphere, the scattering varies inversely 

as A and as to3 2. For a rigid immobile cylinder (kv = 0, pv = «>) and normal 

incidence (a = 0), (5.21) reduces to an equation originally obtained by 
Rayleigh [2, p. 311]: 
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It is of interest to note that cylindrical scatterers are sometimes used to 

model the scattering from tissue. For example, ultrasound scattering by tra¬ 

becular bone has been modeled in this way. Trabecular bone consists of a 3-D 

lattice in which the spaces are filled with bone marrow media. In the approach 

used by Wear [26], ultrasound scattering was modeled by cylinders whose 

diameters were small compared to a wavelength, and whose lengths were 

greater than the beam cross-section. 

5.4 Integral Equation Methods 

Most media possess some degree of inhomogeneity. For example, in the ocean 

there are slight variations in salinity and temperature from region to region: 

these will cause slight changes in the path of an acoustic wave and cause scat¬ 

tering. In tissue, the cellular nature of the media causes local variations of com¬ 

pressibility and density: these are responsible for the speckle background 

patterns seen in ultrasound B-mode images. To characterize the effects of such 

variations, it is first necessary to obtain a wave equation that describes prop¬ 

agation in an inhomogeneous medium. 

5.4.1 Wave Equation for an Inhomogeneous Region 

In this task we follow the derivation given by Morse and Ingard [4, pp. 

407-410], though derivations have been given by others [5, p. 282; 27-29], It 

should be noted that the foundations of this approach and some of the results 

were originally developed and derived by Rayleigh [1; see also 2, pp. 149-152] 

in 1872. 
We assume that the density and compressibility at any location r can be 

represented by values of Ap(r) and Aic(r) superimposed on uniform back¬ 

ground values of p„ and k„, and that Ap(r) and Ak(t) are not restricted in their 

magnitudes. Thus, in the presence of an acoustic field the total density and 

compressibility can be expressed as 

p(r:f) - po + Ap(r) + p! (r:t) = p,(r) + p, (r:f) 

k(t) = kq + Aic(r) = Kv(r) 
(5.22) 

where pi(r:t) is the small-signal acoustic density component, pv(r) is the equi¬ 

librium density, and Kv(r) is the equilibrium compressibility. 
Now the Eulerian form of the equation of state, as given by (1.25), can be 

expressed as 
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in which p is the acoustic pressure and v is the particle velocity. For small 

signals such that c0 » Ivl, dp/dt » v- Vp, so that this equation reduces to 

(5.23) ^l + v. Vp«K,.pv^- 
dt dt 

In addition, the Eulerian form of the continuity equation, as given by (1.22), 
is 

|^ + V-(pv) = 0, 

which can then be expanded to4 

(5.24) % + v- Vp + pV- v = 0. 
at 

Subtracting (5.23) and (5.24) and noting that for small signal conditions 
Pi « p„, so that from (5.22) p ~ pv, we obtain 

KvPv^ = -pV-y«-pvV-v, 

or 

(5.25) Kv^ + V-v = 0. 
dt 

Now for an inviscid fluid, Euler's equation, as given by (1.21) for small-signal 
conditions, can be written as 

(5.26) pv.EL + Vp = 0. 
at 

By taking the partial derivative with respect to time of (5.25) and using (5.26) 
to substitute for d\/dt, we obtain 

(5.27) K,.f£=v.[(i/P,w 

The final form of the wave equation can be obtained bv addins 

1 1 av 
Po V 

V2p 
cl dt2 

to both sides of (5.27) and noting that the wave speed in 

the background region (where Ap(r) = Aic(r) = 0) is denoted by c = l/VpJ<7. 

4. By using the vector relation V • (wu) = u ■ Vw + wV • u. 
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These steps enable the following form of the inhomogeneous wave equation 

to be obtained: 

(5.28) 
2 1 d2p 1 d2p 'kv-k0‘ +v- Pv P" Vnl 

' P 2 ru1 2 tu2 
Co Ot- Co ot 

\p . 

L pv J 
(a) 

On examining this equation, it will be noted that the left-hand side consists of 

the wave equation terms for a uniform medium, while the right-hand side cor¬ 

responds to a radiation source that represents the scattering of energy due to 

the non-uniform nature of the medium. 
An alternative form of (5.28a) can be obtained [27] by first noting that the 

wave speed in the scattering medium is given by c(r) = l/VpdA- By substitut¬ 

ing into (5.27) and transforming4 the right-hand side, it can be readily shown 

that the wave equation reduces to V77 - \ = V(lnpv) Vp. If c = ca + Ac, 
c~ at" 

Ac/cQ « 1, and Ap/p0 « 1, this can be expressed as 

(5.28) V2p 
1 c)2p 

cl 

2Ac d2 p 

cl dt2 
+ V(lnpv) ■ Vp, (b) 

whose right-hand side is the “source” scattering term. 

5.4.2 Integral Scattering Equation 

Consider the arbitrary-shaped scattering volume shown in Fig. 5.6 with 

acoustic properties of K, and pv that can vary throughout Vs. The scattering 

volume is assumed to be imbedded in an infinite background medium whose 

acoustic properties are constant (k„, p„). To obtain an integral equation that 

Scatterer volume, Vs 

Figure 5.6 Scattering volume within which the density and compressibility vary, 

imbedded in a uniform region. The unit vectors r, and r are in the directions ot the 

incident wave and observation point, respectively. 



286 Biomedical Ultrasound 

expresses the total acoustic pressure field (incident + scattered) due to an inci¬ 

dent wave, we make use of (5.28a), which applies to points both within and 

outside the scatterer (outside the scatterer (k„ - k„) = (pv - p0) = 0). For the 
problem at hand it is convenient to write the wave equation as 

V2p - 
1 d2p 

cl dr2 
=-/M. 

where the “source” term f(r:t) is given by (see (5.28a)) 

(5.29) 
d at2 

*v~K0 

K„ 
-V 

P>' P o 

L P, 

whose Fourier transform is 

Pv -J 

In using the Green s function approach for obtaining an integral equation 

foi the scattered pressure field, we write the Fourier transformed version of 

the wave equation and the equation governing the Green’s function as 

(V2 + k2)p~ -F(r:co) 

(V2 + A:2 )G(r|r0) = -8(r - r„) 

in which G is the Green’s function and k = co/cG is the wave number for the 

background medium. We then proceed in the manner previously described in 
Chapter 2 (see (2.8)), i.e., multiplying the above two equations by G and F 

respectively, subtracting, integrating over a volume V that includes the scat¬ 

terer volume Vs, and then making use of Green’s theorem. These steps enable 
the acoustic pressure to be expressed as 

(5.30) F( r:co) = k2 
kv - K0 

P-v- _ K0 J 

(5.31) p(r:co) = JJ dG 

G dn Edn 
dS° + JJJ G( r| r0 )F( v0:cd)dV0, 

where the partial derivatives are in the outward direction normal to the 

surface, and the subscript o serves to remind us that the integrations are with 

respect to rc. Moreover, as noted earlier, outside Vs but within the enclosing 

surface S, pv - p0 = 0 and kv - kc = 0, so that in this region it follows from (5.30) 

that F(r0: to) = 0. Consequently, as indicated, the volume integral can be written 
as being over the scatterer volume Vs. 

Because the background medium has been assumed to be unbounded the 

appropriate Green s function is G(rlrc) = G(lr - rj) = e^HuR, in which 

, r . r°l 1S the dlstance to the observation point r. It can be shown that if 
the surface is a sphere of very large radius so that the incident pressure wave 

enters from infinity, then the surface integral in (5.31) is exactly equal to the 
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incident pressure wave pt. Thus, using (5.30) and (5.31) and noting that ps - 

p - pi, the scattered field pressure can be expressed as 

(5.32) 

P,M = Jjj{fc2£(ro) 
K, K, 

K, 
G(r|r0)-V ■ p. -po 

Pv 

Vp( to) G(r\r0)>dV0, 

in which the operator V is with respect to the coordinates of r0. Tire 

second term can be transformed by means of a vector relation4 to 

V- P, -Pc GV/?(r0) _jT—^[VG-Vp(rD)]. Moreover, by using Gauss’ 
L yx j Kv 

theorem,5 the volume integral of the divergence term can then be converted 

to an integral over the surface enclosing the scatterer. Because this surface 

integral vanishes, (5.32) reduces to 

(5.33) 

£,(r<0)=Jj. 
Vj 

1 
1 

o
 

y
 1 

° 
1 

*
 

>
 

y
 

i
_

i
 

G(r r0) + 
Pv Po 

- Pv - 

[VG(r|ra) • Vp(r0)] ■dV0 

which is often referred to as the scattering equation. It should be noted that 

(5.33) is valid for a scattering region in which both the compressibility and 

density can be spatially varying throughout the volume Vs, in which case both 

terms enclosed by square brackets would be functions of rc. In addition, it is 

valid when the scattering region has constant acoustic properties. The first 

monopolar term is the contribution arising from the difference in compress¬ 

ibility and the second (dipolar) term arises from the density difference. It will 

be noted that both terms depend on the total pressure p =ps + pt and, because 

this is not known, an approximation method must be used to evaluate the scat¬ 

tered pressure. 

5.4.3 Scattering Approximations 

If the scattering is sufficiently weak so that the scattered pressure is much less 

than the incident pressure, the incident wave will remain virtually unchanged 

as it progresses through the scattering volume, i.e.,.p(r„) ~^(r0).This is known 

as the Born approximation and it enables the scattered pressure to be evalu¬ 

ated without having to use, for example, the method of successive approxi¬ 

mations. The assumption of weak scattering also implies that multiple 

scattering (scattering of the scattered wave) can be ignored. 
In addition to the Born approximation, it can often be assumed that the 

observation point is sufficiently far from the scattering region so that an 

approximate expression can be used for the point source Green s function and 

its gradient. With the help of Fig. 5.7, in which it is assumed that r » r„, the 

Green’s function is approximately given by 

5. Gauss’ divergence theorem: divurfK = J£ u hdS. 
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Figure 5.7 Obtaining an approximate expression for the point source Green's 

function in the far field. The insert shows how the scattering vector k, is defined 

and related to 0. The expression for lkyl was obtained by noting that 

|kj| = &[r2 +1? - 2(r • ij)] 
a/2 

■ 2k 
1 - cos 0 

1/2 

G(r|r„) = e~ik^/An\r~r0\ » r")/(4jzr), 

in which r is a unit vector in the direction of the observation point r. In addi¬ 
tion, the gradient is approximated by 

VG(r|r0) = jkrG(r\r„). 

For an incident plane wave in the direction of the unit vector r„ the incident 
pressure and its gradient at a position r are given by 

Pj = Pime ik(T, '\ Vp.= -jkiip., 

where pim is the pressure amplitude. Using the Born approximation, substi¬ 

tuting the above four relations into (5.33), and denoting the angle between the 

incident direction and the observation direction by 0, i.e., cos0 = r, r, the scat¬ 
tered pressure can be written as 

(5.34) PM) = Pin 

-jkr 7,2 

4 nr 111 
vs '-L 

K,.-K0 

K„ 
+ Pr Po 

COS0 [eikr‘> (i i, ]dV 

It is convenient to define a scattering vector ks by: k, = k(r - ?,). With the 

help of the insert in Fig. 5.7, the magnitude of this vector is related to the scat¬ 
tering angle by IkJ = 2/tsin(0/2). Thus, (5.34) can be expressed as: 
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(5.35) 

where 

e~'kr 
p (,r,ks) = pim-0(k,), — 5 f 

(a) 

(5.35) 0(ks) = ^JjJ[yK(ro) + YP(ro)cos Q]ei{r°ks)dV0, (b) 

describes the angular distribution of the scattered pressure, and the y functions 

are given by yK(r0) = (kv - k0)/Ko and yp(r0) = (pv, - p0)/p„. Equation (5.35) shows 

that the scattered pressure at an observation point consists of a spherical wave 

originating from the center of the scattering volume Vs with an amplitude that 

depends on the scattering angle. The derivation assumed an incident plane, 

weak scattering (yK « 1, Kp « 1), and that the observation point was in the 

far field. 
Now the 3-D spatial Fourier transforms of the compressibility and density 

functions can be defined by: 

TK(k,) = JJJyK(r0 )e’to ksdVa, 

and 

rp(k,) = JJJ yp (rc )ejtoksdV0. 

By using these in (5.35), the scattered pressure can be re-expressed in terms 

of the 3-D spatial Fourier transforms of the compressibility and density func¬ 

tions [4, pp. 411-414], i.e., 

j{at-kr) 

(5.36) p(ks:t) = pim /c2{rK(ki.) + rp(ks)cose}. 

The differential scattering cross-section of Vs can be readily obtained from 

(5.35) and the definition given by (5.5c) as 

(5.37) a£/ = |0(k,v)|2. 

Further simplification of (5.34) is possible if the maximum dimension of the 

scattering region is small compared to a wavelength (the long wavelength 

limit). Specifically, for ka « 1, where a is the maximum dimension of the 

volume Vs, the exponential term under the integral sign is approximately unity 

and the integral reduces to the product of the scatterer volume and the spa¬ 

tially averaged compressibility and density terms. Consequently, the scattered 

pressure can be written as 

p(r:(o) = pb 
k2Vs 

4nr 

Ky K„ ^ Pr P» ,-jkr 

(5.38) 
K Pv 

COS0 (a) 
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which is independent of the scatterer shape, is proportional to the scatterer 

volume [2, p. 152], and depends on the mean values of the k’s and p’s over Vs. 

This enables the differential scattering cross-section to be obtained as 

(5.39) 
16jr |_ k0 pv. 

For the particular case of a spherical scatterer of radius a (Vs = 4na3/3) 

whose compressibility and density are constant over the scatterer volume, 
(5.38a) enables the scattered pressure to be expressed as 

(5.38) (b) 

Comparison of (5.38b) with (5.19), derived from the boundary value approach, 

reveals that the two expressions differ in the dipole term. This appears to be 

the result of making the Born approximation, which assumed that the pertur¬ 

bation of the incident wave by the scattering medium was small, i.e., Ap(r)/p 

and Ak(t)/k « 1. By making the additional assumption that the density change 
is small (lpv - pj « p0), the two equations become identical. 

5.5 Matrix Methods 

For more complex scatterer geometries, a variety of methods are available for 

calculating the scattering. One of these, proposed and developed by Waterman 

[30], is paiticularly well suited for scatterers that have some degree of sym¬ 

metry. Subsequent to the initial description for acoustic waves. Waterman [31] 

and Varatharajulu and Pao [32] extended the method to take account of wave¬ 

mode conversion and the presence of transverse waves. Moreover, the method 

has been applied for calculating the scattering from an arbitrary number of 

scatterers [33,34], An outline of Waterman’s technique will be given and illus¬ 
trated for a scatterer with rotational symmetry. 

5.5.1 The T-Matrix of Waterman 

In the method devised by Waterman [30], the field components and the 

Gieen s 1 unction are expanded as an orthonormal set of wave functions. By 

appiying the Helmholtz theorem (see Chapter 2) to regions that are interior 

and exterior to the surface encompassing the scatterer, two relations are 

obtained. These, together with the boundary conditions, are of key importance 

in obtaining the transition T-matrix that relates the expansion coefficients of 

the scattered and incident fields. In his review of scattering by elastic solids, 

Hackman [20] gives a useful summary of the technique and its application. 

The velocity potential at the observation point r can be written as the sum 

of the incident and scattered fields, i.e., O(r,(o) = O,(r,co) + Os(r,co). A scatterer 
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Boun 

ma> 

Host Medium 
P,k 

Figure 5.8 Geometry of an arbitrary scatterer with a bounding surface denoted by S. 
The field point at r is shown as being exterior to S. 

is shown in Fig. 5.8 bounded by a surface S, which is assumed to be piecewise 

smooth. For field points exterior to the scatterer surface, the Flelmholtz 

theorem enables the velocity potential of the scattered field to be expressed 

as 

(5.40) O,(r:co) = -JJ(GV+<f>-0+VG) • ndSa, for r outside S (a) 

where G = G(k\r - rj) is taken to be the free space Green’s function, n is a 

unit vector normal to the surface pointing in an outward direction, 0+ is the 

total field on the outside surface, and V+d> is the gradient of the total field on 

the surface approached from the outside. In addition, it should be noted that 

the subscript o is a reminder that the integration is with respect to the source 

point rG. For field points inside the scatterer, the Helmholtz theorem provides 

a relation between the incident field and that on the surface S. 

(5.40) O, (r:to) = JJ (GV+O - <F+VG) ■ hdSQ, for r inside S. (b) 
s 

Now the free space Green’s function can be expressed as a zero-order spher¬ 

ical Hankel function of kR. i.e., 

In spherical coordinates (r,0,tp) the Green’s function can be expanded in terms 

of outgoing partial wave solutions to the Helmholtz equation. If {\|/„(/cr)} is a 

set of outgoing spherical wave solutions, then, using a simplified notation,6 the 

Green’s function can be written as [30] 

6. Here, a single index n has been used to represent the indices m, n, and c in the full expan¬ 

sion form given below. 
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(5.41) ^(^lr _ ro |) = - ~ X V n (At> ) Re{\j/„ (kr<)}, (a) 

where Re denotes the real part, r> is the greater of (r,r0), and r< is the lesser 

°f (r,r0). In spherical coordinates these wave functions can be expressed in 

terms of associated Legendre7 polynomials P'nn of the first kind, spherical 
Hankel functions hn, and spherical Bessel functions Jn as: 

(5.41) 
Vm,n,a (^l") 

Re{\|/m,„,a(kr)} 

\K(kr) 

l Jn (kr) 
PP(COS 9) 

cos(m(p); a = 1 

sin(mcp); a = 2’ 
(b) 

where n = 1,2,3,... m = 0,1,2,... n, a = 1,2, ym,„ = em (2n +l)-(” m} and 

e0 = 1 and em = 2 for m > 0. 
(n + m)\ 

Both forms of the Helmholtz equation given by (5.40) are used in obtain¬ 

ing the final results. For the first equation, in which the observation point lies 
outside S, (r > r0), if (5.41a) is substituted into (5.40a), then, for r > rn 

' max-* 

(5-42) 0*(*r) = ££n\|/«(*r), (a) 

where the expansion coefficients for the scattered wave are given by 

(5.42) Bn = ^|J{Re{yo(^0)}V,O-4.+V[Re{y,(fcr0)}]} - hdS. (b) 

Foi the incident wave we can make use of an expansion similar to that used 

for a plane wave in (5.1). If the observation point lies inside 5, we substitute 

this expansion together with (5.41a) into (5.40b), so that for r < rmm 

= Re{i|/„ (&r)} 

= 77 X ReK (^)}J] {v„ (kr0 )V+0 - 0+V[i|/„ (kr)]} • ndS0, 

where the coefficients A„ are all known. Because the set of wave functions \j/„ 
are orthogonal, these coefficients are given by 

(5.43) An=~&-jj{ V|fn (kr0) V+<h - <D+V[i|/„ (krc)]} • ndS0. 

To determine the unknown values of V+<h and 0+, boundary conditions must 

be imposedjm the surface S. For example, they could consist of the Neumann’s 

condition (n-V+0 = 0) or Dirichlet’s condition (<F+ = 0). For the more general 

7. The associated Legendre polynomials of the first kind can be defined by: 

Pnm(r) = (-l)m(l~r2)m/2[d'‘Pn(r)/dr-}. 
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case considered in Fig. 5.8 in which the fields penetrate the scatterer, the con¬ 
ditions are that the pressure and the normal component of the particle veloc¬ 
ity are continuous across the interface, i.e., pO+ = p,0_ and n-V+O = n-V O. 
Now the field inside S can be expanded in terms of the set of wave functions 
O = LC„Re[\{/„(kvr)} with expansion coefficients C,„ i.e., <E> = XC„Re{\|/„(/c,.r)}, 
where kv is the propagation constant inside S. Consequently, 0 and, n • V_0 
and therefore 0+ and n-V0+, can be expressed in terms of Cn. By means of 
(5.43) , the coefficients C„ can be expressed in terms of the known incident 
wave expansion coefficients An. Consequently, with the help of (5.42b), the 
scattered wave expansion coefficients B„ can be determined. Specifically, 
Waterman [30] showed that the scattered wave expansion coefficients are 

related to the incident wave coefficients by 

(5.44) Bn = ^Tm^nAn 
m=0 

where TmM are the elements of the transition matrix T given by 

(5.45) 
T_ Re{Q} 

Q 
(a) 

in which 

(5.45) 

Q mn 

k_ 

An 
Re{\|fm {kv r)}V\|/„ (kr) - y „ (kr)V[Re{y m (kv r)}] ■ ndS0. (b) 

Evaluation of this surface integral using spherical coordinates requires that 
the coordinates of the scatterer surface be expressed in the form r = r(9,<p). 

It can be seen that (5.44) enables the scattered wave expansion coefficients 
to be determined, and hence the attributes of the scattered wave are tully 
described by (5.42a). Because the transition matrix depends only on the shape 
and properties of the scatterer, it is independent of the form of the incident 
wave. Consequently, provided the incident wave can be expanded in the 
assumed form, the same matrix can be used to analyze scattering foi dilferent 
incident waves. For observation points that are in the far field, the expansion 
coefficients can be simplified and the number of matrix elements required to 

achieve reasonable accuracy can be greatly reduced. 

5.5.2 Scattering by a Red Blood Cell 

To illustrate the method devised by Waterman, we consider scattering ol a 
plane incident wave by an RBC. At lower ultrasonic frequencies, where the 
maximum dimensions are much less than a wavelength, it is a good approxi¬ 
mation to assume that an RBC behaves as a Rayleigh scatterer (ka « 1) for 
which the radius a is taken to be that of a sphere whose volume is equal to 
that of an RBC. Under these circumstances the differential scattering cross- 
section is given by (5.20b). For example, if the maximum dimension of an RBC 
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Figure 5.9 Biconcave disk model of an RBC in which the surface is given by r4 + a4 

- 2n2/-cos(20) = b4, where b> a> 0 and the major axis is ■s[a2 + b2. The graph is 
plotted for a = 2.337pm, b = a/0.83. (Based on Kuo and Shung [35].) 

is taken to be 8 pm, and it is assumed that the condition ka « 1 can be written 

as 10ka < 1, then 6 MHz is an estimate of the maximum frequency for which 

an RBC behaves as a Rayleigh scatterer. In practice, much higher frequencies 

are sometimes used for imaging and Doppler ultrasound measurements, and 

consequently it is important to know the frequency at which the scattering can 

no longer be assumed to be Rayleigh and to know how the scattering cross- 
section depends on the RBC shape and orientation. 

Kuo and Shung [35] used the T-matrix method of Waterman to investigate 

some ol these questions. They calculated the backscattering from an RBC 

assuming that the shape can be approximated either by a sphere, a flat disk, 

or a biconcave disk. The biconcave disk is the best approximation: its geo¬ 

metric form, together with the equation for its surface,8 is given in Fig. 5.9. 

Because of the rotational symmetry, the form of the wave function given by 

(5.41) simplifies to one that is independent of tp. Moreover, if the observation 

point is in the far field, the large argument Hankel function approximation9 
can be used. 

The RBC and the suspending fluid (saline) were assumed to have the 
following properties: pr = 1078kg/m3, kv = 0.3911 GPa\ p„ = 1004 6kg/m3 

k° - 04421 GPafrom which the speed of sound was calculated. In calculat¬ 
ing the backscattering cross-section, Kuo and Shung [35] assumed that the off- 

diagonal terms of the transition matrix could be neglected. They stated that 

these terms represent mode coupling between different orders of the spheri¬ 

cal harmonics and consequently, in the absence of wave-mode conversion at 

t e scatterer boundary, it is reasonable to assume a diagonal transition matrix. 

thsffj116 T!15 calle<5the Cassini (17th century) oval, which is defined as the set of points such 
he product ot the distances from each point on the surface to the two “foci” is equal to b2 

is h JSSET? aPpi0X™atl°" 3 SPherical Hankel function of the second kind 

Iph/S ;“ * ^ + °'5) 72 .represen.ing an outgoing 
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Figure 5.10 Backscattering cross-section as a function of frequency for a biconcave 
"RBC” calculated using the T-matrix method for different plane wave incident 
angles. The dimensions of a and b are those given in Fig. 5.9 and correspond to a 
volume of 110.5 pm3. (Reproduced, with permission, from Kuo and Shung [5.35], 

IEEE Trans. Biomed. Eng., 41, 29-33, © 1994 IEEE.) 

Based on the above assumptions they calculated the backscattering cross-section 

over a range of ksla +b2 values for a volume11’ of 110.5 pm3. The results shown 

in Fig. 5.10 indicate that the cross-section obeys a /4 frequency dependence 

well beyond ksla2 + b2 = 0.1, and that resonance effects become important 

only at much higher frequencies. Moreover, the results are in qualitative agree¬ 

ment with those of Fig. 5.4, which shows the backscattering cross-section for 

a spherical scatterer11 as calculated using the exact boundary value approach. 

5.6 Time-Domain Scattering Equations 

The complex structure of most biological media requires that substantial 

approximations must be made to arrive at tractable scattering models. For soft 

biological media, one such model is based on the assumption that the medium 

consists of a distribution of discrete scatterers imbedded in a background 

whose acoustic properties are constant. An alternative model is based on the 

assumption that the acoustic properties of the medium vary in a continuous 

manner and that scattering is caused by the changes encountered by the inci¬ 

dent wave. As discussed in the next section, both models can be used to detei- 

mine the pulse-echo response. 

10. This corresponds to the dimensions given in [35, Fig. 4] but differs from the value ot 

80 pm3 given in the paper (private communication from Dr. Kuo). 
11. The rather smaller assumed volume (82 pm1 vs. 110.5 pm1) should be noted. 
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In the particle approach, the scatterers are assumed to be discrete entities, 

perhaps with varying geometry and differing acoustic properties, and to have 

a certain spatial distribution. At a given observation point the scattering con¬ 

tributions can constructively or destructively interfere. If the scatterers are 

small compared to a wavelength, they will behave like Rayleigh scatterers, and 

the contribution to the total scattered signal can be determined in a fairly 

straightforward manner provided the scattering is sufficiently weak so that 

multiple scattering can be neglected. For an incident plane wave and an 

isotropic scatterer, the scattered field can be determined from the pressure 

impulse response, hs(lrc - rid), where rG is the location of the scatterer and r is 
the field position. 

In the continuum model the variations in the acoustic properties are 

assumed to create scattering of the incident wave and give rise to the received 

signal. We shall first obtain a time-domain integral expression for the scattered 

pressure created by variations in compressibility and density in the volume 

Vs and this will be used in the next section to determine the pulse-echo 
response. 

In Chapter 2 expression (2.17) was obtained for the velocity potential in an 

unbounded medium exterior to a source contained within a volume Vs. This 
can be converted to the following equation for the total pressure12 

oo 

(5.46) p(r:t) = pi(r:t) + jjj j g(r|r„:(|r0)/(r|r„:/|f0)A0rfK„ 

in which the unbounded Green’s function is given by 

(5.47) g(r|r„:r|r0) 
4rt|r-r0 

t- t0 + 

also -f(r.t) is the source term in the wave equation and pv(r) and K,.(r) describe 

the spatial dependence of the equilibrium density and compressibility. Now 

the source term, expressed in terms of the k’s and p's, is given by the right- 

hand side of (5.28a), and if we assume that ps(r:t) « Pl(r:t), then the scattered 
pressure is given by 

(5.48) 

1 d2pi 

Kc -O. dt2 

Kv. - K„ 

K, 
+ V- Pv P o 

Va \g{r\ro:t\t0)dt0dVo. (a) 

From (5.28b), the following alternative form can also be obtained using the 
Born approximation: 

., }2th Whlle the eqUati°nS given in Chapter 2 are for the velocity potential, it should be noted 
that the wave equation for the pressure is identical, and consequently the equations referred to 

s,mpIy replac,ng wby pir:,)•,h0U8h lhem no“ 



Scattering of Ultrasound 297 

(5.48) Ps(j'-t) = -JJJ J |2/^- - V(lnpv) • Vp,-|g(r|r0:t|f0)dt0dVo. (b) 
-oo i ca dt J 

For subsequent derivations, it is helpful to simplify the notation by denoting 

volume and surface integrals with a single integral sign and letting dVQ = d3r0 

and dSa = d2r0. Thus, (5.48) can be written as 

(5.49) Ps{r-t)= j J g{r\ro-.t\t0)fop[pi]dt0d2ro, (a) 
VS -oo 

where, for p0 » Ap(r0), the operator fop is given by 

(5.49) fv=—v(Ap)v--r^r ■ (b) 
P O L'O 

In evaluating this operator it should be remembered that the differential oper¬ 

ator V is with respect to rc and that in general both Ap and Ac are functions 

of r0. Equation (5.49a) will be used in the next section in order to obtain a 

relation for the pulse-echo response of a transmitter-receiver system. 

5.7 Pulse-Echo Response 

In a simple ultrasound pulse-echo system, such as that used in early diagnos¬ 

tic systems, ultrasonic pulses are transmitted from a fixed location and cause 

scattered signals to be produced, some of which are back-scattered. These can 

be detected by the receiving transducer that typically will be the same as the 

transmit transducer. If the speed of propagation is nearly constant, then these 

signals will be detected at times that are approximately equal to the depth at 

which the scattering occurs. Consequently, the variation of the received signal 

over time provides a mapping of the acoustic properties through which the 

transmitted pulse propagates. However, as will be seen, the acoustic pioper- 

ties become partially obscured by a number of eflects, such as the frequency- 

dependent attenuation, the spatial distribution of the transmitted pulse, the 

acoustic properties of the surrounding tissue, and the transducer geometry. 

A simplified representation of the pulse-echo response is shown in Fig. 5.11. 

The sample volume can be defined as a region within which the received signal 

will be no less than -6 dB of the peak value for a point scatterer placed any¬ 

where within it. The transmitted pulse convolved with the transmit-receive 

impulse response, in combination with the receiver gating pulse, governs its 

shape. 
In 1977 Gore and Leeman [36] reported an analytical approach to the 

problem of calculating the pulse-echo response using the continuum model 

for scattering. They obtained a frequency-domain expression for the scattered 

pressure but without accounting for the receiving transducer geometry. A 

similar approach was subsequently used by Fatemi and Kak [37], who may not 
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Transmitted Pulse 

t 

Received Signal 

Figure 5.11 Simplified representation of the pulse-echo response, (a) Transmitted 

and gated received waveform, (b) Sample volume resulting from a pulse propagated 

in the z-direction in combination with the receive gating waveform. In practice, the 
shape may differ substantially from that indicated. 

have been aware of Gore and Leeman’s earlier work. Subsequently, Stepan- 

ishen [38] used the particle approach to obtain an expression for the received 

signal voltage waveform for a specified excitation voltage waveform usin« a 

linear system approach. Assuming that the scatterer was a simple point source 

monopole scatterer and that the electromechanical response of the transmis¬ 

sion and reception transducers could be represented by their transfer func¬ 

tion, he obtained frequency- and time-domain expressions for the reception 

transducer output signal. The continuum model has also been used by Dick¬ 

inson and Nassiri [39] and by Jensen [40] for calculating the pulse-echo 

response; the latter derivation forms the basis of the next subsection. 

5.7.1 Continuum Model 

In describing a simple pulse-echo system, we shall assume that the effects of 

attenuation can be ignored and will make use of the geometry shown in Fig. 

5.12 to determine the output voltage from a receiving transducer by scatter- 

ing of a wave produced by a transmitting transducer. It will also be assumed 

that within the volume Vs the variations in the compressibility and density are 

small compared to the constant values in the background medium If the trans¬ 

mitting transducer is excited so as to produce a velocity waveform v (t) on its 

surface, the inhomogeneities within Vs will scatter the incident wave and the 

scattered field will propagate to the receiving transducer surface. We shall 

assume that the receiving transducer is phase-sensitive so that the output 
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Figure 5.12 Coordinate system for calculating the pulse-echo response due to a 

scattering volume Vs. within which both the density and compressibility can change. 

For generality, separate plane transmitting and receiving transducers are shown. 

signal depends on both the amplitude and phase of the signals arriving at each 

element of its area. The net force acting on its surface arises from the pres¬ 

sure created at rr on each elementary area dSr of the receiving transducer by 

the scattered pressure field. Thus, the total force f(t) is given by 

f{t) = K\ pr(rt-.t)d\ 

Sr 

where Sr is the receiver transducer area, pr{xr:t) is the pressure distribution on 

its surface, and the constant K will be assumed to be 2, corresponding to an 

ideal reflecting plane. If the transducer conversion process is assumed to be 

linear, it can be characterized by the transducer electromechanical impulse 

response wsr(t), so that 

(5.50) e0(t) = w*(t)*\2pr(xr\t)d2xr. 

Sr 

Now (5.49a) can be used to express the pressure distribution on the receiv¬ 

ing transducer surface at rr, and therefore is written as 

(5.51) pr{ir:t)=\] 
8[r-fo+|rr-rt,|/c0] 

4tt|iv -rJ 
[pi(ro:t)]dt0d3ro, 

in which 8[? ro + K r»\ / c»j is the free space Green’s function as given by (5.47) 
47t|iy — r0| 

1 . 2Ac 3“ 
and the operator fop was defined in (5.49b) by fop = —V(Ap) • V ln 

P o t'O 

addition, it should again be noted that both Ap and Ac are functions of r0 and 

that the V operator is with respect to ra. 
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To obtain the pulse-echo response it is necessary to relate the pressure inci¬ 

dent on the scattering region p,(r0:f) to the normal component of the velocity 

waveform vn(t) on the transmitting transducer surface. Such a relation was 

derived from the Rayleigh integral in Chapter 2 and was written in (2.37b) as 
the time convolution: 

(5.52) ?, (r0:t) = pc *h,(r0:t), 

where h,(r0:t)is the velocity potential impulse response given by 

(5.53) h,(r0:t) = j 

s, 

5[r-|r0-r,l/cf)] 

2rc|r0-r,| 

and the normal component of the velocity on the transducer surface is related 

to the input voltage waveform et(t) by the transmitter electromechanical 
impulse response wf(r) through 

Vn (t) = w?(t)*ei(t). 

By substituting (5.52) into (5.51) and the resulting expression into (5.50) 

and then rearranging the integration order, the output voltage waveform can 
be written as 

e0(t) = w*(t)*p0j J fol dv„ (t) 

dt 

This can be re-expressed as 

e°(t) = w?(0*PoJfc 

h,(r0:t) 

fMO. 
dt 

S[f-f0 + |rr-ro|/col 

2n\rr -r0| 
d2r,dt0d3ro. 

h,(r0:t) *hr(r0:t)d\ 

where hr(r0:t) - J —- _rJ/| °^d\ is the impulse response of the receiving 

transducer. If the two transducers are identical and are at the same location 
then the above expression for the output voltage reduces to 

«»(') = * J fv[K(r,:t)]d\, 
Vs 

where htr(r0:t) = h,(r0:t) * hr(r0:t) characterizes the pulse-echo response due to 

a point scatterer at rc and that depends on the distance of the transducer from 

t e scatterer. Jensen [40] then makes the assumption that the scattering 

volume is in the far field so that htr(r0:t) varies gradually over Vs, enabling the 
integral in the above convolution to be written as 
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As noted above, h,r(r,;.t) is a function of the distance of the transducer from 

the scatterer, and consequently it can be expressed in terms of the time taken 

for a pulse to travel this distance. If the variations in the propagation speed 

are assumed to be small, this time can be written as t = \r, - r0\lc0, so that 

V2/z,r = (1 /cz0)d2hjdt2. With the above approximations, the output voltage can 

be expressed as 

(5.54) e0(t) = p0w?(t)* 
dv„ (Q 

dt 

2Ac(rQ)jf 1 d2hlr(r0:t)}d3r 

c0 fU2 dt2 J 
(a) 

An alternative form can be obtained by noting that c2Kp = 1, which approxi¬ 

mates to 

2KopocoAc + c2poAK + c2KoAp = 0, 

i.e., -2Ac/c0 = Ak/k0 + Ap/p0. By substitution, (5.54a) becomes 

(5.54) ea{t) p0wrs(f)*^V^^* 
dt 1 l/„ ^ 

[ 2Ap(r„) 
+ 

Po 

AK(r„)}[ 1 d2hlr{r0:t)\ ^ 

k0 Jlc2 dt2 J 
(b) 

It will be noted that the integrand contains two terms. As discussed by Jensen 

[40], the first term corresponds to the acoustic properties of the medium. From 

a measurement perspective, this term is unfortunately obscured by the effects 

of spatial and time convolutions. The time convolution is with the excitation 

velocity waveform and the spatial convolution is with a spatially dependent 

pulse-echo response. 

5.7.2 Single Particle Model [38] 

For the geometry of Fig. 5.13, in which a single point scatterer exists at r„, and 

the discussion given in the last subsection, it is straightforward matter to obtain 

the output voltage in terms of the input voltage waveform. With the help 

of the linear system representation of Fig. 5.14, the following three equations 

can be written down: 

pr(rr:t)*ei{t)*w?(t)*p0 ^ ^*hs(rr:t) (a) 

(5.55) f{t) = 2 J" pr{rr:t)d2tr 
Sr 

(b) 

e0{t) = (c) 
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Figure 5.13 Geometry for determining the transmit-receive response due to a point 
scatterer located at r„. 

Scatterer 

Figure 5.14 Time-domain representation of the transmit-receive response for a 

point scatterer in a non-attenuating medium. The pressure impulse response of the 

isotropic scatterer (i.e., the scattered pressure at an observation point due to an 

incident plane wave impulse) is denoted by hs(rr:t), where r, is a point on the surface 
of the receiving transducer. 

where w?(f) and w%t) are the electromechanical responses of the transmitter and 

receiver transducers and hs(rr:t) is the pressure impulse response of the scatterer. 
By substituting (5.55a) and (b) into (c), the output voltage is given by 

(5.56) eo(t) = p0ei(t)*wf(t)* 
dh,(ra\t) 

dt 
2j hs(r,:t)d2rr 

L Sr 

(f). (a) 

Now a point scatterer in the absence of dipole and higher-order terms has an 
impulse response given by13 

13. This can be more readily seen by first expressing the transfer function of a point scatterer 

as H(rr\rr:wi) = 1S,(co)<?_“lr^r°l/W47tlrr - rj. The inverse Fourier transform is given by hit Ir :t) = 

7 X(■$(©)} * J^{G(rrlr„:co)} = s(t) * 8(f - Ir, - rj/c0)/47tlrr - r„l. 
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hs(rr:t) = s(t) 
* &(t - |iy - r0 \jc„) 

47t|rr-rJ 

where s(t) describes the scattering strength. Consequently, if the transmission 

and receiver transducers are the same, the integral term in (5.56) can be 

written as 

2 f hs(r, :t)d2rr = s(t) * f 5(r 1^ r°l= s(t) * h,(r0 :t), 
J J 2n\r — r 
Sr Sr Kr lo\ 

so that (5.56) becomes 

(5.56) eo(f) = po-^^*H'f(t)*/zf(ro:t)*^(ro:0*K0*w;r(f). (b) 
at 

This was given by Stepanishen [38] together with its equivalent form in the 

frequency domain. 
As an example, we consider a circular transducer of radius a used both 

as a transmitter and receiver. For simplicity, it will be assumed that the 

scatterer is on-axis and that s(t) = s08(r), w%t) = 8(t), w5,(t) = 35(t)/dt. 

Furthermore, the input voltage will be taken to be a Heaviside step function 

DC(f), which results in the normal surface velocity component being a 8- 

function. From (2.38), the velocity potential impulse response is given by 

h,(z:t) = 3C 
( z} f Jz2 + a2) 
t- — 3C t- 

V Co ) \ Co J 
. These values, in combination with either 

(5.56b) or Fig. 5.14, can be used to evaluate the velocity potential and pres¬ 

sure at the scatterer location and the resulting force on the transducer and 

output voltage, all of which are sketched in Fig. 5.15. 

5.8 One-Dimensional Scattering 

In the 3-D analysis presented in section 5.4, scattering of an incident wave was 

assumed to be caused by variations in the density and compressibility through¬ 

out a specified volume. As illustrated in Fig. 5.16, a much simpler situation 

arises for an incident plane wave if the scattering arises from density and com¬ 

pressibility variations in the direction of propagation. This problem was first 

addressed by Wright [43] and Jones [44] by representing the acoustic proper¬ 

ties of the scattering medium by its distance-dependent characteristic imped¬ 

ance and making use of the equations derived in Chapter 1 for the reflection 

and transmission coefficients at normal incidence. They obtained approximate 

expressions for the pressure impulse response of the medium, i.e., the reflected 

pressure wave for a plane incident pressure impulse. An alternative approach 

described by Bamber and Dickinson [42] started with the time-domain form 

of the 1-D scattering equation for small changes in compressibility (Ak = K,, - k„) 



304 Biomedical Ultrasound 

Input Voltage 
► t 

Transducer Surface Velocity 
► t 

n Velocity Potential 

z/c0 J?+a2lc0 at Scatterer 

Pressure 

^ at Scatterer 

Output Voltage 

= Force on 

Transducer 
F 2V 

2 z/co 

(z+Swk 

Figure 5.15 Sketch showing the transmit-receive response for a piston transducer of 
radius a and a point scatterer at a near-field on-axis location of z. 

and density (Ap = pv, - p0). This equation can be obtained from the 3-D form 
given by (5.48a) and is: 

(5.57) ps(z:t)~-\dz0\< 
1 d2P, 

dtr 0 L 

Ak 

K, 
+ - 

dzo 

Ap dp, 
Po dz0 _ 

\g(z\zo:t\t0)dt0. 

where g(z\zo-t\t0) is now the 1-D Green’s function. Expanding the differential 

coefficient of the product and noting that an incident plane wave traveling 

qU-z/Cp) 

Z=Z( 0) 

z= 0 

Z(z) 

K0’P0 

f> = p0+Ap 

Kv= K.+ AK 

Z=Z(0) 

K , O O’ HD 

Figure 5.16 A 1-D scattering problem in which a plane wave is incident on a region 
whose density and compressibility vary in the direction of propagation. The 
scattering region can be treated as having a characteristic impedance that is a 
function z. 
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in the positive z-direction is given by p; = p0(t0 - zjc0), which satisfies 

1 d2pi dzp, ,, , , , ■ dpt 1 dpi 
-— = —— as well as the reduced wave equation,-=-——, (5.57) can 
cl dtl dzl 
be written as 

dz0 Cq 5/ o 

Ak Ap Ap 
Ps(z:t) = jdzoj—l—— 

J J coy c0 dto L k0 p0 J dZo L P„ J at, 
~\g(z\zo-.t\t0)dt0. 

Now Morse and Feshbach [41] have shown that the Green’s function for the 

1-D wave equation can be written in terms of the Heaviside step function as 

g(z\zo-.t\t0) = y 9# - fo) ~ \z~ z0|/ca]. 

By substituting this into the above expression for the scattered pressure, then 

performing the integration with respect to t0, Bamber and Dickinson [42] 

obtained 

r(zt) = J 
a (t, z 2z0] 
dp,\t +- 

V Co CQ J 
4 cn dt 

Ak(z0) | Ap(z0) 

K, 

1 

2 

( z 2 ZG) d 'Ap (ZoY 
L ■+■ 

\ Cq Cq J dz0 . Po . 
'dZo • 

Finally, by integrating the first term by parts and combining with the second, 

they obtained the following convolution integral: 

(5.58) 
2z0 d f Ap(z„) 

c0 J dZo _ P n 

Ak(z0) 

To interpret this expression it is helpful to consider the special case in which 

the scattering region consists of a step change in the acoustic properties at z 

= zi with uniform properties elsewhere. For the incident wave p, = p,(t - z/cD) 

traveling in the positive z-direction, this step change in impedance will cause 

a reflected wave to be generated that moves in the negative z-direction. 

Because the derivative of a step is a 5-function, it follows from (5.58) that the 

reflected wave will be given by pr(z't) 00 p\t + (z — 2zi)/c0], which describes a 

wave moving in the negative z-direction but delayed in time by 2z\/c0. For 

example, if the incident wave is a 5-function p, — AS(t - zlc0), then the reflected 

wave will be given by pr 5[t + (z - 2zi)/c0] for z < Z\. 

In the general case for a plane wave incident on a region whose character¬ 

istic impedance varies in the z-direction, reflections will arise from different 

depths and, depending on the magnitude of the impedance variations, multi¬ 

ple reflections may be present. In fact, the reflection properties of the medium 
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can be characterized by its pressure impulse response h(z), which is the 

reflected pressure wave for an incident 8-function. Thus, for the incident wave 

Pi = Pi(t - z/c0), the reflected wave is given by the convolution pr(z:t) = pi{t + 

z/c) *h(z). When the impedance changes are small so that multiple reflections 

can be ignored and the effects of attenuation are negligible, it is evident that 

the impulse response can be identified with the differential term in (5.58), i.e., 

h(z) 
1 d r Ap Ak 

4 dZo ipo K0 _ 

which, as described below, is related to the variation of the characteristic 
impedance with distance. 

With reference to Fig. 5.16, let Z(z) denote characteristic impedance of the 

medium at a given location z. Since Z(z) = pc = Vp(z)/k(z) then by differenti¬ 

ation IZcIZk + Z dK = dp or 2dZ/Z = dp/p - <Jk/k. Thus, for small density and 
compressibility changes 

1 3 I” Ap Ak 

4dzlpo kg _ 

1 dZ{z) 

2 Z(z) dz 

so that the pressure impulse can also be expressed as 

h(z) 
1 dZ(z) 

2 Z(z) dz 

1 d[\nZ(z)] 

2 dz 

An identical expression for the impulse response was published first by 

Wright [43], and subsequently by Jones [44] and Kak et al. [45], They repre¬ 

sented the scattering region as a sequence of small impedance steps and found 

the impulse response by taking limit as the number of steps became large and 

the step size became small. They also obtained expressions for the impulse 

response when multiple reflections were present. Subsequently, using a rather 
simpler derivation, Leeman [46] obtained the same equations. 

5.9 Scattering by Distributions 

Much attention has been paid to the problem of determining the scattered 

signal when a distribution of particles is insonated by a plane wave. Simplify¬ 

ing approximations are generally needed to make the analysis tractable, and 

these typically include neglecting the effects of multiple scattering. If the scat¬ 

tered are randomly distributed, the position of a given scatterer would be 

uncorrelated with any other, and the scattered power should increase with the 

scatterer number density. On the other hand, correlation between the scatterer 

positions (implying organization) results in interference effects, and these play 

an important role in governing how the scattered power varies with the scat¬ 

terer number density. Added complications result if the scatterers have dif¬ 

fering size, shape, or acoustic properties, as may occur in real tissue. Moreover, 
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if the scatterers are moving, as occurs with blood flowing in a vessel, the scat¬ 

tered signal will be non-stationary and will exhibit a Doppler frequency shift. 

An important example is that of RBCs suspended in a medium known to 

inhibit the formation of aggregates, such as physiological saline. If the con¬ 

centration of RBCs in the suspending fluid is small (e.g., the Hct is <2%), the 

scattered power is found to be directly proportional to the number density. As 

the Hct is increased, the average distance between RBCs decreases and their 

positions become partially correlated, which, as will be seen, has a profound 

effect on the scattered power. These and other issues related to scattering by 

RBCs will be discussed. 

5.9.1 Random Distributions of Point Scatterers 

One of the earliest papers (1945) to address the problem of determining the 

scattering due to a random distribution of isotropic point scatterers, including 

the effects of multiple scattering, was that by Foldy [47], He used a consistent 

wave-equation approach to obtain expected values of the wave function (e.g., 

the velocity potential or pressure), the flux, and the intensity. For N point scat¬ 

terers randomly distributed throughout a specified volume, there can be an 

infinite number of possible arrangements, all of which differ from one another 

in terms of the scatterer locations. A specific distribution will be called a real¬ 

ization, and the expected (statistical average) quantity such as the pressure or 

intensity wifi be denoted by £[.]. 
For a given realization, the scattered pressure at a given observation point 

r can be obtained, and if this process is repeated for many different realiza¬ 

tions, then the expected pressure £[p(r)] and the expected value of the square 

of the pressure E[p2(r)] can be determined. Foldy showed that the expected 

pressure within a volume Vs that contains a random distribution of point scat¬ 

terers satisfies the Helmholtz equation for a uniform medium in which there 

are no scatterers present, though with a speed of propagation that depends on 

the average number density of scatterers and their scattering properties. Con¬ 

sequently, no contribution to the expected pressure can arise from within Vs, 

though a contribution may arise from the effects of the impedance change that 

an incident wave encounters at the bounding surface to Vs. 

Foldy also showed that the expected square of the pressure, £[p2(r)], is gov¬ 

erned by an integral equation that is of fundamental significance to the 

problem of multiple scattering. This equation states that for many realizations 

of a random distribution of point scatterers, E[p2(r)J is the sum of two terms. 

The first is equal to the square of the expected pressure at the observation 

point. The second term consists of an integral over the volume occupied by 

the scatterers, and this accounts for the contributions lrom all scatterers within 

the insonated volume. If the effects of multiple scattering are small, then the 

integrand is proportional to the product of the square of the expected pres¬ 

sure at a particular scatterer and a scattering cross-section per unit volume at 

the same point. This second term is an incoherent contribution in the sense 

that the scatterer positions for a given realization are uncorrelated with those 
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for any other realization, and therefore the scattered signal from different real¬ 

izations will be uncorrelated.14 In contrast, the first term represents a coherent 

scattered wave that can arise from the incident wave encountering a scatter¬ 

ing region that has different average acoustic properties from that outside. 

In view of the above, the expected value of the square of the pressure can 
be written as 

\p(rT =£2[IMr)|]+4K( 

in which the subscripts c and inc stand for the coherent and incoherent parts, 

respectively, E2[.] = {£[.]}2, and E[\pinc{v)\\ = 0. In practice, it is often assumed 

that measurements are made from a sample volume that lies within a region 

whose average acoustic properties are the same as the sample volume. In this 

case, the coherent term is zero and only the incoherent intensity need be 
considered. 

5.9.2 Backscattering Coefficient 

The differential scattering cross-section cd and its backscattering cross-section 

<3h were defined in section 5.2 with a discrete scatterer in mind. If the scatter¬ 

ing volume consists either of a collection of discrete scatterers or a region in 

which the acoustic properties fluctuate spatially, then the incoherent portion 

of the scattered power can be expected to vary in proportion to the scatter¬ 

ing volume and incident intensity. A useful measure of the scattering strength 

of a distribution of scatterers when insonated by a plane harmonic wave is the 
differential scattering coefficient, defined by 

Time Average Scattered Intensity in 

rs sa\ „ ta _ the Direction (0,<p) per United Solid Angle 
o*c^o,cpj- — - --—---;-, (a) 

1 ime Average Incident Intensity x 

Elementary Volume of Scatterers 

in which the elementary volume is assumed to be large enough so that it would 

contain a representative distribution of scatterers. In the case of a statistically 

varying distribution, then the scattered intensity would be the ensemble- 

averaged value. The MKS units are (m.sr)'1, though (cm.sr)’1 are frequently 

used. It is important to note that we have used the same symbol (but a dif¬ 

ferent subscript) as the scattering cross-section to denote the differential scat¬ 

tering coefficient, even though the units differ. Since the same transducer is 

often used both for transmission and reception, the (differential) backscatter¬ 
ing coefficient (BSC) 

G BSC = <7rfrc(tt,0), 

14. In this context the term “incoherent” does not refer to the temporal signal observed for 
a given realization: such a signal will be highly correlated with the incident waveform. It refers to 
the relation between signals obtained from different realizations. 
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is particularly important. If px is the backscattered pressure for a unit volume 

of scatterers at a unit distance away and the incident pressure wave is given 

by p,„,cos(cot), then, because the time-averaged intensity of the incident wave 

is equal to pln/(2pac0), the backscattering coefficient is given by 

(5.59) <7 BSC ~ (b) 

in which the bar denotes the time average. 

5.9.3 A Random Distribution of Scatterers (Hct « 1) 

It is the aim here to obtain an expression for the backscattering coefficient 

due to a large number N of scatterers that are randomly distributed within a 

sample volume V and that have a random distribution of volumes. Any par¬ 

ticular realization can be described by the set {(r^Vi), (r2,IA).... (rw,Viy)}, in 

which r denotes the position vector and Vs denotes the scatterer volume. Four 

different realizations for 2-D distribution of 50 scatterers are illustrated in Fig. 

5.17, together with the backscattered signal for a sinusoidal incident plane 

wave. For the present, it will be assumed that each scatterer is small compared 

to a wavelength and that the number density is small enough so that the effects 

of position correlation due to the finite size of the scatterers can be neglected. 

It will also be assumed that the distance of the observation point from the 

sample volume V is much greater than its maximum dimension and that scat¬ 

tering is sufficiently weak so that multiple scattering can be neglected. This 

model will serve as an introduction to the more difficult task of calculating the 

BSC from blood. The statistical distribution of volumes corresponds to the 

Realization 1 

1* • 

Realization 2 Realization 3 Realization 4 

-10-- 

Figure 5.17 Four 2-D scatterer realizations for N = 50 and the corresponding 
backscattered signal. The scatterers are randomly distributed with a uniform 
distribution and have a volume that is a random variable. The amplitudes (dashed 
line) are Gaussian distributed and the phases (relative to the incident waveform) are 

uniformly distributed over 2tc. 
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known RBC size distribution and the assumption of a very small number 
density corresponds to a low Hct, i.e., less than 2%. 

Suppose that a uniform field is seen by all N scatterers and that each has 

the same acoustic properties but can differ in volume. By applying the princi¬ 

ple of superposition, the total backscattered pressure phasor for a particular 

realization can be found from (5.35) by putting 0 = 71, noting that ks = 2kr„ and 

then summing the contributions from all N scatterers yielding, 

Ps(r.(o) = pim 
k2e~’kr 

4 nr 
,i 2Ar(r0 h)dVn 

where Vsn denotes the volume of the n'th scatterer. Because each particle is 

assumed to be small compared to a wavelength, the exponential term under 

the integral sign remains nearly constant, enabling the integral to be reduced 

to the volume of the n’th particle multiplied by the exponential term. By mul¬ 

tiplying the pressure phasor by an exponential time factor and then taking the 
real part, the scattered pressure becomes 

(5.60) Ps{r:t) 
Pirn ^ Gh 'V'1 

' E[Vs\h 
VnS COs[(Of + <j)„ ], 

where ab is the backscattering cross-section for a particle whose volume is 

equal to the expected volume E[V,], which is, from (5.39), given by 

(k2E[Vs]\ Kv — K0 Pv po 

\ 4n J . K0 p. . 

In addition, the phase angle <()„ — 2k(r„-r,) — kr for the nhh scattering particle 

corresponds to the time delay associated with the incident wave as it travels 
to the scatterer and then back to the observation point. 

Now (5.60) can be written as 

(5.61) A(^:f) = JyL-^jjcos(coOXV^ cos^j-sin^XK* sin[<|)„]j. 

The above equation for the pressure at the observation point for a given real¬ 
ization can be rewritten as 

ps(r:t) = ~ ^ {A cos(cot)-A2 sin(cot)} 

(5.62) r 

=t1 cos(wr -0) 

where A-! and A2 are uncorrelated random variables and tan© = -A2/Ah Let 

us suppose that the random variables Vsn, and in (5.61) are statistically inde¬ 

pendent and 9 is uniformly distributed over the range (-71.7t). According to 
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the Central Limit theorem [49, pp. 194-200], if N is very large the amplitude 

factors A] and A2 will have a zero-mean Gaussian distribution, i.e., their prob¬ 

ability density function (PDF) is 

PDF(A) 1 .-1/(ni) 
^V2rt 

where q2 is the variance (square of the standard deviation). To determine 

£,2 it is first necessary to find the statistical properties of the components 

that are being summed, namely Vs„cos(§„) or Vsn sin((])„). Let us consider 

just the first term. Because (j) is uniformly distributed, it can be shown that 

PDF(cos<|>) = (nVTWi)', and as a result £[cos<|>] = 0 and var(cos<|>) = 0.5. 

It can also be shown that because £[cos(])] = 0, the variance of the product 

ICcostj) is given by var(Lscos<j)) = var(cos<(>){var(V*) + £2[LS]} = 0.5£[V2]. This 

enables the variance of Ax to be expressed as 

^2 = 0.5 NE[VS2], 

and a similar expression can be obtained for A2. But1^ -E2[A2] = £,~, and E\A^\ 

- £,2 so that 

E2[A? + Al\ = 2? = NE[Vs2]. 

We can now return to the problem of finding the backscattering coefficient 

as defined by (5.59b). From (5.62) the expected value of the time-averaged 

backscattered square of the pressure at unit distance from the scatterers can 

be written as 

obN E[(A? + A})\ 

E2[VS} 2 

c„N E[V2] 

2 E2[VS]' 

By substituting this into (5.59b), the backscattering coefficient can be 

expressed as 

(5.63) G BSC — 
<JtN E\Vf\ 

V E\V) 
Ml 
E2[VS] 

(a) 

where np = N/V is the number density of scatterers. Alternatively, this can be 

expressed in terms of the hematocrit. By definition, H = Hct is the fractional 

15. If y = Kx\ and g(x) is a zero mean Gaussian function, then [49, p. 125]: 

E[y] = \~ Kx2g(x)dx,E[y2] = y K2x*g{x)dx and var(y) = E^1}-E^y]. 

In fact, the distribution function for y is given by [48, p. 133]: 

PDF(y) = 1 ,->/(2^2) 
^2 nKy 
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volume occupied by the scatterers, i.e., H = npE[Vs\ so that (5.63a) can be 
written as 

(5.63) G BSC ~ 
H E[VS2] 

E[vs]E2[vs] 

H fvar(K) 1 

E[Vs]\e2[Vs] J 
(b) 

Thus, for very small hematocrits the backscattering coefficient is directly pro¬ 

portional to the Hct and increases with the variance of Vs. Equation (5.63) is 

equivalent to that previously derived [50] for a packing factor of unity (cor¬ 

responding to a pair correlation coefficient of zero, as defined in the next 
subsection). 

5.9.4 Backscattering by Blood 

Blood is a suspension of formed elements in plasma. The formed elements 

consist of erythrocytes (RBCs, Fig. 5.18a), leukocytes (white blood cells), and 

thrombocytes (platelets). In 1mm3 of normal human blood there will be 

approximately 5 x 106 RBCs (vol. ~95pm3), -6000 white blood cells (vol. 

-300pm3), and -300,000 platelets (vol. -15 pm3). Plasma contains a multiplic¬ 

ity of molecules, including some large-molecular-weight proteins, one of which 

(fibrinogen) is believed to be primarily responsible for causing RBCs to clump 

together under low shear conditions (see Fig. 5.18b). Compared to the effects 

of RBCs, the contribution to scattering by white blood cells and platelets can 

be neglected, in the case of white blood cells due to their small number, and 
in the case of platelets due to their small scattering volume. 

Detailed publications in the German literature by Fahrbach [56] in 1969/70 

focused on the nature of the Doppler ultrasound signal (see Chapter 9). These 

indicate that he was likely the first1'1 to theoretically and experimentally study 

the stochastic nature of the backscattered signal from a random distribution 

of moving scatterers. Subsequently, Sigelmann and Reid [55] developed a 

model that enabled the backscattering coefficient to be calculated from exper¬ 

imental data. A report by Brody [57] in 1971 and a subsequent publication 

make it clear that the backscattered signal was due to constructive/destructive 

interference effects. He derived an expression for its autocovariance function 

based on several assumptions, including that the RBCs were independent 

point scatterers. Independent work by Atkinson and Berry [58] presented in 

1974 also recognized the stochastic nature of the backscattered signal. Their 

work was motivated by their observations on the character of the backscat¬ 

tered signal due to the transmission of a short quasi-sinusoidal signal in blood. 

Specifically, as illustrated in Fig. 5.19, they transmitted a short 2 MHz burst and 

noted that the received signal consisted of quasi-random groups separated by 

about 2.5 mm in the axial direction. They also noted that when the transducer 

was displaced laterally and the rectified envelope was recorded at a fixed time 

16. An historical sketch of the development of ultrasound scattering theories for blood is pre¬ 
sented in Table 2 of reference [21], 



Figure 5.18 Optical microscope images (200x magnification) of human RBCs. (a) 
Blood in which aggregation was suppressed, (b) normal whole blood under static 
conditions. (Reprinted by permission of Elsevier from van der Heiden et al. [51], 
Ultrasound Med. Biol., © 1995 World Federation of Ultrasound in Medicine and 

Biology.) 
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Figure 5.19 Backscattered signal from whole blood, (a) Transmitted pulse that has a 

2-MHz center frequency, (b) Received signal, (c) Rectified envelope of (b). (d) 

Rectified envelope at a fixed time when the transducer is displaced laterally. 

(Reproduced with permission of IOP Publishing Ltd., from Atkinson and Berry [58], 
/. Phys. A. Math. Nucl. Gen., © 1998 Institute of Physics.) 

(see Fig. 5.19c), a similar behavior was seen, but with a scale of around 10mm. 

Atkinson and Berry pointed out that the quasi-random changes of the 

returned signal could not arise from any physical structure, since all compo¬ 

nents were much less than a wavelength, and proposed that they arose from 

changes in the local density of RBC scatterers.The statistical diffraction theory 

that they developed to account for their observations has served as a basis for 

many subsequent investigations, particularly for Doppler ultrasound and 
image speckle analysis. 

In the previous subsection, the FIct was assumed to be sufficiently small so 

that the position of a given scatterer was independent of the location of any 

othei scatteier (i.e., no correlation exists between the various scatterer posi¬ 

tions). With increasing Hct, the positions of the scatterers can no longer be 

chosen at random. If we consider the problem of randomly placing a finite¬ 

sized scatterer in a volume that has already achieved a high degree of occu¬ 

pancy, it can be readily appreciated that because many of the chosen positions 

are either occupied by a scatterer or have insufficient room for the placement 

of a new scatterer, the final placement position can be expected to have some 

degree of correlation with the surrounding scatterers. This must be taken into 

account when determining the total mean squared scattered pressure The 

scattering of ultrasound by suspensions of RBCs has been the subject of 

several reviews that also contain comprehensive reference listings. In particu¬ 

lar, the reader is referred to Mo and Cobbold [21], published in 1993 and to 

Cloutier and Qin [52], published late in 1997. 

The two classical approaches used for analyzing the scattering from a sus¬ 

pension of small scatterers are the particle approach (used in the previous 
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subsection for a sparse medium) and the continuum approach. In the particle 

approach it is recognized that RBCs are weak scatterers and that geometric 

ray theory can be applied to sum the scattering contributions. On the other 

hand, the continuum approach makes use of the fact that the resolution 

volume associated with the incident wave will typically contain a very large 

number of scatterers. For example, at a normal Hct of ~45% and for a reso¬ 

lution volume 1 mm3, there will be approximately 5 x 106 RBCs. This suggests 

that the medium can be treated as a continuum with local fluctuations that 

represent the statistical variations in the RBC number density. In addition, a 

hybrid approach has also been developed that combines the strengths of both 

the continuum and particle methods, and this is described below. 

A Hybrid Method 

In the hybrid method developed by Mo [21,53], the sample volume is first 

divided into a large number of elementary volumes (voxels), each of which 

has a maximum dimension much less than a wavelength (e.g., <?c/10). Such a 

small dimension ensures that the incident wave has almost the same phase as 

it strikes each scatterer in a given voxel. As illustrated by the 2-D representa¬ 

tion of Fig. 5.20, at any given instant of time the number of scatterers in each 

Figure 5.20 2-D illustration of the voxel method for calculating the backscattering 

coefficient of a distribution of identical scatterers. (a) Original particle distribution; 

(b) subdivision into voxels; (c) equivalent scatterers placed at voxel geometric 

centers; (d) more accurate representation in which an equivalent scatterer is placed 

at the voxel center of mass. (Adapted from Lim et al. [54]). 
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voxel will differ depending on the distribution of scatterers throughout the 

sample volume, and therefore the scattered waves contributed by each voxel 

can differ both in magnitude and phase. The scattered wave produced by a 

given voxel can be quite accurately represented by a single equivalent scat- 

terer placed at the center of the voxel (see Fig. 5.20c) with a volume equal to 

the sum of all the individual scatterer volumes contained in that voxel. Con¬ 

sequently, the backscattering from a given sample volume can be calculated 

by replacing all voxels with a lattice of equivalent particles placed at the 

center17 of each voxel. The total backscattered signal can then be found by 

simply summing the contributions in much the same way as described in the 

previous subsection. 

It will be shown that the backscattering coefficient is directly proportional 

to average variance in the scatterer number density throughout the sample 

volume. In carrying out numerical simulations of the scattered wave produced 

by a dense suspension, this method has an important computational advan- 

tage. Instead of having to account for the contributions from each scatterer, it 

is only necessary to sum the contributions from the equivalent particles placed 

at the center of each voxel. For a 3-D computer simulation of scattering by 

RBCs at normal hematocrits, it has been shown that this can result in several 

orders of magnitude reduction in computation time [54]. This reference also 

discusses the accuracy of the voxel approach and uses a wideband Gaussian- 

shaped transmit pulse. 

We shall assume that the sample volume V is equally divided into Nx voxels 

of volume Vv whose maximum dimension is much less than a wavelength. It 

is also assumed that the sample volume contains identical non-aggregating 

RBCs, each of which has volume Vs. At any given instant of time t, the number 

of scatterers within a voxel is a random variable, so that for the fth voxel the 

number of scatterers can be expressed as the sum of the expected value E[N,] 
and a fluctuation term n,(t), i.e., 

(5-64) A^r(f) = £[iVv] + ni.(r), 

in which that £[n,(f)] = 0. The backscattered signal produced by the fth voxel, 

which contains NJ(t) scatterers of backscattering cross-sections <jb, can be 

obtained with the help of Fig. 5.21. As indicated, the center of the voxel is 

taken to be at r, relative to the observation point and the n’th scatterer is 

located at Ar„ relative to the center. If the observation point is in the far field, 

then, for an incident plane wave with a wave vector k, the backscattered pres¬ 

sure at the observation point due to all N* scatterers can be obtained from 
(5.60) and Fig. 5.21 as 

Pi{t) = pim 
n 

X cos(cor + ()>„) 
n=l 

17. If the equivalent scatterers are placed at the center of mass (see Fig. 5.20d) of each voxel 
rather than at the center, a more accurate representation can be achieved [54,61], 
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Observation 

Sample 

center Volume, V 
,1. 

/'th Voxel: Volume Vv 

Figure 5.21 Calculating the backscattering produced by a plane incident wave at a 

far distant point from a small voxel that contains N\ scatterers. 

where = 2k-(r, + Ar„). But because (Ar„)max « X « it follows that 

§n = 2k r, = <|), so that the pressure from the fth voxel simplifies to 

(5.65) 

This equation simply states that the backscattered pressure contribution of a 

given voxel can be found by assuming a single scatterer placed at the voxel 

center with a volume equal to the sum of all the scatterer volumes present in 

the voxel. 
The total backscattered pressure waveform can be found by summing over 

all voxels in the sample volume. By substituting (5.64) into (5.65) the pressure 

due to all Nx voxels in the sample volume can be written as 

Fluctuation 

Term 
Crystallographic 

Term 

where E[N]= E[NV\ is the expected number of RBCs in any voxel and f, is the 

transit time from the fth voxel to the observation point. 

The two components in the above equation are illustrated in Fig. 5.22 for a 

2-D distribution. The first component represents the sum of the scattered 

signals from Nx regularly spaced scatterers with the same scattering strength. 

This has been called the crystallographic contribution [53]. Assuming that the 

sample volume is considerably larger than a wavelength, the real part of this 

term gives rise to a phase shift that should be nearly uniformly distributed 

over (—7i, 71) and therefore should approach the average value of a cosine wave, 

which is'zero. The second term, arising from the random fluctuations in the 

local Hct, is called the fluctuation term: hence the notion of fluctuation scat¬ 

tering, a term that was used by Atkinson and Berry [58] and subsequently by 

Angelsen [59] in their analysis of the Doppler signal from a suspension of 

RBCs. For the fluctuation signal that has a time average of zero, negative 
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Figure 5.22 2 D representation of the backscattered signal components using the 
voxel approach. The sample volume is divided into voxels, each of which contains a 
variable number of RBCs. The partially coherent ultrasonic backscattered signal can 
be represented as the sum of a coherent and an incoherent part. In this example 
there is an average of 4 RBCs per voxel, so that the coherent part of the 
backscattered signal is that due to a regular pattern of 4 RBCs in each voxel. The 
incoherent part consists of voxel scattering by either RBCs or by negative RBC 
concentrations (represented by unhlled circles). (Reproduced, with permission, from 
Mo and Cobbold [53], IEEE Trans. Biomed. Eng.. 41, 29-33, © 1992 IEEE.) 

values correspond to negative RBC concentrations. In the following analysis 
it will be assumed that the crystallographic term can be neglected. " 

A straightforward method for calculating the backscattering coefficient is 
through the autocorrelation function R(tu t2) of the process, rather than by pro¬ 
ceeding in the manner of subsection 5.9.3. It is reasonable to assume that the 
n-s in (5.66) are independent random variables that are identically distributed. 
For the process defined by these random variables, it follows from the Central 
Limit theorem that the backscattered signal is a Gaussian process with zero 
mean. It can be shown that such a process is completely characterized by its 
autocorrelation function. For a real random variable jc(f), the autocorrelation 
function is defined as R(tu t2) = E[x(tOx(t2)\. For the special case of h = t2 = t, 
then R(t,t) = E[x2(t)], which is the average power of x(t). Moreover, by taking 
the Fourier transform of the autocorrelation function, the spectral density of 
the process can be determined. It therefore follows that the autocorrelation 
function provides valuable information for characterizing the process. 

By ignoring the crystallographic term, it can be readily shown from (5.66) 
that the scattered pressure autocorrelation function is given by 

RP{h,t2) = E[p(tx)p(t2)\ 

= n2 —E yim 0 L-' 

1=1 

Nx Nx 

'Hk Nx 

L n‘ (ri -) cos(“fi + 4k )£ n, (h ~ t,) cos(cof2 + <j),.) 
i=1 ;=i 

Q X ly X 

i i - 6)«/ (L - tj)] cos(©fi + (|),.) cos(tor2 + d ) 
' /=1 y=l T// 



Scattering of Ultrasound 319 

To reduce this expression to a single summation, we shall assume that in the 

interval (h - t2) all the RBCs in a given voxel are simply replaced by those in 

another, thereby producing a new representation. Consequently, out of the N~x 

terms there will be Nx pairs such that n,(tx - t) = ui(f2 - t,) and to, = to, (which 

implies that <t>, = fy). Furthermore, the Nv(l - Nv) remaining terms should 

approach zero, since the voxel contributions have zero mean and are statisti¬ 

cally independent. In addition, the variance of the number of RBCs in a voxel 

will be denoted by var(n) = C[{Afv - -E[iVv]} ], which we have assumed to be 

spatially independent throughout the sample volume. In view of the above and 

noting that var(n) = E[n;(tx - r,)], the autocorrelation function for the scattered 

pressure reduces to 

Rp {h, h) = pi, -T cos(wr 1 + 0/) cos(cof2 + (j),-). 
f i=i 

But for the stationary (wide-sense) process considered, the autocorrelation 

function depends only on tx - t2 = x. Consequently, the above equation, with 

the help of a trigonometric relation, can be written as 

Rp (t) = pi, var(n)cos 2(cox) +1X cosMb +t2 + 2(1)' )| 

If the sample volume dimensions are much greater than a wavelength so that 

the total number of voxels (Nx) will be large, the summation term will 

approach zero, and as a result 

(5.67) RP(0) = pi 
QbNx 

2 r2 
var (n). 

Noting that for a stationary process E[x2(x)\ = R(0) and that the backscatter- 

ing coefficient, as expressed by (5.59b), is in terms of the mean square pies- 

sure at a unit distance away from a unit scattering volume, the BSC can be 

written as cBSC - 2r2Rp(0)/(Vpl), where V is the sample volume. Substituting 

(5.67) into this equation yields 

(5.68) <5 BSC - 

cbNx var(n) _ oh var(n) 

V K 

where the voxel volume is given by Vv = V/Nx. Thus, the backscattering coef¬ 

ficient is directly proportional to the concentration variance of RBCs in the 

voxels, a result originally obtained by Angelsen [59] by using the continuum 

approach. . 
To theoretically predict how the BSC depends on the hematocrit (H) an 

expression for the dependence of the variance of the scatterer concenti ation 

is needed. This can be achieved by obtaining an expression for the packing 
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factor18 W and relating it to the variance. Physically, the packing factor can be 

viewed as a measure of the orderliness in the spatial arrangement of the RBCs. 

It is a measure of the amount of empty space (sometimes referred to as elbow 

room) between the scatterers. It can be shown [60,61] that the variance of the 
scatterer concentration is related to W by 

(5-69) var(n) = VvepW, 

where ep(=MV) is the average concentration of scatterers (number per unit 

volume) in the sample volume. The packing factor is given by [61] 

(5.70) W = 1 - e,v, + JJ A, A, P(r,, r,), 
EPVv w 

in which P(r„ r;)d3r,£/3ry is the pair correlation function. The latter is the prob¬ 

ability of finding the fth and ;’th scatterer in two distinct volumes d3r, and dhn 

respectively. By substituting (5.69) into (5.68) and noting that the Hct can be 

expressed in terms of the RBC volume by H = NVJV = epVs, the BSC can 
be written as 

(5.71) & BSC ~ 

chHW 

K 

At very low hematocrits, when the RBC positions are completely random, W 

approaches unity, so that the BSC is directly proportional to the Hct. As H 

increases, W gradually decays to zero, since closer packing inevitably leads to 

a more orderly arrangement. In the limit as H 1, the free space (elbow 
room) approaches zero (W 0), and as a result aBSC 0. 

Deriving an explicit expression for the packing factor is a fairly difficult 

task. Based on the Percus-Yevick pair correlation function, Twersky [60,62] 

has shown that W can be expressed in terms of a parameter m [61] and the 
hematocrit H by 

(5.72) W{m) = — ^~HT+l_ 

+ 1)]""1’ 

in which m = 1, 2, and 3, corresponding to the packing of hard slabs (1-D), 

cylinders (2-D), and spheres (3-D). To account for the fractal nature of the 

packing of real scatterers whose geometry and symmetry may not be properly 

lepiesented by simple integer values, it has been proposed that m can take on 

non-integer (fractal) values. It is partially for this reason that m has been called 

a packing dimension [61], From (5.72), it follows that the packing factor W can 

take on a continuous range of values, depending on the scatterer symmetries 
and the manner in which they are packed. 

18. The concept of the packing factor has been adapted from the statistical theory of liquids. 
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It can be shown that an approximate expression for the scattering cross- 

section of the three simple geometric forms can be written as 

(5.73) abm' = {n$mRm'y ' k ' 
m'+l - 

v27t. 

K, — K o +p o P' 

Pv 

where m' is the particle dimension whose value is 1,2, or 3, for slabs, cylinders 

and spheres, respectively. In addition, R is a characteristic dimension (thick¬ 

ness of a slab, radii of a cylinder or sphere) and Pi = 2, p2 = n, p3 = 4jt/3. For 

the case of a sphere (aw), this equation is identical to that derived using the 

Born approximation, i.e. (5.39). By substituting (5.72) and (5.73) into (5.71), 

the BSC can then be expressed in terms of m and the Hct. The normalized 

results, shown in Fig. 5.23, clearly demonstrate the asymmetry of the curves, 

with a peak value occurring at Hct considerably less than 50%. As the fractal¬ 

packing dimension is increased from 1 to 3, i.e., as the degree of packing sym¬ 

metry is increased, the peak for the curve decreases in magnitude and shifts 

to lower hematocrits. For example, if m = 3.0, the peak occurs at 13%; for m 

= 1.0, it is at 33%. As discussed in the next subsection, various flow conditions, 

such as turbulence and RBC aggregation, can cause local changes in the scat- 

terer number density: these can be represented by changes in the packing 

dimension m and therefore in the backscattered power. 

Comparison With Measurements 

Comparison of the theoretical predictions with experimental measurements 

on blood provides a means for testing the validity of the assumptions and 

Figure 5.23 Variation of the backscattering coefficient versus hematocrit. The 

backscattering coefficient has been normalized by dividing by obJVsm-. (Reproduced, 

with permission, from Bascom and Cobbold [61], J. Acoust. Soc. Am., 98, 3040-3049, 

1995, © 1995 Acoustical Society of America.) 
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underlying approach. Good evidence has been presented that the BSC varies 

nearly as the fourth power of the frequency over a wide frequency range (2— 

30MHz) [35,66] for both laminar and stirred flow conditions, and over a range 

of hematocrits from a few percent to normal physiological values [67]. The 

dependence of the BSC on the square of the average RBC volume has also 

been confirmed [68,69] by using RBCs obtained from a variety of species. 

Many experimental results have been reported describing the dependence of 

the BSC on Hct, starting with the first publication by Shung et al. [70]. In Fig. 

5.24a we show the results reported by Mo et al. [63], obtained at a frequency 

of 7.5 MHz, using gently stirred porcine RBCs suspended in 0.83% saline to 

prevent aggregation. Comparison of these results with the fitted theoretical 

results obtained from (5.72), (5.73), and (5.71) with m' = 3 shows good agree¬ 

ment over a wide range of hematocrits and a theoretical peak response at 
about 16% Hct. 

Beginning with the initial studies by Shung et al. [64], it was realized that 

the backscattering coefficient for blood generally depends on the flow condi¬ 

tions (see Fig. 5.24b). One reason for this dependence arises from the forma¬ 

tion of aggregates, a dynamic process that is dependent on the fluid velocity 

gradient (shear rate). For example, if the backscattered power is measured 

from whole blood subsequent to flow stoppage, it is found that substantial 

increases in the backscattered power can subsequently occur [71,72], At low 

shears or in the absence of any shear, aggregation will occur, and as a result 

there will be a distribution of scatterer sizes ranging from single RBCs to dou¬ 

blets, triplets, and so forth. At higher shear rates, the tendency of RBCs to 

aggregate is dominated by the disruptive effects of the shear stress. At first it 

might be thought that at higher hematocrits the presence of some doublets, 

for example, in a voxel, should have no influence on the BSC since it has been 

assumed that the size of a voxel is much less than a wavelength. The flaw in 

this argument is that the scattering is thought to be proportional to the scat- 

teier concentration, which remains fixed for a given Hct. The correct view is 

to consider the influence of aggregation on var(n) instead. Suppose that all the 

RBCs in the sample volume were in the form of doublets; then, because the 

changes in a voxel must take place through two RBCs at a time, it is appar¬ 

ent that var(n) will be greater than when the scatterers are all single RBCs, 

resulting in a higher BSC [53], More recently, the relation between the state 

of aggregation, the packing factor, and the backscattered signal has been 

explored by using computer simulations of simple aggregate distributions [74], 

Experimental measurements have shown that under turbulent flow condi¬ 

tions the BSC from blood and RBC suspensions is also increased [64,67], It is 

found that with increasing Hct, the BSC becomes greater and reaches a 

maximum at a higher Hct than when the flow is laminar. These effects are illus¬ 

trated by the measurements on bovine RBCs shown in Fig. 5.24b. It should be 

noted that the packing dimension needed to achieve a best fit to the experi¬ 

mental results is reduced under turbulent conditions to m - 2.17. Measure¬ 

ments reported by Bascom et al. [73] for fixed human RBCs suspended in 

physiological saline (to prevent aggregation) at 4% Hct showed no change in 
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Figure 5.24 Comparison of experimental measurements for the backscattering 

coefficient Gbsc versus hematocrit with theoretical predictions obtained from (5.72), 

(5.73), and (5.71) with m' = 3. (a) For porcine RBCs suspended in 0.85% saline. The 

theoretical curve was obtained by using the following measured values: k, = 

0.3496 GPa'1, K„ = 0.443 GPa-1, pv = 1078 kg/m3, p„ = 1005 kg/m3, Vs = 68 pm3, and 

adjusting the parameter m to obtain a best fit to the experimental results reported 

by Mo et al. [63] at 7.5 MHz. (b) Measurements are those reported by Shung et al. 

[5.64] for bovine RBCs suspended in saline and the best fit theoretical results using: 

Kv = 0.357 GPa\ = 0.443 GPa"1, pv = 1099 kg/m3, p„ = 1005 kg/m3, = 53 pm3. A 

correction factor of 0.66 has been used, see [65], (Reproduced, with permission, 

from Bascom and Cobbold [61],/. Acoust. Soc. Am., 98, 3040-3049,1995, © 1995 

Acoustical Society of America.) 

the BSC when the flow became turbulent. On the other hand, they reported 

substantial increases for human RBCs suspended in physiological saline at 

41% Hct. 
An explanation for these results can be found in the fractal model described 

earlier in this section. In brief, it is known that turbulent flow is characterized 
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by turbulent structures such as vortices. In the presence of particles such as 

RBCs, it is reasonable to expect that such structures will tend to cause local¬ 

ized rearrangements of RBCs between the voxels, thereby increasing var(n), 

with a corresponding reduction in the packing dimension m. As shown in Fig. 

5.23, a reduction in m also leads to an increase in the Hct at which the BSC 

reaches a maximum, which is in agreement with the measurements shown in 
Fig. 5.24b. 

Under pulsatile flow conditions similar to those present in vivo, the 

backscattered signal has been found to vary in a cyclic manner. In part, this 

may be due to the time-dependent aggregation process [75,76], but it has also 

been observed that if turbulence is present over part of the cycle, this has an 
important influence on the backscattered power [77]. 

Problems 

PI. a. Show that V2p- 
1 d2p 1 d2p 

C2 dt2 

K, ■1C 

expressed as V2p~ 

dt2 

1 d2p 

Co dt2 cl dt: 

K, 
+ V- 

pl P o 

1 d2p K0 | pv 

Pv 
■P o 

Vp can be 

K, 
+ 

V Pr P o 

Pv 
Vp if the source scattering term is small. 

b. If the wave propagation speed is given by c = ca + Ac, where 

Aclc0 « 1, show that the above equation can be expressed as 

V2p~ 
2A cd2p 1 

cl dt2+~ P’ Vp- Cl dt2 cl dC p„ 

P2. A pulse-echo system consists of coincident and identical transmitter 

and receiver transducers and a scatterer consisting of a small immo¬ 

bile sphere of radius a whose density is the same as the suspending 

medium but whose compressibility differs. If it can also be assumed 

that w,(r) = A5(t), wf(r) = Bdb(t)/dt, show that the received signal is 
given by 

e0(t)~-AB 
4mip0 

3 cl 

Kn ~ K„ 

Ku 

^(t) 
dt4 

' h,(r0:t)* h,(r0:t). 
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Ultrasound Transducers 

The history of transducer development for medical imaging and therapeutic 

applications is closely coupled with the invention of transduction mechanisms 

and the development of transducer materials. Six transduction mechanisms 

can be identified as originating in the 19th century: 

1. Electromagnetic: In the presence of a static or quasi-static magnetic field, 

a current flowing in a conducting wire or plane results in a Lorentz force. 

This causes a displacement of the conducting surface. The inverse effect 

corresponds to an emf being induced in a conducting wire or plane that 

moves in a static or quasi-static magnetic field. Faraday in the United 

Kingdom and Henry in the United States discovered this around the same 

time (1831). Both the normal and inverse effects were made use of by 

Alexander Graham Bell [1] and described in his celebrated paper of 1876 

on “Researches in Telephony." 
2. Electrostatic: A time-varying Coulomb force acting on a pair of conduct¬ 

ing planes is produced by a time-varying electric field. The inverse effect 

corresponds to a change in voltage (at a constant charge) or charge (at a 

constant voltage) between conducting planes caused by a displacement 

of one plane with respect to the other. The background and recent 

progress and are considered in Section 6.10. 

3. Magnetostrictive Effect: That the dimensions of certain classes of materials 

change in the presence of a magnetic field was investigated by James Prescott 

Joule in 1842 and subsequently reported [2], The inverse of this effect, i.e., 

when a mechanical stress is applied to certain materials there is an associ¬ 

ated change in magnetization, was first reported by Villari [3] in 1864. 
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4. Electric Spark'. The oscillatory spark discharge between two electrodes 
resulting in the production of ultrasonic waves (1890s; see Graff [4]). 

5. Radiant Energy: In 1880 Alexander Graham Bell disclosed the discovery 
that pulses of optical energy could create an audible signal. The 
following year he stated [5], “In my Boston paper the discovery was 
announced that thin disks of very many different substances emitted 

sounds when exposed to the action of a rapidly-interrupted beam of 
sunlight.” 

6. Piezoelectric Effect: The historical background and developments are 
given starting in section 6.1.1. 

All of the above mechanisms have found application for ultrasound trans¬ 

duction in the 20th century, and some have only relatively recently been used 

for medical diagnostic and therapeutic applications. For example, the spark 

discharge has been used as the basis of a certain commercial version of 

lithotripsy system for stone disintegration in which a shock wave is produced 

by the focusing action of an elliptical reflector. A second example is the 1963 

discovery that radiant energy in the form of a pulsed laser beam is an effec¬ 

tive means of generating very-high-frequency ultrasound pulses in the incident 

medium [6], and this has found useful application in flaw detection [7], More 

recently, using laser pulses of very short durations, ultrasound pulses with fre¬ 

quencies greater than lCGHz and wavelengths approaching interatomic dis¬ 

tances have been produced. Moreover, starting around 1990 there was 

considerable research aimed at developing efficient capacitive (electrostatic) 

transducers that can be used for ultrasound imaging. Because these transduc¬ 

ers make use of silicon microfabrication technology, they have the potential 
for much lower production costs. 

However, it is the transmission and detection methods based on the piezo¬ 

electric effect that have had major impact on the successful development of 

ultrasound imaging systems. This chapter emphasizes transducers based on the 

piezoelectric effect, though it concludes with a brief discussion of electrostatic 
transducers. 

6.1 The Direct and Inverse Piezoelectric Effect 

In 1880 [8] the Curie brothers (Pierre and Jacques) discovered that the appli¬ 

cation of a pressure on certain classes of crystals caused a potential difference 

to be generated between two conducting surfaces that contacted the crystal. 

This was subsequently named the piezoelectric effect. Less than a year later, 

based on thermodynamic principles, Lippman predicted the inverse piezoelec- 

tric effect, in which an applied electric field resulted in a change in crystal 

dimensions, an effect that was verified shortly thereafter by the Curie broth¬ 

ers [9], As illustrated in Fig. 6.1, piezoelectric transducers convert energy from 

one form to another. Thus, in the piezoelectric effect the mechanical work 

done by an applied force displaces electrical charge, causing energy to be 

stored in the form of polar charge. By definition, a piezoelectric medium must 
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Figure 6.1 Simplified illustration of (a) a piezoelectric medium and (d) an 

electrostrictive medium under the action of an electric field or a strain. In (a) the 

dipoles represent a medium that lacks central symmetry, (b) Inverse piezoelectric 

effect: an applied electric field results in a rotation of the dipoles, (c) The 

piezoelectric effect in which the force F causes a strain: the resulting dipole rotation 

causes polarization of the medium, (e) Electrostrictive effect: the displacement is 

proportional to the square of the field, (f) A compressive force F causes a strain but 

no net dipole moment results from this change, i.e., the medium is not piezoelectric. 
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possess both the piezoelectric and inverse piezoelectric properties. According 

to the definition of the direct effect given by Cady [10], “piezoelectricity is an 

electrical polarization produced by mechanical strain .. . the polarization 
being proportional to the strain, and changing sign with it.” 

Confusion sometimes exists with the electrostrictive effect, which, as its name 

suggests, concerns a change in dimensions with electric field. However, the elec- 

trostiictive effect is generally defined as one for which the dimensional changes 

are proportional to the square of the electric field, i.e., a reversal of the field 

does not change the direction of the strain. It is a smaller effect that arises from 

the nonlineal propel ties of the medium as opposed to the piezoelectric effect, 

which is linear in origin. It is present in virtually all dielectric media. 

As stated by Auld [11], “The nature of piezoelectricity is intimately con¬ 

nected with crystal symmetry and, in fact, cannot exist in a completely isotropic 

material. In fact, it can be shown that any medium whose crystal structure 

has central symmetry cannot be piezoelectric. Of the 32 crystallographic 

classes, 21 lack central symmetry, and of these 20 are piezoelectric [12]. To illus¬ 

trate why a centro-symmetric medium is not piezoelectric, consider the 2-D 

ariangement of electric dipoles shown in Fig. 6.Id, which are used to repre¬ 

sent an ionic medium with central symmetry. Part (e) shows that an electric 

field causes a net change in dimensions, while (f) illustrates that a compres¬ 

sive force causes no polarization. Thus, according to the definition given 
earlier, the medium is not piezoelectric but is electrostrictive. 

6.1.1 Piezoelectric Material Development 

Single Crystal Piezoelectrics 

Langevin, as part of the effort to develop a means for submarine detection 

during World War I, used quartz (Si02) transducers [13] to generate intense 
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Figure 6.2 Piezoelectric effect in quartz: simplified structure showing the effect of a 

stress on the polarization, (a) Ion arrangement in the neutral cell, (b) Effect of 

compression in the x-direction. (c) Effect of compression along in the ^-direction. 

(Reproduced, with permission, from Neubert [14], “Instrument Transducers” © 1963 

Oxford University Press.) 

fields in water at frequencies of around 100kHz (see [4], p. 31). This was prob¬ 

ably the first reported use of a piezoelectric medium for generating ultrasound. 

The unit cell of quartz consists of three Si atoms, each of which has +4q 

charges, and six 02 atoms, each with -2q. Using the simplified 2-D represen¬ 

tation shown in Fig. 6.2, the piezoelectric behavior can be readily understood. 

The charge generated by the compressive force in (a) results from the relative 

displacement of the Si and 02 ions. In (c) it can be seen that a compressive 

force along the y-axis results in a polarization in the x-direction. Because the 

structure has central symmetry in the z-direction, forces in this direction 

produce no polarization. 
Of the 20 crystal classes exhibiting piezoelectricity, 10 are pyroelectric, i.e., 

they exhibit a spontaneous polarization that changes with temperature. Con¬ 

duction through the crystal will cause the free charges on the surface to be 

gradually neutralized, but by changing the temperature and measuring the 

charge that flows in a wire connecting a pair of electrodes on the surfaces, the 

presence of a spontaneous dipole moment can be observed. A pyroelectric 

medium whose polarization can be changed by an externally applied electric 

field is defined to be ferroelectric. Thus, all ferroelectrics1 are both piezoelec¬ 

tric and pyroelectric. Ferroelectrics are characterized by a spontaneous dipole 

1. The name ferroelectric is, perhaps, somewhat misleading since it suggests a mechanism 

similar to ferromagnetism and a connection to iron. While the mechanism is quite different, fer¬ 

roelectric media do exhibit domain behavior and properties that are analogous to magnetic 

domains. 
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moment that can be redirected by an external electric field. They also have a 

transition temperature (the Curie point) at which a phase transition occurs 

and the crystal structure can change to a crystallographic class for which piezo¬ 

electricity ceases. 

Piezoelectric Ceramics 

Before the end of World War II the most common piezoelectric materials were 

quartz, Rochelle salt (NaKC4H406-4H20), and ammonium dihydrogen phos¬ 

phate (NH4H2PO4). Both the salt and the phosphate are ferroelectric. Inde¬ 

pendent publications in 1945 and 1946 from groups in the former USSR and 

the United States [9] revealed a new type of ferroelectric material consisting 

of (BaTi03) in a polycrystalline ceramic form. It was created by making a 

suitably balanced mixture that included an appropriate binder, followed by 

pressing and then firing at a high temperature. Regions (domains) of the 

same polarization direction are formed within the polycrystallites, and these 

are bounded by other domains with different polar directions.' Overall, because 

the domains are randomly orientated, the macroscopic behavior of the poly¬ 

crystalline ceramic is approximately isotropic. By applying a high DC electric 

field at a temperature close to the Curie point (120°C for barium titanate) and 

with the field present when the temperature is lowered, many of the domains 

become aligned with the applied field and some grow in volume, causing the 

piezoelectric properties to be greatly enhanced. This process is called poling. 

Piezoceramics have the important advantages that they can be fabricated into 

a variety of shapes and that the direction of polarization can be controlled. 

Subsequent to these developments, in 1954 Jaffe et al. [16] reported strong 

piezoelectric effects in lead zirconate and lead titanate solid solutions. This 

led to the development of a wide variety of polycrystalline lead-zirconate- 

titanate {Pb(Zr,_x,Tix)03} ceramics that are generally referred to as PZT. These 

have major advantages over barium titanate ceramics [17-19], and as a result 

they began to dominate the piezoceramic commercial market. Nonetheless, 

barium titanate ceramics can be made with better reproducibility and have 

a higher speed of propagation, which gives advantages in specialized 
applications [27]. 

Relaxor-Based Piezoelectrics 

The discoveries and investigations by Russian scientists of a variety of relaxor- 

based2 3 ferroelectric materials also occurred in the 1950s. In the ceramic form. 

2. Tlie relation between the grain size and domain size for certain ceramic ferroelectrics has 
been examined by Cao and Randall [15]. For PZT they found the domain size to be proportional 
to the square root of the grain size for grain sizes in the range 1 to 10 pm. For example, for an 
average grain size of 2.3 pm, they found the median domain size to be 0.053 pm. 

3. The name originates from their dielectric relaxation properties: their permittivities and loss 
factors are fairly strong functions of frequency. 
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they appear to have little or no advantages over PZT for ultrasound trans¬ 

ducers. However, they can be grown in single crystal form to a sufficiently large 

size for fabricating arrays. Attempts to do the same with PZT have so far been 

unsuccessful. In 1981 Kuwata et al. [20] reported that single crystals of the solid 

solution of lead-zinc-niobate and lead titanate {0.91Pb(Zn1/3Nbi2/3)O3- 

0.09PbTiO?] (abbreviated PZN-PT) possessed an piezoelectric coupling factor 

(or electromechanical coupling factor, see 6.2.2) of greater than 0.9. For 

improving the sensitivity, resolution, and efficiency of medical ultrasound 

imaging transducers, the piezoelectric coupling factor, permittivity, and 

acoustic impedance are of particular importance [21]. The coupling factor, 

which is of fundamental importance, is a measure of the efficiency with which 

electrical energy is converted into mechanical energy and vice versa. Because 

the highest value is typically around 0.75 for PZT ceramics, the value of above 

0.9 attained in single crystal relaxors represents a major improvement. 

About 1992, the potential advantages of using single crystal relaxors for 

ultrasound imaging arrays were recognized, as evidenced by a patent applica¬ 

tion assigned to Toshiba [22]. Since then, interest has grown rapidly. Other 

single crystal relaxor-based ferroelectrics such as the solid solutions of lead- 

zirconium-niobate/lead titanate and lead-magnesium-niobate/lead titanate 

(PMN-PT) also exhibit piezoelectric coupling factors of greater than 0.9 [23]. 

Composites 

Starting in the 1970s it began to be appreciated that the performance of ultra¬ 

sonic transducers could be improved through the use of composite arrange¬ 

ments of piezoelectric and non-piezoelectric materials, rather than by using 

simple piezoelectric plates. Piezoelectric composites often consist of a matrix 

of elements made from a suitable piezoceramic, e.g., PZT, in a suitable 

polymer. One example is a sequence of evenly spaced PZT plates separated 

by an epoxy. The advantage of such an arrangement is that it combines the 

superior piezoelectric properties of the chosen ceramic with the much lower 

acoustic impedance of the polymer, resulting in an effective impedance that is 

better matched to water. By the early 1980s research publications clearly indi¬ 

cated the advantages of using composites in a wide range of transducers. Sub¬ 

sequent commercial and manufacturing development in the 1980s led to their 

use in a variety of transducers such as imaging arrays. The properties, devel¬ 

opment, and commercialization of ceramic composites have been described in 

a number of reviews [25-28] and will be discussed in more detail in section 

6.4.1. More recently, relaxor-based single crystal PZN-PT composites have 

been described [21,24]. While these are at an early stage in their development, 

they indicate promise of significant performance improvements. 

6.1.2 High-Frequency Materials 

Two other important aspects of piezoelectric materials that are pertinent to 

medical ultrasound also occurred during the latter part of the 20th century: 
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the discovery that certain types of polymer possess useful piezoelectric prop¬ 

erties and the development of thin film piezoelectric transducers capable of 

generating ultrasound at frequencies well beyond 100 MHz. In 1969 Kawai [29] 

reported the discovery that a plastic polymer, polyvinylidene fluoride (PVDF), 

exhibited ferroelectric properties and therefore was piezoelectric. It is a semi¬ 

crystalline polymer with long molecular chains and looks, to all intent and 

purpose, like the plastic used for wrapping food. Sheets of different thickness 

can be economically produced, enabling broad-band transducers to be made 

that are effective into the 10- to 100-MHz range. Their price, efficiency, and 

ability to conform to a variety of shapes have resulted in a very wide range of 

uses in consumer products [30,31], In addition, PVDF has enabled effective 

transducers to be fabricated for hydrophones, high-frequency imaging [32], 
and ultrasound biomicroscopy [33], 

For the purpose of generating and detecting ultrasound at very high fre¬ 

quencies, well beyond that considered possible with piezoceramics, consider¬ 

able effort was devoted in the early 1960s to developing techniques for vacuum 

deposition of thin piezoelectric films [34-36], Much of the early research cen¬ 

tered around polycrystalline CdS and ZnO, both of which exhibit useful piezo¬ 

electric properties. More recently, significant improvements in the piezoelectric 

properties were achieved by RF magnetron sputtering onto a properly orien¬ 

tated substrate so as to obtain a nearly epitaxial layer. Using this technique, 

Ito et al. [37] fabricated a 32-element ultrasonic linear array with a center fre¬ 

quency of 100 MHz. It should also be pointed out that for the intermediate 

frequency range of 50 to 200 MHz, single crystal lithium niobate (36-degree Y- 

cut) has useful piezoelectric properties and can be mechanically lapped to a 

thickness sufficient to achieve a resonant frequency of 200 MHz [38-40]. More¬ 

over, unlike piezoceramics, whose grain size can constrain the minimum thick¬ 

ness, no such limitation is present with single crystal lithium niobate. 

6.2 Characteristic Piezoelectric Equations 

In developing equations that characterize the electromechanical properties of 

piezoelectric materials, we first note that a perfectly isotropic medium cannot 

be piezoelectric. This makes the task a good deal more complex, because now 

account must be taken of the differing electrical, mechanical, and piezoelec¬ 

tric properties in different directions. What we aim to do is obtain equations 

relating the mechanical variables (stress T and strain S) to the electrical vari¬ 
ables (electric displacement D and the electric field S). 

We shall start by considering the relations between the mechanical stress 

and strain. Suppose that force F is acting on one of the faces of the elemen¬ 

tary cube shown in Fig. 6.3. Such a force can always be resolved into compo¬ 

nents along the Cartesian coordinate directions, which we shall denote by xu 

x2i and x$, corresponding to the usual x-, y- and z-directions. This force will give 

rise to stress components on the various faces. For example, on the face whose 
normal is in the jq-direction, the stress will be 
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Figure 6.3 Stress components acting on an elementary cube. For the sign convention 

chosen, Tn, T22, and T33 will be positive if the stresses are tensile and negative if 

compressive. 

Ti — TnXi + T{2%2 + T\3x3 , 

where the first subscript refers to the face whose normal component is in the 

1-direction and the second subscript refers to the direction in which the stress 

points. Thus, Tn is a normal stress component in the xrdirection (if Tn > 0 it 

is a traction force; otherwise it is compressive) and the other two stress com¬ 

ponents are shear stresses in the 2- and 3-directions. Similarly, on the other 

two faces the stresses are: 

T2 = T2\X\ + T22x2 + T23X3 

T3 = T3\X 1 + T32X2 + T33X3. 

Because the cube is assumed to be in equilibrium, the stress components 

on the other three faces will be equal and opposite of those shown. Thus, a 

total of nine stress components can be identified and they form a tensor of the 

second rank, which can be represented by the 3 x 3 matrix given by4 

Tn Tn T13~ 

T2\ t22 t23 . 

T31 Tyi T33 _ 

The components Tn, T22, and T33 are the normal stress components and Tn, 

etc. are the shear stress components. For a homogeneous medium in 

4. An excellent introduction to the use of tensors and matrices for characterizing the physi¬ 

cal properties of crystals, including the piezoelectric crystals, is that written by Nye [41]. In what 

follows, we shall be using the matrix representation. 
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equilibrium there will be no rotation, which requires that Tn = T21, T13 - T31, 

T32 = 723, and as a result of the nine components only six are independent. To 

simplify the notation a single index can be used and the six independent 

components can be written as: 

7] = Tn, T2 - T22, T3 - T33: normal stress components 

Ta = T32 = T23, T5 - Tl3 = T3l, T6 = Tj2 - T2\: shear stress components. 

Thus, the stress can be expressed as a six-element column vector that, for 
purpose of compactness, can be written as 

T = [7i T2 T3 T4 T5 T6]‘, 

where the superscript t stands for transpose. 

The strain is also a symmetric tensor [Stj] and can be represented by a 

symmetric 3x3 matrix. Using a single index the strain can also be written as 
a six-element column vector: 

S = [S, 5, S4 S, 5,]'. 

It can be shown that the strain components are related to the normal and shear 
strains by: 

S = 

5! 

s2 

53 

s4 

55 

Up, 

5n S\2 

512 52 2 523 

513 5 23 S3 3 

dxx 
3foi | dfo2 

dx2 dxj 

■ + ■ d^Xi d^x3 3 

dxi dx i 

U 

2 

dfycx + d^x2A 
V dx2 dxi 

d^x2 

dx2 

+ ■ d£*2 , d^x3 ^ 

dx3 dx 2 

1 

2 
1 r 

3fri , 3frc3' 

dx3 dx! ) 

+ 
d^x2 d^x3 3 

V dx3 dx2 j 
3^3 

dx3 

where ^2, and £.v3 are displacements along the xu x2, and x3 directions. The 

diagonal components corresponding to Su S2, and S3, are tensile strains, while 
the other components are pure shear strains. 

The electric field and electric displacement are simple three-element 

vectors whose components lie along the 1, 2, and 3 directions, and can there¬ 
fore be written as 

S = [<S‘i S2 &3]' and D = [D, D2 7)3]\ 

In a dielectric medium the presence of an electric field will cause the electri¬ 

cal dipoles to be partially orientated in the direction of the field. A polariza¬ 

tion vector P, which is defined as the dipole moment per unit volume 
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(Coulombs/m3), can account for their effects. The electric displacement vector 
is related to the polarization by 

(6.1) D = e„& + P, 

where ec is the permittivity of free space (8.854 x l(rl2F/m). Moreover, the 
free charge density (C/m3) is equal to the divergence of D, i.e., V • D = py, which 
is one of Maxwell’s equations. But within a piezoelectric dielectric medium 
there should be no free charges (all charges are bound dipolar charges); 
consequently 

(6.2) VD = 0. 

Another of Maxwell’s equations enables the rate of change of the electric 
displacement to be related to the displacement current density5 idisp: 

3D 
(6.3) — J disp 

The above relations will be important in relating the electrical and mechani¬ 
cal properties of piezoelectric transducers. 

6.2.1 Constitutive Relations 

Let us assume that a piezoelectric medium is subjected to an elastic deforma¬ 
tion that is sufficiently small so that nonlinear effects can be ignored. The stress 
components will be a linear function of the strain components S and electric 
field components S. For example, 7j can be expressed as6 

7j = cfi Si + C\2S2 + C13S3 + C14S4 + C15S5 + cf6S6 — e\\&\ — <?21&2 ~ C31S3> 

where cf coefficients are various elastic stiffness constants measured with the 
electric field held constant (the superscript & indicates this) and the e- 
coefficients relate the mechanical and electrical properties. Equations for the 
other stress components can be similarly written down, and as a result the 

stress can be expressed in matrix form as 

T = 

cfi Cn cf3 Cu rs C15 Cl6 -sr ^11 c 21 C31 ~ 

Cn C22 c 23 C24 r5 C 25 C26 ^2 C\2 c 22 C32 

r5 C31 rs c32 C33 C34 C35 C36 C\3 C 23 C33 

C41 C42 r6 C43 C44 C45 C46 ^4 e\A e24 C34 

^51 C52 C53 C54 rs 
C 55 C56 S5 Cl5 e2s C35 

U
s VO 
O 

_
1

 C%2 ct:3 C(A rs C 65 1 
U

s ^ 
0 -S6- -Cj6 C26 e36- 

51 

52 

£3 

5. Strictly speaking, the presence of a changing electric field implies the presence of a mag¬ 

netic field, but since the speed of propagation of acoustic waves is many orders of magnitude less 

than the speed of electromagnetic waves, the effects of the magnetic field can be ignored. 

6. Except for the use of a different font for the electric field, the notation used is that given 

in the IEEE Standard [42]. 
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or in abbreviated form as 

(6.4) [r] = [c‘p]-W'[4 (a) 

where \e\ is the transpose of [e\. We shall call [c] the stiffness matrix and [e] 

the piezoelectric stress matrix. Normally, the e-coefficients are defined as a 

3x6 matrix that is written as: 

(6.5) [e] 

fill e12 ei3 e34 ^15 e16 

^21 ?22 ?23 e24 ^25 e26 

e3i &32 e33 ^34 ^35 e36 

(a) 

The stress matrix is so named because if the specimen is clamped so as to make 

all the strain components zero, then the e-coefficients relate the stress com¬ 

ponents directly to the applied electric field components, e.g., T3 - -e33S3 if 

8\ = &2 ~ 0. 

In a similar way, the electric displacement can be expressed in terms of the 
strain and electric field as 

(6.4) (b) 

where [e5] is a constant strain (clamped) 3x3 permittivity matrix, i.e., 

cs cs c S 1 
til ti2 fc-13 

cs cs „s 
t21 c-22 c-23 . 

CS 
tl3 t-23 t-33_ 

It should be noted that the constant strain permittivity coefficients, [es], can 

differ substantially from those measured under constant stress conditions, [e7]. 

Measurement of the permittivity under conditions of constant strain requires 

that the specimen be clamped in such a way that no displacement can occur. 

Since this is very difficult to achieve in practice, the constant stress permittiv¬ 

ity is generally measured and the constant strain values are calculated using 
relations with £r and other measurable constants. 

The pair of equations given by (6.4) are but one of the four sets of 

equations that relate the variables T, S, D, and 8, and these can be written as 

(6.4) m = [^]m-[e]'[<?F], (a); [D] = [e][5] + [e5][^]: (b) 

(6.6) [S] = [^][r]+ [<*]'[£], (a); [D] = [dIr] + [eT][£]: (b) 

(6.7) m = + (a); [^]MsP] + rM: (b) 

(6.8) [T] = [cD][5]-[/z]r[T»], (a); ^] = -(hp] + [(35][D]. (b) 

In the above equations additional coefficients have been introduced. 

The forms of the matrices for d, e, g, and h are 3x6, those for e and (3 

are 3x3, and those for c and s are 6 x 6. In the four sets of constitutive 
equations the coefficients cL cs, sD, d, g, e, h, £r, £5, (37 and p5 are related 
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KH^T'. kitt1. [eri=[PTr\ i^hpt1. w 
M = [erIg] = [eF]. bFMMM’AH <b) 

(6.9) u]=[*K]=rp], w=[ps]w=utD]. (c) 

K]-K]=[g]'M = M'[g]. n-[ct] = W'W=W'W. (d) 

[er]-[es]=WM'=MW'. r]-[Pr]=[gI'>]'=Wg]'- <e> 
Any set of mechanical, piezoelectric, and electrical parameters are sufficient 

to fully characterize the properties of the medium, and from this set, using the 

above relations, a different set can be obtained by using straightforward matrix 

algebra operations. 
The SI units for the various coefficients are given in Table 6.1 and are 

written so as to emphasize the physical meaning. For example, from (6.6b) it 

can be see that if S = 0 and d33 is the only non-zero coefficient, then d33 - 

(£>3/73)5=0- Thus. d33 expresses the charge produced per unit area per unit of 

stress under short-circuit conditions (this makes the electric field zero) corre¬ 

sponding to the direct piezoelectric effect. From (6.6a), it is evident that if 

there are no stress components (Tk = 0, k = 1 ... 6) and all d coefficients are 

zero except for d33, then d33 expresses the deformation (meters/meter) for a 

given applied electric field (Volts/meter), corresponding to the inverse piezo¬ 

electric effect. The g-coefficient is also of considerable practical significance. 

For a constant electric displacement, it can be seen from (6.7b) that it expresses 

the change in electric field with pressure, i.e., when the transducer is used as 

a detector it determines the transducer output voltage sensitivity. From (6.9c) 

it should be noted that although d33 may be small, a material may still have a 

high g33 if the unclamped permittivity is small. 
So far we have tacitly assumed that electrical and mechanical losses can 

be neglected. Electrical losses can be accounted for by assuming that the 

permittivity is complex. If the permittivity is written as e = e' -/e", where the 

Table 6.1. Dimensions of Mechanical and Piezoelectric Coefficients 

Coefficient SI Units 

c°, c Newtons/meter2 

sD, / l/(Newtons/meter2) 

d Coulombs/Newton = l/(Volts/meter) 

e Coulombs/meter2 

g 
(Volts/meter)/ (Newtons/meter2) 

h Volts/meter = Newtons/Coulomb 

er, es Farads/meter 

PT, Ps l/(Farads/meter) 
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prime and double prime denote the real and imaginary parts of one of the 

permittivity components, then the imaginary term results in real power loss. 

The tangent of the material is defined by tan 8 = e'Ve', which gives the angle 

by which the current through a capacitor differs from the quadrature 

current/voltage sinusoidal relationship of an ideal capacitor. Alternatively, 

the electrical Q can be used as a measure of the loss, where Qe is the maximum 

energy stored over a cycle divided by the energy dissipated per cycle, 

and which is equal to the inverse of the loss tangent (Qe = e'/e"). Mechanical 

losses can similarly be accounted for by introducing a complex elastic 

stiffness that accounts for viscous loss. The mechanical Q is then given by 

Qm = c'/c'\ where the prime and double prime refer to the real and imaginary 
parts. 

6.2.2 Piezoelectric Coupling Factor 

Of major importance in assessing and comparing the performance of various 

piezoelectric media is the piezoelectric coupling factor, which is a measure of 

the efficiency with which the crystal converts energy from mechanical to elec¬ 

trical or vice versa. Specifically, Berlincourt [18] expresses the material¬ 
coupling factor as 

k_ /Electrical (Mechanical) Work Done under Ideal Conditions 

V Total Energy Stored from a Mechanical (Electrical) Source ‘ 

Evidently, the choice of boundary conditions will affect the coupling factor, 

and so several different coupling factors can be defined, depending on the 
boundary conditions. 

To obtain expression for the coupling factor in terms of the mechanical and 

piezoelectric coefficients, we shall consider a set of boundary conditions that 

is of particular importance and shall follow the derivation given by 

Berlincouit [18]. Let us suppose that a piezoelectric medium has electrodes 

on planes perpendicular to the 3-axis and that a compressive force is applied 

in the 3-direction (73 & 0, 7\ = 73 — 0). If, as shown in Fig. 6.4a, the electrodes 

are shorted = 0), then work will be done by the compressive force and the 

resulting strain component in the 3-direction can be obtained from (6.6a) as 

S33 = S33T3, i.e., the slope of the stress-strain curve is s&. This change is shown 

in Fig. 6.5 as the path from © to ©• If the electrodes are now open-circuited 

(Fig. 6.4b) and subsequently the compressive force is removed (73—>0), the 

magnitude of the strain will be reduced and the slope of the path taken in 

going from ©to © will be that given by (6.7a) for a constant D, which is equal 

to S33. If the electrodes are then connected to an electrical load, then, as the 

strain reduces to zero, energy will be delivered to the load, corresponding to 

the path from © to @ in Fig. 6.5.The initial compression results in energy being 

stored, and the work done is the sum of the two crosshatched areas, denoted 

by (W) + W2). When the electrical load is connected, the amount of work done 

is Wi, so that W2 represents energy that is not available for transfer as elec- 
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Figure 6.4 Derivation of the piezoelectric coupling factor for a piezoelectric 
transducer by considering a mechanical to electrical work conversion cycle for T\ = 
T2 = 0. It is helpful to imagine that an infinitesimally small gap exists between the 
electrodes and the piezoelectric medium. The charges on the surfaces of the 
electrodes and piezoelectric medium are indicated at the various stages, (a) After 
application of a compressive stress (T3 < 0) with the electrodes shorted, (b) While 
compressed, the electrodes are open-circuited, (c) Removal of the compressive 
stress. Note that in going from (b) to (c) the electric displacement D3 remains 
unchanged, but the electric field changes, (d) Connection of electrodes to an 
electrical load. The current flowing causes the charge, electric field, and strain all to 

reduce to zero. 

Figure 6.5 Work cycle used for calculating the coupling factor 4- The circled letters 
correspond to the four parts of Fig. 6.4. The work done by the mechanical source 
corresponds to IT, + W2, where Wt is the electrical work done. (Based on Berlincourt 

[18].) 

trical output. For this ideal cycle, using the definition given by (6.10), the piezo¬ 

electric coupling factor can be written as 

,, _ / w, /4-4 
33 m+w2 \ 4 ’ 

But, from (6.9b) and (6.9d), 4 - 4 = so that the coupling factor can 

be expressed as 

(6.11) kl3 — 
da 

V 44 

for T3 ^ 0, Ty - T2 = 0. 
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By considering the inverse case in which a voltage source is applied to the 

electrodes with the specimen free from all stresses, work will be done. By sub¬ 

sequently determining the work done when a mechanical load is connected, 
the same equation can be obtained. 

A second coupling factor of major practical importance is that obtained 

when the specimen is clamped in the lateral direction, thereby preventing any 

lateral strain. It can be shown [18] that this results in 

(6.12) ki 3 = 

g33 

Vcgefs ’ 

for S3 *0, Si = S2 = 0. Such a condition is appropriate for a piezoceramic trans¬ 

ducer that has a small thickness compared to the lateral dimension and that 
is excited in the 3-direction. 

6.3 Ceramic and Polymer Materials 

6.3.1 Piezoceramics 

Constitutive Relations 

The complexity of the various matrices is greatly simplified when account is 

taken of the various symmetries in the crystal structure. As mentioned earlier, 

in the unpolarized state polycrystalline piezoelectric ceramics behave in an 

isotropic manner. The polycrystallites can have grain sizes that vary consider¬ 

ably depending on the processing and composition, and can have average 

dimensions in the range of 2 to 20 pm. The poling process causes the sample 

to become anisotropic with an axis of symmetry that coincides with the poling 

direction. The 3-axis is generally taken to be coincident with this direction. It 

is an oo-fold axis of symmetry, so that the electrical and mechanical properties 

in any direction at right angles to this axis are the same. Because of the high 

degree of symmetry, many of the coefficients are zero, and the number of inde¬ 

pendent coefficients is drastically reduced. For example, the matrices for the 

elastic constants ([c] and [5]) conditions can be shown to contain just five inde¬ 

pendent values. Thus, the elastic stiffness matrix can be written as 

0
 

1_
 

cf2 C13 0 0 0 

C\2 Cu C13 0 0 0 

II 

l© 
t 0

 l 

C13 Cl3 C33 0 0 0 

0 0 0 C44 0 0 

0 0 0 0 C44 0 

_0 0 0 0 0 c 66 

in which cf6 - — (cf2 - cf2). Similarly, the piezoelectric coefficients (d, e, g, h) 

contain three independent values so that, for example, the piezoelectric stress 
matrix can be expressed as 
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0 0 

e31 ^33 
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(6.14) 

0 

0 

e3i 

0 e15 0 

eis 0 0 

0 0 0 

Just two values are needed for the permittivity matrix, which simplifies to 

(6.15) 

£n 0 0 

0 efi 0 

0 0 £33 

Thus, a total of 10 independent coefficients (5 + 3 + 2) are sufficient to char¬ 

acterize the properties. A single matrix form can also be used to express each 

pair of constitutive equations. For example, the two equations in (6.6) can be 

written as 

"V ■ % Sn Sl3 0 0 0 0 0 dn '71" 

s2 S12 S11 Sl3 0 0 0 0 0 d3i t2 

s3 Si:3 Sl3 S33 0 0 0 0 0 d33 t3 

s4 0 0 0 S44 0 0 0 d\s 0 A 

S5 = 0 0 0 0 A 0 dis 0 0 A 

s6 0 0 0 0 0 ^66 0 0 0 T6 

A 0 0 0 0 d\5 0 efi 0 0 

A 0 0 0 dis 0 0 0 Eli 0 &2 

A- -d3\ di 1 d}3 0 0 0 0 0 E33 - _A _ 

in which sfe = -($n -sf2). 

Properties 

Some examples of the above coefficients for four piezoceramic mateiials are 

shown m Table 6.2. It will be noted that the permittivities under constant sticss 

and strain conditions can differ substantially. For example, both PZT materi¬ 

als have £n and £33 values that are approximately twice those for constant 

strain conditions. It should be noted that all four ceramics have impedances 

of around 30MRayl, a value much greater than tissue (~1.5MRayl), making 

it difficult to achieve a good impedance match over a wide bandwidth. Ol 

major importance is the piezoelectric coupling factors, which as noted earlier 

determine the efficiency with which energy is transformed from one form to 

another. For transducers with lateral dimensions much greater than the thick¬ 

ness and operating in the thickness mode, it is the clamped coupling factor 

that governs the efficiency. For all the listed materials, it will be noted that the 

coupling factor with lateral clamping is significantly less than that with strain- 

free lateral conditions, i.e., A < A- This is especially significant when it is 

recalled that it is the square of the coupling factor that governs the efficiency. 
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For unclamped PZT-5H the efficiency is 56% (0.752 x 100), but it reduces to 
27% for clamped conditions. 

The values given in Table 6.2 for the speed of propagation are those in the 

3-direction under constant electric displacement conditions, as calculated from 

(c0) = Vc£/p„. Constant D conditions correspond to the situation in which 

the electrodes are open-circuited so that there can be no change in the surface 

Table 6.2. Typical Values for Four Different Types of Piezoceramicsf 

Coefficient Units 

Barium 

Titanate 

BaTi03 

Lead- 

Zirconate- 

Titanate 

PZT-4 

Lead- 

Zirconate- 

Titanate 

PZT-5H 

Lead 

Metaniobate 

PbNb2Q6 

■sfi 10~,2m2/N 8.6 12.3 

-4.1 

16.4 

—4.8 

17.4 

-4.5 Su 10~12m2/N -2.6 

4s 10‘12m2/N -2.7 

S33 10-12m2/N 9.1 

S44 10'l2m2/N 22.2 

d-i 1 10M2C/N -58 

d33 10-12C/N 149 

di 5 10“12C/N 242 

831 10“3 V.m/N -5.5 

833 10“3 V.m/N 14 

Sis 10"3 V.m/N 21 

e[,/eD 

Unitless 

1300 

efi/e0 1000 

ej3/e0 

Unitless 

1200 

4/e0 910 

k33 Unitless 0.48 

£33 Unitless 0.38 

z0 MRayl 31.3 

*{Co)° m/s 5630 

Po kg/m3 5550 

tan 5 Unitless 0.006 

Qm Unitless 400 

Curie Point °C 115 

-5.3 -8.5 -5.8 

15.5 20.8 14.4 

39.0 43.5 35.6 

-123 -274 -9.5 

289 593 85 

495 741 90 

-11 -9 -3.35 

25 20 30 

38 27 32 

1475 3123 (320) 

730 1700 (265) 

1300 3400 320 

635 1470 265 

0.68 0.75 0.46 

0.51 0.49 0.42 

34.0 34.6 28.8 

4530 4620 4880 

7500 7500 5900 

0.004 0.020 0.009 

500 65 15 

328 193 570 

Values are those given in, or calculated from, Table I of [43], which references manufacturers' data sheets as 
the primary source. 

1 The wave speed in the polarization direction is the stiffened compressional speed calculated from the 

stiffened elastic constant using (c„)D = Vcfs/Po • 
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charge density on the electrodes. Values for the mechanical and electrical 

losses are also given in the table. For most piezoceramics these are relatively 

small and can be neglected for approximate design purposes. 

6.3.2 Piezoelectric Polymer Materials 

Since the discovery of a strong piezoelectric effect in PVDF by Kawai [29] in 

1969. there has been considerable effort to measure and improve its proper¬ 

ties as well as to develop alternative polymer-based piezoelectric films. PVDF 

consists of long-chain polar molecules embedded in an amorphous phase 

matrix. It has a semicrystalline form. It is first crystallized from the melt in the 

form of a thin sheet. The film is disordered and displays no macroscopic piezo¬ 

electric properties. By stretching it either uniaxially or biaxially to many times 

its original length at a temperature of around 62°C, the film is converted it to 

a non-centro-symmetric crystalline structure that is polar. Following anneal¬ 

ing at around 120°C, the film is poled normal to the surface. This can be 

achieved by using a high electric field at temperatures of around 100°C for 

several hours, which causes partial alignment of the polar chains that on 

cooling become locked in place, thereby giving the him a permanent 

polarizadon. 

Constitutive Relations 

Unlike piezoceramics, for which there is complete rotational symmetry, the 

stretching process causes asymmetry about the polarization axis, and as a 

result the number of independent mechanical, electrical, and piezoelectric 

coefficients is greater. It can be shown that for piezoelectric polymers, (6.16) 

must be replaced by 

"Si" ~Sii ■?12 Sl3 0 0 0 0 0 di 1 T\ 

s2 Sl2 $22 •>23 0 0 0 0 0 dn t2 

A ■>13 523 4 0 0 0 0 0 da Ti 

A 0 0 0 544 0 0 0 du 0 A 

s5 = 0 0 0 0 
-6 
S55 0 d] 5 0 0 Ts 

s6 0 0 0 0 0 s66 0 0 0 A 

A 0 0 0 0 A 0 
0T 
Ell 0 0 A 

A 0 0 0 dj 4 0 0 0 £22 0 A 

-A. -di i dyi di 3 0 0 0 0 0 £33 - .A. 

which contains the same number of zeros, but now there are 17 independent 

coefficients: 9 elastic, 5 piezoelectric, and 3 permittivities. This should be com¬ 

pared to the nine independent coefficients needed to characterize the electro¬ 

mechanical properties of piezoceramics. 
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Properties 

Table 6.3 lists a set of values for one type of piezopolymer material together 

with some physical parameters; a much more complete set of data for the 

elastic, dielectric, and piezoelectric properties, together with details of the 

measurement methods, have been presented by Roh et al. [46], It will be 

observed that the loss tangent for PVDF is roughly an order of magnitude 

greater than that for PZT-5H. Moreover, it should be noted that the loss 

tangent and permittivity are fairly strong functions of frequency, as is illus¬ 
trated by the results shown in Fig. 6.6. 

Foster et al. [32] have provided a useful table that compares some of the 

important properties of two types of ferroelectric polymer with PZT-5A 
ceramic; this is reproduced as Table 6.4. 

Table 6.3. Representative Parameters for a Piezoelectric Polymer Material 

Coefficient rD cn rD rD rD c12 C13 C2 2 C23 C33 Cu 
rD 
c55 rD 

t-66 

PVDF* 

Units 
3.61 1.61 1.42 3.13 1.31 

GN/m2 
1.63 0.55 0.59 0.69 

Coefficient di i ^32 C/33 d2 4 dis e-ii/Eo £22/60 Ex/Zo 
PVDF* 

Units 
14.3 2.02 -31 -20.6 -19.6 6.9 

10'12 C/N 
8.6 
None 

7.6 

Coefficient k‘33 Z„ tan8 Qm Speed of Sound P 0 

PVDF* 

Units 
-0.15 
None 

-2-3 -0.3 
MRayl None 

-10 
None 

1500-2000 m/s -1800 kg/m3 

Values are those given in, or calculated from [44.45] for PVDF samples that were uniaxially stretched in the 
xt-direction and supplied by Raytheon Corp. 

* These values vary greatly depending on the manufacturer. 

Figure 6.6 Summary of experimental results from three investigations showing the 

frequency dependence of the permittivity and loss tangent for PVDF. (Reproduced, 

with permission, from Hunt et al. [47], IEEE Trans. Biomed. Ene 30 453-481 © 
1983 IEEE.) 
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Table 6.4. Comparison of Properties for PVDF, P(VDF-TrFE), and PZT5A 

Parameter PVDF P(VDF-TrFE) PZT5A 

Speed of sound, m/s 2200 2400 4350 

Density, kg/m3 1780 1880 7750 

Z„, MRavl 3.9 4.5 33.7 

Relative permittivity 6.0 5.0 1200 

Mechanical Q, Qm 10 25 75 

Coupling factor, k!33 0.15-0.20 0.3 0.49 

Mechanical flexibility Outstanding Satisfactory Poor 

Reproduced, with permission, from Foster et al. [32], IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47, 

1363-1371, © 2000 IEEE. 

6.4 Methods for Enhancing the Performance 

6.4.1 Composite Materials 

In the discussion of piezoceramics, two important drawbacks were noted. The 

first concerns the large impedance mismatch with tissue (30MRayl vs. 

1.5MRayl), making it difficult to achieve efficient energy transfer over a wide 

bandwidth. Although the use of one or more impedance matching layers can 

enable impedance matching to be achieved, such layers, by their nature, can 

be effective only over a limited bandwidth. Modern pulse-echo systems often 

use very short pulses with fractional bandwidths exceeding 100%, and this 

requires a transducer with a comparable bandwidth. 
A second aspect concerns the coupling factor. It was pointed out that the 

appropriate coupling factor for a single element transducer was k' rather than 

kl, whose value is appreciably greater. The reason that the clamped k is appro¬ 

priate can be understood by examining the behavior of a small volume whose 

thickness is equal to that of the ceramic plate. Such a volume is surrounded 

on its sides by ceramic regions that prevent lateral movement, thereby making 

S1 - s, = 0. If the ceramic were divided into small volumes with lateral dimen¬ 

sions less than a wavelength and the regions between each volume were filled 

with a fairly compliant medium that would permit lateral movement, then the 

higher value unclamped coupling factor would then be appropriate. In replac¬ 

ing some of the ceramic by a softer inert material, the question arises as to 

whether the improved efficiency would be sufficient to compensate for the 

decreased volume of piezoelectric active material and result in an overall 

improvement in performance. As will be seen, this can be achieved with the 

proper design. 
Composite piezoceramics generally consist of ceramic elements embedded 

in a polymer matrix. To classify possible structural arrangements of the dif¬ 

ferent phases, the concept of connectivity was initially used by Newnham et al. 

[48], In a two-phase system, e.g., ceramic and polymer, there are 10 possible 
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Figure 6.7 Examples of composite two-phase structures used to illustrate how the 

connectivity can be determined. The shaded regions correspond to the ceramic 

whose polarization is assumed to be in the z-direction. The unfilled regions consist of 

a polymer, (a) Ceramic slabs, 2-2. (b) Ceramic pillars, 1-3. (c) Ceramic and polymer 
pillars, 1-1. (d) Particles of ceramic, 0-3. 

connectivities, of which only a few are of practical interest for transducer fab¬ 

rication. The connectivity of a particular 3-D arrangement can be found by 

determining whether a line can be drawn through the matrix parallel to the x- 

axis without leaving the phase in which it started, and then repeating this 

process for the y- and z-axes. By repeating the entire process for the other 

phase and then counting the number of successes for each phase, the connec¬ 

tivity is obtained. This process is illustrated in Fig. 6.7 for four structures, the 

first (2-2) and second (1-3) of which are most commonly used in practice. 

Generally, the method of fabrication for the 2-2 and 1-3 structures starts 

with a wafer of the polarized piezoceramic that is somewhat thicker than that 

required for the transducer. For a 1-3 structure the wafer is partially cut 

through by means of a diamond saw so as to produce kerfs in the x- and y- 

directions. This process results in a matrix of ceramic pillars that are still 

attached to the uncut part of the ceramic wafer. Tire kerfs are then filled with 

an appropriate polymer, and finally the ceramic base and the excess polymer 
on the surface can then be removed by lapping. 



Ultrasound Transducers 351 

Figure 6.7 Continued 

The smallest cut width is limited to about 20 pm by the thinness of the saw 

blade and the structural strength of the ceramic. This presents potential diffi¬ 

culties when constructing high-frequency transducer arrays. As discussed in 

Chapter 7, for a phased array it is desirable that the pitch (repetition distance) 

be less than half the wavelength. For instance, a 40-MHz array would require 

a pitch of 19 pm so that to avoid serious loss in sensitivity, the kerfs should be 

less than 10pm. Ritter et al. [49] have reviewed some of the methods proposed 

for overcoming these problems.7 For example, Lukacs et al. [51] showed that 

laser micromachining could be used. By fabricating linear and annulai airay 

structures from PZT and lithium niobate, they achieved kerf widths of less 

than 20pm. A similar method was used Farlow et al. [52], who demonstrated 

kerf widths of 13 pm for a 1-3 piezocomposite transducer with a thickness of 

170 pm and pillars with a pitch of 65 pm. The grain size of piezoceramics 

imposes a limitation on the smallest dimensions that can be used without 

7. Using a piezoelectric actuator to displace an array in small steps, e.g., k/4, and a synthetic 
aperture reconstruction scheme, much wider elements and kerfs can be used to achieve high 
lateral resolution, though with some loss in temporal resolution (see subsection 8.9.1 and [50]). 
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suffering a significant reduction in performance. With single crystal materials, 

such as relaxor-based ferroelectrics (see subsection 6.1.1), this is no longer a 

problem. In fact, lower-frequency (~5MHz) single-element transducers have 

been fabricated and tested [21,24] using PZN-PT-polymer with connectivities 

of 1-3 and 2-2. When compared to PZT composite transducers, major improve¬ 

ments were obtained in terms of bandwidth and insertion loss. 

The question as to the dimensions of the pillars and width of the kerfs, as 

well as the properties of the polymer, involves certain tradeoffs. Some of these 

will now be examined on the basis of the assumption that the behavior of the 

composite structure can be treated as homogeneous with effective parameters. 

Such a treatment assumes that detailed structure is small enough compared 

to the appropriate wavelength so that details of the complex wave motion in 

the structure can be ignored. Based on this assumption, Smith and Auld [53] 

developed effective constitutive relations for thickness mode oscillations. 

These enable effective mechanical, piezoelectric, and electrical coefficients to 

be expressed in terms of the volume fraction of the ceramic and the coeffi¬ 
cients for the ceramic and polymer. 

Effective Properties 

The effective longitudinal speed is plotted in Fig. 6.8a as a function of the frac¬ 

tional volume of ceramic for three different types of polymer. It will be noted 

that at 0%, the effective speed is that of pure polymer (1950m/s for the soft 

polymer), while at 100% it corresponds to the speed in the PZT5 ceramic 

(4325 m/s). As expected, the effective density (not shown) varies linearly 

between the two extremes, and as a result the characteristic impedance 

(Fig. 6.8b) for the composite using soft polymer varies from 1.75MRayl at 
zero volume percent to 33.5MRayl at 100%. 

For the effective coupling factor (Fig. 6.8c), it can be seen that there is a 

wide plateau region over which the composite has a coupling factor that is 

significantly higher than the clamped coupling factor for the ceramic 

(R* = °'49)- For the soft polymer the effective coupling factor in the plateau 
region approaches the free coupling factor for the ceramic^ = 0.7). This can 

be understood by noting that the presence of the soft polymer will tend to 

allow lateral movement of the individual ceramic posts, whereas, as explained 

earlier, the absence of any polymer will cause the ceramic to behave in a lat¬ 
erally clamped manner. 

ITe final graph (Fig. 6.8d) shows the tradeoff between the effective char¬ 

acteristic impedance and coupling factor. The graph indicates that by using the 

soft polymer, effective characteristic impedances in the range of 5 to lOMRayl 

can be achieved without causing a significant reduction in the coupling factor. 

For a composite designed to have an impedance in this range, the problems 

associated with achieving a proper match of the characteristic impedance to 

tissue is simplified, enabling a single matching layer to be used. However, there 

are other tradeoff problems. One concerns the reduction in the effective 
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Figure 6.8 Predicted characteristics of a 1-3 composite structure based on a 

simplified theory developed by Smith and Auld [53]. In all four graphs the ceramic 

was assumed to be PZT5 and the dotted line corresponds to a soft polymer, the 

dashed line to a firm polymer, and the solid line to a stiff polymer. Effective (a) 

longitudinal speed, (b) characteristic impedance, (c) piezoelectric coupling factor, (d) 

Tradeoff between the piezoelectric coupling factor and the characteristic impedance. 

(Reproduced, with permission, from Smith and Auld [53], IEEE Trans. Ultrason., 

Eerroelect., Freq. Contr., 38, 40-47, © 1991 IEEE.) 

permittivity. As the fractional volume of ceramic is reduced, there is a nearly 

linear reduction in the effective permittivity from ~2000eo at 100 A to ~20so 

at 0%. For a given transducer cross-sectional area and thickness, a reduction 

in permittivity decreases the transducer capacitance, resulting in an increased 

electrical impedance. On transmission, impedance matching problems to the 

excitation source make it difficult to efficiently deliver the power to the trans¬ 

ducer. On reception, the higher impedance may present difficulties when the 

output is to be transmitted to the system electronics via a relatively long 
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Figure 6.8 Continued 

transmission line, which could be a miniature coaxial cable with a character¬ 

istic impedance of less than 125 Q. For transducers or transducer elements 

having a very small cross-sectional area, such as those used in 2-D phased 

arrays, the reduction in the clamped permittivity presents serious difficulties 

in achieving a good signal-to-noise ratio (SNR) [54] unless a preamplifier is 

used adjacent to the transducer. These aspects will be clarified following a dis¬ 
cussion of some transducer models. 

Effects of Lateral Modes 

In the approach desciibed above it was assumed that the lateral dimensions 

of the matrix elements were sufficiently far removed from the appropriate 

lateral wavelength so that the composite could be treated as though it were 
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Figure 6.9 Electrical impedance graph for a 2-2 composite transducer illustrating the 

influence of lateral modes resulting from the structural periodicity. Note the left log 

scale and that zero corresponds to an impedance magnitude of 1Q. (Reprinted by 

permission of Elsevier from Papadakis et al. [28], Chapter 2, in: "Physical Acoustics: 

Principles and Methods”, Vol. 24, Academic Press, © 1991 Academic Press.) 

homogeneous. If the lateral dimensions are much larger than the thickness, 

then the resonant frequencies associated with the lateral dimensions will be 

smaller than the uncoupled fundamental thickness mode resonant frequency 

given by fp = cj{21), where € is the plate thickness. In a homogeneous ceramic 

plate, as the lateral dimension are reduced and become comparable to the 

thickness, the lateral modes become more strongly coupled to the thickness 

modes [55], For a composite plate, this coupling is reduced. 
In general. Lamb waves will be produced when a composite transducer is 

electrically excited, and because these are propagated in a lattice with a peri¬ 

odic structure, strong reflections can occur when the wavelength is equal to 

the lattice spacing [26,56,57], This acoustic phenomenon is analogous to that 

discovered by the Braggs (father and son) in their investigation of diffraction 

of X-rays by a periodic crystal lattice. A Brillouin-type theory of elastic wave 

propagation in periodic composite materials was initially presented by Auld 

et al. [58,59]. Associated with the propagation of Lamb waves will be stop and 

pass bands. If the periodicity of the structure is designed so that the thickness 

mode resonant frequency is at the center of the first stop band, the laterally 

propagating waves will be highly attenuated. Some aspects of the above effects 

are illustrated by the results given in Fig. 6.9 [28], Both the magnitude and 

phase of the measured electrical impedance are shown as a function of 
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frequency for a 2-2 composite whose structure is similar to that illustrated in 

Fig. 6.7a. Below the fundamental thickness mode resonant frequency (~2.8 

MHz), there is some evidence of minor lateral mode effects. Above the reso¬ 

nant frequency, the effects of periodicity of the structure are clearly evident, 

though for this particular design they occur well above the thickness mode 
resonant frequency. 

The complex structure of composite transducers makes it difficult to use 

simple 1-D models to accurately predict their electroacoustic behavior. A 2-D 

analytical method for modeling multifrequency 2-2 composites has been 

described by Lamberti et al. [60], A number of numerical analyses have also 

been presented that make use of 2-D and 3-D finite element techniques to 

compute the behavior of composites with various connectivities. In addition 

to the more general descriptions of the application of finite element methods 

for piezoelectric media given in [61,62], specific application of these methods 
to composite structures are given in [63-65], 

6.4.2 Multilayer Transducers 

Piezoelectric Ceramics 

As mentioned in the last subsection, a difficulty with the use of composite 

piezoelectric media for transducers with a very small cross-sectional area, e.g., 

the elements in a 1-D or 2-D imaging array, arises from the reduction in per¬ 

mittivity, which, in combination with the small area, gives rise to a high imped¬ 

ance. For a given cross-sectional area, the capacitance can be substantially 

increased by using a structure that consists of piezoelectric ceramic layers that 

are acoustically in series but are electrically connected in parallel. Such an 

arrangement is illustrated in Fig. 6.10. It will be noted that the polarization 

direction in alternate layers reverses, so that the application of a voltage to 

the electrodes causes a field to be generated that is either in the polarization 

direction of all the regions or opposite to them. As a result, each region 

expands or contracts in phase with the others. While this method of decreas¬ 

ing the electrical impedance has been known for some considerable time and 

has been widely used for improving the performance of hydrophones [66; 67, 

p. 237], the application of this technique for pulse-echo ultrasound transduc¬ 

ers using either piezopolymers [68,71] or piezoceramics [54,69,72,73] is more 

recent. But, as with composite transducer structures, the fabrication costs for 

multilayer transducers are significantly higher than for single-element devices. 

If a transducer thickness of 1 is required then, for a single ceramic element 

of cross-sectional area A and clamped permittivity er, the capacitance is given 

by CT= e'A/e, provided that fringing effects can be ignored. If N layers of the 

same medium are used to achieve the same thickness, then the capacitance 

will be A x eTA/(€/N) = ISFC-r. Consequently, the electrical impedance 

deci eases as the square of the number of elements, enabling better matching 

to be achieved into a low-impedance load or source. Goldberg et al. [70] have 

used finite element analysis to predict the electromechanical performance. 
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mm Metallized Regions 

Cm Piezoceramic 

Figure 6.10 Sketch of a transducer consisting of seven layers of piezoceramic that 

are polarized in opposite directions (arrows indicate the polarization). The electrical 

capacitance is increased since the elements are electrically connected in parallel, and 

for the pattern shown each element has a thickness of 177. Acoustically, the 

transducer behaves as if the layers are in series. (Based on Goldberg and Smith 

[54].) 

Piezoelectric Polymers 

The pulse-echo sensitivity of piezopolymers used in a conventional manner is 

substantially inferior to that using piezoceramics. Nonetheless, an important 

advantage of piezopolymers is that their characteristic impedance is much 

closer to tissue, enabling very wide bandwidths to be achieved. This important 

advantage has spurred efforts to find means of overcoming the disadvantages. 

Multilayer piezoelectric polymer structures can be made by folding the plastic 

in alternate directions to achieve polarization directions that alternate. As a 

result, the transducer capacitance is substantially increased and the voltage 

required to produce a given output power is greatly diminished. This enables 

the pulse-echo sensitivity to be greatly improved [68], although, because of the 

increased stack thickness, the bandwidth is reduced. To predict the perform 

ance and to compare with conventional single-element PZT designs, Zhang 

et al. [74] have developed a 1-D model of such a structure. 

Barker Coded Structures 

In pulse-echo systems the SNR can be improved by increasing the transmit¬ 

ter peak power, and increasing the bandwidth can enhance the axial 
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resolution. The limitations imposed by the peak transmitted power were first 

addressed in radar and, stimulated by a 1953 monograph by Woodward 

[75], methods were developed for overcoming it.8 9 It was shown that by trans¬ 

mitting a suitably encoded signal over a longer time duration and using a 

receiver that incorporated a matched filter (one whose response was the time- 

reversed form of the transmitted signal), a time-compressed form of the trans¬ 

mitted signal could be produced. By spreading the transmitted signal over a 

longer duration, a higher total energy can be transmitted without exceeding 

the peak power limitation, and as a result, the depth of penetration and the 

SNR can be increased, e.g., [77]. For ultrasound systems, issues such as the 

permitted diagnostic levels and nonlinear effects limit the peak power that can 

be transmitted. Major SNR improvements can be achieved by using coded 

excitation techniques and, as discussed in Chapter 7, a variety of methods are 

available, some of which have been developed for medical ultrasound imaging. 

In this subsection we shall consider just those aspects related to transducer 
design. 

For example, let us denote the transmitted signal waveform by 

If this is sent to a receiver system whose impulse response is hr(t) = ke,(-t), 
where k is a matched filter constant, then the output from the receiver will be 
given by 

(0 = et (r) * hr (t) = ket (t) * e, (-t) 

= kj_et(x)et(x-t)dx = kj_ e,(x)e,(x-\-t)dx, 

which is the autocorrelation function1 of e,{t). In the frequency domain, the 

relation between the receiver matched filter transfer function //(«) and 

the input signal E(co) is: //(to) = kE (to), i.e., it is the complex conjugate of 
the input signal. 

For a digitally based compression system, a good choice for e(t) is a Barker 

code sequence [77], Binary Barker codes can be written as finite sequences of 

l’s and and they have the special property that their autocorrelation func¬ 
tion can contain only three possible values: 0,1, and N, where N is the number 

of bits in the code. Only nine Barker code sequences are known, of which the 

longest has N = 13. Consider, for example, Fig. 6.11, which shows the 7-bit 

Barker code sequence, and suppose that the transmitted signal is such that 

each bit has a duration of 1 second. It can be readily shown that the autocor¬ 

relation function consists of a central lobe of 2 seconds’ duration and a peak 

amplitude that is seven times larger than the side lobes. As the code sequence 

length is increased, the side lobes are reduced relative to the peak. Piezoce¬ 

ramic and PVDF transducers configured to make use of the Barker pulse com¬ 

pression scheme were originally described by Sung [72] and Platte [71,78] and 
subsequently discussed by others [74]. 

8. The basic ideas appear to have been developed during the World War II, though they were 
not developed until considerably later (see 76, particularly Chapter 1). 

9. See Appendix B for the definition. 
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(a) 

0 0 0 1 1 0 1 

Figure 6.11 Barker code (a) represented as a +1 -1 sequence, and (b) its 

autocorrelation function. 

To generate a seven-bit Barker code, the stack arrangement shown in 

Fig. 6.12 can be used [74,78]. Because the polarization direction corresponds 

to the Barker code, when a step function of voltage is applied, a Barker code 

stress pattern is instantaneously generated. If we assume that the propagation 

medium has the same density and speed of propagation as the transducer and 

is perfectly matched at both ends to the surrounding medium, then this stress 

pattern will propagate with a speed of cQ out from each end of the transducer 

Consequently, the time variation of the stress pattern observed a short dis¬ 

tance away from the transducer surface will also be the Barker code. If the 

receiving transducer has a polarization pattern that is the reverse of the trans¬ 

mitter, then the output voltage will be the autocorrelation function of the 

Barker code. As can be seen from Fig. 6.12c, the transmitted signal is com¬ 

pressed from a total duration of £/c0 to a half-height duration of €l(lca). To 

eliminate the need for a separate receiving transducer, so that a single trans¬ 

ducer can operate in a pulse-echo mode, Zhang et al. [74] have described a 

switching scheme that on transmission behaves as in Fig. 6.12a and on recep¬ 

tion as in Fig. 6.12b. They have also provided a 1-D analysis and have com¬ 

pared the pulse-echo performance of Barker-coded PVDF transducers with 

single-element PZT transducers. 
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Figure 6.12 Transducer configuration used to generate a 7-bit Barker code. For 

simplicity it has been assumed that perfect matching exists and that the speed of 

sound is the same throughout, (a) Transmitting transducer in which the layers are 

electrically in parallel. A snapshot of the spatial distribution of the stress pattern is 

shown below at a time immediately following occurrence of a step voltage, (b) 

Receiving transducer with a polarization pattern that is the reverse of the 

transmitter pattern. Also shown is time variation of the stress pattern at the 

transducer entrance port (z = za). (c) Relative open-circuit output voltage from the 

leceiving tiansducer. The central peak of the autocorrelation function occurs at t = 
(Zo + i)!c0 and has a half-height duration of f/(7c0). 

360 
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Figure 6.13 Analysis of a piezoelectric plate polarized in the z-direction. 

6.5 One-Dimensional Transducer Models 

One-dimensional models provide a useful starting point for predicting the 

behavior of transducers and optimizing their performance. The basis of such 

models is a solution to the 1-D wave equation for propagation in the direc¬ 

tion of polarization. Such a solution assumes that the lateral transducer dimen¬ 

sions are much larger than the thickness and that the behavior is linear. In 

addition, losses are generally assumed to be negligible, though, as will be seen, 

these can be readily accounted for by straightforward extensions to the model. 

6.5.1 Analysis 

For the metallized piezoelectric plate of cross-sectional area A shown in 

Fig. 6.13, we shall assume the electrodes are sufficiently thin so that their influ¬ 

ence on wave propagation through the piezoelectric medium can be ignored. 

It will also be assumed that the piezoelectric medium is polarized in the z- 
direction and that there are no lateral strains (5, = S2 = 0).The coordinate axes 

are as shown in the figure, with the plane z — 0 coincident with the bottom 

surface and the plane z — 6 coincident with the top. It should be noted that 

the transducer can be represented as a three-port device, one electrical poit 

10. Derivations are given, for example, in [12,79,80]. 
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and two acoustic ports. The electrical port parameters consist of the current 

and voltage between the two metallized surfaces, while the acoustic port 

parameters consist of the force and particle velocity on each surface. 

Consider the elementary volume illustrated in Fig. 6.13, consisting of a plane 

slice parallel to the electrodes located at z and having a thickness dz. For a 

wave propagating in the z-direction, the stress11 in the piezoelectric medium 

is a function of both z and time, i.e., T(z\t). As indicated in the figure, at a given 

instant of time the displacement of the plane at z is denoted by £, and that for 

the plane at z + dz is £, + (dfydz)dz. Consequently, a first-order approximation 

for the strain within the elementary volume between these two planes is given 
by 

(6-18) S ~ ~dz/dz = dt>/dz. 
dz 

Now the force acting on the elementary volume is A(dTldz)dz, and 
since its mass is p,Adz, it follows from Newton's second law that 

A = P<>Adz t—p, which simplifies to 

(6.19) IT H 
Bz p" B,2 ' 

With the help of one of the constitutive relations, specifically (6.8a), the stress 
in this 1-D model can be written as 

(6-20) t = cDS ~hD 

and its spatial derivative as 

dT D dS , dD 
— = c --h-. 
OZ dz dz 

In the absence of free charges in the piezoelectric medium, (6.2) gives dD/dz 
= 0, so that by substituting the above equation into (6.19) and making use of 
(6.18), the differential equation for the displacement is 

(6.21) cAp ^ 
dz2 Po dC 

As will be shown, equations relating the electrical and mechanical transducer 

properties at the three ports can be obtained by solving this equation using 
appropriate boundary conditions. 

In Fig. 6.14a, the forces on the two surfaces are defined to be positive when 

acting into the surfaces. Consequently, with the help of Fig. 6.13 it can be seen 

that these forces are related to the stresses (force/unit area) by Fx = -AT(0) 

11. For notational simplicity in this 1-D 
subscripts. 

analysis we shall omit the use of the 3- or 33- 
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l 

Figure 6.14 1-D model showing the sign conventions normally used. There are two 

acoustic ports and one electrical port. In (a) both the forces and the surface 

velocities are defined as being positive into the piezoelectric surfaces. Thus v1 = v(0), 

v2 = -v(€), and Fx = -AT(0), F2 = -AT(€). (b) Equivalent circuit with one electrical 

port and two mechanical (acoustic) ports. 

and F2 = -AT(€). Similarly, the velocities of the two surfaces are given by vx = 

v(0) and v2 = -v(€). p D 
If the wave number (propagation constant) is denoted by - (3 = (0/ca = 

co/v/cD p0, then the harmonic solution to (6.21) can readily be shown to 

be 

which consists of two traveling waves moving in opposite directions. This equa¬ 

tion can be transformed to a more convenient form by using some elementary 

trigonometric relations, yielding 

12. To avoid confusion with the piezoelectric coupling factor, we have temporarily used (3 

instead of k to denote the wave number. 
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(6-22) £(z:f) = eim[B} sin((3z) + B4 cos(pz)]. 

The constants B2 and B4 in this equation can be expressed in terms of the 

particle velocities on the two boundaries as follows. At z = 0 the velocity is 

v[ = v(0) = (d£,/dt)z=0 = so that the velocity phasor is given by 

(6.23) vx = ;co54 

In addition, at z = € 
(a) 

(6.23) v2 = -v(f) = -;co[Z?3 sin(P6) + B4 cos((36)]. (b) 

Equations for the forces acting on the transducer surfaces can be obtained 
with the help of Fig. 6.14a, (6.20), and (6.22) and can expressed as: 

(6.24) 

and 

Fx = -AT(0) = -A[cdS- 

= A[hD-$cD B3]eim, 

— A hD-c° — 0 
dz z=0- (a) 

(6.24) 
F2 -A T(£) = -A[cdS - hD] = A hD-cD^ Z=i 

dz z=(- (b) 
= A[hD - (3cdB3 cos(P^) + $cdB4 sin(P^)]<?;“'. 

In addition, from (6.3) the electric displacement phasor can be expressed in 

terms of the current phasor by D- I/jtnA. Substituting this into the two equa¬ 

tions of (6.24) and using (6.23) to express the constants B? and B4 in terms of 
the boundary velocities, the force equations simplify to 

El --j[Za cotflW)^ + Z„cosec((3f)y, + hljto] 

E2 = -/[Z,;cosec(pf)y1 + Zacot($?)y2 + A//co] ’ 

where Za ^ AZa - Ap0^c°/p0 - AyjcDpa is the acoustic impedance, with units 

of Rayl m2. It is important to note that we have used the subscript a to dis¬ 

tinguish the acoustic impedance from the characteristic acoustic impedance ZG, 
whose units are Rayl. 

The final equation relates the applied voltage V to the forces and current. 

This can be obtained by observing that the potential difference between two 

points A and B is defined as the work done in taking a unit positive test charge 

from B to A in the presence of an electric field S. It can be written as the line 
integral 

Vab — — f S dL. 
JB 

Applying this definition to Fig. 6.14a and using (6.8b), it can be seen that 

V = jaSdz=l -hS+(D/ts)dz 

35 Dt 

dz 
h B2 sin(pz) + B4 cos(pz) 
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in which (6.22) has been used in the final step. Now (6.23) enables and B4 
to be written in terms of the surface velocities, so that the voltage phasor can 
be expressed as 

(6.26) 
to 

IJ 
_Aes 

+ h{vl + v2) i-{hvx + hv2 + llC0), 

where Ca = Aesl(, is the clamped capacitance of the piezoelectric medium. 

Equations (6.25) and (6.26) can now be rewritten in the compact matrix form: 

'll ’ Za cot(p^) Zflcosec((3f) h/co 'Fi 

f_2 Z„cosec((3f) Zfl cot(p^) /?/ CO k2 

fi/to /?/ co l/(co Co)_ I 

This characterizes the terminal behavior of the three-port transducer model 

shown in Fig. 6.14a and enables the impedance elements shown in Fig. 6.14b to 

be identified, e.g.,Z33 = -;/(coC0). Additional equations that arise from the source 

and load impedances external to the transducer should also be noted. For 

example, if the transducer is used as a transmitter of acoustic energy and is 

excited by a voltage source Vs whose impedance is Z5, then the acoustic imped¬ 

ances of the transmission and backing media can be written as ZB = - Fjvi and 

ZT = -E2IV2, respectively, and the source impedance by Zs = -(V - Ys)/L These 
relations, when used in (6.27), result in three equations with three unknowns. 

However, from a design standpoint these equations by themselves are not 

helpful in providing an intuitive grasp of the processes involved. What would be 

helpful is a model (or models) whose elements are related to the transduction 

mechanism, and some of these will be described in the next subsection. 

Finally, it should be noted that propagation losses can be accounted for by 

assuming a propagation constant, a complex quantity given by y = a + y(3, where 

a is the attenuation constant (Nepers/m) and (3 = 27t/9u In addition, the dielec¬ 

tric loss can be accounted for by assuming the permittivity to be complex, though 

a useful approximation is to represent the loss by a resistor Rs in series with an 

ideal capacitor. Although both a and Rs are normally frequency-dependent 

quantities, it is often reasonable to use center frequency values over the trans¬ 

ducer bandwidth. With these approximations, a more general form of (6.27) is 

'h' ' Za cot(yf’) Zacosec(y^) h/(£> \i~ 

(6.28) I2 = ~j Zucosec(y^) Z„ cot(yf) h/co V-2 

V_ h/a) h/e) jRs + 1/(®C0)_ l 

6.5.2 Four Transducer Models 

Exact Models of Mason, Redwood, and KLM 

In 1948 Mason [82] proposed the circuit model shown in Fig. 6.15, 

whose terminal equations are identical to those given by (6.27).13 

13. An interesting historical account of the development of circuit models is given in the paper 

by Ballato [81]. 



F2 

C0 = AfJ'/£, Clamped capacitance 

Z] = Z2 = JZa tan(pf/2) 

Z3 = -y'Zflcosec(Pf) 

P = co/ J cn/pa , Wave number 

(j> = 1 /(C0h) = l/(C0gc/)), Transformer turns ratio 

co„ = — J—, Unloaded antiresonant frequency 
t\Po 

Za - AZa ~ A^]cdpot Acoustic impedance 

(b) 
Figure 6.15 Mason 1-D model of a piezoelectric plate excited in the thickness 

expansion mode, (a) Circuit model, (b) Equations describing parameters of the 

model, which satisfies (6.27). The transformer turns ratio has MKS units of 

volts/Newton. 
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Acoustic Transmission Line 

Figure 6.16 The Redwood model. This model can be obtained from the Mason 

model by simply replacing the T-network of Fig. 6.15 by an equivalent acoustic 

transmission line of length f and acoustic impedance Z„ = AZa. The parameters of 

this model are the same as the Mason model given in Fig. 6.15. 

Subsequently, Redwood [83] developed a transmission line model14 (Fig. 6.16) 

that is more amenable for transient analysis and physical interpretation. Using 

this model, he determined the transducer transient acoustic response when a 

step of voltage was applied and also determined the electrical response when 

a step function of force was applied. A different model, illustrated in Fig. 6.17, 

is that proposed in 1970 by Krimholtz et al. [85,86] and which is commonly 

referred to as the KLM model. By straightforward analysis [80], it can be 

shown that the equations governing the terminal properties of all three models 

are identical to (6.27), and consequently they are all exact 1-D models for lon¬ 

gitudinal thickness mode wave motion in a piezoelectric disk whose lateral 

dimensions are large compared to the thickness. Equations that express the 

circuit element properties in terms of the transducer material properties are 
also given. 

In examining all three models, it will be noted that the transformer ratio is 

a dimensioned parameter. This is because the transformer acts as an interface 

between the electrical and mechanical parts of the circuit. For the Mason and 

Redwood models, the transformer turns ratios are independent of frequency, 

whereas for the KLM model this is not the case. It is reasonable to expect that 

the piezoelectric medium should behave as a distributed acoustic delay line 

that is excited throughout its thickness by the time-varying electric field. For 

the Mason model, Zl5 Z2, and Z3 are frequency-dependent impedances whose 

physical interpretation is not immediately evident. In the Redwood model, an 

acoustic transmission line whose length is half the resonant wavelength (k,J2) 
has replaced these three impedances. It should be noted that the transformer 

14. Closely related to the Redwood model is one proposed in 1983 by Banah et al. [84], which 

models the acoustic properties by a reentrant acoustic transmission line. 
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Acoustic Transmission Line 

t/2=kJA 1/2=1.J4 

CQ = Ass/£, Clamped capacitance 

D n c 
G)„ = — —, Unloaded antiresonant frequency 

HPo 

Za = AZ0 = A-\Jc°p0, Acoustic impedance 

71(0 / 0), -C 
C'= ° 

(k*)2 sin(7to)/co0) 
, as co —> co , C —> -oo 

♦ = *'. |—-Arr Turns ratio 
^a 71(0 / 2(0, 

(b) 
Figure 6.17 The KLM model of a disk transducer operating in the thickness, (a) 
Circuit model, (b) Equations for the circuit parameters. Note that the “capacitor” C' 

has an impedance of Zc< = 
1 m sin(7uo/co0) 

whose reactance is positive 
ja>C co C0 7tco/co0 

for co < cou and zero when co = co0. The transformer turns ratio has MKS units of 
[(Ohms/Newton)(m/s)]1/2. 

output drives this transmission line on the common (shield) connection, and 
consequently the transformer output appears as two sources, one at each end 
of the transmission line. We shall make use of this model in section 6.7.1 for 
discussing the impulse response. 

The KLM model shown in Fig. 6.17 contains two quarter-wave acoustic 
transmission lines with their common terminals connected to the transformer. 
As discussed by Desiltes et al. [87], the KLM model replaces the distributed 
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nature of the coupling by a single coupling point, and the difference between 

this approximation and the distributed coupling is included through the fre¬ 

quency-dependent transformer turns ratio and a series reactance. From a 

design standpoint, the KLM model more readily allows the effects of various 

termination conditions at the two acoustic ports to be interpreted and allows 

an intuitive approach to be used in optimizing the transducer performance. At 

the electrical port, there are two capacitors in series: the clamped capacitor 

and one whose capacitance is negative for to < cof, and that approaches as 

co-^co0, i.e., at the resonant frequency. In the neighborhood of the resonant fre¬ 

quency, Id »ca so that C' can be regarded as a short circuit. 

Approximate Model of Van Dyke 

In 1925 Van Dyke [88,89] showed1^ how the simple electrical model shown in 

Fig. 6.18 could be obtained from the equations describing the vibration of a 

lightly loaded piezoelectric transducer feeding acoustic transmission and 

backing impedances denoted by Zrand ZB, respectively. It will be noted that 

this model contains a series branch consisting of L, C, and R that will have 

a series resonant frequency fs, and a parallel branch with an unloaded anti¬ 

resonant frequency16 of fp. By comparison with the KLM model and assuming 

co —^ 0, it can be seen that C'Q = C0 — C.The validity of this approximate model17 

is limited to a lightly loaded transducer close to the resonant frequency, and 

it can be helpful in designing appropriate electrical matching to a source or 
load. 

As an example, we consider a 5mm-diameter (A = 19.6 x lCT6m2) PZT-5H 

disk that has a resonant frequency of 5 MHz and that is immersed in water. 

Consequently, the load acoustic impedances are given by ZT = ZB = 19.6 

x 10 6 x 1.5 x 106 = 29.4 Rayl.m2. From Table 6.2 it can be seen that the rele¬ 

vant transducer material properties are k’ = 0.49, (c0)D = 4620 m/s, and es - 
1470eo. Now the transducer thickness required for an unloaded antiresonant 

15. Although the discovery of this circuit model is sometimes attributed to Van Dyke, it should 

be noted that in 1914/15 Butterworth [90] proposed an electrical model for a mechanically vibrat¬ 

ing system with several degrees of freedom. He showed that in the region of the resonant fre¬ 

quency, it consists of a capacitor in parallel with the series combination of an inductor resistor 

and capacitor. Although no mention is made of its applicability to piezoelectric resonators and 

no reference is made by Van Dyke to this earlier work, many refer to the circuit model as the 

Butterworth-Van Dyke model. It should also be noted that Dye [91] independently arrived at the 

same model for a quartz crystal: his work was published shortly after Van Dyke’s brief report. 

16. As noted in [92], these two resonant frequencies are variously referred to in the literature. 

Thus, the series resonant frequency = / = frequency of maximum conductance,/„, = frequency of 

minimum impedance, fr = resonant frequency = frequency of zero susceptance and, fm=fs = / 

(lossless), fm < / < fr (lossy). Also, the parallel resonant frequency =fp = frequency of maximum 

resistance,/, = anti-resonant frequency = frequency of zero reactance,/, = frequency of maximum 

impedance and, in general,/, =fp =/„ (lossless),/, </,</„ (lossy). 

17. It should be noted that a more accurate representation is obtained if to, is replaced by co,, 

in the expression given in Fig. 6.18 for the series resistance R [93]. 
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Of 

c 
R 

Z (a) 
in 

c = c0 = c0-c 
n2-S(kf)2 ° ° 

o 
C0 = Az tl = clamped capacitance 

L - 
1 
9 „ 5 CO, 

2 2 
(Op-0)5 

= unloaded series resonant angular frequency 

8(^)2 

co; 7l2[l-(^)2] 

R 
4(i')20))Z„C„ 

D 
71 IC 

cop = — I—= unloaded anti-resonant (parallel) frequency 

(b) 
Figure 6.18 Approximate 1-D circuit model of a lightly loaded transducer in the 

vicinity of the resonant frequency, (a) Circuit model, (b) Circuit parameters defining 
the model. 

frequency of 5 MHz can be found from f = (c0)D/(2/0), yielding f = 4620/(2 x 5 

x 10'1) = 0.462 mm, so that the clamped capacitance is Ca - Azszjt - 553 pF. 

Using these in the equations of Fig. 6.18, the circuit element values can be 

calculated as R = 22.7Q, L = 11.8pH, C - 108pF, and C = 445pF. The input 

impedance can be obtained by straightforward circuit analysis as 

1/Zm — I_/V_ — ja>C' + ycoL + —— + R, 
j(oC 
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Frequency, MHz 

Figure 6.19 Input impedance versus frequency obtained using the simplified model 

of Fig. 6.18. The magnitude and real and imaginary parts are shown for a 5-mm- 

diameter, 5 MHz PZT-5H disk transducer that has no acoustic matching layers and 
that is immersed in water. 

and the results are plotted in Fig. 6.19. As will be shown, these results are quite 

close to those obtained using the exact 1-D model equations. It should be 

noted that |Z,J is a maximum at a frequency fp that is slightly less than the 

unloaded antiresonant frequency of/c = 5 MHz; also, the series resonant fre¬ 

quency of fs = 4.46 MHz corresponds approximately to the minimum value of 

|Z,J. For a lossless unloaded transducer, as / —> f0 - fp, |zj —» oo and as/—>/„ 

Izj —> 0. Transducer losses are not accounted for in this model, though an addi¬ 

tional fixed resistance in series with R would be a reasonable approximation. 

6.5.3 Matrix Computation Methods 

By formulating the frequency domain characteristics of transducers in terms 

of matrices, direct use can be made of the built-in matrix operations that are 

an integral part of many software packages. This approach makes use of well- 

known techniques for characterizing electrical two-port networks that are well 

described in many textbooks [94,95], Sittig [35,96,97] was one of the first to 

discuss its application and to provide a clear description of the method used 

for computing both the transmit and receive frequency domain response. He 

obtained the transmission matrix (often called the T-matrix) for the piezo¬ 

electric layer from (6.27) and represented the electrode layer and matching 

layer(s) by individual matrices. Subsequently, using a similar approach, 
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Selfridge and Gehlbach [98] represented each element of the KLM model as 

an individual matrix component, thereby providing the computational model 

with a more direct physical interpretation.18 This approach will be used in the 

following analysis. 

Transmission Matrix 

If the back port sees an acoustic impedance of ZB, then by substituting Vi = 

-FylZB into (6.27), the electrical and acoustical port parameters can be written 

in the form 

V An A12 ' F2 - 

_I_ -A21 A22- -v2 - 

in which, for notational simplicity, the underscore on phasor quantities has 

been omitted. The parameters of [A] are complex quantities that characterize 

the transfer from one port to the other, and because of this the matrix is often 

called a transmission matrix and the elements are referred to as the transmis¬ 

sion parameters. It should be noted that I and v2 are defined to be positive 

when pointing into the transducer, thus —v2 is positive when pointing out of 

the acoustic port. It can be shown [94,95] that the determinant of A is unity 

(det A = AnA22 - AuA2i = 1) and consequently the network possesses recip¬ 

rocal properties.19 When an ideal rigid reflector is used to reflect a plane wave 

transmitted from a transducer with reciprocal properties, the form of the trans¬ 

mit/receive transfer function is considerably simplified [110]. 

As illustrated in Fig. 6.20 and subsequently discussed in subsection 6.6.4, 

one or more matching layers consisting of non-piezoelectric media are gener¬ 

ally used to improve the bandwidth and efficiency. Tire transmission proper¬ 

ties of each layer can be represented as a two-port network, which in turn can 

be characterized by its 2 x 2 transmission matrix. For the nth lossless layer of 

a medium of thickness £„, propagation constant (3,„ and acoustic impedance Z„, 
the acoustic input and output can be obtained by putting h = 0 into (6.27); 

after some algebraic manipulations, this yields 

(6.29) Fn 

v„ 

cos((3„4) jZn sin(p„4)’ 

C0S(M„) 
ZjH 

' Fn+1 ' 
= [A, ] 

" Fn+1 " 

l-vn+u -Vn+1. 

where the matrix parameters characterize the transmission acoustic proper¬ 

ties of the layer and the matrix A„ has reciprocal properties. Here again, the 

18. A useful discussion of the changes needed to achieve consistency between the various 

models and to correct for a small number of errors present in the literature has been given by 
Whitworth [93]. 

19. For a reciprocal network, if a current Is is applied to the electrical port and produces a 

particle velocity v2 when an acoustical short exists (Z7 = 0) at the output, then the ratio of the 

open-circuit output voltage to a force F2 applied to the acoustic port is given by V0/F2 = v2/Is. 
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(a) 

(b) 

Non-piezoelectric 
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(C) 

Backing Matching 
Layer 

\ 

Piezoelectric 
Medium 

Front 
Matching 
Layers 

Backing 

Region 

Figure 6.20 Accounting for the presence of matching layers, (a) Non-piezoelectric 

layer with an acoustic impedance of Z„ and a thickness of f„. (b) Two-port 

representation; the front port particle velocity is now defined to be positive out from 

the port, (c) Transducer with multiple transmission and backing layers. 

sign of the particle velocity from port 2 should be noted.20 By defining the 

transmission matrix in this way, it can be shown that for N cascaded layers 

(Fig. 6.20c), the equation governing the input and output parameters takes the 
form 

F nu«i 
n= 1 

Fv+1 

-~Vn+i 

20. By putting („ = 0 in (6.29), it can be seen that v„ = -vn+u so that on the output side if the 

velocity is negative, its direction will be positive out of the surface. 
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where for the (N + l)th region, e.g., the transmission medium, ZT= -FNJ 

vN+l and the overall transmission matrix consists of the matrix for each layer 

post-multiplied by the matrices of succeeding layers. Single electrical or 

acoustic elements can be readily incorporated into the overall matrix by 

writing down their transmission properties. For example, in the case of a series 

impedance Zsen the transmission matrix 

impedance Zsht is 
1 

-l/ Zsht 

0 

1 

is 
1 

0 
and that for a shunt 

Losses in the medium can be accounted for by making the propagation con¬ 

stant a complex quantity, and as a result the transmission matrix then takes 

the form 

[A] 
cosh(yX) 

sinh(y„ tn) 

Z„ sinh(y„4)~ 

cosh(y„4) 

where y = a + /|3, in which a is the attenuation constant (Nepers/m) and 

(3 = 2n/X. 

Transmit and Receive Response 

Calculation of both the transmission and reception response will be illustrated 

by considering the simplified schematics shown in Fig. 6.21, in which single 

front and back matching layers are assumed. The excitation source has an 

output impedance of Zs and is connected via a coaxial cable to an electrical 

Transducer with 

Electrical Matching Layers 

Transmission Matchin9, , & Backing , 
Line 

Source 
Acoustic 

Load 

(a) 

Preamplifier 
Electrical 
Matching 

Transducer with 
Matching Layers 

& Backing 

Acoustic 
Source 

(b) 

Figure 6.21 Simplified models of (a) a transmission circuit and (b) a reception 
circuit. 



Ultrasound Transducers 375 

matching network and then to the transducer, whose front port is loaded by 

the transmission medium with an acoustic impedance of Zr. In Fig. 6.22 the 

transmission line and matching network are represented by matrix AeU, and 

the other matrices are obtained from the KLM model and matching layer 

Mr 1 z, 
0 1 [W^klklkM- am 

1 O’ 

\/ZT 1 

Zm=^L, Htr(o) 
^21 

_F2 
- 1 I A" 

" A" ’ V. “ 

kl- 

kb 

kl- 

(b) ki= 

cosh(y^M) ZM smh(yM^M)’ 

cosh(TM<i/) kl- 
cosh(y BlB) ZMBs'mh(yB(Bj 
smh(yB(B) 

Z MB 

O’ 

4/4i 

cosh(yfl^5) 

kl- 

cos(y^) jZa sin(yO 

cosm 

1 o' 

(|) 0 

o i/4> 

ki-klk] 

H= 

i/zfl 1 

1 1 /(>c0) 

0 1 

1 l/(jcoC'j 

0 1 

Figure 6.22 Transmission matrix method for calculating the acoustic transmission 

response using the KLM transducer model. The transducer is assumed to have single 

matching layers at the front and back and to be excited by a voltage source of 

impedance Zs. (a) Signal flow path. The transfer characteristics of each block are 

represented by a matrix, (b) The total transformation matrix is given together with 

the input impedance, transmitted force/voltage transfer function, and values for the 

matrix elements. 
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properties previously described. The effects of the backing region are repre¬ 

sented by a shunt impedance of An/An, whose value can be obtained from the 

matrix Ap Expressions for the impedance seen by the voltage source and the 

transfer function are also given. It should be noted that the series source 

impedance and the shunt load impedance have been included in the overall 

matrix, and consequently the input current and the output force and velocity 

can be found from and v2 = -F2/Zt. 

For the arrangement shown in Fig. 6.21b, the transducer is used as a receiver 

and the electrical port is connected via a coaxial cable to a preamplifier whose 

input impedance is ZL. The matrix representation of this circuit is given in Fig. 

6.23, together with equations for the overall transmission matrix and the trans¬ 

fer function. To calculate the transmit/receive (two-way) transfer function, it 

can be assumed that an ideal reflector is placed sufficiently close to the acoustic 

port that the effects of diffraction can be ignored. When the returned pressure 

-► 
VR 

1 ZT 

0 1 
elr 1 o 

mL t 
, Hrec (co) — --^- = 1 !A[\e 

F- 2 R 

Figure 6.23 Matrix method based on the KLM transducer model for calculating the 

voltage response at the input of a preamplifier due to an acoustic force. Single front 

and back matching layers are assumed. Tire transmission matrix is given together 

with the received voltage/force transfer function. All matrices are specified in 
Fig. 6.22b. 
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wave is incident on a rigid acoustic port of unit area, the resulting force will 

be twice that of the incident pressure. Thus, if the same transducer is used for 

both transmission and reception, the received force will be given by F2R = 2F2, 

which then enables the overall (two-way) transfer function (VR/VS) to be 

obtained. In fact, because the transducer behaves as a linear reciprocal device, 

the transmit and receive transfer functions, apart from a scaling term, have the 

same functional dependence on frequency, and this simplifies determination 
of the overall transfer function. 

A convenient way of expressing the transmit/receive response is in terms 

of the insertion loss. The insertion loss of a network is generally defined as 

the ratio of the power delivered into a load by a source in the absence of the 

network, to the power delivered by the same source to the same load with the 

network present, and the result is expressed in dB. If both the receiver input 

impedance and the excitation source impedance are real quantities (RL and 

Rs, respectively), then the insertion loss is given by 

(6.3°) /L.20,og{^-dMd}, (a) 

where the matrix elements are given in Figs. 6.22 and 6.23. For the special case 

in which Rs = RL, this simplifies to 

(6.30) 

IL = 20 log 

= 20 log = 201og< 
Rl\A rec 

11 

(b) 

4Zt 

6.6 Application of the KLM Model 

In applying the KLM model, it is helpful to make use of a well-known equa¬ 

tion for the input impedance of a lossless acoustic transmission line that is 

characterized by an impedance Zc. For a line of length € terminated by a load 

impedance Zr, the input impedance can be found by first post-multiplying the 

matrix [A„\, given by (6.29), by the matrix for a shunt load. If the propagation 

constant is expressed in terms of the wavelength A,, by using P = 2ti/A, and omit¬ 

ting the subscripts n, the new matrix can be written as 

[*] 

cos(2 rcf/A) 

jsin(2Kl/\) 

~ZC 

jZc sin(27ci/X) 

cos(27xl/X) 

1 

1/Z, 

0 

1 

The input impedance can then be found from Z, = A'nIA2\, yielding 

Z, + jZc tan(2nl/A.) 

(6-31) ' _ Zc Zr + JZr tan(27t*A)' 

We shall briefly examine the implications of this equation for some specific 

conditions. If the line has a length of 7J4 and is terminated with an impedance 
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of Z„ then the input impedance is Z;(A/4) = (Zt.)2/Zr. If the line is shorted 

(Zr = 0), then Z,-(A/4) = For a line of any length that is terminated by its 

characteristic impedance (Zf = Zc), then Z,-(€) = Zc. And finally, if the load is 

an open circuit, then Z,(€) = -jZccot(2n€/X). 
Consider the elementary conditions illustrated in Fig. 6.24a, in which the 

transducer sees a backing acoustic impedance of ZB and a transmission 

acoustic impedance of ZT, both regions being semi-infinite in extent. At the 

resonant frequency, the acoustic impedance seen by the mechanical side of the 

transformer consists of Z2/Zs in parallel with Z2/Zr, and this combination, 

when transformed to the electrical side, results in a radiation resistance given 

by 

(6.32) 
2 {k'f Za 

n-foC0 ZB + ZT 

Thus, as shown in Fig. 6.24c, the electrical input impedance at resonance con¬ 

sists of the clamped capacitance of Ca in series with the radiation resistance. 

Evidently, if ZB-ZT- 0, the radiation resistance will be infinite. It should also 

be noted that the radiation resistance is inversely proportional to the trans¬ 

ducer cross-sectional area. 
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Figure 6.24 An acoustic transducer of cross-sectional area A with backing and 

transmission regions that have acoustic impedances of ZB and ZT, respectively, (a) 

Physical arrangement, (b) Equivalent transformer load at the resonant frequency, (c) 
Obtaining the radiation resistance. 
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Figure 6.25 A transducer excited at its resonant frequency with stress waves 

originating from the center propagating toward each surface. The backward wave 

gets reflected and inverted at the backing interface and arrives back at the center 

with exactly the right time delay to cause reinforcement of the wave propagating to 

the right. 

The KLM model provides some useful insights as to the conditions that 

occur at resonance. According to this model, the effective source of the waves 

is the center plane of the transducer medium. As illustrated in Fig. 6.25, waves 

from this plane progress in both directions. For an air-backed transducer with 

perfect matching of the front surface, the reflected wave from the back inter¬ 

face causes the stress wave emitted from the front surface to have twice the 

amplitude of that when the reflection is absent. 

6.6.1 Quarter-Wave Matched and Air-Backed 

As a second example, we consider the situation shown in Fig. 6.26. Here the 

backing side of the transducer is air (Z^'7ZCz/ ~ 10"5) and the transmission side 

Piezoelectric 
Medium A,0/4 Matching Layer 

ZB-0 

Air 

ZT 
Transmission Region 

Figure 6.26 An air-backed transducer with a X/4 matching layer that gives an exact 

impedance match for the front surface, though only at the resonant frequency. 
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is acoustically matched to water by means of a matching layer that is quarter- 

wave thick at the transducer resonant frequency (to = co0).The acoustic imped¬ 

ance of such a layer will be given by ZM - VZaZT (see subsection 1.6.1). 

Because the input impedance of a shorted quarter-wave transmission line is 

infinite (ZB ~ 0) and ZT = Za, then from (6.32) the radiation resistance at the 

resonant frequency simplifies to 

(6.33) R„ m2 
n2f0C0 ' 

As an example, we consider a 5-MHz air-backed PZT-5H disk of 

5 mm diameter. The relevant material properties are k‘ = 0.49, (ca)D = 4620 m/s, 

and es - 1470eo. Now the transducer resonant thickness is given by £ - 4620/(2 

x 5 x 106) = 0.462 mm, so that the clamped capacitance is C0 = Ae5e0/€ = 

553 pF. Substituting these values into (6.33) yields a radiation resistance 

of 17.60. 

6.6.2 Unloaded Input Impedance 

In the absence of any load on the transducer, the impedance seen on the 

acoustic side of the transformer can be obtained by noting that in the KLM 

model the impedances arising from each surface are in parallel and their 

values are given by the transmission line equation of (6.31). This yields 

Z“ = (;Z8/ 2)tan(27tf/A.) = (;Za/2)tan(7rco/2co0), 

which, when reflected to the electrical side, becomes 

Zeiect _ }— sin2(too/2t0o)tan(jrco/2co0). 
C0 TOO/ C0o 

This impedance is in series with the capacitors C0 and C' of the KLM model, 

and consequently, with the help of the expression for C in Fig. 6.17, the total 
electrical input impedance is given by 

(6.34) yJl=- 
j(aC 0 

(^)2 
(7rco/2co0) 

tan(TOo/2co0) 

By rewriting this as Zin = (l/;'toC0) + Zm, Z,n can be identified as the additional 

input impedance caused by the acoustic motion and is generally called the 

motional acoustic impedance. Three additional features of (6.34) should also 

be noted. The first is that if co —> co0(2n + 1), where n = 0,1,2.., then |zj -> «>, 

i.e., antiresonances occur when the transducer thickness is an odd number of 

half wavelengths. Specifically, the value n = 0 corresponds to the fundamental 

(half wavelength) antiresonant (parallel) frequency ((£>p= co0). 

The second feature of (6.34) is that \Zin\ = 0 when the term in brackets is 
zero, i.e., when 

Jtco/2co0 = (k'Y tan(TOo/2co0). 
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The solution to this equation gives the series resonant frequency, which will 

differ from the value obtained in the absence of electromechanical coupling. 

It can be readily shown that in the absence of any coupling (k' = 0), to = 0)„; in 

addition, as the coupling approaches unity (k'—> 1), to —> 0. For example, if k! = 

0.49, and fQ = 5 x 106MHz, then the series resonant frequency is/s = 4.46 x 106 

Hz, which is precisely the value obtained for the example given with the sim¬ 

plified circuit model of Fig. 6.18 in the absence of loading (ZB = ZT - 0, R = 

0). As pointed out and experimentally verified by Onoe et al. [108], the shift 

in series resonant frequency can be attributed to the influence of the electro¬ 

mechanical coupling. 

Finally, it can be readily shown from (6.34) that the series and parallel res¬ 

onance frequencies are related by 

k, - V(ttoos/2co;,)tan[7t(o)p — co^)/2oo/, ]. 

Thus, by measuring the two resonant frequencies for an unloaded transducer, 

the coupling factor can be determined [42,108], 

6.6.3 Loaded Input Impedance 

Of considerable practical importance is the input impedance for any load or 

backing impedances. This can be obtained either directly from (6.27) by 

putting ZB = -Ei/vi and ZT = -EJVi, and then solving for Zin = VII, or by direct 

use of either the Mason or KLM models. For this more general case, 

(6.35) Zm . — + Zm, (a) 
/ ]0iCo 

where the motional acoustic impedance is given by [80] 

(6.35) 

(k'f {jZa(ZB +Zr)sin(7tm/to0)-2Zfl[l-cos(7t(o/m0)]} ^ 

;coC0(rcGt) co0 )[(Za t ZbZj )sin(7tco/(o0) — jZa (ZB + Zj)cos(7t(o/to0)] 

As expected, when the transducer is unloaded (ZB - ZT = 0), the input 

impedance reduces to that given by (6.34). 

6.6.4 Power Transfer Efficiency 

For pulse-echo transducers, the conversion efficiency of power from an elec¬ 

trical source into an acoustic load and power from an acoustic source to an 

electrical load are generally important design factors. In efficiently delivering 

energy from an electrical source to an acoustic load, both the electrical match¬ 

ing between the source and transducer and the acoustic matching conditions 

at the front and back ports should be carefully considered. Similar considera¬ 

tions apply when the transducer is used as a detector. For pulse-echo applica¬ 

tions, the bandwidth and associated phase delay are of major importance. A 
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wide bandwidth will not necessarily give good pulse-echo response unless it is 

accompanied by a fairly linear change in phase over the passband. For 

example, if the skirts of the bandpass characteristics are too steep or there is 

a high ripple in the pass band, the associated nonlinear phase shift can extend 

the duration of the impulse response (sometimes called ringdown). On trans¬ 

mission, this increases the effective pulse duration, which can degrade the axial 
resolution of a pulse-echo system. 

The first paper to systematically study the electrical and acoustic conditions 

needed to optimize the performance was that published by Kossoff [99] in 

1966. He discussed the effects of backing, matching of the front face, and phase 

shift. This work was extended by subsequent studies of Goll and Auld [100,101] 

and Desiltes et al. [87] and in an important review by Hunt et al. [47], Because 

of the large number of variable parameters, the problem of determining an 

optimal design has often been approached using computer-based optimization 

methods either in the time domain [102] or frequency domain [103], More 

recently, Rhyne [104] has described the development of a computer-based 

optimization approach in which the properties of the various acoustic match¬ 

ing layers are adjusted to achieve a best match to an appropriately selected 

target transfer function. Using classic filter theory and accounting for losses, 

he showed that within the passband, the system transfer function has an all¬ 

pole characteristic and can be optimized by using a steepest descent algorithm 
to achieve a best match to an all-pole target transfer function. 

Electrical Matching 

If the transducer is assumed to be lossless, then it is relatively straightforward 

to calculate the power delivered to the acoustic load and to express this in 

terms of the power delivered by the source. By using an electrical matching 

network between the source and transducer, the power transfer efficiency can 

be optimized. The network design is based on the well-known fact that that 

maximum power transfer is achieved when the load impedance is equal to the 

complex conjugate of the source impedance, i.e., Zs = Z*L. As indicated in Fig. 

6.27a, for a source whose output impedance is real, this network should cancel 

out the imaginary part of the load impedance. Thus, if the transducer is rep¬ 

resented as the series combination of an acoustic radiation resistance Ra(co) 

and a reactance X(co), the input impedance of the network when loaded by 

the transducer should be equal to the source resistance Rs over the entire fre¬ 

quency range of practical interest. Simple networks can achieve this only over 

a limited frequency range; more complex networks are needed for wide-band 
matching. 

The power transfer efficiency to both acoustic ports can be defined by 

^ _ Total Acoustic Output Power (at both Ports) 

(6 36) Maximum (matched) Electrical Power Delivered 

W 

ini 7(8*.)’ 
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(d) 

Figure 6.27 Some electrical matching networks, (a) General block diagram in which 

the transducer is represented by a radiation resistance and a reactance X. (b) Shunt 

and (c) series inductance matching networks, (d) More complex network according 

to the design discussed by Selfridge et al. [102]. The above three networks are shown 

with the transducer at its antiresonant frequency. 

in which W is the total acoustic power and |vj 2/(8Rs) is the maximum power 

delivered by the source.21 When power is being emitted from both ports, the 

transfer efficiency for the front port is reduced from the overall efficiency by 

the factor ZTI(ZT + ZB) and can be found from 

(6.37) r\F = ti 
Zj + ZB 

8RsPZt 

\vs\2(zt + zb) 

21. Note that we are working in terms of sinusoidal phasor amplitudes: had we been using 

RMS values, the numerical factor would be 4 rather than 8. 
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where P is the total acoustic power from both ports. Consequently, for equally 

loaded ports the transfer efficiency for one of the ports will be -3dB 

(= 101og0.5) less than the overall efficiency. 

In the block diagram of Fig. 6.27a, the transducer input impedance is 

modeled by the series combination of an acoustic radiation resistance Ra and 

a reactance X. The general optimization problem consists of finding the elec¬ 

trical matching network that will maximize the power transfer over the 

required bandwidth. We shall consider the simpler case in which the trans¬ 

ducer is excited at its antiresonant frequency and the matching network simply 

consists of either a shunt inductor or a series inductor as shown in (b) and (c), 

where Rao is given by (6.32). It is evident that if L = l/((0oCo), the input imped¬ 

ance seen by the source will be purely resistive, and if the inductor is ideal, it 

will equal Rao. Under these circumstances the power transfer efficiency is 

n_ W 4RU„R, 

|V,|7(8«,) (R„o + R,f 
which, as expected, is unity when Rao - Rs. 

In the general off-resonance case, the input impedance of the transducer 

will be given by Zin(co) = Ra (to) + jX(to) and the acoustic power can be found 

from W= Re{ F/*/2), where V and / are the voltage and current phasors at the 

transducer terminals and the star denotes the complex conjugate. Application 

of this equation to the circuit of Fig. 6.27a, with a matching "network consist¬ 

ing of a series inductance of L = l/(co2C0), results in an efficiency of 

(Ra + Rs Y + [to/ (to 20C0) + A(co)]~ 

which reduces to the previous equation for the particular case of to = <n0. 

To illustrate the effects of including a series inductance on the impedance 

characteristics and the effects of impedance mismatch, we shall again consider 

a 5-MHz PZT-5H air-backed disk transducer with a 5-mm diameter. The rel¬ 

evant properties are k' = 0.49, (c0)D = 4620 m/s, e5 = 1470s,,, t = 0.462 mm, and 

CQ = 553 pF. From Fig. 6.28a, it can be seen that the real part of the transducer 

input impedance is ~18£2 at 5.0MHz. At this frequency the presence of the 

series inductor will cause the load seen by the source to be real and to be equal 

to 18 H, resulting in a power transfer efficiency of unity. The impedance graph 

also shows the imaginary part of the input impedance of an inductor in series 
with the transducer, which, as expected, is exactly zero at 5.0MHz. 

The transmission power loss22 characteristics shown in Fig. 6.28b indicate 

that the series inductor decreases the power loss, though with some reduction 

(-17%) in the -3-dB bandwidth. In accord with the observations of Hunt 

22. The power loss or gain in dB’s is defined by: 

WdB = lOlog _Power at Observation Point 

Electrical Power Delivered to the Transducer 
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Figure 6.28 Effect of electrical matching using a series inductance on the 

characteristics of an air-backed 5 MHz PZT-5H disk transducer with a diameter of 

5 mm. For simplicity, it was assumed that the front face was perfectly matched to the 

propagation medium at all frequencies, (a) Input impedance characteristics of the 

transducer. The imaginary part is shown with and without the tuning inductor, (b) 

Transmission power loss for (i) no tuning inductor and Rs = 50 Q; an ideal series 

inductor with (ii) Rs = 50f2 and (iii) Rs = 180. Note that the real part of the 

transducer input impedance at 5.0MHz is ~18Q. 

et al. [47], it can be seen that the power loss characteristic is fairly insensitive 

to the mismatch between the source impedance and load. Specifically, at 5 

MHz with the tuning inductor, when the source resistance is decreased by 

almost a factor of three (50Q to 18Q), the power loss increases by less than 

1.2 dB. A further feature of this graph is that the frequency of minimum trans¬ 

mission loss for the untuned transducer is significantly lower than the half¬ 

wave resonant frequency, as noted by Kossoff [99]. 
The use of the simple shunt inductor circuit of Fig. 6.27b can similarly be 

examined. As shown by Hunt et al. [47], its use results in a higher impedance 
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near the center frequency, which can make it easier to achieve better match¬ 

ing to a 50-£2 source. More complex electrical networks, such as that shown in 

Fig. 6.27d, have also been devised to obtain better matching over a wider range 

of frequencies [105,106]. 

Acoustic Matching 

It is noted in Fig. 6.26 that the proper choice for the thickness and character¬ 

istic impedance of a matching layer enables the impedance seen by a piezo¬ 

electric medium to be perfectly matched to the transmission medium at the 

frequency where the matching layer thickness is exactly A/4. However, at other 

frequencies a mismatch will occur, with a consequent reduction in transmitted 

power. As shown by Collin [107, pp. 345-346], if the acoustic impedance of the 

matching layer is ZM = VZaZTX , where Zn is the acoustic impedance of the 

propagation medium, and Rm is the maximum reflection coefficient that can 

be tolerated over the angular frequency range of Aco, then the fractional range 
is given by 

Aco 4 
-= 2-arccos 
co0 K (ZT1-Za)yll-R* 

The bandwidth is zero for R,n = 0 and increases with the maximum reflection 
that can be tolerated. 

To calculate the electrical input impedance and power loss characteristics, 

we shall assume an air-backed transducer with a single matching layer of 

zM = ^[zzz ti - The impedance seen by port 2 of the transducer looking toward 

the transmission medium can be found from (6.31). Consequently, the load 
seen by port 2 per unit transducer area will be 

where am = an/2 and a is unity23 if the layer is exactly A/4 thick at (0o. By replac¬ 

ing ZT in (6.35b) by the above expression for Z,(co), the electrical input imped¬ 

ance characteristics of the acoustically matched transducer can be calculated 
by substituting the result into (6.35a). 

As an example, we consider the same 5-MHz PZT-5H disk transducer as 

previously assumed and will calculate the input impedance and transmission 

power loss characteristics. For both of the series tuned power loss curves 

shown in Fig. 6.29b, it can be seen that the ripple in the passband is signifi¬ 

cantly reduced compared to the untuned case. Comparison of the power loss 

chaiacteristics with those for perfect matching over the entire frequency range 

23. Goll [101] has shown that increasing the thickness of the quarter-wave plate, e.g., 4% to 

10%, partially compensates for the frequency dependence of the KLM model transformer turns 
ratio, thereby making the response flatter in the passband [87], 
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Figure 6.29 Air-backed 5-mm-diameter, 5-MHz PZT-5H disk transducer with a 

single l.VKJA acoustic matching of the front face to water and a series tuning 

inductor. The factor of 1.1 was chosen to reduce the ripple in the passband. (a) Input 

impedance of transducer, (b) Transmission power loss with and without a tuning 

inductor. 

Table 6.5. Double Matching Layer Design for a Backed Transducer 

Characteristic Values for Zn = 1.5 MRayl 

Acoustic Impedance Formulae and Zae = 18.54 MRayl 

1st Layer 7 — 7in 7 ^M\ t-'ae ^ 6.31 MRayl 

2nd Layer 7 — 71/7 7 
M2 ^ae ^ 2.15 MRayl 

Based on McKeighen [92], 

(Fig. 6.28b) shows that use of the matching layer results in a reduction in the 

-3-dB bandwidth and steeper skirts. 
To further improve the gain-bandwidth product, multiple matching layers 

can be used to advantage, though the problem of optimization is considerably 

more complex [87,101,109]. Desiltes et al. [87] examined the use of two 

quarter-wave matching layers and, assuming the transducer to be air-backed, 

derived the formulae given in Table 6.5. When the piezoelectric ceramic is 

backed by a medium with an acoustic impedance approaching the ceramic, as 

is typically used for generating a pulse with a short ringdown time, McKeighen 

[92] has shown that it is better to use an effective impedance Zue (seen looking 

into the piezoceramic, averaged over the bandwidth) /™he formulae rather 

than the acoustic impedance of the bulk ceramic. For a ceramic of 33.4 MRayl 

with a backing impedance of 3 MRayl, he finds that Zae = 18.54 MRayl, which 

yields the two impedance values given in the right column. 

To illustrate the potential advantages of a three-layer arrangement, the the¬ 

oretical and measured responses for the transducer whose design parameters 
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are listed in Table 6.6 are shown in Fig. 6.30. By placing an aluminum reflec¬ 

tor close to the transducer surface and assuming that attenuation and beam 

spreading could be neglected in the intervening distance, the ratio of the trans¬ 

mitted power from a 50-Q source to the received power in a 50-Q load was 

determined. From this value the two-way insertion loss [35,110] was calculated. 

The authors reported that the measured two-way (-6dB) bandwidth was 88% 

of the 4.02-MHz center frequency. In the passband, the experimentally 

observed losses are ~3dB greater than those calculated. This could be due to 

the losses in the tuning inductor and transducer that were ignored in the cal¬ 

culations. By taking the inverse Fourier transform of the round-trip transfer 

function, the calculated impulse response was obtained this is compared to the 
measured response in Fig. 6.30b. 

6.6.5 Effect of Backing 

As previously noted, the backing layer acoustic impedance has a major effect 

on the power transfer efficiency and bandwidth. Specifically, it was noted that 

if the transducer is air-backed (ZB ~ 0), almost no power is lost through the 

backing, while if it has the same acoustic impedance as the transducer, power 

will be lost to the backing both in transmission and reception. In the next sub¬ 

section we shall examine the transfer efficiency for the latter condition in the 

absence of a matching network, though with an optimized source resistance. 

To produce a pulse with a short ringdown but to retain good efficiency, a com¬ 

promise must be made in the backing impedance. In such a case, the backing 

medium will typically have an impedance in the range 3 to 7 MRayl. Often, 

polymer resins are used for both the front and back layers. The backing might 

consist of an epoxy loaded with powders of aluminum oxide, tungsten, and its 

oxides to produce sufficient attenuation so that echoes are on the order of 
-100dB below the primary pulse [92], 

Transfer Efficiency for ZB= ZT= Z0 

Let us consider the transfer efficiency to the front port at the resonant fre¬ 

quency from a source that has a resistive (Rs) impedance and that can be opti¬ 

mized to give the smallest loss. At the resonant frequency, the acoustic 

impedance is simply Rao in series with CQ (Fig. 6.27c), so the acoustic power 
delivered to either port can be expressed as 

By substituting 

ciency becomes 

W( ay,) =_1^1 _ 

= " (r„ + r,)2 + i/kc)2 

this into (6.37) and putting ZB = ZT, the power transfer effi- 

_2 Ry Rg„_ 

(Rao + Rsf + if(<dC0)2' 



Table 6.6. Values for a Triple Matching Layer Air-Backed Transducer 

Piezoelectric ceramic (air-backed) Pb'liO, 

Diameter 15.0 mm 

Thickness 0.625 mm 

Effective coupling coefficient 0.53 

Effective stiffened acoustic velocity 5034 m/s 

Effective characteristic acoustic impedance 34.9MRayl 

Effective permittivity 145 e„ 

Series inductor (resonant at 0.87fa) 4.6 pH 

Matching layer 1 (light borosilicate glass) 

Characteristic acoustic impedance 14.2MRayl 

Speed of sound 5360 m/s 

Matching layer 2 (glass-epoxy composite) 

Characteristic acoustic impedance 4.12MRayl 

Speed of sound 2800 m/s 

Matching layer 3 (urethane resin) 

Characteristic acoustic impedance 1.92MRayl 

Speed of sound 1750 m/s 

Thickness coefficient for all matching layers, a 1.18 

Data from Inoue et al. [109], 

Figure 6.30 Measured and calculated characteristics of a triple matched, propagating 

into water, air-backed transducer whose parameters are given in Table 6.6. (a) Two- 

way CW insertion loss and differential phase delay, (b) Pulse-echo response. 

(Reproduced, with permission, from Inoue et al. [109], IEEE Trans. Ultrason., 

Eerroelect., Freq. Contr., 34, 8—16, © 1987 IEEE.) 
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If this expression is differentiated with respect to R, and equated to zero, the 

source resistance for maximum power transfer efficiency can be found as 

using (6.32) for the radiation resistance, the optimal transfer efficiency can be 
expressed as 

i 
(6.38) 

which has a maximum value of 0.39 (-4.6dB) when k, - 1. If k, = 0.49, then 

T|T = 0.131 corresponding to -8.8dB, which means that two-way insertion loss 

will be 17.6 dB. This should be compared to the air-backed case, for which the 

two-way transfer efficiency with tuning at the resonant frequency is OdB and 
7dB without tuning.24 

6.7 Transient Response 

A simple approach for determining the response for a given excitation wave¬ 

form is to multiply the frequency spectrum of the waveform by the transducer 

transfer function and to then to perform an inverse Fourier transform. Alter¬ 

natively, an exact expression for the impulse response can be obtained, and 

this can then be convolved with the excitation waveform. For example, Kohler 

[112] has obtained an exact expression for the impulse response of a piezo¬ 

electric layer, assuming the backing and transmission media to be identical. 

While these methods provide direct quantitative results, physical insight is pro¬ 
vided through the Redwood model of Fig. 6.16. 

6.7.1 Impulse Response 

The Redwood model [83] provides a convenient means for qualitatively esti¬ 

mating the response to an impulse of voltage for various termination condi¬ 

tions of practical interest [80, pp. 47-50], Redwood simplified his model [111] 

by assuming that the effect of the negative capacitance could be ignored, i.e., 

it behaves like a short circuit, and that the voltage source was ideal. This 

source, together with Cot can now be placed on the acoustic side of the trans¬ 

former (Fig. 6.31). With the help of this model. Redwood showed that a voltage 

impulse will cause a stress to be immediately generated at each surface, and 

as a result waves will be propagated from both surfaces in both directions. 

For the first termination condition illustrated in Fig. 6.31a, both ports are 

assumed to be perfectly matched to the piezoelectric medium. If the source is 

a positive voltage impulse at t = 0, then a positive stress impulse will be present 

on both surfaces at t = 0, and the acoustic “voltage” will be equally divided 

between the load and the coaxial line impedance, i.e., Fx(t) = Fx(t) = W(2(j>). 

On examining the figure it can be seen that the voltage pulse across the coaxial 

24. For this case it can be shown that hr" = 2 l + -/l + 7t2/(2/c')4 
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Figure 6.31 An approximate form of the Redwood 1-D model for determining 

the voltage impulse response, (a) Both the back and front ports exactly matched, (b) 

Back port shorted (ZB = 0) and front port matched. The acoustic waveforms at the 

front port for both conditions are shown for a voltage impulse. The pulses are sketched 

as short-duration, finite-amplitude pulses. 
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line (center conductor to sheath) is inverted with a value of -V/(2<f>), so that 

the pulse originating from the surface of the back port will arrive at the front 

port after a time equal to the transit time x through the piezoelectric medium; 

this therefore results in a negative stress pulse on the front face. 

For the second termination condition shown in Fig. 6.31b, the backing is 

assumed to be a short circuit with the front surface matched. In this case, the 

coaxial line will have the full voltage across it (-V7<j>) at the backing port, and 

as a result a negative stress will occur at t = t on the front surface, which is 

double the stress that occurred at t = 0. The negative wave progressing from 

the front port to the left will be reflected and inverted at the backing port and 

will arrive back at the front port after a delay of 2x, giving the third pulse 

shown in the bottom half of the figure. This extended time duration of the 

impulse response corresponds to a reduction in bandwidth as compared to the 
matched backing case. 

Additional reflected pulses can occur in both cases due to imperfect 

matching, and these further extend the duration of the acoustic response 

to a short-duration excitation. Experimental measurements have shown qual¬ 

itative agreement with the above model [80, pp. 47-50; 111], and these provide 

some justification for ignoring the effects of the negative capacitor. 

From the above discussion it would seem better to match the back port to 

a highly absorbing medium. However, as noted earlier, the loss of energy from 

the backing port causes a large increase in the two-way insertion loss. 

6.7.2 Differential Phase Delay 

Both the insertion loss and phase characteristics provide useful indications of 

the transient response characteristics. While the insertion loss provides infor¬ 

mation on the bandwidth, the phase characteristics provides information con¬ 

cerning distortion that arises from the nonlinear frequency dependence of the 

phase shift. The delay associated with the change in phase with frequency is 
determined by 

where 0 is the phase expressed in radians. Now, the phase shift can readily be 

determined by making use of the matrix method described in section 6.5.3; 

specifically, 0 can be found from 0(co) = arg(A&Atf), where the matrix com¬ 
ponents are given in Figs. 6.22 and 6.23. 

To illustrate these results, we consider the same air-backed 5-MHz PZT-5H 

disk transducer as previously assumed (see Fig. 6.29). The two-way insertion 

loss and input/output phase characteristics are shown in Fig. 6.32. Also shown 

is the slope of the phase shift, which provides a measure of the time-domain 

characteiistics. It is evident that the series tuned transducer response has 

reduced ripple in the passband and therefore should have a transient response 

with less distortion. For the three-layer structure previously considered in 
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Figure 6.32 Two-way (a) insertion loss, (b) phase shift, and (c) differential phase 
delay for an air-backed transducer with a single matching layer to a water load. Each 
graph shows the influence of a simple series tuning inductor. An excitation source 
resistance of R, = 18Q and a receiving preamplifier load of RL = 50Q were assumed. 
The two-way insertion loss was calculated from (6.30). 

Fig. 6.30, the differential phase delay exhibits a much flatter response in the 

passband. 

6.8 Protection Circuits 

In pulse-echo systems in which the same transducer acts as both an acoustic 
source and detector, a means must be provided to isolate the preamplifier from 
the large excitation voltage used during transmission and to prevent the rela¬ 
tively small received signal from being partially attenuated by the transmis¬ 
sion circuit. Typically, the excitation pulse may be many tens of volts, which, if 
allowed to enter the sensitive receiving preamplifier, could cause permanent 
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damage. Even if damage does not result, saturation of the preamplifier can 

result and a long recovery time before linear operation is restored may occur. 

During the reception phase, it is important that the transmitter circuit be iso¬ 

lated from the transducer. If some of the available received power from the 

transducer is dissipated in the transmitter, the sensitivity would be reduced, 

and in addition the noise contributed by the transmitter circuits might degrade 

the SNR. Protection circuits are generally used to achieve these aims, and 
some examples are described below. 

6.8.1 Low-Frequency Protection Circuits 

Follett and Atkinson [113] have described one approach to achieving good iso¬ 

lation, and a modified version of their circuit is shown in Fig. 6.33a. The back- 

to-back diode pairs Z),, D2, and D3 act as limiters that prevent the voltage 

Figure 6.33 Transmit/receive protection circuit in which the transducer “box” is 

assumed to contain electrical matching, (a) Complete circuit: the diode pair DY is 

sometimes called an expander. If the diodes are assumed to be ideal, the circuit 

simplifies to (b) during transmission and to (c) during reception. 
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across them from exceeding some small value, e.g., +0.7 V. For simplicity we 

assume that the transducer is tuned and matched to both Rs and RL (Rs = R/J 

and that R » RL. During the excitation pulse, all three diode limiters can be 

approximated as short circuits, so that the circuit simplifies to that of Fig. 6.33b, 

in which the voltage across the transducer terminals is the same as that across 

the inductor Ls. During reception, because the voltage generated by the trans¬ 

ducer will be small, all three diode pairs act as open circuits, so that the ampli¬ 

fier and capacitor Cs are activated and the transmission source is disconnected, 

enabling the circuit to be reduced to Fig. 6.33c. By choosing the series 

combination of Ls and Cs to satisfy co0 = l/VLsC,, the transducer will be 

matched to the amplifier input impedance at the transducer antiresonant fre¬ 

quency. If Lx is chosen so that its reactance is much larger than RL, (e.g., (s)aLs 
= 5Rl: for example, if Rt = 50 Q and fa = 5 MHz, then Ls - 8.0 pH and Cs = 127 

pF) then, during the transmission period, most of the available source energy 

is delivered to the transducer. The inclusion of resistor R, e.g., 500Q, results in 

a reduction in the time needed to eliminate the stored energy and therefore 

in a reduced amplifier dead time. 
A second and rather simpler approach is that shown in Fig. 6.34. Resistors 

Ru R2, and R3 are all chosen to be much greater than RL and are such that in 

combination with the voltage -V, both diodes D2 are conducting during the 

reception phase. For this phase the incremental resistance of both diodes is in 

series with RL, thereby causing some signal loss and a decrease in SNR. During 

the transmit phase, one of these diodes will be reverse biased, thereby pre¬ 

venting most of the signal from reaching the preamplifier. The diode pair D2 
will limit what reaches the preamplifier. 

For ultrasound imaging systems that use a large number of transducer ele¬ 

ments for steering and focusing, the problem of protection can be circum¬ 

vented if the processes of acoustic field generation and reception use separate 

array elements. For 2-D arrays, as used for 3-D real-time imaging, many hun¬ 

dreds (perhaps several thousand) individual elements may be needed. To 

reduce the need for a large number of transmission lines and to avoid diffi¬ 

culties associated with the power dissipation in the transducer casing, separa¬ 

tion of the two functions becomes particularly important [69], 

Figure 6.34 An alternative form of a transmit/receive protection circuit (courtesy 

Mike Fife and Dr. Clyde Oakley, Tetrad Corp., Englewood, CO). 
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6.8.2 High-Frequency Protection Circuits 

If the connections between the transducer to the transmitter and receiver to 

the transducer are much less than a wavelength, then transmission line effects 

can be ignored. For example, suppose that a coaxial cable is used to connect 

the transmitter and receiver to a 20-MHz transducer. A typical small-diame¬ 

ter coaxial cable25 may have a propagation speed of around 0.6 of the speed 

of light, and consequently, at 10MHz, one wavelength would correspond to 

18 m. For cable lengths of less than about 1 m, the influence of the cable can 

be approximately represented by its lumped capacitance. At higher frequen¬ 

cies or with longer transmission lines, the impedance properties, which depend 

on the termination conditions, need to be accounted for. In fact, transmission 

lines of the proper lengths and appropriate termination conditions can be used 

to obtain nearly perfect matching (at a single frequency) of the transducer to 
a source or a load. 

Long transmission lines and high-frequency transducers are needed in 

certain medical applications, such as catheter- and endoscope-based imaging 

systems. Lockwood et al. [116] have described how protection of the pream¬ 

plifier can be achieved along with a good pulse-echo response by proper choice 

of the transmission line lengths between the excitation source, transducer, and 

receiver. Their method made use of a computer search in which the line lengths 

were varied to determine the combination needed to maximize the pulse-echo 

amplitude response. Subsequently, using a transmission matrix approach (see 

section 6.5.3), Lockwood and Foster [117] made use of a time-domain 

“badness” criterion previously introduced by Selfridge et al. [102] to choose 

the best transmission line electrical matching network. The “badness” crite¬ 

rion consists of a function that incorporates the effects of both the pulse-echo 

amplitude and its duration, so that optimization of the electrical matching 

network was achieved by searching for a combination of transmission line 
properties that minimize this function. 

One of the designs given by Lockwood et al. [116] is shown in Fig. 6.35. A 

45- to 50-MHz transducer is assumed to be at the end of a 100-cirf catheter 

and is connected via a 50-Q transmission line to the catheter entrance. The 

preamplifier input and excitation source are also connected via 50-Q 

25. Although the means by which the probe is connected to the transmitter and receiver are 
somewhat beyond the scope of this book, nonetheless it does present some interesting practical 
challenges. For transducer arrays with a large number of elements that must be individually 
addressed, e.g., 256, the weight and flexibility associated with the use of coaxial cables can be a 
serious problem. In addition, for an intravascular imaging array transducer, because the connec¬ 
tions need to be passed down a catheter, the maximum diameter is limited to a few millimeters. 
For both ot these applications, the use of miniature coaxial cables with impedances of around 75 
L2 and signal isolations of around 60dB may not be practical. An interesting scheme that enables 
a fairly laige number, e.g., 50, of coaxial-like cables to be packed together is described by Buck 
and Olson [114], Ribbon-based cables [115] provide an alternate means.Typically, they have char¬ 
acteristic impedances of 120Q, and the isolation between conductors is in the range of 30 to 
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Figure 6.35 Use of transmission lines (coaxial cables) to achieve the best pulse-echo 

response for a high-frequency transducer at the end of a 100-cm catheter. (Based on 

Lockwood et al. [116].) 

transmission lines and join the transducer transmission line at the T-junction 

located near the catheter entrance. During transmission, diodes Z)3 appear as 

a short circuit, so that if £x = XJA, the line appears as an open circuit at the T- 

junction (though only at the center frequency). Consequently, the excitation 

signal is transmitted to the transducer with little loss of energy. During recep¬ 

tion, line £x is assumed to be matched to the amplifier input resistance. 

However, line €3, which is open-circuited, has an important influence, depend¬ 

ing on its length. Assuming that €2 is fixed by the length of the catheter, the 

best values for and €3 were determined by computer simulations, and these 

are given in the figure. It should be noted that the value chosen for £1 is some¬ 

what greater than a quarter-wavelength length (100cm). 

Poulsen [118] has also discussed the issue of wideband protection at high 

frequencies and has shown that by inserting a wideband small-signal trans¬ 

former at the preamplifier end of €u the signal loss on reception can be sig¬ 

nificantly reduced. 

6.9 Noise Considerations 

One approach for improving the SNR of a pulse-echo system, thereby 

enabling weak echoes to be detected, is to increase the transmitted power. 

However, limitations imposed by the effects of nonlinear propagation, power 

dissipation in the transducer and/or the transducer housing, breakdown 

voltage limits, and regulatory safety issues may not make this possible. If a lim¬ 

itation is imposed on the maximum transmitted power or voltage, then one 



398 Biomedical Ultrasound 

method to enable echoes from deeper-lying structures to be detected can be 

achieved by reducing the system noise. This requires that noise properties of 

the piezoelectric medium, amplifier, connecting cable, and electrical matching 

elements be included in the overall system model so that the SNR can be 

optimized. 
A number of papers have addressed these issues. Some have addressed the 

problem of optimizing hydrophone sensitivity to obtain the best SNR 

[119-122], and others have been concerned with the problem of optimizing 

the performance of ultrasound imaging arrays [69,123,124], 

In the approach used by Rhyne [125], the transmission and reception prop¬ 

erties are separately accounted for. He shows that the transmission properties 

can be characterized by the radiation efficiency spectrum, which is defined as 

the ratio of the acoustic power delivered to the transmission medium, to the 

maximum power that can be withdrawn from the excitation source. It is an 

absolute measure of the performance and has an upper bound of OdB, corre¬ 

sponding to all the available power from the source being delivered to the 

acoustic load. The radiation efficiency accounts for any impedance mismatch 

as well as power losses in the transducer and connecting transmission line, and 

has the advantage of being independent of the excitation source impedance. 

Rhyne [125] shows how the transmission and reception properties are 

affected by the design by considering two transducers whose properties are 

listed in Table 6.7. To illustrate the effects of electrical matching to a 50-Q 

transmission line, transducer A uses a matching transformer and the second 

transducer (B) is mismatched. Both transducers are assumed to be air-backed 

and have two front acoustic matching layers. Transducer A has a Butterworth 

Table 6.7. Properties of Transducers A and B (see Fig. 6.36) 

Property A—Butterworth B—Chebyshev 

Area 1.1 mnr 1.1mm2 

ZT 1.54MRayl 1.54MRayl 

ZB 400 Rayl 400 Rayl 

z0 32MRayl 32MRayl 

fo 5.89 MHz 4.918MHz 

z> 6.90MRayl 7.71 MRayl 

/i 4.83 MHz 4.78 MHz 

Z2 2.10MRayl 2.31 MRayl 

h 4.98 MHz 4.96 MHz 

Matching transformer turns-ratio 3.83 N/A 

1ZJ @ 5 MHz *54.9 Q 637 n 

arg(Z,„) @ 5 MHz -30.9° -36.1° 

-3dB bandwidth 70% 70% 

Data from Rhyne [125], 

* As seen from the transmission line side of the matching transformer. 
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transfer function and an input impedance magnitude of 55 Q, as seen via a 3.83 

(turns ratio) transformer. The second transducer has a Chebyshev transfer 

function, no matching transformer, and an input impedance magnitude of 

637 Q. It can be seen from Fig. 6.36a that the radiation efficiency over the 

passband for transducer A is close to -0.9 dB, while for transducer B, which is 

severely mismatched to a lossless 50-E> transmission line, there is a loss of 

approximately 7 dB. To illustrate the influence of transmission line losses, 

Rhyne assumed that the 50-E> transmission line was 2.0 m long and that the 

losses arose from its series resistance of 3E>/m. He found that the passband 

loss for transducer A is increased by approximately 0.6 dB. 

To characterize the properties of the reception system, the noise con¬ 

tributed by the various parts must be considered. Four sources of noise that 

contribute to the total noise at the output of the preamplifier can be readily 

identified: (i) acoustic thermal noise from the radiation resistance, (ii) noise 

Figure 6.36 For transducers A and B listed in Table 6.7: (a) radiation efficiency 

spectrum assuming a lossless 50-0 transmission line, (b) acoustic noise figure 

spectrum assuming a lossless noise-matched 50-0 transmission line and a 

preamplifier with an input resistance 50O, an optimal noise source resistance of 500, 

and a noise figure 1.2dB. From (a) it can be seen that both transducers have a -3dB 

bandwidth of 3.5 MHz centered at 5 MHz. (Reproduced, with permission, from 

Rhyne [125], IEEE Trans. Ultrason., Ferroelect., Free/. Contr., 45, 559-566, © 1998 

IEEE.) 
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arising from electrical and mechanical losses in the transducer, (iii) noise due 

to losses in the transmission line and matching elements, and (iv) noise con¬ 

tributed by the preamplifier. 
Because the thermal noise power arising from the radiation resistance is 

inherent to the system, Rhyne [125] points out that it makes good sense to 

characterize the reception sensitivity by means of the acoustic noise factor 

F(co) or noise figure, FdB(co) = 10logF(to). These provide a direct measure of 

the degradation of the preamplifier output by the noise arising from the trans¬ 

ducer, transmission line, and preamplifier. If the acoustic noise factor is defined 

by: 

SNR at preamplifier input due to acoustic radiation noise 

SNR at preamplifier input due to acoustic radiation 

plus all other noise sources 

then the amount by which the noise figure is below OdB is an absolute measure 

of the noise contributed by the transducer, transmission line, and preamplifier. 

The piezoelectric transducer can contribute to the noise through 

mechanical and electrical loss mechanisms. Mechanical losses can be 

accounted for by including an attenuation coefficient (a complex wavenum¬ 

ber), and electrical losses through the inclusion of a series resistance. Both of 

these are accounted for in the matrix equation given by (6.28). A coaxial cable 

connecting the transducer to the amplifier can also contribute to noise through 

the thermal noise arising from its series resistance and dielectric loss. In addi¬ 

tion, the loss resistance of an inductor used for tuning and a matching trans¬ 

former (if used) will also contribute. Finally, the noise characteristics of the 

preamplifier and the impedance conditions existing at its input must be 

included. 

The overall acoustic noise figure is the sum of the transducer and pream¬ 

plifier noise figures. The contribution due to the transducer is unaffected by 

the loading presented by the preamplifier. On the other hand, the source 

impedance affects the noise figure contributed by the preamplifier. It can be 

shown that the best noise performance occurs when the real part of the trans¬ 

ducer input impedance is equal to the optimal noise source resistance of the 

preamplifier. A good deal of flexibility exists in preamplifier design, enabling 

a fairly wide range of optimal noise source resistances to be achieved without 

increasing the amplifier noise figure. As an example, Rhyne [125] selected a 

preamplifier with a noise figure of 1.2 dB, an input resistance of 50 Q, and an 

optimal noise resistance of the same value. Consequently, a 50-fl transmission 

line was chosen for linking the transducer (or matching transformer) and pre¬ 

amplifier. The calculated noise figure spectra for the two designs are illustrated 

in Fig. 6.36b. It can be seen that transducer A, which is well matched to the 

optimal noise resistance, has a noise figure close to that of the preamplifier, 

while transducer B, which is severely mismatched, has an acoustic noise figure 
of about 6dB. 
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6.10 Capacitive Transducers 

The idea of using the force between different charges on a conducting mem¬ 

brane and a closely spaced metal plate was initially proposed and used as a 

means of generating sound waves around the 1880s. In a paragraph summa¬ 

rizing some earlier work. La Lumiere Electrique [126] referred to earlier work 

proposing the use of a capacitor as a means of generating sound as well as for 

detecting it. Dolbear in 1880 and 1881 filed two U.S. patent applications 

[127,128] that clearly described the use of electrostatic attraction between two 

plates as a means for both generating and detecting sound. These events took 

place a few years subsequent to the invention of the moving coil (electro¬ 

magnetic) method of generating sound in the mid-1870s. Subsequently, there 

were a number of reports [129,130], including a U.S. patent26 filed in 1929 [131], 

for producing sound by electrostatic means. Many of these have been described 

in Hunt's authoritative book [132] on electroacoustics, which includes a care¬ 

fully researched chapter on the history, together with many original source ref¬ 

erences. The 1916 report by Langevin and Chilowski [133] appears to be the 

first to discuss the generation of ultrasound by using a capacitor structure. In 

their early experiments for developing a method of underwater submarine 

detection, they used a thin sheet of mica on an insulated metal plate. The water 

in which this structure was immersed formed the other plate of the capacitor. 

With this design they generated ultrasonic waves at frequencies of around 

100 kHz, though with intensities considerably below that needed for success¬ 

ful application for submarine detection. They appreciated the need for very 

high electric fields (on the order of 106V/cm) to generate intense pressure 

waves; however, electrical breakdown severely limited what they could achieve. 

In the years up to 1985, occasional reports have appeared [134,135] describ¬ 

ing electrostatic ultrasonic transducers. More recently, with the development 

of silicon-based microfabrication technology, there has been a revival of inter¬ 

est in electrostatic transducers for both air and fluid applications. 

We consider first the simple parallel plate structure illustrated in Fig. 6.37, 

in which the moveable upper plate is supported by a spring. For an applied 

voltage of V, the attractive electrostatic force between the plates can be found 

from the change in stored energy for an incremental change in plate separa¬ 

tion. For a medium of thickness Z and permittivity e separating the plates, the 

force can be found from 

dz dz{ 2 J 2 dz\l-Z; 

eAV2 
(6.39) 

(t-zf 

26. The patent described an electrostatic speaker composed of many small sections able to 

radiate sound without magnets or cones or baffles. The first commercial full-range electrostatic 

loudspeaker (Quad ESL) was based on this patent and was marketed in 1957. 
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X,- v >"TA' 

Figure 6.37 Simplified model of an electrostatic transducer consisting of two parallel 

plates: a fixed bottom plate and a moveable upper plate attached to a spring. 

where A is the plate area and C is the capacitance. From this it can be seen 

that the attractive force is independent of the sign of V. Consequently, in the 

absence of any DC bias, the application of a sinusoidal source of Vrocsin(cot) 

will result in 0.5Vac[l-cos(2(D/)], corresponding to a DC and a second harmonic 

component. In the presence of a polarizing voltage Vp, we have V -Vp + Vac 
sin(cot), so that the force is given by 

_ eA[Vp + Vac sin(o)f)]" £A[VP +2VpVac sin(cof)] 
tc - j-~---5-’ 

(t-zf (t-z)2 

provided Vac« Vp. Consequently, by applying a polarizing voltage or by incor¬ 

porating a medium with a permanent polarization, i.e., an electret, the funda¬ 

mental component can be retained. 

Assuming a restoring force proportional to the plate displacement, equi¬ 

librium requires that FC = FR = kz, where k is a “spring” constant. Consequently, 

by making use of (6.39), the equation describing the equilibrium position is 
given by 

(6.40) kz = ^XL_ 

(l-z)2 

It should be noted that as the voltage is increased, a z-location is reached at 

which the electrostatic force can no longer be balanced by the spring restor¬ 

ing force. At this location, an increment in the applied voltage will cause a cat¬ 

astrophic collapse of the moveable plate to the underlying one. The 

approximate critical voltage (Vc) at which this occurs can be found by first 

determining the z-location from (6.40) by using the condition 3Z/3F = <». This 

yields zf = 6/3, which, when substituted back into (6.40), enables Vc to be found 
as 

K = (6.41) 
27 eA 
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As this critical voltage is approached, the sensitivity to an incident pressure 

signal on the membrane displacement increases. In fact, Hunt [132] has shown 

that the electromechanical coupling factor (defined in the same way as the 

piezoelectric coupling factor, see (6.10)) approaches unity as V -4 Vc and has 

reported measured values as high as 0.7. 
In practice, the rim of the membrane will be clamped and the electrostatic 

force will vary over the membrane surface, depending on the distance to the 

substrate. This makes the analysis considerably more complex. A more realis¬ 

tic configuration is sketched in Fig. 6.38. Here, the application of a polarizing 

voltage causes the membrane to be attracted toward the substrate, its equi¬ 

librium position being determined by its elastic and geometric characteristics, 

the gap, the applied voltage, and the pressure difference. If an AC signal is 

superimposed on the polarizing voltage, the membrane will vibrate and a 

pressure wave will be propagated, as illustrated in (a). In a similar way, if a 

pressure wave is incident on the membrane, as shown in (b), the mem¬ 

brane-substrate gap will change and, because R is assumed to be large, a dis¬ 

placement current will flow, creating an AC output voltage. 

For generating and detecting acoustic waves at higher frequencies, the 

mechanical resonant frequency is of major importance. This can be decreased 

by reducing the area. To compensate for the decreased sensitivity, a multi¬ 

plicity of small elements connected in parallel must be used, as originally 

described in Kellogg’s patent [131]. 

The development of silicon microfabrication technology, starting around 

the 1970s, provided the basis for making very small electrostatic devices for 

detecting and generating ultrasound. An early proposal is that of Higuchi et 

al. [136,137], who described the use of silicon micromachining technology for 

fabricating a linear array consisting of seven elements on the same chip and 

operating in the 100-kHz range. Anisotropic etching was used to make many 

small pyramidal holes in the underlying silicon and a metallized 12-pm poly¬ 

ester film was stretched over the surface to form a membrane for each 

element. The reproducibility of this type of membrane construction cannot be 

expected to be satisfactory. However, major improvements resulted from the 

use of silicon nitride membrane formed on a separate chip and subsequently 

bonded to the chip with the substrate holes. Holm and Hess [138] were the 

first to describe the use of this method for fabricating a subminiature con¬ 

denser microphone. To maintain control over the stresses in the silicon nitride 

membrane, two silicon slices were used. One was used as the substrate and 

formed the fixed electrode; the second was processed to form a thin metal¬ 

lized silicon nitride membrane with a thickness of 150nm. By bonding the two 

structures together, a microphone was formed. Relatively large-area (0.8 x 
0.8 mm2) structures were made in this manner. 

Micromachined electrostatic transducers with silicon nitride membranes 

designed for transmission and reception in fluids were described in 1996 by 

Soh et al. [139], These used a single wafer fabrication technique in which an 

underlying (sacrificial) layer was etched away to form the membrane. A 

multiplicity of individual elements were formed and connected in parallel 
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to achieve a large effective area. As illustrated in Fig. 6.38, if the cavity is evac¬ 

uated, the fluid pressure will cause the membrane to bend. Superimposed on 

this will be the added bending caused by the electrostatic polarizing force. 

When immersed in water, the silicon nitride membrane is heavily damped, 

and as a result very wide fractional bandwidths can be achieved. This and the 

ease of manufacture and potentially high electromechanical conversion effi¬ 

ciency make micromachined electrostatic transducers an attractive possibility 

for 2-D and 3-D ultrasonic imaging. In fact, a 1-D array consisting of 128 ele¬ 

ments, with each element containing 750 cells connected in parallel, has been 

used to obtain images of a test phantom immersed in vegetable oil [140]. More 

recent work with a 2-D array consisting of 0.4 x 0.4 mm elements, each con¬ 

taining 76 cells, has been used to demonstrate 3-D imaging [141]. 
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7 

Ultrasound Imaging Arrays 

Ultrasound images differ from their optical counterpart in that they map the 

local acoustic properties of the medium such as the density and compressibil¬ 

ity as opposed to the optical properties. They are subject to distortion from a 

variety of sources, including diffraction, attenuation, dispersion, and inhomo¬ 

geneities in the medium. Imaging arrays enable acoustic images to be obtained 

without the need for mechanical scanning of single-element transducers, and 

they can do so at a sufficiently high frame rate that avoids significant motion 

distortion caused by fast-moving structures such as those in the heart. Devel¬ 

opments in transducers and array design, together with new signal-processing 

techniques, have enabled major improvements to be made in ultrasound con¬ 

trast, resolution, dynamic range, frame rate, and signal-to-noise ratios (SNR). 

This chapter1 is the first of two concerned with the theory, design, and appli¬ 

cation of arrays for 2-D and 3-D imaging. It begins with a brief historical 

overview2 that describes how ultrasound imaging evolved from pulse-echo 

metal flaw detectors and was influenced by the techniques developed for radar 

during World War II. Simple CW excited 1-D arrays consisting of point source 

elements will first be examined. This leads to the concepts of beam focusing 

and steering using pulse-excited array elements of finite size. Sparse arrays and 

1. The comprehensive chapter of Goldstein and Powis [1] was particularly helpful in prepar¬ 

ing this chapter. 
2. Accounts of the development of diagnostic ultrasound imaging by Edler and Lindstrom [2], 

Levi [3], and Woo [4], along with an excellent review by Goldberg and Kimmelman [5], should 

be useful to the reader interested in obtaining further details. 
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arrays of higher dimensionality are then examined, followed by a discussion 

of 3-D imaging. The final section turns from matters associated with array 

analysis to the problem of array synthesis. 

7.1 Historical Background 

Before outlining the sequence of developments that led to 2-D ultrasonic 

imaging, it may be helpful to define certain terms concerning the manner in 

which the information is displayed. The term “A-scan,” which originates from 

the early radar days, refers to the display of a pulse-echo signal on an oscillo¬ 

scope (A-scope) as an amplitude-versus-time (or distance) graph. We shall 

interpret A as amplitude and therefore A-mode as Amplitude mode. An alter¬ 

native means of display is one in which a single line is drawn on an oscillo¬ 

scope but with brightness that is related to the echo signal amplitude. This form 

of scan has often been referred to in the past as a B-scan, and when displayed 

on an oscilloscope, it is referred to as a B-scope image, where B stands for 

brightness. If the echo information from a sequence of scan lines is displayed 

in this manner, the 2-D image so formed will be referred to as a B-mode gray¬ 

scale image. The number of gray-scale levels that can be successfully distin¬ 

guished by eye in a CRT display is quite limited e.g., 10, which was a problem 

in earlier B-mode systems that lacked modern digital processing techniques. 

Examples of A- and B-mode recordings are shown in Fig. 7.1. The C-scope 

display refers to a second form of 2-D intensity-modulated display, but one in 

which the image is formed perpendicular to the plane of a B-mode scan. It is 

sometimes referred to as a C-mode or a Constant depth mode image. 

7.1.1 A- and B-Mode Systems 

The development and use of pulse-echo A-mode for medical diagnosis can be 

considered a logical outcome of the invention and development of pulse-echo 

Figure 7.1 A- and B-mode recordings, (a) A- and B-mode recordings made in the 

late 1970s using a linear array transducer with 71 crystal elements. Time/depth is 

from left to right. The B-mode image presented in (ii) clearly shows the fetal skull, 

placenta, and umbilical cord. The horizontal white marker line shows the position of 

the A-mode recording presented in (i). Echoes from both sides of the skull, together 

with an echo from the midline, are clearly evident. The caliper lines enable the 

biparietal diameter to be measured (28 mm). (Reproduced, with minor changes, from 

a brochure describing the Roche Abdoscan 5 real-time ultrasound system.) (b) Gray¬ 

scale image of a fetal spine made with a GE system (late 1990s) and a curvilinear 

array with a center frequency of near 3.5 MHz. The enlarged portion is 

approximately 27 x 27 mm', the image depth is 10 cm, and there are four transmit 

focal zones, marked by triangles. The short dashes are separated by 1 cm. 

(Reproduced, with permission, from GE Health Care website.) 
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techniques for detecting Haws in metal castings, a technique of special impor¬ 

tance in the production of armaments. Firestone [6-8] in the United States and 

Sproule [9] in England were primarily responsible for these inventions, many 

of which were kept secret until the end of World War II. The original idea 

of using ultrasound for flaw detection had been proposed much earlier (1929) 

by Sokolov [10] while working in Leningrad (now St. Petersburg) and 2 

years later by Muhlhauser [11] in Germany. However, unlike the pulse-echo 

methods of Firestone and Sproule, these proposals used CW excitation and 

detected the presence of a flaw by measuring the changes in the signal trans¬ 

mitted through the specimen. A subsequent U.S. patent application by Sokolov 

in 1937 [12] is particularly important since it also suggests a method for obtain¬ 

ing a 2-D map of the transmission through a test material, much like the 

method used for forming an x-ray picture. 

The first paper suggesting that ultrasound could be used for diagnostic 

purposes was a 1942 publication in German by K. T. Dussik [13], who indi¬ 

cated that he had been working in this area since 1937. He and his brother 

(F. Dussik) developed a transmission method for measuring the absorption of 

CW ultrasound through the head. Using separate transmission and reception 

transducers, with the latter being in line with the transmitter on the opposite 

side of the head, they produced a 2-D image that they called a “hyperphono¬ 

gram.” They interpreted the image as a transmission absorption image, much 

like that of an x-ray, and suggested that a rough image of the ventricles 

had been obtained.’ Since geometric distortion of the ventricles can provide 

an indication of the presence of a tumor, it was expected that this technique 

would be of diagnostic value. In a 1947 paper the Dussik brothers and Wyt 

[14] provided further details of their method. Hueter and Bolt in the United 

States, who were aware of the Dussiks’ work, approached the problem of 

designing a system for visualizing the ventricles in a much more systematic 

manner. Their system used strips of barium titanate for transmission and meas¬ 

ured the attenuation through the head at a transmission frequency of about 

2.5 MHz. In a 1951 paper they showed a preliminary 2-D cross-sectional image 

that they called an ultrasonogram, which they claimed gave an outline of the 

ventricles. Even though subsequent investigations [15] showed that their 

images as well as those of the Dussik brothers arose from fortuitous artifacts 

caused by the transmission properties of the skull, their work served to empha¬ 

size the importance and potential of ultrasound for diagnostic imaging. 

Subsequent to World War II a number of investigators explored the 

possible use of A-mode systems, often making use of commercial metal flaw 

detectors and surplus wartime radar and ultrasound equipment. The earlier 

investigators included Ludwig and Struthers [16], who used ultrasound for 

detecting gallstones, French et al. [17] for localizing brain tumors. Wild [183 4,19] 

for measuring the properties of biologic tissue using 15 MHz pulsed ultra- 

3. The ventricles are structures that occupy the central portion of the brain. 

4. This paper also contains the first suggestion that measurements could be made from within 
body cavities, specifically the bowel. 
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sound. Wild and Neal [20] for breast tumor diagnosis, and Mundt and Hughes 

[21] for ocular diagnosis. Of major importance was the development of 2-D 

cross-sectional imaging system by Wild and Reid [22]. Their seminal publica¬ 

tion in the February 1952 issue of Science showed how a cross-sectional ultra¬ 

sound image could be obtained and how such an image could be much more 

readily interpreted in terms of the underlying anatomy. Indeed, it was the com¬ 

plexity of the A-mode signal and the difficulty of relating it to the anatomy 

that spurred the development of B-mode imaging. The method described how 

a 15 MHz pulse-echo transducer was mechanically rotated through an angle 

to produce a sector scan. In their paper they stated that the echo signals 

were displayed “as spots of varying intensity on the face of the television 

screen . . . the brightness of which varies according the strength of the echoes 

returning.” From this quotation it is clear that a pseudo gray-scale display was 

used. A further important feature of their system was the compensation for 

attenuation effects [23]. Received signals arising from increasing depth (or 

increasing time) suffer more attenuation, and as a result the signal amplitude 

rapidly diminishes. To partially compensate for this they caused the receiver 

gain to increase with time, a well-known radar technique for reducing the 

signal amplitude caused by close-in structures and increasing those from 

distant targets. Known as sensitivity time control (STC) but often called swept 

gain or time-gain compensation (TGC),it can result in dramatic improvements 

in the image quality. In 1952 Wild and Reid [24] described the results from a 

pilot clinical study of their system for detecting breast tumors, and this was 

followed by the results of a more comprehensive study [25] in 1954. 

Several months after the Wild and Reid’s publication in Science, Howry and 

Bliss [26] described a mechanically scanned imaging system of somewhat 

similar design that had been independently developed, and also presented 

cross-sectional images of tissue structures and a forearm. The development of 

this system and that of Wild and Reid was aided by the earlier (wartime) devel¬ 

opments in radar, particularly Plan Position Indicators (PPI) that displayed 

the reflected signals from aircraft on a long persistence cathode ray tube, from 

which their position could be determined. An important subsequent develop¬ 

ment by the Howry group was the first description of 3-D ultrasound imaging, 

which they described briefly in a 1954 publication [27] and more fully in 1956 

[28]. The latter publication presented a schematic of their system (Fig. 7.2a) 

and showed it was capable of imaging projections of a 3-D wire mesh test 

object system. They also showed a pair of stereoscopic images of a forearm. 

That same year, Kikuichi et al. [30] described" a B-mode imaging system that, 

like the 3-D Howry system, used the linear (as opposed to sector) scanning 

scheme illustrated in Fig. 7.2b. They provided examples of its clinical use as 

part of a preliminary investigation into the potential use of ultrasound in 

cancer diagnosis. 
Subsequently, there was gradual acceptance and application of this new 

imaging modality to various medical fields, such as ophthalmology [31,32], 

5. First presented at the International Congress on Acoustics, June 1956. 
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Figure 7.2 Examples of some early ultrasound imaging systems, (a) Imaging system 
to enable 3-D projections to be obtained. The transducer (immersed in water) is 
moved mechanically in a 2-D scanning motion. A wire mesh (1.5 inches high) test 
object is shown, and the result of one image is shown on the face of the cathode ray 
tube. (Used, with permission, from Howry et al. [28],/ Appl. Physiol., 9, 304-306, 
© 1956 American Physiological Society.) (b) B-nrode imaging system (Ultrasono- 
tomograph) developed in Japan around 1955/6 and used for some preliminary 
clinical tests. (Reproduced, with permission, from Kikuchi et al. [30],/. Acoust. Soc. 
Am., 29, 824-833, © 1957 Acoustical Society of America.) 

abdominal examination [35], and obstetrics and gynecology6 [34], Taking this 
new technology to commercialization and developing it to the stage where it 
could be used in routine clinical diagnosis was a comparatively slow process. 
By the late 1950s and early 1960s, manually controlled contact scanners became 
available. Probably the best of these7 was one invented and designed by Brown 
in collaboration with Donald6 that was described in 1959 [36].The system used 
separate transmit and receive 2.5 MHz crystals mounted in the same probe 
housing, which could be moved by hand over the skin surface, using olive oil 
to ensure good acoustic coupling of the transducers to the skin. Prior diag¬ 
nostic ultrasound systems used a probe that followed a prescribed scanning 
path and that made acoustic contact to the patient via a water bath, which 
often resulted in reverberation artifacts. A second important advance made by 
Brown [38] in designing this system was the ability to superimpose a rocking 
motion on the probe motion as it was guided by hand over the skin surface. 
Interfaces that are not normal to the incident beam give a greatly reduced 
echo. In fact, Kossoff et al. [39] have pointed out that soft tissue boundaries 
typically show a decrease of -20 dB for every 6-degree decrease in angle. Thus, 
as illustrated in Fig. 7.3a, the effect of the rocking motion described by Brown 
is to produce a substantially increased echo amplitude from interfaces not par¬ 
allel to the skin surface, a process known as compound scanning.9 A third and 

6. For a valuable historical review of the developments in obstetric ultrasound from 1957 to 

1997, see [33]. 
7. According to Brown [see quotation in 37, p. 511], about 1,500 units of an improved version 

of this scanner were sold throughout Europe. 
8. Ian Donald, who was appointed to the Chair of Midwifery at the University of Glasgow in 

1954, is considered to be the pioneer in developing the application of ultrasound diagnostic 
methods to obstetrics and gynecology. 

9. In 1964 Howry and Gordon [40] stated that the principle of compound scanning was 
originally proposed in 1952 by Howry. While this may be true, neither of Howry’s 1952 journal 
publications mentions this. The essence of the idea may have been proposed in 1954, when 
mention is made of the problem arising from media behind a strongly reflecting surface. Holmes 
et al. [27] wrote, “This problem was solved ... by obtaining a combination of four pictures with 
the scanning device placed in four different quadrants.” In 1958, Holmes and Howry [29] wrote, 
“By scanning both horizontally and in a circular manner around the part to be examined, the 
bright spots can be compounded to give the appearance of an anatomical picture on the oscillo¬ 
scope screen.” Based on these facts, it seems reasonable to attribute to Brown, Holmes, and Howry 

co-discovery of compound scanning. 
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Figure 7.3 Compound scanning, (a) Illustration published in 1959 displaying the 

basic principles of compound scanning. An abdominal region is shown in which the 

probe contacts the skin and is manually moved over the surface with a superimposed 

rocking motion. The prototype system that was developed by Tom Brown at Kelvin 

and Hughes Ltd., Glasgow, in collaboration with Professor Ian Donald, operated at 

2.5 MHz. It took several minutes to record a complete gray-scale scan on 

photographic film. (Reproduced, with permission of the International Federation for 

Medical & Biological Engineering, from Brown [36], © 1960 IFMBE.) (b) 

Photograph of the Diasonograph, a second-generation commercial version of the 

original system developed in Glasgow. This particular model was custom-designed 

for Sunden [41] and used three different PZT probes operating at 1.5, 2.5, and 

5 MHz. The probe (E) could be rocked by means of knurled knobs (for compound 

scanning), and its angle was determined by sine/cosine potentiometers mounted on 

the shaft. As indicated by the two arrows, the probe could also be moved vertically 

and along one horizontal axis, its position being determined by two linear 

potentiometers. Two oscilloscopes are on the assembly (G). The one on the left had a 

short-persistence phosphor and is shown with a camera mounted in front for 

recording the B-mode, and the right-hand one had a long-persistence phosphor for 

visually monitoring the B-mode image and viewing A-mode traces. (Reproduced, 

with permission of Munksgaard Int. Publ. from Sunden [41], Acta Obstet. Gynecol. 

Scand. (Suppl. 6), 43,1-191, © 1964.) 
◄- 

vital aspect concerned the ability of the system to display a very wide range 

in scattered signal amplitudes from different depths in the form of a continu¬ 

ous range of gray-scale levels, ranging from white to black. As noted earlier, 

attenuation causes the returned signal amplitude to diminish rapidly with 

increasing depth, and mostly because of this, the useful received signal ampli¬ 

tude might vary by as much as 100 dB. Displaying and recording echoes that 

covered such a wide range presented serious difficulties for the technology 

available at that time. By using swept gain,10 Brown showed how a wide range 

in signal amplitudes could be accommodated and recorded on film as gray¬ 

scale11 images. These were incorporated in a second-generation commercial 

B-mode imaging system (Fig. 7.3b) whose operation and features were fully 

described by Sunden [41]. 

10. Holmes et al. [27] may also have used swept gain. They wrote, “By constructing a gain 

compensator we have corrected for the absorption of sound in tissue in such a way that objects 

on the surface of the body appear on the screen as of the same size and density as those deep 

within the structures.” However, Reid and Wild [23] seem to have prior claim on the first use of 

swept gain in ultrasound B-mode imaging. 
11. With regard to the invention of gray-scale imaging. Brown [38] has written, “Much has 

since been made by others, years later, about the ‘invention’ of grey-scale imaging. The reality is 

that the display in the machines developed in Glasgow in the mid-1950’s was a grey-scale one 

from the outset. The function of the signal processor was two-fold. In the first case it provided a 

degree of time-domain pulse shaping, in an attempt to separate echoes arriving closely-spaced in 

time. Secondly, and this is probably the most important function, it was to enable the display to 

record the very large dynamic range of signals which were received, without going into ‘hard lim¬ 

iting’ at the top end, or suppression of small echoes at the bottom end. When we say ‘very large’ 

we mean at least 60 dB.” 
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Improvements to the gray-scale imaging technique were described by 

Kossoff et al. [42], and these involved the use of both swept gain and loga¬ 

rithmic amplification. At a fixed depth, the gain controlled by the swept gain 

amplifier will be fixed, but the scattered signal arising at this depth might, for 

example, vary over a 30-dB range, depending on the nature of the scattered 

Since a display system may enable only 6 to 10 levels of gray scale to be dis¬ 

criminated, some signal compression is needed to avoid loss of information, 

and this can be provided by a logarithmic amplifier. Such an amplifier pro¬ 

vides high gain for small signals and reduced gain for large signals, thereby 

compressing the signal range. By this and other means, the group working with 

Kossoff made a number of significant improvements to the image quality that 

were described in their classic paper of 1976 [39], thereby substantially enhanc¬ 

ing the value of B-mode ultrasound as a diagnostic imaging modality. 

By the mid-1960s, a wide variety of imaging systems had become commer¬ 

cially available. Amongst these was the Vidoson, which was manufactured 

around 1965/6 by Siemens in Germany and which was developed by Krause 

and Soldner [43M5], An important advance made by this system was the 

ability to form real-time images of moving structures. It used two transducers 

mounted on opposite ends of a rotating cylinder that was at the focus of a 

parabolic mirror, all of which was immersed in a water bag. Using a center 

frequency of 2.5 MHz, it provided a linear scan consisting of about 140 lines 
at about 15 frames/s. 

7.1.2 Dynamic Range Issues 

Of major concern in the design of gray-scale B-mode imaging systems is the 

need to ensure that the very large range of echo amplitudes can be accom¬ 

modated within the imitations of the amplification, digitization, and display/ 

recording subsystems. To illustrate these problems we consider a 3 MHz center 

frequency system designed for abdominal imaging. If the system is capable of 

imaging to a depth of 20cm and the attenuation is 0.7dB/(cm-MHz), then the 

range in signal amplitudes due to attenuation alone will be 84 dB (2 x 20 cm 

x 3 x 0.7 db/cm). Moreover, at a given depth, depending on the scattering target 

and the angle of incidence, the received signal could easily differ by more than 

40 dB. The analog methods initially available for processing and displaying 

information were limited in their ability to cope with such a wide range. Early 

systems generally used a preamplifier followed by a TGC amplifier with a 

range of 60 dB and a log amplifier that could compress a 40-dB range into 
10 or 20 gray-scale levels. 

7.1.3 C-Mode Imaging 

As mentioned earlier, a C-mode image is one formed in a plane normal to a 

B-mode image; in this regard, it is more akin to a classic x-ray image. It appears 

that sevetal groups realized that this type of display could enable images to 

be pioduced that had superior resolution to those produced by standard B- 
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mode methods.12 To obtain a C-mode image, it is necessary to use a gate that 

selects data from a specific depth from an A-mode line and then to complete 

the image by a 2-D scanning movement of the transducer so that the entire 

region to be measured is sampled, von Ardenne et al. [46,47] used a strongly 

focused transducer and a gate in the form of a slit so as to display only those 

signals that arose from reflections close to the focus. By synchronizing the 

movement of the slit with the movement of the transducer, they were able to 

obtain C-mode images. Thurstone et al. [48] also realized the importance of 

using a highly focused transducer to obtain improved lateral resolution. They 

used a time gate to select the signals corresponding to the focus and provided 

a clear explanation of their C-mode recording system. Using a 2.25 MHz pulse, 

they claimed a resolution of better than 1mm in all three spatial directions. 

They were able to obtain a complete image in 8 to 10 minutes and provided 

as an example an in vitro C-mode image of a coronal section of the brain. 

One of the difficulties with the proposed methods was the length of time 

required to complete a scan using a rectilinear scanning pattern that necessi¬ 

tated stopping and reversing the mechanism. Following a suggestion by Brown 

[50] for 3-D ultrasound imaging, McCready and Hill [49] proposed that by 

using a spiral scan, discontinuities in the transducer movement would be 

avoided, enabling the scan time to be reduced. By this means they estimated 

that an area of 100cm2 could be scanned in around 10 seconds. 

7.1.4 M-Mode Recording 

Another major ultrasound achievement was the development of a method for 

noninvasive cardiac diagnosis by Edler and Hertz [51,52] in 1954. By trans¬ 

mitting ultrasound pulses in quick succession along the same path toward 

various cardiac structures and recording the received waveform, they were 

able to map the spatial variation of a given scattering region as a function 

of time. They first achieved this in 1953 by using a commercially available 

A-mode ultrasonic flaw detector together with a specially designed camera 

system in which the film was moved at a constant rate past a slit. In the past, 

such records were sometimes called a time-motion (TM) record, but now they 

are more generally known as M-mode (motion). The resulting image enabled 

the movement, and hence the velocity, of specific cardiac structures to be 

determined. Clinical investigations by Edler over the first 5 years after the 

initial announcement, together with improvements in the technique, details of 

the methodology, and its verification, are presented in [53]. 

Edler and Hertz initially obtained M-mode recordings of cardiac motions 

by means of the system illustrated in Fig. 7.4a. With a conventional A-mode 

12. Possibly the earliest C-mode images were those obtained and developed for NDE. Details 

of the system and the images obtained in 1956 at the Automation Instruments Power Plant Inspec¬ 

tion Division test laboratory in Paramount, California, have been recorded on the website, 

http://www.uxr.com/histndt2.htm, run by UXR, 67 West Easy Street, Unit 118, Simi Valley, CA 

93065, USA. 
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Figure 7.4 Motion recording method (M-mode) devised by Edler and Hertz in 

1953/4. As shown in (a), a film is moved at a constant velocity past a slit to record a 

horizontal sample of the A-mode waveform displayed on the CRT. (b) Portion of an 

M-mode photographic recording from a normal mitral valve. The UCG 

(UltrasoundCardioGram) trace of the anterior mitral valve leaflet shows the position 

of the leaflet, which is approximately 6 to 8 cm from the chest wall. The rising 

portion represents movement toward the chest wall and vice versa. The peak of the 

UCG waveform corresponds to the maximal opening of the valve. (Reprinted by 

permission of Elsevier from Howry and Gordon [40], Ch. 13 in Ultrasound as a 

Diagnostic and Surgical Tool, E & S Livingstone Ltd. © 1964.) 

display and a reasonably high pulse repetition rate, they used a lens to focus 

the CRT image onto a slit that was in close proximity to the film. The slit served 

to select a horizontal sample of the CRT image so that only the portion of the 

reflected signal whose amplitude was above a certain threshold was recorded 

on film. Those signals from stationary reflecting objects would therefore be 

recorded as straight lines, and those that were moving would result in curves. 

Edler and Hertz realized the importance of being able to relate their record¬ 

ings to the electrocardiogram (ECG), so they also provided a means whereby 

the ECG waveform could be simultaneously recorded. To do so, the ECG 

wavefoim from an amplifier was applied to a galvanometer whose mirror 
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Figure 7.5 M-mode cardiac image showing the left ventricular posterior wall and 

intraventricular septum. (Reprinted by permission of Elsevier from Fleming et al. 

[54], Ultrasound Med. Biol., 22, 573-581, © 1996 World Federation of Ultrasound in 

Medicine and Biology.) 

caused a spot of light to be horizontally displaced on the face of the CRT, and 

this was recorded on the moving him. A much more recent M-mode cardiac 

image is shown in Fig. 7.5. 

7.1.5 Imaging Arrays 

The development of ultrasound imaging arrays was in large measure due to 

the much earlier invention and development of radiofrequency antenna arrays 

that began at the end of the 1800s. The patents granted to Brown (1899) and 

Stone (1901) marked the beginning of a sequence of publications that were 

referenced in Foster’s well-known 1926 paper [55] on antenna arrays. It 

appears that Walter [56] in 1908, based on some controversial suggestions by 

Artom [57] two years earlier, first showed how it was possible to achieve beam 

steering by changing the phase of the signal applied to the antenna. A great 

deal of effort was expended on the development of 1-D and 2-D antenna array 

systems, using periodic and aperiodic arrangements that incorporated beam 

steering and focusing. Their use in radar and communication systems was espe¬ 

cially important during World War II and in the years following. 

In the audible frequency range, the development of acoustic arrays, includ¬ 

ing the use of beam steering, can also be traced back many years. Some of the 

very early publications are referenced in Stenzel’s 1927 paper [58] on the 

directional characteristics of arrays of point sources; in addition, the theory 

and experimental results for loudspeaker arrays are given in a 1930 publica¬ 

tion by Wolff and Malter [59]. Some of the first publications concerning the 
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Figure 7.6 Simple array scanning methods, (a) A sequential linear scan transducer in 

which an adjacent group of elements is used to generate a beam. The scan starts by 

using the top group of elements for transmission and reception. Repeating this 

process for successive crystal element groups produces a rectilinear scan, (b) Sector 

scan in which all array elements contribute to the transmitted beam, and phasing is 
used to produce beam steering. 

design and use of ultrasonic arrays originated from Tucker’s group [60,61] at 

the University of Birmingham (UK). In the 1950s they developed a sector 

scanner (Fig. 7.6b) for underwater echo-ranging applications. Subsequently, 

the same group described an improved imaging system that used thirty 

500 kHz array elements, had a sector scan of ±15 degrees, and displayed the 
underwater image on a long persistence CRT [62], 

The first publication of an electronic sequential scanning system for medical 

applications appears to be the 10-element ultrasonic array described by 

Bushman in 1965 [63] that was used for imaging the eye. The transducer ele¬ 

ments were mounted on a concave surface that approximately matched the 

cuivature ot the eye, and each was excited in turn to enable a complete frame 

of echo information to be obtained and displayed. A somewhat similar system 

was reported in 1971 by Bom et al. [64,65]. Their transducer consisted of a 

-7-cm-long array of 20 rectangular elements that were resonant at ~3MHz 

and that were individually excited to create 20 scan lines. Initial clinical results 

for cardiac imaging were reported in 1973 [66], At about the same time (1971) 

as the initial publication of Bom et al., Uchida et al. [67] described a sequen¬ 

tial linear array system in which each line was formed from 20 overlapping 

groups of elements within a 200-element linear array.13 As illustrated in Fig. 

7.6a, each group of elements was used for both transmission and reception. 

Each element had a width of 0.5 mm, a height of 12 mm, a center—center 

spacing of 0.7 mm, and a thickness of 1 mm, corresponding to a resonant fre¬ 

quency of 2 MHz. The transducer array was incorporated into a commercial- 

13. See also the description of a 1.5 MHz linear array transducer consisting of PZT bars 

0.4mm wide and 20mm high together with an image of a sponge [68]. 



Ultrasound Imaging Arrays 427 

quality diagnostic system that was capable of -17 frames/s: it offered the 

advantage of much improved lateral resolution as compared to transducers 

that use a single element, in which the beam displacement is governed by the 

element width. 

Of major significance in the development and use of arrays for medical 

imaging was the work of Somer [69,70]. In his 1968 publications he pointed 

out the potential advantages of electronically scanned arrays for produc¬ 

ing real-time images of rapidly moving structures and described a sector 

scan (Fig. 7.6b) system that could be steered over a 90-degree sector at 30 

frames/s. The transducer consisted of 21 elements with a resonant frequency 

of 1.3 MHz and a spacing of just under 7J2. Moreover, the small size of the 

array (1.0 x 1.1cm"), compared to that developed by Bom et al., made this 

scheme much more appropriate for cardiac imaging.14 The subsequent con¬ 

tributions of von Ramm and Thurstone [71—73], which included an account 

of the clinical application of sector scanning for cardiac imaging [74], were 

important influences on the development of commercial clinical diagnostic 

systems. 

7.2 Properties of Imaging Arrays 

The field produced by an ultrasonic array in the far field is very similar to that 

developed by an array of antennae, the theory of which has been summarized 

in the chapter by Cheston and Frank [75] and in the frequently referenced 

book by Steinberg [76], The presentation of this section is partially based is a 

theoretical description of ultrasound imaging arrays by Macovski [77] and a 

much earlier paper by Tucker [78]. In addition, Ziomek [79, Chapter 7] pro¬ 

vides a useful discussion of array theory, particularly in relation to under¬ 

water applications, and the classic text of Skudrzyk [80, Chapter 26] also 

contains a helpful account. 
Arrays of individual transducer elements, when used for generating an 

ultrasound beam or for detecting a source, can be both focused and steered. 

They can be classified as either linear arrays or plane arrays. Linear (1-D) 

arrays consist of elements arranged so that their center of symmetry lies on a 

line as illustrated in Fig. 7.7a. On the other hand, plane arrays consist of ele¬ 

ments arranged in a 2-D pattern (Fig. 7.7c). The elements of an array can be 

either periodic or aperiodic. For a periodic array the elements have a periodic 

spacing, but this can lead to the generation of grating lobes (see section 7.2.1) 

within the field of view if the element spacing is not sufficiently small e.g., <k/2. 

If they are aperiodic, the elements can be arranged either in a deterministic 

but nonperiodic manner or in a random manner [76]. If the elements are 

chosen by a random process to he anywhere within a given length (or area), 

such an array is called a random array. An aperiodic array can also be 

14. The barriers presented by the ribcage and gas-filled lungs severely restrict ultrasonic access 

to the heart, and as a result 'a small-footprint transducer that uses sector scanning is needed. 



Figure 7.7 Point source arrays, (a) 1-D periodic array of omnidirectional 

point sources, (b) Cross-sectional view. The difference in path lengths to the 

observation point results in a phase shift, (c) 2-D periodic array that enables the 

beam to be steered in both the azimuthal (<])) and elevation directions (6). The 

angular direction of an observation point can be specified by means of the direction 
cosines ux = sin0cost)) and uy = sin0sin<\>. 
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constructed by fully populating a periodic array and then removing a speci¬ 

fied fraction of elements by a random process. Such an array is sometimes 
referred to as a statistical array, or as a sparse periodic array. 

7.2.1 Steering and Focusing: A Geometric Approach 

The ability to steer and focus an array both in transmission and reception is 

vital for obtaining real-time high-quality images. Early systems generally 

relied on analog circuits, such as tapped delay lines, for achieving these func¬ 

tions. Subsequently, with the availability of high-speed A/D converters and 

processors, digital systems have generally been used and as such are generally 

referred to as digital beamformers [81,82], We shall discuss beamformers in 

terms of their application to transmission and reception and will initially 
assume that the array elements are point sources. 

Transmission 

Consider N point sources (for convenience, N is assumed to be odd) arranged 

as a 1-D array with a center-center spacing of d, and suppose that each source 

is excited with the same amplitude. If, as shown in Fig. 7.8a, the waveform to 

each element is delayed by a constant amount (equivalent to a change of phase 

for CW excitation), the transmitted wavefront will propagate at an angle ^ 

(the azimuthal steering angle), proportional to the delay. Specifically, the 

required inter-element delay for an azimuthal angle of is given by Ax = 

(d/c0)sint^. Focusing can be achieved by introducing the time delays indicated 

in Fig. 7.8b. With the help of Fig. 7.9a, the delay required for the n’th element 
can be expressed as [83] 

where -(N - l)/2 < n < (N - l)/2, the z-axis focal point is denoted by RF, and 

the index n is referenced to the central element. From this expression it can 

be seen that the required delay for the two outer elements is zero, and that 

for the central element (n = 0) it is the maximum. In the presence of both 

steering and focusing, the delays to each element can also be found from 

Fig. 7.9a as [83] 

+(N-l)2d2/4 + (N- l)RFdsin\<\>s 
(7.1) 

For a given array, the first term of this expression is a constant that is equal to 

the delay needed to ensure that all delays are positive for -N < n < N and 

—it 12 < <\> < n/2. If the second square root term is expanded to a second order 

in (nd/Rp), then 
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(a) 
Wavefront 

Figure 7.8 Beam steering and focusing on transmission by means of time delay 

elements, (a) The steered wavefront propagates in a direction determined by the 

magnitude of the time delays Ax. This sketch represents a snapshot of the wavefront 

at t = 3At when the excitation consists of an impulse at t = 0. (b) Focusing is achieved 

by means of delays that vary as the square of the element position. 
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VRp+{nd)2 2nRFdsin§s ~RF-ndsin<]),.+ (nd)~/(2RF) cos2 (j)*. 

This enables a useful approximation for larger /-numbers (RFl(2Nd) > 2) to be 
written as [95, p. 233; 96] 

(7.2) 
nd sin$s (nd)~ cos2 §s 

x« 4 h xo> 
cn 2 cnRF 

in which the linear first term accounts for the beam steering angle, the 

quadratic second term accounts for the beam focusing, and the final term is a 
constant delay. 

The required delay times can be illustrated by means of a 33-element array 

that has an inter-element spacing of 0.15 mm (i/2, for 5 MHz: D ~5mm) and 

that is focused at a point 3 cm away from the central transducer element. From 

Fig. 7.9b it should be noted that relatively small delays are needed for focus¬ 

ing, compared to that needed for large angle deflections (Fig. 7.9c), and these 

delays are functions of both the steering angle and focal point. Errors in the 

time delay requirements arise from the fact that the actual delays that can be 

provided in a digital system are discrete approximation to the ideal computed 

values. These quantization errors can cause appreciable degradation of the 

side lobe response, as was appreciated in the earlier stages of array develop¬ 

ment [83,84], when limitations in digital processing speeds required the use of 

relatively large time increments, e.g., 0.125 ps for a 2.25 MHz system. To avoid 

significant focusing errors, modern systems require delay quantization errors 

corresponding to about 7732 [85] or less. Holm and Kristoffersen have given 

a worst-case example as to how quantization errors affect the side lobe level 

for various focal depths [86], 

A second source of focusing error arises from variations in the speed of 

propagation over the region to be imaged. Ultrasound is used clinically under 

conditions where the sound speed variations throughout the image can be 

more than 150m/s (see Fig. 1.11), corresponding to ±5%. Such variations can 

produce large increases in the lateral beam width (300%) and can be respon¬ 

sible for significant reductions in the pulse-echo amplitude, e.g., 10 dB, as was 

demonstrated by Anderson et al. [87] using sound speed errors of +8% with 

a commercial ultrasound scanner. 

Reception: Dynamic Focusing 

Steering and focusing in reception can be accomplished by delaying and 

summing the received signal. Focusing in transmission is restricted to a fixed 

point per excitation and therefore cannot be changed once the transducer ele¬ 

ments have been excited. On the other hand, in reception the focal point can 

be changed, provided the delays are changed before arrival of the wavefront 

at the elements, and this makes it possible to track a source, provided its path 

is known. Thus, the basic idea of dynamic focusing on reception is to change 

the focal length of the aperture so that as each scattered wave arrives at the 
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Figure 7.9 Beam steering and focusing using an array with spacing of 0.15 mm and 

focused at 3.0 cm from the central element. The delays are shown for a 33-element 

array and transmission in a medium with c0 = 1,500 m/s. (a) Geometry used for 

calculating the required delays, (b) Delays needed for 0-degree and 1-degree 

deflections with focusing, (c) Delays needed for plus and minus 45-degree 
deflections, but no focusing. 
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receive aperture, the signal detected by each element is delayed by exactly the 

amount needed to focus the receive aperture to the point where the signal 

originated. For simplicity, we shall assume that the transmitted pulse is 

propagating along the z-axis in an ideal manner. As illustrated in Fig. 7.10, the 

pulse arrives at the scatterer at position Zi and produces a spherical wave that 

arrives at the transmit/receive aperture after a time 2Z\!c0. The received signal 

produced by each element is delayed to correct for the difference in arrival 

times and then is summed to produce the focused signal from Z\. Similarly, the 

scattered signal produced by the scatterer at z2 is delayed and summed. 

The use of dynamic focusing on reception for ultrasound appears to have 

been originally suggested in 1957 by Schuck [89]15 and was mentioned by Reid 

and Wild [88] in relation to proposals and analysis of annular arrays for ultra¬ 

sound imaging. However, the technical challenges of implementing this idea 

were considerable, and the idea seems to have been laid to rest until the 1970s. 

At that time various schemes for producing the controlled delays needed for 

dynamic focusing were examined that included digitally controlled delay lines 

[71] and the use of charge-coupled devices (CCDs) [90] in which the clock 

frequency could be varied by means of a voltage-controlled oscillator. In the 

imaging system developed at Duke University, a PDP 11-20 computer16 was 

used to control tapped analog delay lines and to make rapid changes in the 

delay for each receive channel of the 16-element phased array [73]. One of 

the problems with switched delay lines was the noise injected into the received 

signal when they were switched. In 1977 Maslek [92] filed a patent application 

for a scheme in which the RF signal was multiplied (mixed) with a local oscil¬ 

lator frequency, enabling fine delays to be varied by simply changing the local 

oscillator phase, thereby avoiding the need for switching. Burkhardt et al. [93] 

used a similar scheme in their 32-element sector scanner and pointed out that 

the basic idea had been proposed and used much earlier by Tucker et al. [60] 

for underwater (sonar) phased-array imaging. An alternative scheme that used 

quadrature sampling17 was proposed by Powers et al. [94], who used it in their 

4-element, 5 MHz annular-array B-mode scanner. 

With significant advances in A/D converter technology and a number of 

newly proposed dynamic delay schemes,IK digital beamforming schemes 

became more widely used. To avoid significant degradation of the image 

quality obtained with a 5 MHz system, the delays should be accurate to about 

5 ns, corresponding to -A/32. Some of the commercial systems available in the 

15. I am grateful to Dr. J. Reid for help in tracking this down (Jan. 20,2001). Schuck’s patent, 

which was filed in September 1957 and granted in May 1963: it was assigned to Minneapolis- 

Honeywell. 

16. It is perhaps of interest to note that one of the first examples of real-time use of a dedi¬ 

cated digital computer to control the scanning, signal acquisition, and display of ultrasound images 

was that described by Fry et al. [91] in 1968. The system was used for brain scanning and included 

a means of displaying C-mode images. 

17. In quadrature sampling, two samples are taken 90 degrees apart with respect to the center 

frequency, every sampling interval [94], The minimum sampling rate required for a 60% band¬ 

width system is 0.6 of the center frequency. 

18. See [96] for a useful review and reference listing. 



Delay, x(t) 

Figure 7.10 Principles of dynamic focusing on reception. A nine-element array is 

shown, and the wavefronts from scatterers at locations Z\ and z2 are shown in (a) 

and (b) respectively, as they arrive at the aperture. The delays for the signals 

detected by each element are time-dependent. As the transmitted wave progresses 

along the z-axis, the required delays are reduced. 
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DIGITAL ANALOG 

Figure 7.11 Simplified block diagram illustrating a digital beamforming receiver 

system that uses a low-noise preamplifier, a high-speed (40 MHz) A/D converter 

(>12 bit), and a digital delay (shift register) controlled by a digital signal processor 

(DSP). 

1990s used 128 channels and had a reception architecture similar to that illus¬ 

trated in Fig. 7.11. 

For the purpose of describing the process of beamforming both in trans¬ 

mission and reception, it is helpful to consider a far-field expression for the 

received signal. Let us consider an array with N elements that are used for 

both transmission and reception, and suppose that the transmitted waveform 

is denoted by Vj{t) and is the transmit apodization function. The wave- 

N 

form seen at the focal point will be proportional to \jVT(t-iTj + R/P /cQ), 
7=0 

where R^ is the distance to the focal point and xrj is the transmit delay for the 

y’th element. If reception involves dynamic focusing, then we must incorporate 

a time-dependent delay of xR i(t) and a time-dependent aperture function TRJ(t). 

Generally, the latter is increased in time so as to maintain a nearly constant/- 

number and therefore the same lateral resolution. The received signal from an 

ideal scatterer can be written as 

Vr{ 0 = X ^>Rj )X ^T’i V'T XT,j + 2 Rfp[t)/c0), 
i=0 ;=0 

where the outer summation index / refers to the receive elements. This result 

is sometimes referred to as the beamformer equation [81]. 

An important problem associated with the simple scheme shown in Fig. 7.11 

arises from the different arrival times of the signals at the A/D from each array 

element. Because of limitations in A/D sampling rate in combination with a 

sufficient dynamic range,'1' the delayed samples may differ from those required 

19. In the mid to late 1990s, commercial A/D converters were available with 10 to 12 bits of 

sampling at 20 to 40MHz (see [102] for a listing). 
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X n 

Figure 7.12 Details of a time-domain beamformer. Through the addition of zeros 

between each sample followed by low-pass filtering, the sampling rate can be 

increased. 

to correctly reconstruct the output signal from the summer. These delay errors 

can be avoided by using interpolation to substantially increase the sampling 

rate following the initial sampling at a rate consistent with the requirement of 

a large dynamic range. This process, a well-known technique in digital signal 

processing [97], consists of first inserting L zeros between each of the original 

samples, and then low-pass filtering so as to remove the aliased portions of the 

signal. The result is an interpolated version of the original signal, sampled at 

a rate equal to (L + 1). In Fig. 7.12, which illustrates the modified time-domain 

technique, the interpolated high sample rate signal is apodized, then delayed 
and finally summed. 

An alternative scheme for reducing the delay errors is to use an oversam¬ 

pling20 A/D converter consisting of a single-bit delta-sigma (AS) modulator 

[98,99]. Such schemes were first investigated for ultrasound beamforming in 

the early 1990s [100-102], and shortly thereafter for radar [103]. 

Instead of generating an entire word, consisting perhaps of 10 to 12 bits 

at each sample, as is done in more conventional A/D converters, a AS A/D 

converter determines only the changes in the input analog signal between 

samples. In its simplest form (Fig. 7.13), this can be achieved by means of an 

integrator and a clocked quantizer within a feedback loop that compares the 

current input level to the value generated by the quantizer. The scheme 

enables the quantizer output to track the input. Specifically, if the input 

increases between successive samples, then a binary one is produced; on the 

other hand, a zero is generated if the input decreases. As illustrated, the output 

20. Oversampling implies that the sampling rate is in excess of the Nyquist rate. 
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Figure 7.13 Simplified sketch of a first-order oversampling delta-sigma single-bit 

analog-digital converter system for a receive beamformer. By changing the tap 

position on the shift registers, appropriate focusing and deflection delays can be 

dynamically generated. (Based on Freeman et al. [101].) 

of the Al converter is a stream of ones and zeros, which can be temporarily 

stored in a shift register. Typically, the shift register must have several hundred 

stages to accommodate the range of dynamic time delays needed for beam 

focusing and deflection. Because of its simplicity, a one-bit Al converter can 

sample at very high speeds, which can be well beyond the Nyquist rate for the 

source. For example, systems can be designed to operate at more than 32 times 

the center frequency, which, for a 7 MHz center frequency imaging system, 

would be 224 MHz. This is sufficient to avoid the sampling rate delay errors 

discussed earlier. The decimator/filter shown in the figure reduces the sam¬ 

pling rate from what might be many hundred MHz to a frequency sufficient 

for properly representing the time variations of the input signal. A low-pass 

filter is used to reduce the high-frequency quantization noise introduced by 

the modulator. 

7.2.2 Grating and Side Lobes 

Associated with the periodic structure of an array is the possible presence of 

grating lobes, a name that originates from the lobes produced by an optical 

diffraction grating. It is important to distinguish between grating and side 

lobes. Side lobes are subsidiary structures that are present with most simple 

transducers and are also present in the CW radiation pattern of arrays. Grating 

lobes occur in symmetric locations about the main lobe, have a similar 

structure to the main lobe, and can have the same amplitude. Their origin is 
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analogous to the presence of aliased signal seen with a time-varying signal 

when the sampling rate is less than that given by the Nyquist criterion. In fact, 

the criterion that the inter-element spacing must satisfy to avoid grating lobes 

can be derived from the sampling theorem [79, pp. 528-532], Specifically, to 

unambiguously recover the image information obtained by a spatially sampled 

aperture for beam steering directions from —tc/2 to rt/2, the spacing between 

the samples must be less than 7J2, where X is the shortest wavelength present 

in the aperture. In practice, much smaller beam steering angles are generally 

used, e.g., from -rt/4 to jt/4, allowing the maximum spacing to be taken as 

approximately half the center frequency wavelength rather than the shortest 

wavelength. 
Of major importance in the design of arrays for medical ultrasound imaging 

are the grating and side lobe levels relative to the main lobe, since these define 

the system dynamic range. One of the first groups to recognize their impor¬ 

tance was Burckhardt et al. [104] in 1973. Typically, considerable portions of 

an image consist of signals that have been scattered by relatively weak scat¬ 

tered. Consequently, if a side lobe encounters a strong scattering region, it can 

cause a scattered signal to be produced whose strength can be comparable to 

that returned from the main beam, thereby causing an imaging artifact. To 

prevent such artifacts, the transmit/receive response due to grating and side 

lobes should be at least 30 to 40 dB below the central lobe response. 

7.2.3 Linear Point Source Arrays 

A simple analytic approach for predicting the response of an array is to con¬ 

sider a 1-D array of point sources, such as that illustrated in Fig. 7.7a. Since 

the number of elements in a typical ultrasound array is quite large, e.g., 64, it 

makes little difference to results if the number is assumed to be even or odd. 

In the analysis that follows the number is taken to be odd, enabling the center 

element to be placed at the origin of coordinates and thereby somewhat 

simplifying the analysis. 

Consider the two monochromatic point sources marked in Fig. 7.7b. and 

suppose that both are excited with the same signals. Then the pressure at an 

observation point r will be the sum of the two contributions and is given by 

^ c ]\«>t-k{r+Ar)] _ ej(m~kr)ry + jkAr)! 

r + Ar r L ' 

where A is the source strength expressed in (N/m), and the approximate form 

is valid in the far field. Note that the term in square brackets determines how 

the intensity varies with the observation direction angle (j)s and that the field 

distribution is independent of the elevation angle 0. 

Sinusoidal Excitation 

Let us consider the case for which the excitation is harmonic with an angular 

frequency of to and there is no focusing, just beam steering through an angle 

p{r.t) = — ei(a'-kr) + 
r 
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of (|). This can be achieved by making the phase angle depend linearly on the 

source location, i.e., (p„ = »Acp, where Arp is the change in phase between the 

n’th and n + 1 elements. At a far distant (r » Nd/2) observation point whose 

spherical coordinates are (r,§), the pressure is given by 

A (W-l)/2 A (N-l)/2 

p(r, 4>;r) «_gHw-kr) ^ ej(n(Al„-&rn/co) _ _ei(<sx-kr) ^ ^-;n(£(/sini|>-A<p) 

? n=-(N-1)/2 T" n=-(N-1)/2 

in which the time delay for the nth element is At,, = nAcp/co and Ar„ = nd sin 4>. 
By making use of the relation 

(7.3) 
(*-l)/2 

I 
n=-(N-1)/2 

sin(AT/2) 

sin(4//2) ’ 

and letting T = kd sin d - Arp, the pressure at an observation point is given by 

(7.4) p{r,$:t)»— ei(-m~kr) 
r 

sin 

sin 

N_ 

2 
1 

2 

(kd sin (j) - Arp) 

(kd sin 4> — A<p) 

(a) 

Examination of this expression shows that because of the additional factor of 

N in the numerator, over a given span of angles, the sin[.] term in the numer¬ 

ator becomes zero much more often than that in the denominator. The angles 

for which the numerator is zero and the denominator is non-zero results in a 

pressure amplitude of zero. However, the angles for which both the numera¬ 

tor and denominator are zero (in the limit, the ratio is equal to N) correspond 

to the peaks of the main lobe and grating lobes (when present). It can be 

readily shown that the observation angles at which the main and grating lobes 

occur can be found from sind) = — 
d 

±m - 
Atp 

2tt 
, where m = 0 corresponds to the 

main lobe and m - 1, 2, 3 ... correspond to the grating lobe angles. Also, in 

the absence of any steering, as the spacing d is increased, the first grating lobes 

appear at <|) = ±90 degrees when d - k. Steering causes the main lobe to increase 

in width and to be displaced by an angle of sin 1 (Aq>//c<r/). At the main lobe and 

grating lobe angles, the pressure is a maximum and is given by p(r)~—N. 
r 

Over an observation angle of ±kI2 and over a beam steering angle of ±7t/2, no 

grating lobes will be seen, provided d < 7J2. 

Fig. 7.14 illustrates some of the above properties. In (a) and (b) are shown 

a 65-element array with a spacing of XI2. Beam steering through 30 degrees 

causes some widening of the main lobe. The effects associated with a greater 

spacing (d = 1.1X) are shown in (c) and (d). In the absence of steering, two 

grating lobes are present. Because the length of this array is more than twice 

that of (a) and the two have the same number of elements, both the main and 

side lobes are narrower. 
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Figure 7.14 Formation of grating lobes and the effect of beam steering for a linear 

array consisting of 65 equally spaced point sources. The normalized far-held 

magnitude of the transmit pressure versus observation angle is plotted, (a) Element 

spacing d = A/2, (b) beam steering 30.2 degrees: no grating lobe is seen, (c) Element 

spacing d = E1A, showing the presence of two grating lobes, (d) Beam steering of 

30.2 degrees: a strong grating lobe is seen. 

It is also of interest to examine how the response is affected by the far-held 

approximation. By taking the observation point to be at a constant distance 

from the center of a 65-element array of point sources and using the exact 

expression for the held due to each elementary source, the held pattern shown 

in Fig. 7.15 can be obtained. It can be seen that close to the array the response 

is relatively constant over a wide range of angles, and the pattern bears little 
resemblance to that seen in the far held. 

Pulse Excitation of Simple Arrays 

In the above discussion, all the source points were assumed to be harmoni¬ 

cally excited at the same frequency. A more realistic situation is to consider 

the far-held response when pulse excitation is used. We shall assume a 
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Array of Point Sources 

(a) • 

Observation 
Point 

Angle, degrees 

Figure 7.15 Near- and far-field response for a linear array of 65 point sources 

excited at 5 MHz in water. Separation distance d = 0.25 mm (d = 0.833A,, total length 

= 1.625 cm). (a) Geometry, (b) Near-field (2.5 cm) and far-field (50 cm) pressure 

response as a function of the observation angle. 

Gaussian modulated sinusoidal waveform such that the complex pressure at 

a distance r from a point source is given by 

p(rt) = —g i<Oc(t-r/c°)e-al{l-r/co)2 /2 ^ 

r 

where coc is the angular center frequency and the -6-dB bandwidth is equal to 

2.36aJ(Oc. As shown in Chapter 1, subsection 1.4.1, the corresponding fre¬ 

quency spectrum is also Gaussian and is given by 

p(r:co) = —^^e-ia>r/coe-{u,-Wc^2cl. 
r Ob 

At a far-field point (jR,0), the waveform can be found by summing over all N 

elements of the array, i.e., 
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a (v-i)/2 2 / 
p(R g-i®crnlcog-<&(t-rnlco) /2 

— n=-(N-l)/2 

where 

r„ = ^(RcosQy +(nd + 7?sin0)‘. 

Fig. 7.16 compares the far-held pulse and CW response for a 65-element 

linear array. It can be seen that the primary effect of the pulse excitation is to 

remove the side lobe scalloping without affecting the main lobe dimensions. 

The presence of a wide distribution of frequencies in the excitation waveform 

reduces the interference that arises from the periodic nature of the array in 

combination with the periodicity of the excitation. 

7.2.4 Planar Point Source Arrays 

A similar type of analysis can be extended to the planar array of point sources, 

such as that illustrated in Fig. 7.7c. With such an arrangement the beam can be 

steered in two dimensions, enabling 3-D pulse-echo ultrasound measurements 

to be made. In analyzing the radiation characteristics it is convenient to make 

use of a coordinate system [75,105] that represents the angular coordinates of 

a far-held observation point on a rectangular coordinate system. If a point (r, 

0,0) that lies on a hemisphere of unit radius (r = 1) is projected onto the plane 

of the array, then the Cartesian coordinates of the projected point will be given 

by the direction cosines, ux = sin 0 cos 0 and uy = sin 0 sin (j), both of which lie in 

the range -1 < u < 1. Consequently, the far-held response can be characterized 

by a 3-D graph of the beam intensity at each point ux, uy. If the spacing in either 

direction is greater than 7J2, grating lobes will be created, and all of these will 
be seen when the held of view extends to the horizon. 

7.2.5 Linear Array of Rectangular Elements 

In Fig. 7.17 the elements are assumed to be identical and to have the dimen¬ 

sions indicated. If there are an odd number of elements N, then D = (N - \)d 

+ W. Assuming that each element is excited with the same CW signal, then the 

aperture function, which provides a complete 2-D description of the array 
geometry, is given by 

S(*!, yi) = rect 
\Hj 

rect Jx ^ ~nd)^*rect 
\Wj 

where jq and yj are the coordinates on the source plane z = 0. As shown in 

Fig. 7.17b, this expression contains the product of the rect{.) and inhnite sum 

of 5-functions, which creates a sequence of 5-functions at the center of each 

element. By convoluting this with rectJxq/W], the width of each element is 
replicated at the 5-function locations. 
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Frequency, MHz 

Figure 7.16 Pulse response in the far field (R = 50cm) of a 65-element point source 
linear array for a 5-MHz center frequency pulse with a fractional bandwidth (-6dB) 
of 47%. The element spacing was assumed to be XJ2.5. (a) Pulse waveform and its 
spectrum, (b) Response compared to that for CW excitation at 5 MHz. The pulse 
response was taken to be the maximum pressure at the observation point. 

Beam steering can be achieved by requiring that the phase of the signal 
applied to each element vary linearly with the element position. In the above 
equation, this can be introduced by multiplying the summation term by e/Aq>xi/d, 
where Acp is the phase shift between successive elements governing the beam 
steering. In addition, apodization can also be introduced through a function 
A(xi) that describes the amplitude distribution to each element. Consequently, 
the aperture function becomes 
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Figure 7.17 Periodic array of identical rectangular elements, (a) Geometry, (b) 
Generation of the aperture function by multiplication and convolution. 

(7.5) 

rect jrect fx0 
l H) LI x A{xl)eih^d £ 5^ - nd) [*rect( ^ 

In Chapter 3 it was shown that at a far-field (Fraunhoffer) observation point 

(xo, ya, r), the field distribution produced by an aperture on the plane can be 

found by taking the Fourier transform of the aperture function and evaluat¬ 

ing it at the spatial frequencies kx = -kxjr and ky = -kyjr. Specifically, the pres¬ 
sure distribution is given by (see [3.31]) 

p(x0,y0 :co) 
 yt0povo 

e-/to3{S(x„y,)}. (7.6) 
2nr 
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If the apodization function is unity, then the Fourier transform can be obtained 

and the pressure response becomes2122 

, ^ j(ap0v0e~ikr HDW . (y0H 
p(x0,y0\to) = -~ ■ ■-:—sine 

(7.7) 
27ir 
oo 

I x sine 
n~ 

f 
D 

L V 

\ kr j 

xQ n Acp ' 

kr d 2nd, 

\ f 

sine 
x0W\ 

kr 

For the special case in which the array consists of elements whose width is 

equal to the element spacing and there is no beam steering (i.e., W = d and 

Atp = 0), the array then becomes identical to that of a simple rectangular trans¬ 

ducer of area D x H. By making use of a special identity,23 it can be readily 

shown that (7.7) reduces to 

(7.8) p(x0, y0:co) = eikrHD sine 
- ' 2nr kr j 

sine 
MS 

kr 

which is identical to the expression given in Chapter 3 (3.66) for the far-field 

pressure response for a simple rectangular transducer of width D and height 

H. 
An alternative approach is to represent the array as a finite sequence of rect 

functions. If both apodization and linear phasing are assumed, then the aper¬ 

ture function is given by 

> yi) - rect (a) 
\ H) 

[N^2 A mA„ fxx-ndk 
^ A„e;9rect 

_n=-(N-l)/2 w 

where An describes the apodization for the /7th element and, as before, Acp is 

the change in phase between successive elements. Application of the shift 

theorem enables the Fourier transform to be obtained and evaluated at the 

appropriate spatial frequencies, yielding 

(7.9) S{5(x!, yj)} = //VFsinc 
y0H' . (x0W 
-- sine —— 
kr J v kr 

(N-l)/2 

X A"e 
n=-(N-1)/2 

/nAcp jnkdxo / r 

Further simplification is possible when the apodization is assumed to be 

uniform (An = 1). By making use of (7.3), it follows that the summation term 

in (7.9) simplifies to 

21. Note that the definition used for the sinc(.) function is: sinc(q) = sm(nq)lng, some authors 

define it by: sinc(q) = sin(q)/q. 
22. As discussed in subsection 7.2.6, for small array elements, the far-field pressure should be 

multiplied by an obliquity factor of cos0, where 6 = sin_1(jr0/r), but for the moment this will be 

neglected. 

23. sinc(K) £ sinc[jW(K -1)] = sinc(A:N), provided N is an odd positive integer. 
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(/V-l)/2 

I 
n=-(N-1)/2 

ejnA<pejndkx0/r 

sin 
~N (kdxa \ 

u -L Arft 
 2 V r ) 

sin 

1
-
1

 
to

 | 'kdXo i Am 11 
r )] 

Consequently, the far-field pressure can be written as 

p(xo,y0:co): 
J<~0povoe 

2nr 

-jkr 

■ HW sine 
(yaH). fx0W) 

'sine 
Xr V Xr J 

(7.10) 

x 

sin 
kdxD V 

+ Atp 
J. .2 1 r 

sin 
'1 ' kdx0 

+ Atp ] 
l_21 r )\ 

which can be shown to yield the same result as (7.7), and for W=d and Atp = 

0, it also reduces to (7.8). Comparison of (7.10) with (7.4b) reveals that final 

term is exactly the field profile of omnidirectional point sources placed at the 

center of each elementary area. Thus, the overall field in the x-direction is 

simply the product of the single-element field pattern with the field due to an 
array of point sources. 

The above results could have been deduced from the array product theorem 

[79, Chapter 7], which can be derived as follows. If the aperture function for 

an element is denoted by E(x) and the array contains N such elements posi¬ 

tioned at Xi... xN, then the overall aperture function is given by 

E(x)*Y,Ane’^n 8(x-x„), 

where the phase is assumed to be proportional to the source location and given 

by (3x„. By using the convolution theorem, the Fourier transform can be written 
as 

s|£(x)^A^"8(x-x„ )j = 3{£(x)}3jJ; Ane^5(x-xn)J. 

From this it follows that the far-field pattern of an array that consists of 

identically shaped elements with complex weighting coefficients is given by 

the product of the single-element directivity function and the directivity of an 

array of point sources that are located at the center of each element and that 

have the same complex weightings. Note that the theorem applies even when 
the spacing of elements is not constant. 

As an example. Fig. 7.18 shows the pressure response for a 65-element 

rectangular array on the plane y = 0 calculated from (7.10). The responses for 

two different excitation frequencies are shown together with the response of 

a single element. At the lower frequency (5 MHz), the element spacing is 

sufficiently small so that grating lobes are not present over the 60-degree 
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Observation Angle, degrees 

Figure 7.18 Pressure field on the plane y = 0 for a 65-element linear rectangular 

array with dimensions of W = 100 pm and d = 150 pm. It is assumed that the 

apodization is uniform, that the observation sector is 60 degrees (±30 degrees), and 

that the beam is steered through 12 degrees. The dotted curve corresponds to the 

far-field response of a single element of width W. Excitation at (a) 5 MHz (d = A/2) 

and (b) 15 MHz (d > A/2). 

observation sector. At the higher frequency of 15 MHz, a grating lobe is 

present, the amplitude of which is appreciably modulated by the angular vari¬ 

ation of the single-element response. 

7.2.6 Obliquity Factor 

One-dimensional arrays typically use transducer elements whose width (VP) 

can be significantly less than the thickness (f) and whose height (H) is many 

tens of wavelengths, giving them a plank-like appearance. Strong acoustic cou¬ 

pling may exist between the thickness and width modes, depending on the ratio 

W/l Using finite element analysis, Sato et al. [106] have shown that for a certain 

value for W/t the electromechanical coupling factor is a maximum, and that 

typically this occurs at around Wit = 0.6. In the far field, it is physically rea¬ 

sonable to expect that the directivity function should approach zero as the 

observation angle approaches +90 degrees. However, this is not in agreement 

either with experimental measurements [107] or theoretical predictions based 

on the assumption that the transducer behaves as a rigid baffle. Delannoy et 

al. [108] drew attention to this problem when they measured the far-field 

angular behavior of a strip transducer (W = 1mm, H = 20mm) excited at 

570 kHz and radiating into water. By assuming that the boundary behaves as 
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Figure 7.19 The angular response of a single plank-like element with a width 

of W = 0.305 mm, which is radiating at 2.5 MHz into water (X = 0.75 mm). The 

theoretical response predictions are based on the assumptions of (i) a rigid 

baffle: p(0) =posinc(7tVTsin0/A,) and (ii) a pressure release surface: p(0) = 

posinc(nlTsin0/A,)cos0. (Reproduced, with permission, from Selfridge et al. [109], 

Appl. Phys. Lett., 37, 35-36, © 1980 Acoustical Society of America.) 

a pressure release surface24 and that the source can be taken as an infinite strip, 

excellent agreement was obtained with the experimental results. Subsequently, 

Selfridge et al. [109] reported similar experimental and theoretical results 

showing that the far-field directivity function differed from the rigid baffle 

result by cos0, where 6 is the angle that the normal to the transducer surface 

makes to the observation direction. This is clearly illustrated by the measure¬ 

ments shown in Fig. 7.19, which shows far better agreement with theory 

when the cos9 obliquity term is included. More recently, laser interferometric 

measurements of the surface displacements of linear array elements and 

hydrophone radiation pattern measurements have shown similar agreement 

[HO]. 

7.2.7 Sparse Arrays 

It was long ago recognized that a major difficulty in the development of planar 

periodic arrays was the requirement that the element spacing must be suffi¬ 

ciently small so that grating lobes would not be present for the largest steer¬ 

ing angles needed. This requirement means that for a given aperture size, a 

large number of elements must be used, and this greatly increases the system 

complexity and cost. One method of circumventing this is to eliminate the 

periodicity by removing elements at random from a periodic array until a 

given fraction of the original (dense) structure remain. Such an array is often 

24. For a pressure release surface, the pressure is defined throughout the boundary; e.g., it is 
uniform on the transducer surface and zero elsewhere. 
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referred to as a sparse array [76, Chapter 8]. Very substantial reductions in the 

complexity can be achieved, though with some signilicant penalties associated 

with the side lobe levels. Unlike dense periodic arrays, for which the side lobe 

level decreases with the angular deviation from the main lobe, for a random 

periodic array the expected value of the side lobe power remains independ¬ 

ent of angle except close to the main lobe. It can be shown [76, pp. 139-144] 

that the ratio of the average side lobe to the main lobe power is equal to l/N, 

where V is the number of radiators. For example, to achieve a ratio of -30 dB 

(=10 log0.001), 1,000 elements would be needed. Flowever, the peak power of 

the side lobes will be about 7dB higher [111], resulting in a peak power ratio 

of -23 dB. 

To illustrate some features of the radiation pattern of random arrays, we 

shall consider a periodic linear array that, if fully populated, would contain 

512 elements (a fully populated array will be referred to as a dense array). 

We shall assume that 50% and 84% of the elements have been removed at 

random, so that the final arrays contain 256 and 64 elements, respectively. If 

the elements are assumed to be omnidirectional point sources, the far-field 

radiation pattern will be as shown in Fig. 7.20. It is important to note that 

the reduction in the number of elements causes a reduction in the maximum 

Figure 7.20 Periodic array of 512 elements in which elements have been removed at 

random, yielding a sparse periodic array of (a) 256 and (b) 64 elements. Each 

element is assumed to be a point source, and the relative magnitude of the response 

in the far field is shown as a function of the observation angle. 
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transmit pressure and in the SNR. However, the SNR can be partially restored 

by increasing the power delivered to each element. 

For 2-D arrays, the number of elements that are required for even a rela¬ 

tively modest size aperture could be very large. For example, a dense 65 x 

65 array would require 4,225 elements, making it a challenging task to indi¬ 

vidually address each element as transmitters and receivers. At least two 

means have been investigated for eliminating grating lobes and reducing the 

number of elements. One, as described in subsection 7.2.10, is based on using 

different transmit and receive apertures whose elements are spaced to make 

the grating lobes destructively interfere. A second method, based on earlier 

developments in 2-D sparse radar arrays, is that described by Turnbull and 
Foster [112]. 

In their theoretical investigations, Turnbull and Foster studied the field 

characteristics of a dense 65 x 65 array from which a random selection of ele¬ 

ments had been removed and that occupied an area of 1 x 1 cm2. Assuming a 

pulse with a center frequency of 4.5 MHz (d = 0.45X), a -6-dB bandwidth of 

2 MHz, and a transmit focus at 40 mm from the array, they determined the 

pulse-echo response when the elements had been reduced by factors of 4, 6, 

and 8. Over this range and for steering angles up to 45 degrees in both direc¬ 

tions, they found that the main lobe shape was not significantly affected and 

the pulse-echo side lobes remained below -50 dB, provided the reduction was 

not much greater than a factor of 4. Much more substantial reductions in the 

number of elements can be achieved by using separate (and sparse) trans¬ 

mission and reception arrays, as will be discussed in subsection 7.2.10. 

7.2.8 Inter-Element Cross-Coupling 

It has long been realized that cross-coupling between the elements of ultra¬ 

sound transducers can cause a serious degradation in performance [117], Two 

types of cross-coupling have been identified and analyzed: electrical [113] and 

acoustic [114,118]. In the first, electrostatic and electromagnetic cross-coupling 

can arise from capacitive, resistive leakage, and inductive coupling between 

the leads connecting the elements. In the second, waves of various types can 

be propagated laterally between elements through the backing, through the 

front surface structures, or directly between the elements, and this has been 

recognized as a serious problem, especially when the elements are small and 

closely spaced. In their investigations, Kino and DeSilets [114] showed that the 

coupling of energy to adjacent elements causes the effective aperture of a 

single element to increase. In an array, such as that illustrated in Fig. 7.18, this 

can cause an unacceptable drop-off in the main lobe response at high steer¬ 

ing angles [115], In addition. Lamb wave coupling can be responsible for shift¬ 

ing the peak of the angular response away from 0 degrees, as was noted by 

Delannoy et al. [116]. An important advantage of sparse arrays arises from the 

increased element separation, which enables the cross-coupling to be reduced. 

In some ol the first commercial linear-array designs, such as that described 

by Dias [119] and illustrated in Fig. 7.21, the substrate consisted of a highly 
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Figure 7.21 Early type of phased array construction. The piezoelectric ceramic was 

initially bonded to a substrate that also served as a highly attenuating backing 

medium. Saw-cuts through the PZT at differing depths into the substrate reduced 

the acoustic cross-coupling. Not shown is a cylindrical acoustic lens for focusing in 

the elevation direction. 

absorbing medium (tungsten particles embedded in a polyvinyl matrix), and 

saw-cuts were made through the piezoceramic, through the lower electrode, 

and into the substrate. Differential saw-cut depths resulted in reduced acoustic 

cross-coupling. 
One of the earliest reports of cross-coupling in 2-D arrays is that described 

by Turnbull and Foster [112], who investigated both electrical and acoustic 

effects in fully populated and sparse arrays. They reported that the primary 

effect of electrical coupling was a severe loss in gain at large steering angles, 

though with little change in the shape. Subsequently, using both electrical 

(network analyzer) and mechanical measurements (laser interferometry), 

Certon et al. [120] investigated the cross-coupling in 1-3 piezocomposite 2-D 

arrays and have shown that symmetrical Lamb waves within the composite 

plate are primarily responsible for the observed effects. 

7.2.9 Amplitude Weighting (Apodization) 

As noted earlier, apodization on transmission consists of weighting the signal 

amplitudes applied to each element of the array. The use of apodization for 



452 Biomedical Ultrasound 

Figure 7.22 Effect of apodization on the far-field response of a 128-element linear 

array, (i) Rectangular window, (ii) Gaussian window, (iii) cos window, (iv) cos2 

window. For all four windows the main lobe angular FWHM and the first side lobe 

amplitude (S. Lobe) are given in the table. The window shapes are also shown. 

improving the performance of an ultrasound array is a particular application 

of the more general signal analysis problem of choosing a window function 

[122] that will reduce the side lobes relative to the main lobe. However, since 

some increase in the angular width of the main lobes (and therefore a loss in 

resolution) accompanies this reduction, it is important that the tradeoff be 

carefully examined. In Fig. 7.22 the effects of three different apodization func¬ 

tions are illustrated for a 128-element linear array and are compared to a 

simple rectangular window whose first side lobe is just 13 dB below the peak. 

For example, with the cosine-squared window, the first side lobe is at -32 dB, 

though the width of the main lobe at the —3-dB level is increased by —1.6. 

Of considerable importance is the weighting method described in 1946 by 

Dolph, which, because it depends on certain properties of the Chebyshev poly¬ 

nomials, is generally called the Dolph-Chebyshev method. Dolph showed that 

a distribution function could be specified for a given permitted maximum side 

lobe level that would achieve a minimum beam width. For example, a Dolph- 

Chebyshev apodization function designed to achieve a -40-dB side lobe level 

would have a main lobe that was 1.35 times wider than that for a rectangular 

window at the -3-dB level: even at -50 dB, the widening factor is still less than 

1.5. However, unlike most other apodization functions, the side lobe levels for 
the Dolph-Chebyshev method do not decrease. 

While apodization functions have been considered in relation to array 

design, the same functions can also be used to obtain improved time-response 

characteristics from bandpass filters. For example, based on the Dolph- 

Chebyshev apodization function in the frequency domain, the time distribu¬ 
tion function is given by 



Ultrasound Imaging Arrays 453 

Time-Bandwidth Product, t A/ 

Figure 7.23 Dolph-Chebyshev time domain response for two different values of the 

side lobe level response. >1 = 2 corresponds to -48.6 dB and >1 = 3 to -75.8 dB. 

G(t) = cos nyj(tAf)2 - A2 /cosh(7L4), 

where A/is the bandwidth and the parameter A, which specifies the desired 

side lobe level, can be determined from 

20 log[l/cosh(7L4)] = desired sidelobe level in dB. 

An example is shown in Fig. 7.23. 
The well-defined side lobes seen in the above figures arose from the effects 

of interference caused by narrowband (CW) excitation. From subsection 7.2.5 

we know that the presence of a broad spectrum of frequencies can greatly 

reduce the side lobe interference pattern, and consequently the ability of 

various apodization schemes to reduce the side lobes needs to be examined 

for broadband excitation. An early investigation was that reported by t’Hoen 

[121], who studied the influence of nine different apodization schemes for 

wideband excitation of a linear ultrasound array focused in the near field. For 

each scheme he related the FWHM (which governs the lateral resolution) and 

the beam width at -25 dB (which is a measure of the sensitivity to artifacts) 

and concluded that the cosine, Hamming25, sine, and 10% truncated Gaussian 

were close to optimal in regard to image quality. A subsequent study (1996) 

by Daft and Engeler [123] points out the importance of apodization, especially 

when the center-to-center spacing of the elements is greater than A/2, which 

is sometimes the case in practice. However, they also point out that the effec¬ 

tive aperture (see subsection 7.2.10, particularly Fig. 7.24) for a rectangular 

transmit/receive array is triangular (i.e., it is self-windowed), which makes the 

case for adding a new window function far from clear. 
As noted in subsection 7.2.1, in reception the aperture size is often changed 

dynamically, and consequently if an apodization function is used, it too must 

25. W(«) = 0.54 + 0.46 cos(«7i/w) 
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also be changed dynamically. In transmission several focal zones can be used 

(sacrificing frame rate), and the resulting parts of the image would 

be stitched together. Associated with these may be different apodization 

functions. 

7.2.10 Separate Transmit and Receive Apertures 

By using separate transmit and receive elements, several advantages can be 

gained. In the first place, the problems that arise from interference between 

the transmit and receive circuits are avoided. Second, by choosing suitable 

element spacing for the two arrays, the locations of the transmit and receive 

grating lobes could be designed to achieve partial cancellation in the two-way 

radiation pattern. This idea seems to have been first pursued by von Ramm et 

al. [124], initially for 1-D arrays and subsequently for 2-D arrays [125]. For 

example, in one of their 2-D arrays they used 32 transmitter elements uni¬ 

formly spaced on a cross (+) and 32 receiving elements uniformly spaced on 

a cross at an angle (x). Many different combination of transmit and receive 

apertures could be used, and as a result it is important to have a means of 

comparing the performance. Gehlbach and Alvarez [126], who introduced the 

concept of effective aperture, described such a means. 

Effective Aperture 

The effective aperture is a receive aperture that when used with a point source 

transmitter would produce an identical transmit/receive response to that pro¬ 

duced by the particular transmit/receive array combination being examined. 

Thus, for the purpose of comparison the combination of two different arrays 

is reduced to an effective receive aperture in combination with a point source 
transmitter. 

In the far field, we know that the radiation response is given by the 

Fourier transform of the aperture function. If Sj{xfX) and S^x/k) denote the 

far-field transmit and receive aperture functions, then at an observation 

point (/?,0), the associated radiation patterns for each aperture can be 
written as 

pt(r,q) = %[sT (*!A)], p* (R,e) = s[s* (*/*,)]. 

However, the two-way (transmit/receive) field response is the product of the 
two field patterns, i.e., 

C7-11) Pr9i(^e) = Fr(R,0)xRK(/?,0), 

which, with the help of the convolution theorem and the previous two 

equations, can be rewritten as Pm(R,Q) = %[ST(xA) * Sa(*A)L Noting the 

definition of effective aperture given earlier and denoting it by SE(x/k), 
we have 

Pm(R,Q) = Sf[8(x!/'k)*SE(x1 /A,)] = SfS^jq/A,)]. 
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Figure 7.24 Relations between the transmit and receive apertures, and the effective 

aperture. Identical transmit and receive apertures are shown. The apertures are 

denoted by Six^l)i), the field patterns by P(R,Q) and the Fourier transform by 3{.}. 

(Based on Lockwood et al. [127].) 

Consequently, the effective aperture can be expressed as 

(7.12) Se{xi/P) = St{xi/X)* S<x(x\/X). 

To illustrate how (7.11) and (7.12) are related. Fig. 7.24 shows identical 7- 

element transmit and receive arrays. By convoluting the transmit and receive 

apertures, it can be seen that the effective array has 13 elements with trian¬ 

gular apodization, and that the field response of a single-element transmit 

aperture in combination with this 13-element receive aperture is identical to 

that obtained using the two 7-element transmit and receive apertures. 

The above ideas can be extended to 2-D by generalizing (7.12) to 

SE(xu yi)-ST(xu yx)**S^(xu y,). 

If the transmit and receive apertures are separable, i.e., 5Y(*i, yi) = 

STx(xi)Sy(yi) and SA(xu yi) = then the effective aperture 

simplifies to 

SE (xx , yi) = [Srx (*i) * (Jfi )p7y (Fi) * S*y (yi)]. 

Sparse Array Design 

In arriving at the best design of a sparse 1-D array, it is first necessary to 

specify the desired two-way radiation profile. This determines the properties 

of the effective aperture, including its apodization. The design task then 

reduces to finding what transmit and receive array combination gives the best 



456 Biomedical Ultrasound 

approximation to this effective aperture. Several different combinations 

may yield the same effective aperture. The best choice may require that the 

minimum number of elements be used, or it may be a combination that yields 

the closest approximation. Lockwood et al. [127] have described a number of 

different strategies in arriving at approximate solutions and have shown that 

the minimum number of elements needed in each array is such that the 

product of the two numbers is equal to the square root of the number of 

elements in the effective array. As an example, they consider a dense (all 

elements present) 128-element linear array and show experimentally that the 

number of elements could be reduced by a factor of four by using 16 transmit 

and 16 receive elements, while maintaining the secondary lobe at least 55 dB 

below the main lobe. Such a reduction represents the potential for a signifi¬ 

cant decrease in the complexity and cost of a scanning array. 

A variety of methods have been proposed for achieving substantial reduc¬ 

tions in the number of active elements in 2-D arrays through the use of sep¬ 

arate transmit and receive apertures. These include elements that are placed 

on concentric rings [128] and the use of vernier array designs [129,130], as 
described next. 

The principles of the vernier method are illustrated in Fig. 7.25. In (a) a pair 

of vernier rulers are shown. The tick marks for the primary scale A have spac- 

ings of pd, where p is an integer and d is a distance; those for the secondary 

scale B are spaced by (p - 1 )d. Thus, for the spacings shown,/? = 10 and d = 

0.1 mm, and the displacement of the slider is 1.25 cm. By using the vernier scale 

relations for the transmit and receive apertures, the effective aperture has a 

spacing of exactly d.This is illustrated in (b), where the transmit array is spaced 

by (p - 1 )d = 2d, the receive by pd = 3d. By choosing d to be X/2, the grating 
lobes are eliminated. 

Many different 2-D vernier array patterns are possible, some of which are 

given in [130], An example is shown in Fig. 7.26 for p = 3 with 193 transmit 

and 193 receive elements, together with the computed response for the con¬ 
ditions detailed in the figure caption. 

7.2.11 Wave Distortion Due to Dynamic Focusing 

As discussed in subsection 7.2.1, dynamic focusing on reception enables the 

array to increase its focal point with time, and this can be achieved by chang¬ 

ing the delay associated with each array element. Maginess and Walker 

[131,132] have shown that for a transmit pulse with non-zero duration, such a 

process can cause appreciable distortion of the waveform received from 

targets close to the array, where the delay changes most rapidly. As will be 

seen, the received waveform is expanded in duration so that the spectrum will 
be shifted down in frequency. 

Consider a point scatter at a location z on the axis of the array illustrated 

in Fig. 7.27a, and let us suppose that the transmitted waveform is in the form 

of the pulse of duration At shown in (b) (i). On arrival at the scatterer (ii) it 

gives rise to spherical waves that reach the center of the array (iii) after a time 
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Figure 7.25 Vernier cosine squared apodized sparse 1-D arrays, (a) A simple vernier 

scale in which the least significant digit is determined by the mark on scale B that is 

aligned with the mark on scale A. (b) Vernier array pair corresponding to 

p = 3 consisting of 10 transmit and 10 receive elements, together with the effective 

aperture, (c) Equivalent dense arrays consisting of 24 transmit and 24 receive 

elements. (Based on Brunke and Lockwood [130].) 

t = z!c0 and reach the «th element at a time v/r + x2 /c0. Let us suppose that 

the signal from the center element is subject to a fixed delay of x0 that is large 

enough to ensure that all delays are non-negative. It can be readily shown 

that the delay for the nlh element, as indexed from the center of the array, is 

given by 

l _ 
l(x„, t) = X0-Uz2 +X2n - zl 

C c o 

Noting that z = cQt, this delay will change at a rate 
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Figure 7.26 Example of 2-D vernier array (p = 3). (a) Array geometry: the transmit 

elements are the solid filled squares, the receive elements are the unfilled squares, 

and the elements that are shared elements are enclosed by a circle, (b) 

Transmit/receive response for a 35% bandwidth (-6dB) pulse assuming a point 

target, no beam steering, cosine squared apodization, a focal distance of 4 x transmit 

aperture (/74), dynamically focused receive from//3 to//5 in increments of 1/20 x 
transmit aperture width. (Reproduced, with permission, from Brunke and Lockwood 

[130], IEEE Trans. Ultrason. Ferroelect. Freq. Contr.,44, 1101-1109,© 1997 IEEE.) 
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Figure 7.27 Expansion of the pulse shape due to dynamic focusing on reception. For 

simplicity, it is assumed that transmit pulse is rectangular with a duration of At and 

that a point scatterer is on-axis, (a) Aperture and approximate shape of delay 

needed for dynamic focusing at the time of arrival of the pulse at a given point on 

the aperture and at a time At later, (b) Waveforms produced by the scatterer at the 

center and edge of the array. 
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Figure 7.28 Fractional expansion of a pulse due to dynamic focusing on reception 

caused by an on-axis scatterer as calculated from (7.13). The array was assumed to 

have an aperture of 10 mm. 

which is always positive or zero. Thus, over the transmit pulse duration, the 
delay will increase by 

(7.13) Ax(x„,f) = 1- 

alz2 + xl 
A r. 

or in other words, the contribution from the n'th array element will be 

expanded in time. The maximum expansion occurs for the signal at the edge 

of the aperture (x = xN); for all other elements the expansion will be less, drop¬ 

ping to zero at the center element. Consequently, if the transmit waveform is 

a short sinusoidal pulse, the effect of dynamic focusing will be to cause a reduc¬ 

tion in the center frequency of the received pulse, i.e., an apparent Doppler 
shift is produced. 

For example, let us assume that the total aperture is 10 mm and that a pulse 

with a duration of 0.5 ps is incident on the scatterer in water (c0 = 1500m/s). 

The graph of Fig. 7.28 shows that the fractional expansion (Ax/At) for a scat¬ 

terer 10mm from the center is 0.1, and for one 20mm away it is 0.005. 

7.3 Arrays for Two- and Three-Dimensional Imaging 

7.3.1 One-Dimensional Arrays 

It is perhaps helpful to review the most commonly referred to array structures 

and to compare their imaging performance. But before starting, it should be 

noted that some confusion can arise from the terminology.26 In Fig. 7.29a, an 

array is illustrated in which a beam is formed by exciting a group of adjacent 

elements, e.g., 32 out of 256 elements, and a scan over the imaging area is 

26. R.L. Powis has provided some useful ideas on this topic in a web note entitled 

Transducers and Oxymorons (www.classicalmedical.com/review/to.html). 



(a) Phased Linear (b) Linear Phased 

(c) Curved Phased (d) Annular 

Figure 7.29 Various 1-D arrays used for real-time 2-D imaging. 
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achieved electronically moving the group to adjacent elements. Azimuthal 

steering and focusing can also be used in transmission and reception by prop¬ 

erly phasing and apodizing the elements in the group. Since linear movement 

of the beam is combined with focusing, we shall refer to this as a phased linear 

array. A fixed-focus cylindrical lens is generally used to reduce the slice thick¬ 

ness in the elevation direction. However, as illustrated in Fig. 7.30, outside the 

focal region the elevation sample volume dimension is considerably increased. 

Moreover, the far-held first side lobe associated with an unapodized rectan¬ 

gular element is only 13.4dB below the main lobe (see Fig. 7.22 or Fig 3.38). 

One method for increasing the depth of held in the elevation direction and 

to reduce the side lobe response is by apodization. By introducing a gradient 

in the attenuation of the lens material, various apodizations [133] can 

be obtained. A comparison of the -10-dB contours for an apodized and 

unapodized lens is presented in Fig. 7.30. 
In the linear phased array (note the order of the words) transducer shown 

in (b), all elements are used to obtain the results for each scan line. The fan¬ 

like sector scan formed by this process causes the line density to decrease with 

depth, resulting in a possible loss in information. As with the phased linear 

array, when a cylindrical lens is used, the slice thickness can be reduced in the 

vicinity of the focal plane. Moreover, the smaller array footprint enables 

images to be made though limited windows, e.g., imaging the heart by using 

the space between the ribs. 

An array with a wide field of view is the curvilinear phased array (also called 

a convex array) illustrated in (c). Such arrays use groups of elements similar 

to the phased linear array and provide for an increased field of view without 

requiring steering. Because steering inevitably results in some loss in lateral 

resolution, the curvilinear phased array maintains its resolution over a wide 

field of view. Moreover, the absence of steering enables better side lobe 

Figure 7.30 The effect of apodization on the depth of field for an elevation lens. The 

apodization increases the depth of field and decreases the side lobe level. 

(Reproduced, with permission of the International Society for Optical Engineering, 

from McKeighen [133], pp. 2-18 in Ultrasonic Transducer Engineering. Vol. 3341, 
Medical Imaging, © 1998 SPIE.) 
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rejection to be achieved. But, as with (b), the line density decreases with depth. 

Such an array might consist of 128 elements with d = 400 pm (arc length 
~5cm), H = 10 mm, and W - 350 pm. 

The annular array shown in (d) has the advantage of cylindrical symmetry 

so that the sample volume dimensions are independent of angle. Such an array 

was originally proposed in 1957 by Schuck [89] and discussed in [88], In sub¬ 

sequent years more detailed consideration was given to the design and appli¬ 

cation of such transducers [137,138]. However, electronic steering is not 

feasible, and consequently high-speed mechanical rocking of the transducer is 

required to form a real-time image. This led to problems associated with the 

coupling fluid (reverberation, refraction) and decreased reliability compared 

to the electronically deflected arrays. Perhaps the most complete description 

of such an array is that contained in the papers by Foster et al. [134,135].Their 

system consisted of a 3.0-cm-diameter. 12-element, 4.5 MHz array with a 6.5- 

cm radius of curvature. The array could be focused to a point 3.0cm from the 

array where the /-number (focal length/diameter) was 1.0 and the beam diam¬ 

eter was 0.34 mm. A two-zone transmit focus scheme with cosine apodization 

was used. The foci were at 50 and 130 mm, and the resulting images were 

stitched together at 76 mm. On reception, a dynamic focusing scheme was 

used, similar to that described by Kim et al. [136]. 

Aperture Selection 

As illustrated in the geometric ray sketch of Fig. 7.31, for a constant aperture 

size the depth of field decreases as the focal point F decreases. Consequently, 

for a wide-aperture, short-focal-length lens (i.e., a small /-number), the range 

of depths over which good focusing is maintained will be small. Uniform image 

quality can be maintained over a relatively broad range of depths by specify¬ 

ing that the /-number be held constant as the focal point moves from the near¬ 

field position to the greatest depth, and this can be achieved by increasing the 

aperture ci) so that F/^D remains constant. Such a specification, in the case of 

a simple focused circular aperture, will ensure that the lateral FWHM on the 

focal plane remains constant (see (3.56)). In dynamic focusing a constant/- 

number approach means that a small aperture is used close to the transducer, 

and as the focal point moves away, the size is increased in proportion. Evi¬ 

dently, such a process can continue only to the point where no further aper¬ 

ture increase is possible, at which point the /-number will start to increase. 

One of the first systems to incorporate these ideas was the “expanding- 

aperture” 12-element annular array described by Dietz et al. [138], In this 

4.0 cm diameter transducer, four elements were used at the minimum focal 

point of 1.5 cm. As the focal point was increased, so was the number of annuli, 

a process that was continued until the maximum of 12 annuli was reached at 

a focal point of 12.5 cm. Beyond this, the /-number could no longer be held 

constant. 

For a 1-D linear array that uses a cylindrical lens, the elevational depth 

of field is determined by the /-number. Moreover, except in the immediate 
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Figure 7.31 Effect of aperture and focal point Fon the depth of field. For (a) and 

(c) which have the same aperture <3) but differing focal points, the depths of field ZF, 

differ greatly, (b) Shows that the depth of field can be made the same as (c) by 

reducing the aperture. 

vicinity of the focal point, the spatial resolution in the two directions will differ 

greatly. 

7.3.2 Three-Dimensional Imaging 

Historical Background 

The idea of using a sequence of ultrasound 2-D tomographic slices to con¬ 

struct a 3-D image can be traced back to the original 3-D imaging proposals 

and demonstration by the Howry group in 1954/56 (see Fig. 7.2). The first 

example of the use and clinical application of 3-D ultrasound is that described 

by Baum and Greenwood [139] in 1961 for use in ophthalmologic diagnosis. 

They transferred a sequence of B-mode images of the eye taken in steps of 

approximately 0.5 mm onto transparent photographic plates. By stacking the 

plates in the proper order and with appropriate spacing, a 3-D model was 

formed that enabled the structure of the eye to be much more readily inter¬ 

preted than was possible with a single B-mode image. As illustrated in Fig. 

7.32, Baum and Greenwood used this technique to diagnose a patient with a 
tumor above the right eye. 

In the subsequent 35 years, a variety of attempts have been made to develop 

systems that could produce and display 3-D clinical images, first by using an 

articulated-arm single-transducer system and later by translating 1-D arrays 

and more recently by 2-D arrays. Some of the early initiatives in 3-D 
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Figure 7.32 Sequence of B-mode images recorded on photographic plates taken 

through the right eye of a patient with a tumor, (a) This stack of plates corresponds 

to a 3-D image of the volume above the globe, where a tumor was identified. The 

upper right portion shows the lesion, (b) This stack of plates corresponds to the 3-D 

region below those of (a) and shows a normal globe and its orbit. (Reproduced from 

Baum and Greenwood [139], NY State J. Med., 61, 4149^1157,1961. Used by 

permission of the Medical Society of the State of New York). 

ultrasound were those of Brown [50], whose work on the invention and devel¬ 

opment of the Diasonograph (see Fig. 7.3) has been previously described. In 

[50] Brown suggested that a spiral scan pattern would be an efficient means 

of acquiring 3-D data, an idea subsequently adapted in a proposed C-mode 

scanning system. In the early 1970s Brown [38] and his associates27 working at 

Sonicaid Ltd. (Scotland) developed a 3-D ultrasound imaging system that was 

exhibited in 1976. Unfortunately, it was based on a “static” B-mode scanner 

and appeared at the time when real-time displays that used rotating trans¬ 

ducers had been available for some time and linear arrays were entering the 

marketplace. This, together with the difficulty of convincing the medical pro¬ 

fession as to its advantages, resulted in commercial failure. McDicken et al. 

[141] were probably the first (1972) to describe and demonstrate a method for 

generating a stereoscopic pair of ultrasound images. They used a fiberoptic 

linear array that was mechanically coupled to an A-mode transducer. They 

27. A description was presented at a conference held in 1976 and summarized in the confer¬ 

ence proceedings [140], 
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transferred the brightness mode A-display to the focal plane of a stereoscopic 

camera by using the fiberoptic array. By moving the transducer in a 3-D 

scanning pattern, stereo recordings were made. 

One of the first to investigate the use of computers for extracting 3-D infor¬ 

mation from a sequence of 2-D scans was Robinson [142], In a 1972 publica¬ 

tion he demonstrated how information on planes that intersected the stored 

B-mode scans could be obtained. With the computer systems available at that 

time, this was a comparatively slow and expensive process. One of the earli¬ 

est systems that made use of a real-time scanner for obtaining 2-D slices for 

subsequent 3-D cardiac image reconstruction was that proposed by King et al. 

[143] in 1975. One of the challenges was to determine the transducer align¬ 

ment so that the information as to the exact plane and direction of each B- 

mode image could be sent to the computer along with the B-mode data. The 

system proposed by King et al. made use of a spark-gap position-recording 

apparatus. This consisted of three air spark gaps arranged in the form of a tri¬ 

angle and attached to the transducer handle. Excitation produces sonic waves 

whose arrival times at an array of microphones placed at fixed locations pro¬ 

vides the information needed to calculate the transducer position and orien¬ 

tation. Beginning in the late 1970s Brinkley et al. [144,145] provided details of 

their spark-gap locating system and described methods for 3-D reconstruction 

from which organ volume information could potentially be extracted. About 

the same time (1982), Greenleaf [146] described a system that stored some 75 

B-mode image scans that were obtained by mechanically translating a 10 MHz 

real-time transducer in steps of approximately 0.3 mm. The image data, which 

were stored on magnetic tape, were subsequently used by 3-D calculation pro¬ 

grams to obtain sectional and perspective displays. Similar work was published 

that same year by Ghosh et al. [147], who used a sector scanner that was at a 

fixed position but was rotated through various angles to obtain the necessary 

B-mode image data for computer reconstruction. 

Throughout the 1980s significant progress was made with the availability of 

more powerful computer systems and improved B-mode imaging transducers, 

some of which was focused on obtaining improved accuracy in volume esti¬ 

mation, especially for cardiology. This work has been reviewed by McCann 

et al. [148], who also described improved methods for obtaining and process¬ 

ing B-scans. They used a 5 MHz, 90-degree sector scan transducer that was 

rotated in small steps through 180 degrees, similar to that used by Ghosh et 

al., to obtain both in vitro and in vivo scans of the heart. In their studies of 

image display methods, they found that surface modeling techniques provided 

more anatomic details than with the volume display methods, and as a result 
they were easier to interpret. 

Shortly after the development of 1-D arrays for real-time imaging, work 

began on the development of 2-D arrays that many realized would eventually 

enable 3-D imaging to be performed without incurring the difficulties associ¬ 

ated with using 1-D arrays. A good deal of the initial work centered at 

Stanford University under the direction of Meindl, and some of this is de¬ 
scribed in a review paper published in 1976 [149], 
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Three-Dimensional Imaging Using One-Dimensional Arrays 

One of the difficulties associated with 2-D ultrasound images of complex bio¬ 

logic systems is that of proper interpretation in terms of the known anatomic 

structure. An important advantage of 3-D imaging, along with image display 

software, is the ability to view, rotate, and manipulate a volume or a surface 

in a pseudo-3-D form [150]. Quantitative values for the size of organs can be 

an important aspect of accurate diagnosis as well as for judging the progress 

of a disease and the effects of therapy. Volume determination based on 2-D 

imaging is based on estimating the dimensions in three mutually perpendicu¬ 

lar directions but generally requires certain assumptions to be made concern¬ 

ing the geometry. These introduce errors that can be significantly reduced if 

quantitative 3-D imaging is used. Thus, an important potential advantage of 3- 

D imaging is the improvement in the accuracy and precision with which organ 

volume determinations can be made [151]. 

In the 1990s there was a major increase in interest in the development of 

3-D imaging systems based on the use of 1-D arrays and their clinical appli¬ 

cation. These developments and results have been described in a number of 

review papers [152-154,156] and books [155]. Two types of systems can be 

identified: those that make use of mechanized scanning and freehand image 

acquisition systems. As illustrated in Fig. 7.33, for the mechanized systems, the 

transducer can be translated, rotated, or rocked in fixed increments to produce 

a specific number of 2-D B-mode images. An important advantage of motor¬ 

ized systems is that a predetermined number of 2-D images can be acquired 

at set intervals so that the volume to be imaged is uniformly sampled. In addi¬ 

tion, because of the predetermined nature of the mechanical movement, a 

Figure 7.33 Examples of motorized scanning systems using a 1-D array for 3-D 

imaging, (a) Linear scan, (b) Rotational movement, (c) Rocking motion (fan or tilt 

scanning). 
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position registration system should not be needed for subsequent software 
alignment of the images. 

To obtain real-time 3-D images using a mechanically rocked 1-D array, very 
high frame rates are needed. This requires the use of special signal-processing 
techniques for the beamforming such as an oversampling AT A/D converter 
(see subsection 7.2.1). In addition, by combining sparse array techniques with 
a synthetic aperture (see section 8.5), studies by Inerfield et al. [157] have 
indicated that B-mode frame rates in excess of 1,000/s are feasible. 

Various scanning and image acquisition methods, along with their dis¬ 
advantages, are summarized in Table 7.1. 

One of the advantages of freehand systems is that the physician or sonog- 
rapher has the freedom to move the probe as in a normal 2-D examination. 
In practice, it is likely that there is less need to obtain a 3-D image with a free¬ 
hand 1-D system, and consequently the flexibility of such a system is an impor¬ 
tant advantage over the less flexible motorized systems. However, to obtain a 

Table 7.1. Summary of 3-D Scanning Methods: Acquisition Methods and Disadvantages 

Scanning Method Image Acquisition Method Disadvantages 

Mechanical 
Linear Acquired images are parallel to 

each other with equal spacing 
Bulky device 

Tilt Acquired images are fan-like with 
equal angular spacing 

Resolution degrades with 
depth 

Rotational Acquired images are propeller¬ 
like with equal angular spacing 

Motion of axis of rotation 
results in artifacts 

Free-Hand 
Acoustic Measure time-of-llight of sound 

from spark gaps on transducer to 
microphones above patient 

Line of sight required and 
sound velocity varies with 
humidity 

Articulated arms Measure angulation between 
movable arms 

Scanning volume limited, 
flexing of arms 

Magnetic sensor Measure magnetic field generated 
by transmitter beside the patient 
with receiver on transducer 

Ferrous metals distort 
magnetic field 

Image correlation Measure speckle decorrelation 
between adjacent images 

Special computer processor 
required, compound motion 
is difficult to track 

No position sensing Distance or angle between images 
is assumed 

Cannot measure distance 

2-D Arrays 

2-D phased array transmits a 
diverging pyramidal beam and 
returned echoes are displayed in 
real time as multiple planes 

System cost and signal/noise 

Reproduced, with permission of IOP Publishing Ltd., from Fenster et al. [156] Phys. Med. Biol., 46. R67-R99, 
© 2001 Institute of Physics. 
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Compounded Image B-Scan 1 B-Scan 2 

Figure 7.34 Spatial compounding of two B-mode images. By accurately registering 
the two images and then averaging, an improved SNR can be obtained. The same 
principle can be applied to 3-D imaging when the scan planes intersect. (Based on 
Rohling et al. [158].) 

good-quality 3-D image, additional skill is needed to ensure that no gaps are 

left and that the volume is sufficiently well sampled. It is almost inevitable that 

some of the scan planes will intersect, and thus the issue as to how to deal with 

spatial compounding must be addressed. As illustrated in Fig. 7.34, spatial com¬ 

pounding involves the use of intersecting B-mode images, accurate alignment, 

and an averaging process. Because the image speckle seen from different 

observation directions is only partially correlated, the averaging process 

increases the SNR, thereby improving the image quality. 

All freehand systems require a means of accurately determining the 

physical relationship between each 2-D image. The problem of providing 

accurate registration information is a challenging one, since there are six 

degrees of freedom (three spatial and three angular). Moreover, the sensor 

must be sufficiently small and light so that when attached to the transducer 

handle it causes no appreciable hindrance. Relatively small alignment errors 

can cause smearing of the structures and thereby degrade the resulting images. 

Alignment errors can arise from (i) movement of the patient and changes in 

the volume shape over the data acquisition period; (ii) differences in the speed 

of propagation; (iii) errors arising from the inherent inaccuracy of the sensor 

and the calibration process. 

Two methods have already been mentioned for position sensing: the spark 

scheme and the articulated arm. To these should be added devices based on 

electromagnetic fields and optical methods using lasers or light-emitting 

diodes. Sensors based on the use of AC or pulsed electromagnetic fields28 have 

been incorporated into a number of commercialized systems. They use a trans¬ 

mitter whose position serves as a reference and that contains coils that gen¬ 

erate a nonuniform field. The receiver contains three orthogonal coils that are 

used to detect the local magnetic field components produced by the transmit¬ 

ter. Such sensors can provide rapid sensing information (100/s) and can yield 

RMS positioning and angular accuracies of 0.2 mm (range,-0.7 to 0.5 mm) and 

0.2 degrees (range, -0.8 to 0.9 degrees), respectively [159], Nonetheless, the 

28. For example, AscensionTechnology,Burlington,Vermont,USA (www.ascension-tech.com); 

Polhemus Inc., Colchester, Vermont, US A (www.polhemus.com). 
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performance is not sufficient to avoid some loss in image quality. To achieve 

improved registration accuracy, Rohling et al. [158] used an electromagnetic 

sensor to provide approximate registration information and a software-based 

technique to make corrections. Their method involved searching for a peak in 

an intensity correlation function, and this required a search in six-dimensional 

parameter space. Their use of 3-D spatial compounding with the corrected reg¬ 

istration process resulted in improved in vivo volume estimates of the human 

gallbladder. 
Associated with the challenges of 3-D ultrasound are the problems of 

developing suitable algorithms for data processing, visualization, and display 

strategies. In addition, when imaging structures that undergo rapid periodic 

movement, the issue of how best to obtain synchronization must be addressed, 

whether it be through measurement and recording of the ECG or through 

Fourier analysis of the cardiac motion. These and other related issues have 

been reviewed in [154], in the book by Nelson et al. [155], and in a more recent 

journal by Fenster et al. [156], 

7.3.3 Two-Dimensional Arrays for Two-Dimensional and 
Three-Dimensional Real-Time Imaging 

2-D arrays provide the opportunity for generating real-time 3-D images. 

However, associated with increased element population can be greatly 

increased array fabrication and signal processing costs. An intermediate step 

between 1-D and 2-D arrays is one in which some control of the focus in the 

elevation plane is provided without requiring a large increase in the number 

of active elements. In fact, a variety of geometries have been proposed that 

provide varying degrees of control in the elevation plane. To avoid confusion 

over nomenclature, Wildes et al. [160] used the definitions given in Table 7.2. 

7.5-D and 1.75-D Arrays 

Examples of the 1.5- and 2-D arrays are shown in Fig. 7.35. The 1.5-D array at 

the top, consists of five rows of elements and a fixed lens to reduce the focusing 

delays and improve the focusing properties. The choice of the y-direction row 

Table 7.2. Nomenclature Concerning Array Structures 

Array Elevation Properties 

ID Fixed aperture and focus 

1.25D Fixed focus but variable aperture 

1.5D Variable apodization, focusing, and aperture, but all are symmetric about the 
centerline of array 

1.75 D Same as 1.5 D but no symmetry constraint 

2D Full steering, focusing, apodization, and aperture control 
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Figure 7.35 Examples of arrays for 2-D and 3-D imaging, (top) 1.5-D array with five 

rows, (bottom) Pyramidal measurement volume for a 2-D phased array formed from 

a mosaic of square elements. (Reproduced, with permission, from Smith et al. [125], 

IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 38, 100-108, © 1991 IEEE.) 

boundaries has been discussed by Wildes et al. [160], who examined three pos¬ 

sible strategies: (i) all elements have the same areas; (ii) Fresnel lens design; (iii) 

boundaries are chosen to minimize the time-delay errors between elements. In 

the Fresnel lens design illustrated in the figure, the boundaries of the elements in 

they-direction are proportional to the square root of the row number [161], i.e., 
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where NR is the number of row segments (NR = 3) with index i and H is the total 

array height. As pointed out by Wildes et al. [160], the advantage of improved 

elevation performance with unequal area designs can be offset by the losses 

that arise from electrical impedance mismatch to the smaller elements. 

Comparison of the elevation resolution for 1-D and 1.5-D designs with dif¬ 

ferent numbers of rows is illustrated in Fig. 7.36. This comparison [162] 

assumed a 32-element segment of a linear array, W = 350 pm, d = 400 pm, 

excited by a 5 MHz center frequency Gaussian pulse with a -3-dB bandwidth 

of 2.35 MHz. In the azimuthal direction the arrays were focused at 4.0 cm on 

transmit and dynamically focused on receive with //2. In the elevation 

direction, a cylindrical lens with a fixed focus at 4.0 cm was assumed, and time 

delays were used in the extra rows of the 1.5-D array to provide dynamic 

focusing on receive. In (a) it can be seen that close to the array the elevation 

beam width is substantially reduced by the use of five or seven row arrays. 

Moreover, a slice thickness of around 1.5 mm is maintained over a wide range 

of z-axis locations, e.g., 2.5 to 6 cm for a five-row array. 

With a 1.75-D array, limited deflection is possible in the elevation direction 

along with variable depth elevation focusing. One such array whose perform¬ 

ance has been described has a center frequency of 5 MHz and a 60% band¬ 

width. It has 128 elements in the azimuthal direction and 10 elevation rows. 

The performance of this array has been evaluated by Guo et al. [163], who 

determined the increase in beam width when steered in the elevation direc¬ 

tion. On the basis of their measurements and simulations, they concluded that 

the performance was sufficient to enable 3-D imaging to be performed within 

a 30-degree elevation angle. 

2-D Arrays 

In the early 1990s a number of papers were published describing initial steps 

toward developing 2-D arrays using PZT elements and demonstrating some 

initial images. The group at Duke University fabricated PZT 20 x 20 arrays 

using square PZT elements, but because of hardware limitations they initially 

used only 64 elements (32 for transmission and 32 for reception) [125], In a 

paper published in 1991 they showed stereoscopic images of metal objects 

obtained with a high-speed (8 frames/s) phased-array volumetric imaging 

system [164] whose pyramidal measurement volume was similar to that shown 

in Fig. 7.35. That same year, using a 2.5 MHz 16 x 16 array [165] with 96 trans¬ 

mit and 32 receive elements, they presented (and published) in vivo El¬ 

and C-mode images that showed considerable promise [166], Subsequent 

development by this group [167] led to the first commercially available29 3-D 

phased-array system designed primarily for use in cardiology, where the 

29. Circa 1997, Volumetries Medical Imaging. 
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Figure 7.36 Pulse-echo beam profile and resolution in the elevation direction for 1- 

D and 1.5-D arrays, (a) Beam profile at z = 25 mm. (b) Elevation resolution (slice 

thickness in the y-direction, -6dB resolution). (Reproduced, with permission, from 

Crombie [164].) 
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pyramidal measurement volume, high frame rate, and a small transducer foot¬ 

print are especially important. For example, they reported the design of a 

sparse 2-D phased array (128 x 128 = 16,384 elements) that that used 256 

transmitters and 256 receivers and formed a 65-degree pyramidal measure¬ 

ment volume. By using the scheme described below to produce 16 receive lines 

for every transmission pulse, they were able to obtain 4,096 (16 x 256) image 

lines at a frame rate of 30/s. The software enabled real-time viewing of multi¬ 

ple image planes at any desired angle, depth, and origin [168]. 

Other particularly important contributions to the early development of 

3-D arrays was the work at the University of Toronto by Turnbull and Foster 

[112,170] and subsequently by Lockwood and Foster [129], some of which was 

discussed earlier in regard to the design and simulation of sparse arrays (see 
subsections 7.2.7 and 7.2.10). 

Increasing the Frame Rate 

A vital issue in a real-time 3-D imaging system, as well as in conventional B- 

mode systems that use a multiplicity of transmit focal zones, concerns the 

maximum rate at which each line of information can be acquired. In a con¬ 

ventional B-mode imaging system that images to a depth of 15 cm in tissue, 

the maximum pulse transmission rate would be about 5,000/s. This is governed 

by the need to wait for the information to be returned from the most distant 

location before the next pulse is transmitted. If the frame rate needed to prop¬ 

erly capture a transient process were 30/s, then the maximum number of scan 

lines per frame would be about 160. Since the same limit also applies to a 

3-D system, this would require that a smaller volume be sampled unless the 

spatial resolution or frame rate is sacrificed. A technique frequently used to 

improve the effective lateral resolution over the entire image depth is to use 

a multiplicity of focal zones. Within each zone a wide aperture/low /-number 

imaging is used to achieve improved resolution, and the images from each zone 

are then “stitched” together. An example is shown in Fig. 7.1b, which used the 

images from four transmit focal zones to create the overall image. Flere again, 

frame rate is sacrificed to achieve improved lateral resolution. 

One method proposed for solving the above dilemma was to form many 

receive lines from a single transmitted pulse. In the B-mode imaging system 

described by Delannoy et al. [171], a complete frame of 70 lines was formed 

from a single transmit pulse, which enabled imaging to be performed at 1,000 

frames/s. Subsequently Shattuk et al. [172] described the performance of a 

1-D array system in which four lines of data were acquired for each trans¬ 

mission. The first application of these ideas to a 2-D array appears to be that 

described by von Ramm et al. [164], Consider the example shown in Fig. 7.37, 

where the -6db transmit pulse angular response is broadened (perhaps by 

decreasing the aperture) so that it subtends an angle of 2 degrees. If the scat¬ 

tered information is processed in parallel so that seven receive beams are syn¬ 

thesized, each with an angular response of 0.5 degrees and uniformly spaced 

throughout the solid angle defined by the transmit pulse, then for a single 
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(a) 
Figure 7.37 Example (not to scale) of a method for increasing the line density 

and/or the frame rate by using a single transmission pulse and synthesizing seven 

received lines, (a) Main transmit beam angular response, (b) The -6-dB contours of 

the synthesized receive lines. 

transmission, seven scan lines can be computed from the information recorded 

from the receive elements. Because of the increased angular dimensions of the 

transmit pulse, there will be a decrease in the pulse-echo main lobe to side 

lobe ratio and a loss in spatial resolution. As mentioned earlier, the Duke 

University group used this idea in a variety of sparse 2-D array designs for 

their pyramidal phased array and were able to realize 16 receive lines in 4 x 

4 matrix around the transmit beam. 

An alternative method proposed for increasing the line density is based on 

using a multiplicity of transmissions at the same time [173] and from each 

transmission, using either the same or a different aperture, determining the 

received signal. In the case of a phased linear array it is possible to form two 

or more separate apertures and to simultaneously transmit beams from these 

[174]. However, for a linear phased array in which all elements are used to 

form each transmitted beam, separate apertures could not be used. To over¬ 

come this problem Mallart and Fink [175] proposed and experimentally 

demonstrated a scheme based on Fig. 7.38. If we consider pulse waveforms 

applied to the seven transmitter elements, it can be seen that two focused 

beams will be produced simultaneously that propagate in differing directions. 

By adding additional steered and focused waveforms, Mallart and Fink 

showed that eight beams could be transmitted. However, they found that as 

the number of transmitted beams is increased, so the side lobe levels increase. 

Using a 128-element, 3 MHz linear array, they showed images of a phantom 

that demonstrated little deterioration in image quality, provided no more than 

between four and six transmitted beams were used. Extending this 1-D result 

to a 3-D array, they suggested that between 16 and 36 simultaneous beams 

could be produced. 
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Figure 7.38 Simultaneous transmission of two beams using a phased array. The 

waveforms and delays needed for each element of the array to focus and steer the 

beams are indicated. 

Measurement 

Volume 

Single Line 

Measured by 

3x3 Group of Elements 

Figure 7.39 Scanning a 3-D rectilinear volume by means of a 2-D phased linear 

array. The group of elements is stepped along both the x- and y-directions. 

Rectilinear Volumetric Arrays 

The use of a motorized 1-D array to generate 3-D rectilinear images suggests 

that the same could be achieved by means of a 2-D array. By using the element 

groupings illustrated in Fig. 7.39 and moving them in an incremental manner 

throughout the matrix, a complete frame of information can be obtained [176]. 

As discussed by Yen et al. [ 168], a full wavelength inter-element spacing would 

be needed for realistic measurement volumes, along with realizable array 
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dimensions and frame rates that are acceptable for the clinical applications. 

For a 5 MHz. 38.4 x 38.4-mm2 array, this corresponds to 16,384 (128 x 128) ele¬ 

ments. If it is assumed that eight receive lines can be computed for each trans¬ 

mitted beam, 2,048 transmissions per frame would be needed. Assuming a 

measurement volume depth of 6.0 cm and a sound speed of 1,500 m/s, this 

translates to a frame rate of about 6/s. As pointed out by Yen and Smith [169], 

a potential advantage of a rectilinear scan is that it enables a much wider field 

of view to be obtained compared to a sector scan, thereby improving the per¬ 

formance close to the skin surface. They describe the design of an array that 

uses a Mills cross-arrangement of elements at a center frequency of 5 MHz. 

With this scheme they achieved spatial resolutions in the 1- to 2-mm range, 

a volume image rate of 47/s, over a volume of 30mm (azimuthal) x 8mm 

(elevation) x 60mm (depth). 

7.4 Summary of Design Factors 

The complexity and interrelated factors that affect the properties of a B-mode 

imaging system are summarized in Table 7.3. This shows the relevant engi¬ 

neering properties that influence the image formation and its quality. 

7.5 Array Field Synthesis 

One method that has been developed and used clinically for tumor destruc¬ 

tion is to make use of localized heating produced by focused ultrasound, a 

technique known as ultrasound hyperthermia [178]. For many years it has been 

known that tumors are vulnerable to higher temperatures and that ultrasound 

is one technique for noninvasively raising the temperature. If a temperature 

in the range of 42 to 43°C is maintained in soft tissue for a sufficient length of 

time, destruction will result. Moreover, depending on the choice of frequency, 

the depth to which energy can be deposited can be varied (e.g.,30 0 to 3 cm for 

3.5 MHz, 8 to 10cm for 1 MHz). To achieve reasonably uniform heating over 

a given cross-sectional area, a multiple focus method, such as that illustrated 

in Fig. 7.40, can be used. In this example, a 2-D ultrasound array is used to 

produce a cross-sectional region that is reasonably uniform in terms of the 

heat production. By appropriate choice of the driving amplitude and phase to 

each element of the array, the geometry of energy deposition region can be 

controlled to make it closely match the tumor. 
Several approaches can be used to determine the amplitude and phase 

pattern to be applied to a given array to achieve the best approximation to a 

specified radiation pattern. This synthesis problem is generally more difficult 

than the analysis task addressed in Chapters 2 and 3. 

30. Labthermonics Technologies Inc., 701 Devonshire Drive, Champaign, IL 61820, USA 

(www.labthermics.com/sono.html). 
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Table 7.3. Engineering Properties That Affect Image Quality 

Engineering Property Effect on Image Quality 

Size and growth of transmit 

and receive apertures 

Large aperture size yields superior lateral spatial 

resolution. Variable aperture size enables /-number to 

remain constant with depth to provide uniform 

spatial resolution. 

Number and position of 

transmit zones 

Number, size, and spacing of 

piezoelectric elements; number 

of independent array channels 

Provides uniformly high spatial resolution throughout 

the region of interest. 

In the image plane: spacing elements one-half the 

resonant frequency wavelength suppresses grating 

lobes and increases gray-scale resolution. Where size 

is approximately equal to the spacing and the number 

is large, sensitivity is a maximum. Large number of 

elements on independent electronic channels gives 

high spatial resolution. 

/-number Small /-numbers yield high lateral spatial resolution 

and shallow depth of field, requiring many transmit 

foci to obtain uniform spatial resolution. For strongly 

focused transducers (low/-numbers), depth of focus is 

approximately proportional to the /-number. 

Transmit and receive apodization Weighting the center elements more than the side 

elements (apodization) decreases grating lobe 

amplitude but broadens the main lobe. Therefore 

apodization is a method for increasing gray-scale 

resolution (reducing grating lobes) at the expense of 

spatial resolution (broad main lobe). 

Transducer bandwidth and 

center frequency 
Spatial resolution increases with frequency (shorter 

pulse lengths and narrower beam widths) as depth of 

penetration decreases because of tissue attenuation. 

High bandwidths increase axial spatial resolution but 

decrease transducer sensitivity. 

Receive sensitivity and 

dynamic range 
In general, high receive sensitivity and dynamic range 

increase gray-scale resolution. If the beam properties 

are poor, however, gray-scale resolution can decrease 

as receive sensitivity and dynamic range increase. 

Output power Increasing output power increases system sensitivity 

until nonlinear propagation effects begin. Nonlinear 

effects transfer energy to high-frequency harmonics, 

which are preferentially attenuated in tissue and for 

which the system is insensitive to receive. Image 

quality features are marginally increased with large 

increases in power. 

Frame rate, line density, image 

width and depth 
High frame rate is required to avoid temporal aliasing 

and maximize temporal information density. High line 

density is required to avoid spatial aliasing and 

maximize spatial information density. The limited 

speed of sound (c„) dictates how these parameters are 
traded off according to: 

c0 = 2 x Depth x Line Density x Frame Rate 

for gray-scale imaging. 

Reprinted by permission of Elsevier from Insana and Hall [177], 
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7.5.1 Field Conjugation Method 

For CW excitation, the synthesis task can be simplified if it is assumed that 

each array element is in the far field at the observation plane. Ibbini and Cain 

[179] have described a synthesis technique that makes use of the principle of 

reciprocity and phase conjugation. Phase conjugation [180,181] is the genera¬ 

tion of a wavefront that is the reverse of an incident wave: it therefore 

describes a wave that at all points moves in exactly the opposite direction. 

Mathematically, it corresponds to reversing the sign of the phase term, so that 

using the complex representation of a sinusoidal wave, it is the complex con¬ 

jugate of the incident wave. In optics, phase conjugation is of great practical 

importance since it provides a means for correcting the effects of wavefront 

distortion. Some of the techniques are also applicable in ultrasound, in par¬ 

ticular for correcting the effects of phase distortion due to transmission 

through an inhomogeneous medium [182], Nikoonahad and Pusateri [183] first 

reported (1989) the development of a real-time ultrasonic (300 kHz) phase 

conjugate “mirror” using a 1-D array. 

With reference to Fig. 7.40, we shall suppose that a total of M control points 

are specified, which can consist of focal points or points where a reduced 

response is required. If a CW point source exists at the ra’th focal point, then 

the magnitude and phase of the particle velocity at the center of each element 

of the array can be calculated, so that if there are N elements a vector given 

by [vlm v2m ... vnm . . . vNm]’ can be constructed, where t denotes the transpose 

and v is the complex particle velocity. If this process is repeated for all M focal 

points and the amplitude of each point source is proportional to the control 

point response, then a complex array can be constructed given by 

n'th element 

Desired 
Focal 
Points 

w’th focal 
point 

ield Plane 

r 
Array of Elements 

Figure 7.40 Synthesis method in which a desired set of field points, e.g., several foci, 

on a given plane can be obtained from appropriately excited elements of an array. 
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Vll ■ Vim ■ VlM 

V21 ' V2m ’ V2M 

v = 

_V/vi • vNm ■ vNM_ 

By conjugating this matrix (i.e., the complex conjugate of each term), the 

complex excitation needed to be applied to each array element will be given 

by the sum of the real and imaginary parts of each row. 

Many simplifications result when the far-field approximation can be 

assumed. Karpelson et al. [185] have shown that by using a Fresnel approxi¬ 

mation for the radiation field produced by a rectangular element, the field 

conjugation method can give good accuracy up to points relatively close to 

the source elements, with an order of magnitude reduction in computation 

time compared to the more exact pseudoinverse method described in the next 
subsection. 

As an example, we consider a 90 x 90 mm2 planar array consisting of 400 

(20 x 20) elements and wish to synthesize an acoustic field consisting of four 

equal-intensity focal points at (-10, -10), (10, -10), (-10,10), and (10,10) mm 

on a plane 12 mm from the source plane at a frequency of 2.3 MHz. The ampli¬ 

tudes and phases of the normal component of velocity on each element were 

calculated using the approximate field conjugation method and, from these, 

the field profile shown in Fig. 7.41 was calculated using the Rayleigh integral. 

It can be seen that four foci at the specified locations are produced. 

:0 

-20 -20 

Figure 7.41 Example of a four-foci field at a distance of 12 mm from a 20 x 20 
planar array (90 x 90 mm2) excited at 2.3 MHz. The amplitudes and phases of signals 
applied to each element were calculated using the field conjugation method. 
(Reproduced, with permission, from Karpelson et al. [185], IEEE Trans. Ultrason. 
Ferroelect. Freq. Contr., 42,793-797,© 1995 IEEE.) 
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7.5.2 A Pseudoinverse Method 

Ebbini and Cain [184] have developed a more exact synthesis method based 

on the Rayleigh equation as given by (2.32). Let us consider an TV x N array 

of source elements and M control points; then the pressure at the ra’th control 

point due to the nth array element can be obtained from (3.17) as 

Pmn ( Tm ) 
2n 

o n i 

-jk\rm-tn\ 

-dSn 

where rm is the observation point, r„ is a point on an elementary area dSn of 

the nth array element, and von is the normal component of velocity on that 

surface. Consequently, the total pressure at the rath control point is the sum 

of all the contributions from all N2 elements, i.e., 

Pm (r„,) 
Aop,, 

2rt 

g-jk\rm~*n\ 

This can be expressed as 

(7.14) 

where p = [p(rj) p(r2) ... p(rM)]', 

propagation operator given by 

H(ra, n) = 

Hv0 = p, 

v0 = [Voi vo2... voN2]', and the matrix H 

;top0 
2k If 

Sn 

-jk\lm-tn\ 

-dSn. 

is a 

Given the values of the pressure p for all control points, we seek the values 

of the complex surface velocity v0 for each source array element, i.e., we seek 

a solution of (7.14). Ebbani and Cain [184] have shown that if the total number 

of array elements is greater than the number of points where the field has been 

specified, i.e., N2 > M, then the minimum norm least-square estimate of v0 is 

given by 

(7.15) v0 = H*r (H H*') 1 p, 

where H*' is the conjugate transpose of H and represents the backward prop¬ 

agation operator, i.e., from the control points to the array elements. Ebbani 

and Cain have discussed the physical significance of the above solution and 

have described the methods for evaluating (7.15). 
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8 

Ultrasound Imaging Systems 

Design, Properties, 
and Applications 

This is the second of two chapters concerned with imaging systems. Its purpose 

is to describe a number of important matters directly related to imaging and 

imaging systems and to discuss some of the special ways in which clinical 

imaging can be performed. It begins by looking at matters concerning system 

design, followed by an analysis of the process of image formation, and the for¬ 

mation and characteristics of image speckle. Methods are then discussed for 

using coded excitation schemes to increase the depth to which satisfactory 

images can be obtained, and this is followed by a discussion of synthetic aper¬ 

ture schemes. Imaging using either the nonlinear properties of the propaga¬ 

tion medium or the properties of injected contrast media are important 

developments. Descriptions of ultrasound tomography, elastography, and 

microscopy lead to the final section of this chapter: methods for imaging from 
within body cavities and blood vessels. 

8.1 B-Mode Imaging Systems 

8.1.1 Array System Design 

Although several individual aspects of the design of an imaging system were 

considered in Chapter 7, it is perhaps helpful to consider the entire system as 

well. While many different variations exist, the block diagram of Fig. 8.1 is 

a useful starting point. The transducer T/R switch isolates the functions of 
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Receive Beamformer 

Figure 8.1 Main elements of a B-mode imaging system that uses digital 
beamformers for transmission and reception. 

transmission and reception. For transmission beamforming, the central digital 
controller determines the transmitted waveforms, and these are converted into 
analog form by the D/A converters. Amplifiers provide the high-voltage wave¬ 
forms needed to drive the individual elements. In reception, low-noise ampli¬ 
fiers followed by A/D converters may be used. As noted in Chapter 7, if 
reconstruction errors are to be avoided, the sampling frequency must be no 
less than 32cJX, which, for a center frequency of 5 MHz, corresponds to around 
200 MHz. Because the dynamic range of an A/D converter diminishes with 
increasing sampling frequency, such a high sampling frequency may be incon¬ 
sistent with the required dynamic range. Several methods have been described 
for overcoming this problem [1,2], One consists of multiplying with a local 
oscillator frequency so as to create sum and difference frequencies, and then, 
by low-pass filtering, the difference frequency portion of the spectrum can be 
selected. By this means the signal is converted to a lower carrier frequency, 
enabling a much lower sampling frequency to be used without information 
loss. Alternatively, by using the interpolation technique outlined in subsection 
7.2.1, a lower minimum A/D sampling rate can be used, enabling an A/D con¬ 
verter to be used that has a much larger dynamic range. If both the pream¬ 
plifier and A/D have a sufficient wide dynamic range (e.g., 96 dB = 216 = 65,536), 
time-gain compensation can be avoided, and any compression that may be 
needed for display or recording purposes can be performed after digitization. 
Summation of the delayed and apodized waveforms leads to estimating the 
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Figure 8.2 Two possible B-mode ultrasound detection schemes. For the standard 

envelope detector the received pressure amplitude is displayed, while for the square- 

law detector the intensity is displayed. The post-processing stage often involves 

logarithmic compression. 

received signal envelope, details of which are provided in the next subsection. 

The final stages consist of compression, image processing, and a means for dis¬ 

playing and recording the images in a standard format. 

8.1.2 Envelope Estimation 

The envelope of the signal from a point scatterer will be the same as the inci¬ 

dent envelope, provided there are no frequency-dependent effects. If a detec¬ 

tor is used under these circumstances (Fig. 8.2), it should provide an estimate 

of the envelope that closely matches the transmitted envelope. When a square- 

law detector is used, the envelope will be proportional to the intensity. 

Illustrated in Fig. 8.3a is a particularly straightforward method for deter¬ 

mining the pressure envelope. If x{t) is a real received signal, then its Hilbert 

transform [3] has a frequency spectrum identical to that of the input but whose 

phase components are all shifted by -90 degrees (i.e., the Hilbert transform 

acts as an ideal -90-degree phase shifter). As illustrated in (b), for a Gaussian 

received pulse, the envelope will be Gaussian and the Hilbert transformed 

output will be quasi-sinusoidal with a similar envelope. If the signals are in 

digital form, then the problem of estimating the envelope reduces to follow¬ 

ing the peak signals from the two absolute operations. 

8.1.3 Imaging Theory 

The point spread function (PSF) of an ultrasound imaging system represents 

the image response produced by a point scatterer at a particular location. The 



x(t) 

Envelope 

of x(t) 

(a) 

Time (arbitrary scale) 

Time (arbitrary scale) 

Figure 8.3 Method for estimating the envelope using the Hilbert transform, (a) 

Schematic of method that assumes a real input signal, (b) Gaussian received pulse, 

its envelope, and the Hilbert transformed input, (c) Absolute value and peak 

follower outputs. 
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Figure 8.4 Simplified representation of a B-mode imaging system in which the 

source is represented by a continuous scatter distribution on a plane and the system 

response is represented by a 2-D point spread function (PSF). 

papers by Bamber and Dickinson [4] and Fatemi and Kak [5] drew attention 

to the importance of this concept in describing the performance of a B-mode 

imaging system. Subsequently Hiller and Ermert [6] presented important 

extensions, particularly in relation to pulse-echo tomography, as discussed in 

section 8.7.2. 

If the image space coordinate system is (x,y,z), then the PSF can be 

expressed as hp (x,y,z: q,^,£,), where the location of the point scatterer is (r|,£,^) 

in the space coordinate system (i,y,z). The two coordinate systems will nor¬ 

mally be related by a magnification factor M = x/x = y/y = zH■ Knowledge of 

how the PSF varies throughout the source space enables the image distribu¬ 

tion to be predicted for a given source distribution, provided the system 

behaves in a linear manner. 

A simplified representation of an imaging system is shown in Fig. 8.4, where 

the scattering medium is assumed to consist of a continuous 2-D distribution 

of scatterers represented by a(x,z) and the image is given by b(x,z). In prac¬ 

tice, the transducer elevation response will cause scatterer distributions in 

neighboring planes to the primary source plane to influence the response. If 

we ignore this effect, the 2-D image can be expressed as 

b(x, z) = JJ a(r|,Qhp (x, z: fi,^)dr\d^. 

Let us suppose that the PSF is space invariant. The invariance implies that the 

PSF depends on coordinate differences between the source and the magnified 

image, i.e., hp(x - Mr\, z - M£); consequently, the image is given by 

b(x'= Jj a(r>’QHp (* _ Mrf Z - M^)dv\d^. 
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Changing the variables by letting r|' = Mr\ and this can be expressed 
as a 2-D convolution: 

7 , t/ 's 

n S 
M M 

V 

which can be written in the shorthand form 

(8.1) 

hp[x-r\',z-^ )dr\'d 

1 
h(x, z) = —r a(r|, ^) * * hp (x-t\,z-$) 

M X 7 

If we also assume that PSF is separable [6], 

hp (jc - Mr\, z - M£) = hpx ~ x (z _ . 
Characterizing Characterizing 

Lateral Resolution Axial Resolution 

By substituting this into (8.1) and taking the 2-D Fourier transform, the spatial 

frequency domain of the image for M = 1 is given by 

B(kx ,kz) = Mkx, kz )Hpx (kx )HPZ (k:) 

(8'2) _= A(kx,kz)H{kx,kz) 

In this equation the capital letters denote the corresponding spatial frequency 

(kx,ky) domain functions and the transfer function H(kx,kz) is the Fourier trans¬ 

form of the PSF. In Fig. 8.5a the slice to be imaged is shown along with an 

array that generates ideal transmit/receive profiles. The spatial frequency of 

a(x,z) shown in (b) has frequencies in the lateral direction that exceed those 

that can be resolved by the transducer's lateral characteristic, and as a result 

only the cross-hatched portion of A(kx,kz) is sampled. However, because the 

axial resolution is shown as being considerably greater, all the spatial fre¬ 

quency information along the kz axis is obtained. As is evident from (c) and 

(d), the missing information can be obtained by rotating the transducer and 

repeating the B-scan: the complete set of frequency-domain data enables the 

image to be reconstructed by means of 2-D inverse Fourier transform. 

8.2 Image Speckle 

Shortly following the development of CW lasers it was discovered that shining 

a laser beam on a surface produced an image with a granular background 

appearance whose characteristic lengths bore no resemblance to the macro¬ 

scopic character of the illuminated surface. It was quickly realized that because 

most surfaces are comparatively rough compared to the wavelength, the 

speckled appearance arose from interference of light scattered from various 

regions of the surface. The granular background appearance created by illu¬ 

minating a rough surface with fairly coherent radiation is known as speckle, 

and because it reduced the resolution capabilities of the illuminating system, 

methods for reducing its influence were investigated. However, it was also 

found that the presence of speckle could be used to advantage in certain appli- 
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Imaging 

Transducer 

H(kx,kz) 

nAxial 

Figure 8.5 Representation of B-mode (pulse-echo) imaging in the space and spatial 

frequency domains, (a) Conventional scan of a region that has a backscattering 

function of a{kx,kl). (b) Showing partial sampling of the spatial frequency domain 

A(kx,kz). (c) Scanning at an angle 0. (d) Sampling of the spatial frequency domain at 

an angle 0. (Based on similar drawings in Hiller and Ermert [6].) 

cations, such as providing a quantitative measure of the roughness of a surface. 

Imaging systems based on the use of some form of coherent illumination, 

including acoustic and radar systems, also exhibit speckle. Among the many 

papers describing the statistics of optical speckle, Goodman's [7] introduction 
to the topic, published in 1975, is particularly helpful. 

For some time, it was known that ultrasound B-mode images of tissue con¬ 

tained a background that had a granular-like appearance similar to that shown 

in the simulated image in Fig. 8.6. In their account of the manner in which an 

understanding of this phenomenon developed, Abbott and Thurstone [9] indi¬ 

cated that it was identified as a speckle phenomenon in the mid to late 1970s. 

Abbott and Thurstone carefully considered some of the key differences 

between laser and ultrasound speckle. They pointed out that laser speckle 

is normally seen or detected as an intensity variation, whereas in B-mode 



Ultrasound Imaging Systems 499 

E 
E 
<D 
O 
C 
3 
to 
Q 

aj 
i— 

<1) 

3 

Beam Axis Distance, mm 

Figure 8.6 Simulation example of fully developed speckle generated in a small 

volume around the focal zone of a linear phased array. Simulations were performed 

using a scatter number density of 100/mm3, log compression of the image, a Gaussian 

pulse with a 5-MHz center frequency, and a -6-dB bandwidth of 67%. Note that in 

the higher-resolution axial direction, the characteristic length is considerably less 

than in the lateral direction. (Reproduced, with permission, from Crombie [8].) 

ultrasound it is the envelope of the received pressure signal that is normally 

detected. Both detection schemes are illustrated in Fig. 8.2. 

In a key paper in 1978, Burckhardt [10] clearly pointed out that essential 

ingredients for producing a speckle pattern include the presence of many 

small, randomly distributed scatterers, such as those due to the cellular nature 

of tissue, and a coherent radiation source. If each scatterer has a volume much 

less than the sample volume and the number within the sample volume is large, 

fully developed speckle will be formed. Burckhardt also presented an analytic 

approach and discussed potential signal-to-noise ratio (SNR) improvements 

that could be achieved by averaging a sequence of uncorrelated speckle 

images obtained by compound scanning. Although much of the initial work 

was focused on characterizing the speckle pattern in terms of its statistics and 

describing how speckle noise degraded the image contrast resolution, subse¬ 

quent developments showed that, like optical speckle, its presence enables 

certain types of measurements to be made. For example, it can be used for 

assessing tissue microstructure, measuring tissue strain distribution (elastog- 

raphy; see section 8.8), and measuring a flow velocity field. In this final appli¬ 

cation, the movement of flowing blood causes the speckle pattern to change 

with time; consequently, by measuring the point-by-point displacements that 
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occur between image frames, the 2-D flow velocity field can be mapped [11,12], 

as discussed further in section 8.8. 

8.2.1 Speckle Analysis 

Typically, a gray-scale B-mode image consists of M x N pixels, each having its 

magnitude represented by one byte (0 to 255). A first-order statistical analy¬ 

sis describes the characteristics of a given pixel. Second-order statistics are 

needed to describe how the gray-scale values at two different spatial locations 

are related. In particular, the 2-D autocovariance function will be used to char¬ 

acterize the patterns seen in Fig. 8.6. One of the difficulties in characterizing 

the statistical properties arises from the linear and nonlinear processes 

involved in the imaging process. For example, the effects of frequency- 

dependent attenuation and the use of logarithmic compression make it diffi¬ 

cult to accurately model the statistics of speckle. 

To numerically simulate tissue speckle produced by a linear array, it is for¬ 

tunately not necessary to use a distribution of point scatterers having the same 

scatterer number density as in tissue. In the case of blood at 40% hematocrit, 

this would correspond to approximately 5 x 106/mm3 scatterers, which would 

impose a heavy computational burden even for a relatively small test volume. 

In fact, it has been shown that a very much smaller number density will 

produce a comparable result [13], i.e., the speckle can be regarded as fully 

developed. For example, a Gaussian distribution of point scatterers with an 

average density of 100/mm3 may be more than sufficient to ensure that the 

pattern does not change with any further increase in the number density. 

First-Order Statistics 

The ultrasonic speckle signal arises from the effects of interference caused by 

microscopic scatterers from within a resolution cell as it is scanned over the 

region being imaged. To examine their effect we shall assume that the scat¬ 

terers are randomly distributed in space and occupy a negligibly small volume. 

Let us consider a pulse-echo system whose transmitted waveform is approxi¬ 

mately monochromatic, and suppose that within the sample volume there are 

a large number of scatterers. If the signal phasor from the n’th scatterer is 

denoted by' a„/V)v, then the complex received signal is the sum of the con¬ 

tributions from all N scatterers and can be written as 

R(r:t) = A(r)e1<ot. 

As illustrated in Fig. 8.7a, the complex phasor A has real and imaginary parts 
given by 

1 N ^ N 

Re(^) = VA XWsin<tL and Im(A) = —j= ^\an |cos([)„, 

1. By using the scaling factor of 1 / 4n the mean intensity remains finite. 
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Figure 8.7 The 2-D random walk problem in which a large number of complex 

phasors representing the signals from a random distribution of scatterers are 

summed to form the phasor A. 

in which ([>„ is the phase shift of the nth component. The phase shifts account 

for the variations in the path lengths that arise from the positions associated 

with each scatterer. 

Let us assume that the amplitude and phase of each scatterer are uncorre¬ 

lated to one another as well as to all other scatterers, that the phases are uni¬ 

formly distributed over (-7t,7t), and that the number of scatterers is large. Using 

the Central Limit theorem, it can be readily shown that the real and imagi¬ 

nary parts of A are Gaussian random variables with the same variances 

and zero means. Given the above, the question as to how to determine 

the probability distribution function (PDF) for the phasor magnitude 

\A\ = v/{Re(zf)}2 + {Im(A)}~, given the PDFs for the real and imaginary 

components, is part of a more general statistical transformation problem that 

is well documented [14,15]. By applying this transformation, the PDF of the 

phasor magnitude is found to be Rayleigh distributed and given by 

(8.3) PDF{\A\) = ) for A > 0, 

1 ^ 2 

where ° IN , and the mean and variance (square of the 

standard deviation) are given by \A\ - cVtt/2 and var(|A|) = £,2 = a2[2 - 7t/2], 

respectively. This result, which was obtained by Atkinson and Berry [16] in 

their classic analysis of the received ultrasound fluctuations created by blood, 

is illustrated in Fig. 8.8a. In the absence of any resolvable structures, a useful 

figure of merit is the ratio of the mean to the standard deviation, i.e., 

\A\IL,- tJk(4-k) = 1.91 (5.6dB), which is sometimes referred to as the SNR. 

If a square-law detector is assumed, a different PDF results. For this case 

the 2-D image is based on the intensity I = |A|2 = [Re(A)}2 + [Im(A)}2 and 

corresponds to that normally used optically. The PDF for the intensity can 

be found [15] by evaluating 
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Figure 8.8 Speckle probability distribution functions, (a) Rayleigh PDF for envelope 

detection, showing the mean and ± one standard deviation (S.D.). (b) Exponential 

PDF for square law detection. 

PDF(I) = ppm i) 
\dl/dA\ 

With the help of (8.3) and / = |^4|2, the intensity PDF can be found to consist 
of a simple exponential given by 

(8.4) PDF(I) = —!—e-//(2°2) for />0, 

whose mean and standard deviation are both equal to 2a2, and which is 

graphed in Fig. 8.8b. Moreover, the ratio of the mean to the standard devia¬ 
tion is unity, i.e., SNR = 1. 

Non-Caussian Statistics 

Let us now consider the situation where the number of scatterers in the sample 

volume is not sufficiently large to satisfy the conditions required by the Central 
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Limit theorem. For this case, the real and imaginary parts of A can no longer 

be assumed to be Gaussian random variables, and as a result, the received 

signal envelope will not be Rayleigh distributed. In fact, non-Gaussian statis¬ 

tics are evident in many practical problems. One of the first to be investigated 

was that of microwave scattering by the sea surface, which led to the devel¬ 

opment of an exact solution to the finite 2-D random walk problem. For a 

finite number of steps, Jakeman and Pusey [17] showed that an appropriate 

PDF is a modified Bessel function or K-distribution given by 

PDF(A) = 
2b fbAV 

Hx)l 2 J K-x-i (bA), for % > 0 , 

where % = N(1 + v), h = 2Vx/and v > -1 is a function that depends on 

the geometry and statistics. In addition, Kx_i(.) is a modified Bessel function 

of the second order (x - 1) and T(.) is a gamma function. As the number of 

scatterers in the sample volume or steps in the random walk becomes large, 

i.e., N —> °o, it can be shown that this PDF approaches a Rayleigh distribution. 

Moreover. Rayleigh, Rician, Poisson, and other distributions have been shown 

to be special cases of the generalized form of the K-distribution [18]. Because 

of it generality, the K-distribution has found application in ultrasound speckle 

analysis [19,20], 

Post-Processing Statistics 

The statistical analysis used above ignored the effects of any nonlinear post¬ 

processing. In B-mode systems, because of the very wide input dynamic range, 

limitations imposed by the image display method and an observer’s ability to 

discriminate between gray-scale levels impose severe restrictions on the detec¬ 

tion of weak targets. To overcome this problem, some form of nonlinear signal 

processing is generally used to compress a wide input signal range into a much 

smaller output range. Such processing, which may be in the form of a loga¬ 

rithmic transfer function, causes a change in the PDF. Thijssen et al. [21] were 

the first to examine in detail the effects of various forms of post-processing on 

the first- and second-order statistics of fully developed speckle. Subsequently, 

Kaplan and Ma [22] examined the statistics for a post-processing compression 

stage whose transfer function is similar to that often used in practice. Specifi¬ 

cally, they assumed the output is given by 

(8.5) X = Dln(A) + G, 

where A is the input envelope amplitude (A > 0) whose statistics are given by 

(8.3). Also, G is a linear gain constant whose presence does not affect the 

output statistics, and D is another constant that is related to the dynamic range. 

If Xmin and Xmax are the minimum and maximum values of the output cor¬ 

responding to the inputs of Amin and Amax, respectively, then from (8.5) 
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which enables D to be estimated if the input and output ranges are known. 
PDF(A) 

Now the PDFs of the input and output are related by PDF(X) = - 

which can be evaluated with the help of (8.3) and (8.5), yielding the double 

exponential (Fisher-Tippet) density function given by 

(8.6) PDF(X) = — exp[-a - exp(-a)], 

where a = (2/£>)([) - X) and p = (£>/2)ln (2cr) + G. This enables the mean and 

variance to be expressed as [23, p. 930] 

E{X} = £>[0.5 In 2 + In a - y / 2] + G , 

and 

var{X} = £>V/24, 

where y is Euler’s constant (=0.5772). 

Using a commercial linear-array scanner and two types of tissue-mimick¬ 

ing phantom, Kaplan and Ma [22] performed measurements to determine the 

pre- and post-log-compressed histograms and compared predictions to those 

theoretically predicted. The results shown in Fig. 8.9a indicate some differ¬ 

ences from the Rayleigh PDF as given by (8.3). This may be due to additional 

nonlinear effects such as those arising from frequency-dependent attenuation. 

For logarithmic compression of the form given by (8.5), Fig. 8.9b shows that 

the PDF is in rough agreement with that theoretically predicted by (8.6). Some 

of the differences may be due to the differences noted in (a) being propagated 

to (b). 

Second-Order Statistics 

The 2-D autocorrelation function is a spatial domain description of the texture 

since it describes how the texture in one region is related to that in another. 

The autocorrelation function for a continuous 2-D process f(x,z) whose 

complex conjugate is f*(x,z) is given by 

Rff (u z) = E{f(x, y)f * (x, y)} = jj f(x' -x,z'~ z)f * (*\ z')dx'dz', 

and that for a discrete process is 

M-1 N-1 

fm,nfm+k,n+l- 

m= 0 «=0 

If there is no correlation between the content of each pixel, then the auto¬ 

correlation function will be zero. The presence of correlation, such as that 

noted earlier in Fig. 8.6, results in a autocorrelation function whose dimen¬ 

sions are related to the resolution in the axial and lateral directions. Because 
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Figure 8.9 Theoretical probability distribution functions compared to the smoothed 

measured histograms for a tissue-mimicking phantom using a linear-array imaging 

system, (a) Envelope detected signal prior to post-processing, (b) With the 

logarithmic post-processing using the transfer function shown. (Reproduced, with 

permission, from Kaplan and Ma [22],/. Acoust. Soc. Am., 95, 1396-1400, © 1995 

Acoustical Society of America.) 

an image may contain both a deterministic component and a zero-mean 

random component, the autocorrelation about the mean is often used, i.e., 

M-1JV-1 

Cff(k,l)= £ - E{fm,n})(fm+k,n+l - E{fm+k.n+l}\ 
m=0n=0 

which is the autocovariance function. Generally the autocovariance is plotted 

in a normalized form, and this is sometimes referred to as the correlation 

function. 
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The 2-D normalized autocovariance function for the speckle pattern illus¬ 

trated in Fig. 8.6 is shown in Fig. 8.10. It will be noted that in the axial z-direc- 

tion it is considerably less than in the lateral x-direction. In fact, the FWHM 

of the autocovariance is closely related to the resolution in the axial and lateral 

directions [24-27]. In the case of a circular transducer of diameter D and a 

transmitted Gaussian pulse with a center frequency wavelength of l(mm) and 

a -6dB bandwidth A/(MHz), the autocovariance FWHMaxiai ~ 0.9/A/ and 

FWHMiaterai ~ 0.9A,zID. As an example, consider a 5 MHz Gaussian pulse with 

A/= 3.35 MHz and a transducer with an/-number = zID = 3, a measure of the 

axial and lateral resolutions are: FWHMaxia/ ~ 0.27 mm, and FWHMlaterai ~ 
0.8 mm. Even though the simulated image of Fig. 8.6 was obtained for a linear 

array, a quick assessment shows that the speckle size is in rough agreement 

with the above dimensions. 

8.2.2 Speckle Reduction Techniques 

There have been many publications describing a variety of methods for reduc¬ 

ing the effects of speckle on B-mode images [28]. Several are based on gen¬ 

erating a multiplicity of images whose speckle patterns are either weakly 

correlated or uncorrelated2 and which are then averaged to produce a com¬ 

pounded image. For uncorrelated speckle images, it can be shown [10] that the 

ratio of the mean signal level to the standard deviation increases as Va, where 

N is the number of averaged images. Such methods are similar to the use of 

compound scanning, which, as described in Chapter 7, was originally devel¬ 

oped for improving the image quality of hand-guided scanning systems. Sub¬ 

sequently, it was shown that by using an electronically steered linear array, 

images could be obtained at different angles [29,30], and these could then be 

compounded. Healey and Leeman [31] point out that the problem of speckle 

reduction can be usefully considered as a two-stage process in which the fol¬ 

lowing questions are addressed: “(i) recognition—is the texture present in a 

clinical image segment the result of real (resolvable) structures or the speckle 

artifact?, and (ii) what would the image look like in the absence of speckle?” 
Schemes for speckle reduction include: 

1. Spatial movement 
2. Angular movement 
3. Frequency subdivision in transmit or receive 
4. Post-processing methods based on filtering 

The first three are compounding methods that make no use of the statistical 

information contained in the image itself, and these will be described 

more fully in the next subsection. The fourth group involves image-processing 

operations that can entail adaptive or nonadaptive, linear or nonlinear 

filtering. In the adaptive method proposed in 1986 by Bamber and Daft [32], 

2. The changes needed to make the images reasonably well uncorrelated are of major impor¬ 
tance and will be discussed shortly. 
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Figure 8.10 Autocovariance function of the simulated speckle image shown in Fig. 

8.6. (a) 2-D form, (b) Lateral cut through z = 0. (c) Axial cut through x = 0. 

(Reproduced, with permission, from Crombie [8].) 

use is made of the image statistics to adaptively reduce the speckle. Improve¬ 

ments to this method that account for the signal-processing characteristics 

(including log-compression) and scatterer density have also been described 

[20,33], 

Compounding Methods 

Spatial compounding can be achieved by slowly moving the transducer normal 

to the scan plane, enabling a sequence of images to be obtained, which can 

then be averaged. Because the movement between frames needed to make 
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sure that the speckle is decorrelated is approximately the resolution in that 

direction, some loss in spatial resolution can be expected. Temporal resolution 

will also be sacrificed, depending on the number of frames to be averaged and 

the frame rate, but this should not be a problem if the structures are station¬ 

ary or moving very slowly. Using a high-resolution scanner designed for breast 

imaging, this technique was first experimentally evaluated by Foster et al. [34], 

The system used separate transmit and receive transducers consisting of a 

PVDF cone and a PZT annular array, and achieved a lateral resolution 

(FWHM) of 0.25 mm over a wide depth of field. Each image was produced 

by mechanically stepping the transducer in one direction: successive images 

were obtained by displacing the transducer normal to the scan plane. By 

averaging four image slices, separated from each other by 0.5 mm, 

significant improvements in the smoothness of the background were obtained, 

though with some loss in resolution. Bamber [28] points out that the use of fil¬ 

tering to perform smoothing within a single image should also be considered 

to be a form of spatial compounding. Flowever, blurring of meaningful struc¬ 

tures can result, and even when the spatial filter cutoff frequency has been 

properly chosen, this method has not been found to result in significant 

improvements. 

Associated with the spatial movement technique is the angular com¬ 

pounding method [35-37], which is relatively simple to implement using either 

a linear or a phased array. Because the scatterer spacing seen from different 

angles differs, the speckle pattern will change, enabling image ensemble aver¬ 

aging to achieve a net reduction in speckle. As illustrated in Fig. 8.11a, when 

a phased-array aperture is displaced laterally, a fixed object will be redisplayed 

at a new location in the image. Because the ultrasound scan lines intersect this 

new region of the image at different angles, a different speckle pattern will be 

produced. For a linear array that is capable of being steered through different 

angles (see Fig. 8.11b), the images obtained for sufficiently large steering 
angles should also be uncorrelated. 

A number of techniques based on frequency compounding have been inves¬ 

tigated, all of which are based on the change in phase with wavelength [38—40]. 

For example, if the system bandwidth is sufficiently wide, then it is possible 

divide the received RF signal into sub-bands, each of which can be individu¬ 

ally processed to produce an image. By compounding these images, it has been 

shown that speckle background can be reduced. Flowever, the smaller band¬ 

width associated with each sub-band can be expected to reduce the image 

spatial resolution, and as a result this method, as well as other frequency com¬ 
pound techniques, has not shown good promise. 

Correlation Coefficient 

An important issue that has been addressed by several researchers concerns 

the transducer displacement needed to ensure that the images being 

compounded are statistically independent. This issue was first studied by 

Burckhardt [10]; it was experimentally assessed by Trahey et al. [36] and 
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First Frame Second Frame 
Aperture Displaced 

Figure 8.11 Angular compounding for speckle reduction, (a) Phased array in which 

the second frame is obtained after displacing the aperture, (b) With a linear array 

that can be steered through three angles, three sets of uncorrelated images should be 

obtained. The compounded image consists of a central trapezoidal region where all 

three images are averaged. 

subsequently analyzed by Wagner et al. [27], who obtained expressions for the 

correlation between two images as a function of the transducer displacement. 

In doing so, several approximations were made, and these included (i) identi¬ 

cal transmit and receive apertures, (ii) CW theory applies, (iii) lateral and axial 

point spread functions are separable, (iv) the resolution cell is in the trans¬ 

ducer focal zone. The first step consists of obtaining an expression for the 

amplitude signal from a sample volume containing a distribution of point scat¬ 

tered and then obtaining its intensity. The second step is to obtain an inten¬ 

sity expression when the transducer is displaced and angled so as to see the 

same scattering region. The cross-correlation between the speckle produced 

when the two transducer aperture locations are separated by a lateral distance 

b can be expressed as 

p(b)=B\\\_p(x)\2ei4nbxl{zXc)dx (8.7) 
2 
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where Xc is the wavelength corresponding to the center frequency of the pulse, 

z is the axial location of the sample volume, B is a normalization constant, x 
is the lateral coordinate, andy>(x) is the lateral pulse-echo response. The final 

quantity is simply the product of the transmit and receive directivity functions, 

each of which can be found by taking the spatial Fourier transform of the aper¬ 

ture function (see Chapter 3). Examination of (8.7) shows that it can be 

expressed as the square of a Fourier transform, i.e., 

P(6HMpW|2}Lm,m2' 

In their investigation of the effects of multi-angle compounding, Jespersen 

et al. [37] used a 7.5 MHz linear array to determine the correlation between 

images obtained at differing angles of a speckle-generating phantom. They 

also determined the array transmit and receive directivity functions and, with 

the help of (8.7), calculated the correlation coefficient between images as a 

function of the beam angle. The results shown in Fig. 8.12 indicate that if a 

relatively small steering angle, e.g., 10 degrees, is used, the images are virtu¬ 
ally fully decorrelated. 

8.3 Resolution, Contrast, and Signal-to-Noise Ratio 

The maintenance of good contrast and resolution with increasing penetration 

depth is of major importance in B-mode tissue imaging systems. As noted 

Figure 8.12 Correlation coefficient between log-compressed, envelope-detected 

speckle images (192 scan lines) obtained at different incident angles. Predicted and 

measured results were obtained using a 7.5-MHz (center frequency) linear array 

with a -6-dB bandwidth of >70%. Measurements were made on a speckle-generating 

phantom. Hamming windows were used for transmit and receive. (Reproduced, with 

permission of Dynamedia, from Jespersen et aL [37] Ultrasonic Imaging 20 81-102 
© 1998 Dynamedia.) 5 
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earlier, tissue attenuation causes the backscattered signal power to diminish 

rapidly with increasing depth, and as a result, beyond a certain depth, there 

will be insufficient scattered signal with which to form a meaningful image. 

Limitations on the peak transmitted power that can be used arise from safety 

concerns and nonlinear propagation. As a result, significant difficulty can be 

encountered in obtaining a satisfactory image from deep regions, particularly 

for an obese person. Decreasing the transmission frequency provides for 

increased penetration, but at the same time the axial, lateral, and azimuthal 

resolutions are degraded. This raises the question as to the best method for 

increasing the imaging depth without degrading the resolution. One solution 

lies in devising methods for improving the SNR, such as those described in 

section 8.4. 

8.3.1 Axial Resolution 

An approximate approach for calculating the axial spatial resolution of an 

imaging system is to consider the transmission of a pulse consisting of several 

sinusoidal cycles directed towards two scatterers that are separated by Az. As 

illustrated in Fig. 8.13, if the pulse duration is denoted by T, then the interval 

between the end of the first received pulse and the start of the second is given 

by At = 2Azlc0 - T. It can be argued that it will no longer be possible to dis¬ 

tinguish between the presence of scatterers when At = 0, i.e., Az = caTI2, which 

is taken to be the axial resolution. Of course, the ability to distinguish between 

the two scatterers also depends on the contrast, and this depends on the SNR. 

As the SNR diminishes, the contrast between the noise and the signal created 

by the scatterers reduces to the point where the two scatterers can no longer 

be distinguished. 

2 z\ 2 z2 
c„ cn 

Figure 8.13 Simplified method for estimating the axial resolution for a pulse 

transmitted at t = 0 and two scatterers at locations Z\ and z2. When the separation 

At = 0, the spatial separation of the two scatterers is given by Az = caT/2, which is 

taken to be the axial resolution. 
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8.3.2 Contrast and Resolution 

In judging and comparing the performance of a B-mode imaging systems 

designed for clinical use [41], it is has been found that specification of the res¬ 

olution in the axial and lateral directions does not necessarily provide a useful 

measure of the performance; in fact, it can be quite misleading. In part, the 

problem arises from the method used to determine the resolution. In com¬ 

puted tomography (CT) and x-ray systems, the resolution is generally assessed 

by using high-contrast line pair phantoms that enable the line spread function 

or its Fourier transform, the modulation transfer function, to be obtained. In 

sonar and radar systems, the full-width at half maximum (FWHM), which is 

related to the classical Rayleigh criterion, is commonly used and can be meas¬ 

ured by using two high-contrast point targets. In ultrasound systems the reso¬ 

lutions in the axial, lateral, and azimuthal directions generally differ and are 

functions of the measurement location. The contrast associated with a specific 

region is generally degraded through the background image speckle, and as a 

result an assessment of the resolution by means of high-contrast targets seems 

inappropriate. Moreover, if significant side lobes are present, these can con¬ 

tribute to the background image speckle, thereby degrading the resolution 

and contrast. Because the Rayleigh or FWHM assessment of the resolution 

depends only on the main lobe characteristics, the presence of significant 

side lobes can give a misleading assessment of the imaging performance 
[42]. 

The value of a B-mode clinical image for detecting abnormalities, especially 

those produced by low-contrast targets such as focal lesions, depends on the 

system contrast and resolution performance. Initial approaches to the meas¬ 

urement of the resolution were based on the use of phantoms containing high- 

contrast wire targets. However, as noted above, the results sometimes 

suggested that a system with an inferior FWHM could have a superior clini¬ 

cal performance to one with a better FWHM. Smith and Topez [43,44] 

addressed this issue and pointed out the importance of properly accounting 

for the contrast performance. They also noted an important difference 

between CT and ultrasound systems. For CT systems there is a more or less 

fixed background noise arising from quantum mottle. Consequently, by using 

a higher dose, the SNR can be enhanced. However, in ultrasound the coher¬ 

ent speckle background increases with the incident intensity, so that provided 

the intrinsic system noise can be neglected, the use of a higher transmitted 

intensity will result in little or no improvement in performance. 

To measure the performance in a realistic manner, Smith et al. [45] devel¬ 

oped phantoms having tissue-mimicking material as a background and targets 

consisting of cones of varying contrast relative to the background. Using 

human observers, it is then possible to generate contrast-detail curves that 

enable the imaging performance of different systems to be compared [43,46], 

Such a curve might be of the form illustrated in Fig. 8.14. It demarcates the 

boundary between the detectable and the undetectable regions, though it is 
somewhat observer-dependent. 
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Figure 8.14 Contrast-detail graph that provides a measure of the ability to detect a 

circular object that has a specific contrast relative to the background. At high 

contrasts it is primarily the Rayleigh or FWHM resolution that governs the 

detectability. (Based on Hall et al. [46].) 

Several proposals have been made to provide a quantitative assessment 

of the contrast performance, and these were based on imaging a fluid-filled 

spherical cyst that contained no scatterers (anechoic) embedded in a uniform 

medium containing scatterers. In 1983 Smith et al. [45] proposed that the con¬ 

trast between the cyst and the background is given by 

S -S 

(8.8) 1_ /c 2 
v 5OUI +5,„ 

where Sin is the mean signal measured inside a region of the cyst and Sout is 

the average signal measured from the same-sized regions outside the cyst. An 

alternative contrast measure is that used by Patterson and Foster [47] 

(8.9) Co 
5 - S out u 

Patterson and Foster also noted that if the variances of the signal within and 

outside the cyst are denoted by ofn and o2oul, respectively then v/g2, + g2„, / Sout 
is a measure of the speckle contrast fluctuations. They called the ratio of C2 to 

the contrast fluctuations the “contrast-to-speckle ratio”, i.e., 

(8.10) CSR 
■Sin 

v/g2, +oL 

a measure that was subsequently used by several researchers for assessing 

imaging quality, e.g., [48], 
The contrast exhibited by cysts of differing size can be used as a means for 

assessing the contrast resolution [43,49]. As the size of a spherical cyst is 
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reduced, the received power will approach that of the background. For 

example, in the case of a hypoechoic cyst, the radius at which the received 

power is a specific number of dB’s below the background can used as a quan¬ 

titative measure of the performance. If a hyperechoic cyst is considered whose 

scattering strength is above the background by the same amount as the hypoe¬ 

choic cyst was below, the radius at which the received power is a specific 

number of dB’s above the background is also a measure of the performance. 

In general, these two radii will differ, and both may be needed for a proper 

assessment of the performance. The differences in image appearance of hyper- 

echoic and hypoechoic cysts are illustrated in the simulations of Fig. 8.15 [8], 

25 30 35 

Axial Distance, mm 

Axial Distance, mm 

Figure 8.15 Simulations of spherical (a) hyperechoic and (b) hypoechoic cysts for a 

linear array with fixed transmit, receive and elevation focusing at 30 mm, and a 5- 

MHz center frequency pulse with a -6-dB fractional bandwidth of 67%. Logarithmic 

compression was used and the image was displayed using 64 gray-scale levels. The 

distorted outlines of the cyst positions is evident. The background (10 

scatterers/mnT) average intensity is the same for both images. The scattering 

strengths from within the cysts relative to the background were 4 and 1/4 for (a) and 

(b), respectively. (Reproduced, with permission, from Crombie [8].) 



Ultrasound Imaging Systems 515 

In these phased-array images, both cysts have the same fractional scattering 

strengths relative to the background.3 

8.3.3 Signal-to-Noise Ratio 

Noise arises from sources that include the transducer, the preamplifier, and 

the random nature of the background medium that gives rise to speckle. It is 

evident that the received signal strength due to a scatterer at a given depth 

will depend on the attenuation suffered by the incident and scattered signal. 

Consequently, the SNR is depth-dependent and can be defined by 

Maximum Instantaneous Received Signal Power 

Noise Power 
(8.11) SNR(z) 

If it is assumed that speckle noise can be neglected and that the noise orig¬ 

inating from the transducer and preamplifier is white over the system band¬ 

width A/, and N„ denotes the power density, then the denominator can be 

written as NnAf. If a simple sinusoidal pulse of duration T and amplitude A is 

considered, then the energy of the received signal can be expressed as 

E -\A2T. By substituting these into (8.11), we have 

SNR(z) 
A2 

NnAf 

2 E 

TNnAf ‘ 

If an optimal reception filter is used, its bandwidth will be Af= 1 IT, i.e., unity 

time-bandwidth product, so that the above simplifies to 

SNR(z) 

Thus, improvements in the SNR can be achieved by reducing the noise asso¬ 

ciated with the reception process and by increasing the transmitted pulse 

energy. As discussed in section 6.9, the noise power is governed primarily by 

the properties of the transducer, the receiver preamplifier noise, matching con¬ 

ditions and bandwidth. Limited improvements in the SNR at the output of the 

preamplifier can be achieved by careful design. A more promising approach 

for achieving major improvements in the SNR is to increase the transmitted 

pulse duration by using coded transmission and/or by increasing the trans¬ 

mitted amplitude. Safety [51] and nonlinear propagation considerations limit 

the latter. 

Safety Issues 

In diagnostic ultrasound, safety considerations [51] impose certain limitations 

on the peak flux that can occur anywhere within the radiated region. For adult 

3. When these images were displayed on a monitor. 10 independent observers stated that the 

hyperechoic cyst image exhibited a higher contrast relative to the background [8], 
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cardiac imaging, the spatial-peak pulse average4 (Isppa) should be less than 

240W/cm2 and the spatial peak time average4 (Ispta) should be less than 

0.73 W/cm2. In addition, concerns about the potential harmful effects of cavi¬ 

tation have required that the peak negative pressure be limited. It is well 

known that the spatial-peak/temporal-peak negative pressure and the fre¬ 

quency primarily determine the potential for cavitation. In addition to this 

mechanical effect, the potential for tissue damage by thermal heating must be 
considered. 

The Mechanical Index (MI) is a quantity related to the potential for damage 

based on mechanical effects during a diagnostic ultrasound examination. It is 
defined by [50] 

(8.12) MI = 
Cm/V/(MHz) 

where CMI is 1.0 MPa/MHz12 (needed to make MI < 1 dimensionless) and p_ 
is the peak value of the attenuated rarefactional pressure. Values for MI in 
diagnostic imaging generally range from 0.04 to 1.7. 

The Thermal Index (77) provides a measure of the potential for tissue 

damage by heating. Under model exposure conditions it is proportional to a 

calculated or estimated temperature rise. It is defined by [50] 

(8.13) TI = ^~ 
Wdeg 

where Wp is the attenuated output power and Wdeg is the ultrasonic power 

required to raise the target tissue temperature by 1°C. For calculating or meas¬ 

uring the TI, the average ultrasonic attenuation along the beam axis is to be 
taken as 0.3dB/(cm.MHz). 

Under most conditions a TI value of 1.0 is regarded as posing negligible 

risk to the patient. An important report by the National Council on Radiation 

Protection and Measurements published in 2002 [51] indicates that under 

normal conditions, negligible risk to the patient requires that MI < 0.5 and 

TI< 1- However, higher values for MI may be needed to obtain adequate con¬ 

trast and resolution. To provide the clinician with a means of weighing possi¬ 

ble risks against improvements in image quality obtained by using higher 

transmitted power, most diagnostic systems have a real-time display of MI. 

For linear array imaging systems that use short-duration excitation pulses, 

it is the peak transmitted pressure, which may be around several MPa, rather 

than the time-averaged flux that limits the SNR. Pressures in this range can 

cause significant harmonic distortion. Thus, if it is assumed that the peak trans¬ 

mitted piessure consistent with considerations of both safety and waveform 

distortion are used, the only means that remains for improving the SNR is to 

use a longer transmitted waveform. The question as to whether this can be 

4. ISPpA is the average flux over the time duration of the transmitted pulse. On the other hand, 
Ispta is a time average over the entire pulse repetition period. 
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done without degrading the spatial resolution will be considered in the next 
section. 

8.4 Coded Transmission Systems 

Coded excitation methods have been developed since the 1950s, initially for 

use in radar [52,53] to obtain improved range/resolution, and subsequently in 

communications systems. In these methods the duration of the transmitted 

waveform is substantially increased, thereby increasing the total transmitted 

energy, but without increasing the peak transmitted power. As illustrated in 

Fig. 8.16, the transmitted waveform has a coded form that could consist of a 

binary code or a FM chirp similar to that used by bats in locating objects. 

Making use of the fact that the exact form of the transmitted signal is known, 

correlation methods provide a means for extracting spatial scattering infor¬ 

mation from the received signal without suffering the loss of resolution asso¬ 

ciated with a long-duration transmitted pulse. The detection and decoding 

process involves compressing the original transmitted waveform into a signal 

with a much shorter duration and one that has a similar bandwidth to the 

transmitted signal. The resulting increase in the time-bandwidth product is a 

direct measure of the SNR improvement that can be realized. In the case of 

a radar system the improvement can be a factor of several thousand, but, as 

will be seen, for ultrasound systems the potential improvement is much more 

modest. 
Some Japanese conference reports in 1970, describing the use of M-codes 

for Doppler flow measurements, were probably the first to recognize the 

potential advantages of coded excitation methods [54] in medical ultrasound. 

In a 1972 report Waag et al. [55] discussed the use of a coded excitation scheme 

for blood flow measurements that could operate in either a continuous or a 

burst transmission mode. Subsequently, a variety of schemes were described 

for NDE [56-58] applications and medical diagnostic systems [59,60].The prin¬ 

ciples underlying these techniques were briefly discussed in subsection 6.4.2, 

where the use of the Barker coded transducers was described. In B-mode 

tissue imaging, the presence of high attenuation and nonstationary targets 

reduces the possible types of encoding schemes that can be used, but some 

still retain the potential for achieving significant SNR improvements [61].Two 

different schemes that have been explored for use in diagnostic ultrasound 

systems will be examined in detail: the FM chirp and Golay binary codes. 

8.4.1 Principles 

In Fig. 8.17a the pulse-echo impulse response of a given transducer/transmis¬ 

sion medium system has been denoted by h{t). If the transducer is excited by 

a waveform e,(t), then the received waveform is given by the convolution 

er (r) = e, (t) *h(t) = f e,(t- x)h(x)dx. Now the output of the cross-correlator is 



Figure 8.16 Two types of coded excitation schemes that enable the received pulse to 
be compressed to a fraction of the transmitted pulse length, (a) Binary encoding 
scheme: a single-cycle sinusoidal transmitted pulse has been assumed, (b) Linear 
frequency-modulated waveform (chirp), together with a square-wave pseudochirp 
(shown at the bottom). 
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(a) 
e,{t) 

System 

h{t) 
e,{t) 

System 

Figure 8.17 Comparison of conventional and pulse compression systems, (a) 
Conventional pulse-echo system in which the impulse response is that of the 
transducer and propagation medium, (b) Pulse compression system in which the 
output is the cross-correlation of the transmitted and received signal waveforms. 

given by5 e0(t)=\ e,(t + Z3)er(tydZ3, so that with the help of the above ex¬ 

pression for er(t), and noting that the autocorrelation of e,(t) is given by Ree(t) = 

oo 

J e, (4+ f)e, the output waveform can be expressed as 

eo(t) = + 

= Ree(t)*h(t), 

which is the autocorrelation function of the transmitted signal convolved with 

the impulse response. If the autocorrelation function of the transmitted 

sequence is a 5-function, i.e., Ree(t) = 5(t), then the impulse response is equal 

to the cross-correlator output, enabling the impulse response to be determined 

in a relatively simple manner. Continuous white noise is the best-known trans¬ 

mitted signal whose autocorrelation function is a 5-function, and this has been 

used in both radar and ultrasound NDE applications. 

8.4.2 FM Chirp 

Considerable effort has been made to apply the ideas developed for chirp 

radar for ultrasound tissue imaging. However, in ultrasound diagnostic 

systems, because the time-bandwidth product is around two orders of magni¬ 

tude less than that for radar, the potential improvements in system perform¬ 

ance are far less dramatic. Some significant contributions on the use of chirps 

for medical imaging are those of O’Donnell [62] (pseudochirp, see Fig. 8.16b) 

5. See Appendix B for definitions of the cross- and autocorrelation functions. 
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Figure 8.18 Simple pulse-echo system using an FM chirp and a matched filter. 

and Rao [63], More recently, Misaridis and Jensen [64] and Misaridis et al. [65] 

have used this pulse compression method to obtain enhanced SNR in deep 

tissue regions. One of the advantages of using the pseudochirp [66] over the 

CW chirp for phased-array use is that the transducer driving waveform is in a 
digital form. 

To illustrate the use of an FM chirp, we shall consider the system shown in 

Fig. 8.18. If the chirp varies linearly with frequency,6 then for a unit amplitude 

transmitted wave of duration T, the transmitted waveform can be expressed 
as 

(8.14) e(t) = rect(t/T)cos 
f yt25 

“»'+T 

Also, the matched filter impulse response is 

(8.14) h(t) = rect(t/T)J— cos to0t~ — 
Jt 

2 3 

(a) 

(b) 

In the above equations, to,, is the center frequency, y specifies the rate at which 

the frequency changes, and the square-root factor makes the filter gain unity 

at to = co0. In addition, it should be noted that the instantaneous frequency is 

given by co(f) = dq>/dt, where cp is the cos function argument. Consequently, by 

differentiating the argument of the cos function, we see that to(t) = cou + yt, 
which changes linearly with time. The filter output is the compressed wave¬ 
form, as is given by the cross-correlation 

e0(t) to, x + y T2/2) cos toc(f - x) - y(t - x)2 /l dx 

By using the trigonometric expansion for the product of two cosine terms, it 

can be seen that two terms result, one of which involves a frequency of 2co0t. 
By ignoring this term, the matched filter output can be reduced to 

6. There are advantages to be gained through the use of nonlinear frequency modulation 153 
pp. 212-218; 67], 
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which extends over twice the initial chirp duration, i.e., from -T to +T. 

By taking the Fourier transform of (8.14a), the transmit spectrum can be 

expressed as [53, pp. 136-137] 

(8.16) 

where Xx = [yT/2 + (o) - co0)] / Vtty, X2 = [y7"/2 — (co — co0)] / Vtty and F*(A) is 

the complex conjugate of the Fresnel integral as defined in Appendix C. 

The above expressions can be illustrated through the example shown in Fig. 

8.19a, consisting of a lOps FM chirp with a center frequency of 5MHz and a 

bandwidth of 2.5 MHz. Such a waveform has a time-bandwidth product that 

is 25 times larger than a simple pulse-echo system. From Fig. 8.19c it can be 

seen that the compressed form contains range side lobes (sometimes referred 

to as self-noise) with amplitudes comparable to the main lobe, and these will 

cause difficulties in the presence of multiple scattering targets. Specifically, a 

weakly scattering target near a strongly scattering one will result in a main 

lobe that may be difficult to distinguish from the range side lobes of the 

strongly scattering target. 
Consequently, much effort has been devoted toward devising schemes for 

reducing the range side lobes to levels well below -50 dB. Two such schemes 

are generally considered. In the first, time-domain shaping of the transmitted 

waveform is used so that the sharp edges associated with a rectangular window 

are avoided. The second uses frequency-domain shaping of the received signal 

spectrum. 
From Fig. 7.22 it will be noted that the maximum side lobe level for a signal 

windowed by a rectangle is -13.2dB with respect to the main lobe, and this is 

the situation for the chirp shown in Fig. 8.19a. A major reduction in the range 

side lobes can be achieved by using a suitable window on the received output 

spectrum, such as the Dolph-Chebyshev window illustrated in Fig 7.23. As with 

other windows, its use is accompanied by some reduction of SNR7 and broad¬ 

ening of the main lobe, which in turn causes a loss in axial resolution. In fact, 

the bandpass filter characteristics of the transducer will produce a similar 

effect. If the spectrum of the chirp is comparable to or wider than that of the 

transducer, it has been shown [64,67] that the transducer transfer function 

results in a major reduction in the range side lobes. 
The effect of the transducer bandpass characteristics is illustrated in Fig. 

8.20, where a 20 ps rectangular transmitted chirp with a fractional bandwidth 

(-6dB) of 78% has been assumed. Using a Dolph-Chebyshev window with a 

specified side lobe of -90dB and neglecting the effect of the transducer (mis¬ 

matched filter case), it can be seen that the near side lobes are significantly 

7. The reduction in SNR due to the mismatch is not large [53, pp. 191-197], e.g., a few dB. 
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(a) Transmit Waveform 

III! 

1 0 |LiS 

Figure 8.19 Example of a 10 ps FM chirp with a time-bandwidth product of TAf = 
25. (a) Time-domain transmitted signal calculated from (8.14a). (b) Frequency- 

domain representation calculated from (8.16). (c) For clarity, the envelope of the 

compressed signal (calculated from (8.15) without the cosine term) is plotted. It 

should be noted that the total signal duration is 20 ps. 

reduced. However, in the neighborhood of ±772, the side lobe levels far exceed 

the specified value of-90dB, and this could cause serious energy leakage from 

bright to dark regions of a B-mode image. The effect of including the filtering 

due to a 4 MHz transducer with a 65% fractional bandwidth (-6dB) is shown 

in Fig. 8.20b. Even without the Dolph-Chebyshev window, the range side lobes 

are much less than the comparable values shown in Fig. 8.20a. 
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Figure 8.20 Effect of the transducer filtering effect on the compression of a 20-ps 

chirp generated by a square window. In (a) the compressed pulse is shown assuming 

no transducer filtering. The dashed line assumes a matched filter; the solid line 

assumes a Dolph-Chebyshev window whose side lobes have been specified to be 

-90dB. In (b) the transducer filtering is present. (Reproduced, with permission, from 

Misaridis and Jensen [64], 1999 IEEE Ultrasonics Symp. Proc. © 1999 IEEE.) 

The high side lobes seen around ±772 in Fig. 8.20 are not simply a result of 

the frequency domain windowing but, as discussed by Kowatsch and Stocker 

[68], are primarily a result of the rectangular time window and are directly 

related to the Fresnel ripples seen in the spectrum. A major reduction can be 

achieved through the use of a cosine taper, i.e., a Tukey window [69], on the 

leading and trailing portions of the waveform. This is illustrated Fig. 8.21, 

where the spectra for both a rectangular and a Tukey time window are com¬ 

pared for a 20 ps chirp. It can be seen that the tapered waveform produces a 

much smoother spectrum, resulting in a substantial reduction in the far side 

lobes. 
A major problem encountered in all coded excitation schemes arises from 

the effects of frequency-dependent attenuation of tissue. Problems arise from 

the use of TGC, which is used to partially correct for the attenuation. Speci¬ 

fically, the received signal from the transmitted sequence that is partially 

reflected from a fixed depth will not be of constant amplitude. The later parts 

of the transmitted sequence will be increased in amplitude, a problem that will 

be accentuated by longer sequence lengths. In addition, the presence of 
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Figure 8.21 Effect of cosine (Tukey) amplitude tapering on the frequency spectrum 

of a 20-ps linear chirp with a center frequency of 5 MHz and a bandwidth of 5 MHz. 

(a) Rectangular window, (b) Cosine taper over the first and last 2.25 ps. 
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frequency-dependent attenuation causes the mean frequency of the returned 

signal to decrease with depth. As an example, consider a 5 MHz center fre¬ 

quency Gaussian pulse with a fractional bandwidth (-6dB) of 60%, propa¬ 

gating in a medium with an attenuation of 0.7dB/(MHz.cm). It was shown 

in Chapter 1 (subsection 1.8.1) that the mean frequency will be downshifted 

by approximately 1MHz at a depth of 8 cm (2 MHz for two-way frequency- 

independent scattering from this depth). This shift and the possible depth- 

dependent changes in shape make it unlikely that a simple filter with 

sufficiently low range lobes could be realized. A depth-dependent mismatch 

filtering scheme has been proposed [65,70] in which a bank of filters is used, 
each filter being designed to operate at a certain depth. 

8.4.3 Golay Code 

Investigations by Golay on the design of multislit optical spectrometers [71] 

led to the realization that certain pairs of binary sequences have important 

correlation properties. If the binary sequences A and B are of equal length 

and if the sum of their autocorrelation functions is zero everywhere except at 

zero lag, the sequences are said to be a complementary pair. In a key paper 

published in 1961 by Golay [71], the properties and conditions for forming 

such pairs were described. Examples are [+1,+1], {-1,+1}: [-1 -1,-1,+1], 

{-1’-1>+1,-1}: [+l,-l,+h+l,-l,+E+l,+l], [+1,-1,+1,+1,+1,-1,-1,-1}. The last 
pair of codes is shown in Fig. 8.22, together with their autocorrelation func¬ 

tion. It can be seen that both autocorrelation functions have a peak value of 

8 at zero lag and that the range side lobes are equal and opposite. As a result, 

the sum of the two autocorrelation functions is a triangular pulse with an 

amplitude of 16, a base width equal to twice the code clock period, and no 

range side lobes. Longer complementary sequences can be readily constructed 

from shorter sequences. For example, starting from a sequence with a length 

of 8, sequences with lengths of 16, 32, 64, and 128 can be readily constructed. 

Tseng and Liu [73] have generalized the ideas presented by Golay by describ¬ 

ing the conditions for complementary sets of binary sequences to be produced, 
i.e., sets that can contain more than two sequences. 

One of the first investigations of the possible use of Golay codes for medical 

imaging was that byTakeuchi [59,60] in 1979. He presented a possible design 

and predicted its performance. Subsequently, Lee and Furgason [74] described 

the operation and performance of an all-digital ultrasonic flaw detection 

system. The NDT imaging system described by Hayward and Gorfu [75,76] in 

1988/9 used a 30-element PZT, 1.48 MHz transducer array and employed 32 

bit complementary Golay codes. With this system they were able to demon¬ 

strate recognizable B-mode images of simple structures. 

At least one manufacturer incorporated a form of digital coded excitation 

and compression and has demonstrated that this enables significant improve¬ 

ments in penetration depth and SNR to be achieved in clinical imaging. The 

improvement is illustrated in Fig. 8.23, which shows images of liver with and 

without the use of the encoding technology. It seems that one or more systems 



Figure 8.22 Properties of an 8-bit Golay code pair, (a) Binary code and its 

autocorrelation function, (b) Complementary code and its autocorrelation function, 

(c) Sum of the autocorrelation functions shown in (a) and (b). 
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Figure 8.23 Comparison of two B-mode images of liver to show the effects of coded 

excitation on the image quality. The right image shows that ~7MHz resolution is 

maintained down to a penetration depth of 20cm. The vertical markers are separated 

by 1 cm and MI = 0.4. (From GE Medical Systems website.) 

is based on the inventions disclosed in the patents8 of Chiao and Thomas 

[77,78]. In these patents it is pointed out that in regions closer to the trans¬ 

ducer, the SNR that can be achieved using conventional methods is quite ade¬ 

quate. At greater depths, which entail the use of larger apertures, but the same 

/-number, the code distortion due to the effects of dynamic focusing and non¬ 

linear distortion is less. Thus, in the shallower regions the Golay code is not 

used, while the deeper regions benefit from the lower SNR associated with 

coded excitation. The need for a multiplicity of focal zones and two transmis¬ 

sions for Golay code compression may necessitate a reduction in frame rate. 

Moreover, the degrading effects of tissue movement make it necessary to 

ensure that the region being imaged is relatively stationary. 

8.4.4 Imaging Blood Flow 

Because the scattering from disaggregated blood is very weak, perhaps -30dB 

below that from soft tissue, the regions of blood flow in a B-mode imaging 

8. Both patents are assigned to General Electric (US). 
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COMMON CAROTID ARTERY STENOSIS 

Figure 8.24 Image of a partially stenosed common carotid artery showing that the 

scattering from the blood flow region is very small compared to that from tissue. 

Also to be noted are the variations in the acoustic properties from within the 

heterogeneous plaque. (Reproduced from Philips/ATL ultrasonic image website.) 

system will normally be displayed as a uniform black zone. This is illustrated 

in Fig. 8.24, which shows a section of a common carotid artery with a stenosis. 

To detect and display the backscattering from a blood vessel, two things must 

be provided. First, it is necessary to enhance the sensitivity (increase the SNR) 

so that the very weak backscattered signal can be measured, and second, some 

form of equalization filter is needed so that the backscattering from the tissue 

and blood are sufficiently well equalized for both to be within the main gray¬ 

scale region. Such an imaging scheme was developed by GE Medical Systems 

and has been described in a seven-page technology brochure [79] as well as at 

a conference [80]. The description given below is based on the brochure. 

In the last two subsections it was shown how the SNR could be sufficiently 

enhanced through the use of pulse compression methods to enable satisfac¬ 

tory imaging of deep lying structures. These same techniques can also be used 

for obtaining the backscattered information from a region of blood, even 

though a region with far higher backscattering strength surrounds it. To ensure 

the signal from the blood is not masked by the range side lobe residue signal 

from tissue regions, the range side lobe levels must be very low. 



Ultrasound Imaging Systems 529 

Figure 8.25 Equalization filter that enables the intensities of the moving and 

stationary regions to be equalized by adjusting the parameter y. (Based on [79].) 

To explain how regions of moving blood can be distinguished from regions 

that are fixed, it helpful to suppose that the backscattered information is 

acquired by two successive transmissions along the same path, even though 

several transmissions (in the case of Golay encoding) may be used. If there is 

no movement of the interrogated regions between the two transmissions, then, 

except for the random noise contribution, the content of the two received 

signals will be identical. On the other hand, if sufficient movement occurs 

between the two transmission times, the two received signals will differ. Thus, 

the weak and strong scattering portions of the A-line can be distinguished by 

the fact that the strong portion is stationary and the weak portion moves. 

Consider the schematic shown in Fig. 8.25, in which the two transmissions 

are temporarily stored in the vector buffer. If the second transmission is mul¬ 

tiplied by -1 and added to the first, then the output will consist of those regions 

that have moved significantly, i.e., stationary regions will be cancelled out 

except for a very small noise component. As y -> 0, the intensity of the moving 

medium will first approach that of the stationary medium and then reduce to 

zero. Thus, adjustment of the equalization parameter y enables the relative 

intensities of the stationary and flowing regions to be changed, as illustrated 
in the carotid bifurcation image of Fig. 8.26. 

The image intensity variations seen within the blood vessel of Fig. 8.26 can 

be understood with the help of Fig. 8.27. Consider the backscattered signal 

produced from within a small element of volume (the sample volume) that 

contains many red blood cells (RBCs). At low or zero flow velocities, the 

number and distribution of RBCs within the sample volume will not have suf¬ 

ficient time to change between the first and second transmissions, and conse¬ 

quently the number and distribution of RBCs seen in each transmission will 

have a high degree of correlation. As a result, the equalization filter will regard 

the sample volume as being closer to stationary tissue region and will reduce 

its intensity. As the flow velocity increases, the correlation between the two 

sample volumes is reduced, causing the filter to increase the image intensity 

for this sample volume. Because the sample volume axial length is generally 

less than the lateral or azimuthal dimensions, as the beam to the flow velocity 

vector angle diminishes, the signal intensity reaches its maximum more rapidly. 
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Figure 8.26 The influence of the equalization parameter % on an image of the 

carotid bifurcation. In (a) the equalization filter has been adjusted so that the 

stationary and moving regions have similar gray-scale intensities, i.e., x < 1- For (b), 

X = 1, the stationary tissue background is cancelled out so that only the moving 

(blood) medium is displayed. (Reproduced, with permission, from GE Medical 

Systems [79].) 

8.5 Synthetic Aperture Systems 

Synthetic beamforming and focusing is the process whereby the signals 

recorded from individual pairs of elements are subsequently used to recon¬ 

struct the formation and focusing. It requires that the pulse-echo system obey 

the rules of linear superposition. The name “synthetic aperture” implies that 

the response of a larger array aperture is synthetically created from the 

response produced by smaller array elements. Thus, a basic synthetic aperture 

system is one that transmits from each element in turn, records the data from 

all possible transmit/receive combinations, and from all these recordings 

reconstructs an image of the scattering distribution. 

Some of the first practical applications of the underlying ideas were in radar 

and sonar.1’ The ideas associated with synthetic beamforming and focusing for 

forming an ultrasound image were first explored in the 1970s [82,83], though 

it was not until the availability of much more powerful computational systems 

at reasonable cost that such techniques began to attract considerable atten¬ 

tion [81,84-86], 

To appreciate the potential value of synthetic aperture systems for gener¬ 

ating a B-mode image, it is important to recall the method of conventional 

image formation. Pulses are transmitted in appropriate directions for scanning 

an entire area, and the received data from each pulse are collected and 

processed to produce an image frame. The frame rate, which is of major impor¬ 

tance in cardiac imaging, is determined by the number of lines, the number of 

transmissions required for each line (depends on the number of focal zones 

used), and the pulse repetition frequency (depends on the imaging depth and 

9. A useful list of references to the early developments of synthetic aperture systems is given 

in Karaman et al. [81]. 
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Figure 8.27 The net intensity of the signal from blood depends on its velocity. In (a) 

the image intensity is sketched as a function of the blood velocity. The saturation 

value corresponds to the situation where the backscattered signals from two 

successive sample volumes are uncorrelated, (b) A small sample volume is shown to 

illustrate that the degree of correlation between successive transmissions depends on 

the blood velocity. The bottom right picture shows that in the case of a higher blood 

velocity, new RBCs (unfilled circles) have entered the sample volume and some of 

the original have moved out. (Reproduced, with permission, from GE Medical 

Systems [79].) 
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Figure 8.28 Example of a synthetic aperture scheme in which each array element is 

used to emit in turn and all receive elements are used to form a rough image. From 

all such images a high-resolution image can be formed. (Based on a similar sketch by 

Nikolov and Jensen [87].) 

propagation speed). Thus, for example, if the depth of the imaging area is 15 

cm and the propagation speed is 1,500 m/s, each line will require 200 ps to 

receive the scattered data from the most distant point. If 200 lines per frame 

are needed to achieve adequate lateral resolution, and a single transmit focal 

zone is assumed, the maximum frame rate will be 25/s. As will be seen, syn¬ 

thetic aperture systems have the potential for high frame rates and economy 

in their implementation. 

Various types of synthetic aperture systems can be conceived. One of the 

simplest is that illustrated in Fig. 8.28, in which transmission occurs from a 

single element at a time. If each element is sufficiently small, each emitted 

wavefront will be nearly spherical and will illuminate the entire region of inter¬ 

est. All receiving elements can be used simultaneously to sense and record the 

scattered signals, enabling low-resolution images to be formed. These synthe¬ 

size dynamic focusing on reception, but the transmit wavefront is unfocused. 

When the data from all such images are summed, dynamic focusing in both 

transmission and reception is synthesized, yielding a high-resolution image. 

Following Nikolov and Jensen [87], but assuming that all N elements are 

used in both transmission and reception, the high-resolution image-formation 
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process can be conveniently expressed in matrix form. If the ith element trans¬ 

mits, then the /th line in the low-resolution image L, can be expressed as 

(8-17) LH (0 = x % (*b (0] • 
7—1 

In this equation, «/,y(t) is the apodization factor for the /th receive element 

when transmitting from the ith element. In addition, xU](t) is the round-trip 

delay from the instant of transmission from element i to the current focal point 

and back to receive element j. This delay is applied to the received RF signal 

to synthesize the effect of dynamic focusing on reception. Furthermore, r^t] 

denotes the signal received at element j at a time t following the transmission. 

Thus, a complete low-resolution image can be expressed as 

(8.18) 
MO 

i-n{to) 

Ln{h) 

.Ln(th) 

Ljifco) 

4,2 (fi ) 

Ln(th) 

Lis(t o) 

Lis (fi ) 
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in which the columns represent a given scan line and the rows represent the 

samples at a given depth corresponding to times of t0, q ■ ■ ■ 4- As noted by 

Nikolov and Jensen, because focusing is performed only on reception, such an 

image has a low resolution. The RF signals in each of the N images differ 

because a different element is used for each transmission. Now each spatial 

point was treated as a focal point, and as a result, summing all sub-images from 

the N transmit elements is equivalent to dynamic focusing on transmission, 

enabling a high-resolution image to be obtained. Such an image is given by 

(8.19) H(r) = XMf). 
i=i 

A 1-D array having N transmit and M receive elements will require N trans¬ 

missions, and the number of RF lines be stored for future processing will be 

N x M. Each transmission will cause a diverging wavefront to be generated 

that passes through the entire imaging plane and which will be scattered by 

inhomogeneities resulting in RF signals at the receiver element locations. As 

discussed by Lockwood and Foster [86], a fundamental difference exists 

between conventional and synthetic aperture systems. In conventional imaging 

systems, the frame rate can be increased either by decreasing the number of 

scan lines, resulting in a loss of lateral resolution for the same field of view, or 

by decreasing the field of view. On the other hand, for a synthetic aperture 

system whose performance is not limited by computational speed, the frame 

rate can be increased by simply decreasing the number of transmit elements, 

i.e., by making it sparse. One example of a synthetic aperture system is the 

forward-viewing intravascular catheter described in section 8.10. 
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Figure 8.29 Transmit, receive, and effective apertures for a 5-element array, (a) 

Dense (fully populated) system, (b) A sparse system in which just two transmission 

elements are used and the five-element receive aperture has a triangular weighting. 

(Based on a similar drawing in Lockwood and Foster [86].) 

A simple example [86] of a synthetic aperture beamforming system is illus¬ 

trated in Fig. 8.29. The system shown in (a) is a synthetic transmitting aperture 

that uses five transmit/receive elements: each transmit element is fired in turn 

and the signals received by the five-element aperture are stored. It can be seen 

that the effective aperture is obtained by summing all the convolutions of the 

individual transmit elements with the receive aperture. For the sparse arrange¬ 

ment illustrated in (b), which uses the two end elements for transmission, it 

can be seen that by appropriately weighting the receive aperture, an identical 

effective aperture can be obtained. This aperture is also identical to that 

obtained with a five-element aperture conventional imaging system. 

An important advantage of a synthetic aperture system is the ability to 

achieve dynamic focusing both on transmission10 and reception. As discussed 

earlier, transmission requires the use of delays that cannot be changed once 

the elements have been excited, and hence a fixed focal point with a limited 

10. A retrospective filtering technique that deconvolves a defocused transmit pattern, given 

a dynamically focused received image, has been described by Freeman et al. [89]. While this 

method reduces the effects of a fixed transmission focus, it does so in a retrospective manner and 

is quite different from the synthetic aperture method. 
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depth of focus. To improve the overall image quality, multiple transmissions 

with different focal zones are needed, causing a loss in frame speed. On the 

other hand, dynamic focusing on both transmission and reception can be 

achieved in a synthetic aperture system without sacrificing frame speed. A 

second advantage arises from the need for just a single transmitter and 

receiver for each bring, thereby simplifying the transmit/receive circuitry. This 

is particularly significant in designing a catheter-tip intravascular imaging 

probe (see section 8.10). Here, the size constraints severely limit the number 

of elements, the number of connecting wires, and the volume occupied by the 

integrated circuits used for preprocessing [88], The design for a mechanically 

scanned sparse synthetic aperture 1-D array for real-time 3-D imaging has 

been proposed by Lockwood et al. [90], By incorporating a A£ modulator (see 

subsection 7.2.1) into this system, Inerfeld et al. [91] estimate that it should be 
possible to obtain frame rates of up to 1,700/s. 

A major potential difficulty with synthetic aperture systems concerns a loss 

in SNR. By following one of the schemes outlined in Fig. 8.29, it is evident that 

unless the transmitted power is increased, there will be major loss in SNR 

associated with transmission from a single element. O’Donnell et al. [88] have 

pointed out that for an A-element array in which single elements are used for 

transmission and reception, the electronic noise causes the SNR to be reduced 

by approximately a factor of 10 log(2A). Although the power can be increased, 

limits ax~e imposed by the onset of nonlinear effects and the mechanical index 

{MI). Several means have been proposed for overcoming this problem. One 

involves the use of arrays of defocused transmit elements [81]. Because the 

delays to each element are chosen so that the focal point is on the opposite 

side of the transducer array from the image, the power can be increased 

without exceeding regulatory limits. A second method uses a synthetic 

transmit aperture composed of a number of elements [78,92], By using a 

Hadamard" matrix for spatial encoding of the transmission process and its 

inverse for decoding the received data, the information needed for recon¬ 

structing the image information can be obtained. 

8.6 Linear and Nonlinear Imaging 

Two types of harmonic imaging can be distinguished: one is based on the intro¬ 

duction of a contrast agent, the other on nonlinear wave propagation proper¬ 

ties in tissue. Both require the use of fairly high excitation powers. Ultrasound 

contrast agents approved for clinical use are biocompatible media that can be 

organ- or tumor-specific and are designed to achieve contrast enhancement in 

a number of ways. Their nonlinear scattering properties provide a means for 

generating harmonics that mark their presence and enhance the contrast in 

the regions where they reside. The resulting imaging process is sometimes 

called contrast media harmonic imaging. On the other hand, for sufficiently 

11. The elements of a Hadamard matrix are either +1 or -1. 
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high incident pressure fields, the nonlinear properties of the transmission 

medium become apparent, causing higher harmonics to be generated that, 

because of the increased frequency and compact region where they are gen¬ 

erated, can enhance the image quality. This second form of imaging is gener¬ 

ally called tissue harmonic imaging. 

8.6.1 Contrast Media Imaging 

The use of contrast agents is valuable in a wide range of clinical situations 

where unenhanced images are limited in quality. Moreover, because of their 

special properties, they offer the opportunity for obtaining structural or func¬ 

tional information that may be difficult to obtain by alternative noninvasive 

techniques [93], 
Gramiak and Shah [94,95] in 1968 were the first to show that bubbles created 

by the rapid injection of either indocyanine green (used for measuring cardiac 

output) or saline were capable of greatly enhancing the contrast in ultrasound 

M-mode recordings. Some 20 years later, extensive efforts were made [96,97] 

to develop encapsulated microbubble contrast agents that could be intra¬ 

venously injected. Such agents must be sufficiently small to pass through the 

capillary bed of the lungs and have a sufficiently long half-life to enable them 

to appear in the systemic circulation following intravenous injection. 

Two primary approaches have been used to achieve a sufficiently long 

microbubble half-life: the first was to use a shell that limits the transport of 

gas from within the shell, the second was to use gas with a high molecular 

weight with reduced diffusivity and solubility. Contrast agents typically consist 

of gas-filled microbubbles encapsulated in a biodegradable shell with mean 

diameters in the range from 2 to 6 pm. Encapsulated microbubbles have a very 

large impedance difference compared to tissue, and consequently they act as 

highly efficient scatterers and can thereby create greatly increased contrast in 

the regions where they lodge or flow. However, when the ratio of blood to 

tissue volume is small, the contrast enhancement that can be achieved with 

fundamental B-mode imaging can be rather disappointing [98]. For example, 

the volume ratio for the myocardium is -10%, enabling only a few dB’s of 

enhancement to be obtained at the contrast agent concentrations used clini¬ 

cally.12 Moreover, when the incident intensity is increased to obtain improved 

contrast, bubble destruction can occur, causing the scattered signal enhance¬ 

ment to be of a temporary nature [99], Thus, the behavior of contrast agents 

is complex and depends on the nature of the suspending medium, the acoustic 

pressure, and the characteristics of the shell [100-102], The relation between 

the mechanical index and its effects on the bubble response is approximately 

represented in Fig. 8.30. It is also important to recognize that microbubbles 

have a resonant frequency and consequently can be expected to have a very 

strong response when this coincides with the pulse center frequency. More- 

12. In such situations harmonic B-mode imaging, which makes use of the nonlinear charac¬ 

teristics of the contrast agent (see subsection 8.6.1), has important advantages. 
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Figure 8.30 The approximate acoustic response of contrast agents for ultrasound 

imaging as a function of the mechanical index, which is defined by (8.12). At a center 

frequency of 4.0 MHz, an MI of 1.0 corresponds to a peak negative pressure of 2 

MPa. Bioeffects have been observed above the MI range used diagnostically. 

(Reproduced with permission from David Hope Simpson [103].) 

over, because the expansion and contraction of a microbubble in an applied 

pressure field are unequal, they can behave in a highly nonlinear manner, gen¬ 

erating harmonics, subharmonics, and ultraharmonics. 

Bubble Theory 

To describe the behavior of a contrast agent bubble in an incident pressure 

field, such as that produced by a B-mode imaging system, the influence of the 

shell is sometimes ignored so that the enclosed medium behaves like a free 

gas bubble in a fluid. Even so, the behavior of a bubble in an incident pres¬ 

sure field is complex. The incident pressure wave causes the bubble to expand 

and contract, resulting in flow of the surrounding fluid whose viscosity and 

compressibility influence the behavior. Moreover, the changing pressure in the 

bubble, along with its changing surface area, causes diffusion of gas into or out 

of the surrounding fluid, and this can result in a net growth in the bubble size 

over several cycles, a phenomenon known as rectified diffusion. Proper 

accounting for these and other effects is difficult. 

If the effects of gas diffusion can be ignored, then the Rayleigh-Plesset 

equation provides a reasonably accurate description of the dynamics. For a 

bubble whose initial radius is Ra subjected to a pressure field p(t), the instan¬ 

taneous radius R(t) is given by [104, pp. 302-306] 

d2R 3p„ 
P oK^~r + 

dt2 

(dR' 

v dt j \ 

2 o Y/O K 

( 2a 3 
Po + -—Pv , 

P{t) 
4p dR 

R dt 
(8.20) 



538 Biomedical Ultrasound 

where C, is the polytropic exponent varying between 1.0 for the isothermal case 

and y (ratio of specific heats) for the adiabatic case, a is the liquid-vapor 

surface tension, p0 is the fluid density, pa is the hydrostatic pressure in the 

liquid, pv is the vapor pressure within the bubble, and p is the shear viscosity. 

For small sinusoidal excitation amplitudes, i.e., p(t) = P„cos(cof), and 

negligible vapor pressure and viscosity, the microbubble angular resonant 

frequency can be found from (8.20) as [104, p. 306] 

(8.21) to. 
R(> i p0 (P°+ R0 J R„ ' 

As can be seen from Fig. 8.31, the resonant frequency increases rapidly with 

decreasing radius. With increasing excitation amplitude, nonlinear effects 

become significant: in particular, the resonant frequency diminishes and the 

bubble boundary generates harmonics. 

Figure 8.31 Microbubble characteristics, (a) Resonant frequency as calculated from 

(8.21) for a bubble in water at atmospheric pressure, (b) Scattering cross-section 

calculated using (8.22) for three ideal bubbles of differing radii and a damping 
constant of b = 0.1. 
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Anderson and Hampton [105] give the approximate small signal scattering 
cross-section as 

(8.22) 
4nRr, 4 jiRr, 

(cor,/CO2 - 1)” +(co^/Q)4)b2 (cOo /co2 - 1)' +(©2/gS)k2Rl 

where b is a damping constant and the second form is for a bubble with no 

damping. Fig. 8.31b shows that close to resonance the scattering cross-section 

increases well beyond the bubble cross-sectional area and for to » to,, reaches 
a value that is close to four times higher. 

As the bubble oscillates under the influence of the incident pressure field, 

it emits radiation [106]. The effect of increasing incident pressure is illustrated 

in Fig. 8.32, where the incident pressure field is taken to be a pulse similar to 

that used in a B-mode imaging system [107], As shown in (a), the -6dB band¬ 

width is roughly 40% of the 3 MHz center frequency. In (b) two columns are 

shown: the percentage change in radius with time and the pressure produced 

by the oscillating bubble at a distance of 40mm from the bubble. In fact, the 

radius waveform enables the radial velocity of the bubble radius (identical to 

the particle velocity) to be determined, and this enables the pressure to be 

predicted. The center frequency of 3 MHz is greater than the resonant fre¬ 

quency of a 3.0pm bubble (1.3 MHz), considerably less than that for a 0.6-pm 

bubble (9.1MHz), and close to that for a 1.5 pm bubble (2.9MHz). For low- 

level excitation (i and ii), both the percentage radius change and the radiated 

pressure waveforms for the 0.3 pm and 3.0pm bubbles are very similar to the 

transmitted waveform. On the other hand, for the resonant bubble size, the 

waveform shows considerable ring-down (see iii). When the incident peak 

pressure is increased to 100 kPa (see iv), radial oscillations become highly 

nonlinear, and the radiated pressure predicted at 40 mm from the bubble 

indicates that an appreciable portion of the energy is radiated at harmonic 
frequencies. 

A number of papers have described the radiated spectrum from a bubble 

for various excitation pressures. For example, using the Rayleigh-Plesset equa¬ 

tion, Lauterborn [108], Eatock et al. [109], and de Jong et al. [110] have numer¬ 

ically predicted the spectrum produced for CW and pulse excitation. An 

example13 is illustrated in Fig. 8.33a, which shows the spectrum radiated by a 

1.5-pm-radius bubble when the amplitude is increased from 5kPa to 100kPa. 

Although the fundamental remains essentially the same, the second harmonic 

amplitude increases to within 12 dB of the fundamental. 

The presence of a surface layer that surrounds the bubble can have a very 

significant effect on the behavior, depending on its thickness and elastic prop¬ 

erties. Based on the assumption that the layer is an incompressible solid elastic 

material whose properties include viscous damping, Church [100] has derived 

an equation that describes the dynamic behavior. It is of the same form as the 

13. I am grateful to Chien Ting Chin for providing the data that enabled the plots to be made 

and wish to acknowledge the help his PhD thesis provided in preparing this subsection. 
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Figure 8.32 Response of a bubble to a Gaussian-like pulse, (a) Characteristics of the 

transmitted pulse assumed for the simulations, (b) Fractional change in radius and 

pressure waveform produced at 40mm by bubbles of differing radii. (Reprinted by 

permission of Elsevier from Chin and Burns [107], Ultrasound Med. Biol., 26, 

1293-1300, © 2000 World Federation of Ultrasound in Medicine and Biology.) 

Rayleigh-Plesset equation, as given by (8.20), but it includes terms that are 

governed by the properties of the encapsulating layer thickness, density, rigid¬ 

ity, and viscosity. As illustrated in Fig. 8.34, the scattering cross-sections are 

highly dependent on the presence of a shell and changes in viscous damping. 

For a cloud of bubbles. Church also examined the frequency dependence of 

the speed of sound, attenuation, and total scattering cross-section. 
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Figure 8.33 Contrast media harmonic imaging, (a) Harmonic generation by a bubble 

with an initial radius of 1.5 pm excited by the pulse shown in Fig. 8.32a for small (5 

kPa) and large (lOOkPa) excitations. The two plots correspond to the two waveforms 

(iii) and (iv) shown on the RHS of Fig. 8.32b. Both spectra have been normalized to 

the peak fundamental component, which are almost identical.13 (b) Sketch showing 

the overall transducer frequency response, the transmitted spectrum, and the 

received fundamental and second harmonic components. The shaded portion 

indicates the overlap. 

Harmonic Imaging 

The ideas associated with the development of contrast media harmonic 

imaging can be traced back to the proposals of Tucker and Welsby [111]. Work 

first reported by others in 1968 showed that gas bubbles generated during 

decompression of deep-sea divers could be detected by Doppler ultrasound. 

That same year, Tucker and Welsby suggested that the detectability of small 

bubbles should be significantly enhanced by looking at the second harmonic 

emission of bubbles excited at close to their resonant frequency. Some 13 years 

later, Miller [112] described the advantages of second harmonic emission 

measurements for counting resonant bubbles. Subsequent to this, Schrope 

et al. [113,114] demonstrated theoretically as well as through in vitro and in 

vivo measurements the advantages of using the second harmonic produced by 

an excited contrast agent for pulse wave flow estimation in small vessels. At 

approximately the same time (1992), Burns et al. [115] presented the first in 

vitro demonstration of contrast agent harmonic imaging using a modified 
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Figure 8.34 Scattering cross-section of air-filled bubbles in water at a driving 

frequency of 3.5 MHz. It was assumed that the shell had a thickness of 15 nm, a 

rigidity modulus of 88.8 MPa, and the viscosity values indicated. Computed cross- 

section variations with the bubble radii for (a) the fundamental and (b) second 

harmonic (30-kPa driving pressure). The maximum cross-sectional area of the bubble 

was used for normalization. (Reproduced, with permission, from Church [100],/. 

Acoust. Soc. Am., 97, 1510-1521, © 1995 Acoustical Society of America.) 

imaging system that transmitted at a center frequency of 4 MHz and received 

at frequencies of around 8 MHz. Subsequent clinical use [96] with improved 
contrast agents demonstrated the advantages and limitations. 

Depending on their fabrication and ingredients, microbubble contrast agent 

lifetimes can range from seconds to many minutes. With fundamental imaging, 

the range of times over which the image can be formed is quite limited, as 

indicated in Fig. 8.35. But with harmonic imaging, the decreased tissue clutter 

signal enables the detection threshold to be greatly reduced, allowing far 
longer image-formation times [116]. 

For a transmit spectrum of the form sketched in Fig. 8.33b and sufficient 

intensity, scattering from regions containing the contrast medium will cause 

the leceived signal to contain both the fundamental and a second harmonic 

component. For wideband excitation, the broad distribution of bubble sizes 

will cause a fairly wide harmonic spectrum, especially for peak amplitudes cor¬ 

responding to those typically used in diagnostic imaging, e.g., 1 MPa. However, 

because shell disruption occurs with increasing acoustic pressure [99,102], 
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Figure 8.35 Effects of the contrast agent lifetime on conventional and harmonic 
contrast imaging. The agent is assumed to be injected as a bolus. (Reproduced, with 
kind permission of Springer Science and Business Media, from Powers et al. [116], 
Chapter 8 in Advances in Echo Imaging Using Contrast Echo Enhancement, © 1997 
Kluwer Academic Publishers.) 

improvements in the second harmonic response by increasing the transmit 

pulse intensity may be limited. 

The presence of the second harmonic component is the signature that in 

principle enables the presence of the contrast medium to be distinguished 

from tissue scattering, the latter being at the fundamental frequency. The effect 

of using harmonic imaging on the contrast is illustrated schematically in Fig. 

8.36, where darker regions correspond to less scattering and light regions to 

strong scattering. Assuming that the contrast medium is present only in the 

blood vessel, the second harmonic image (c) will show little or no scattering 

from the tissue and very strong scattering from the blood vessel. 

The transducer must have a considerably greater bandwidth for harmonic 

imaging. Filtering of the RF signal is generally used to extract the harmonic 

component whose spectrum may overlap the fundamental, as shown in Fig. 

8.33b. Issues concerning the design of matched filters to optimize the contrast 

agent to tissue response have been discussed by Simpson et al. [117]. More¬ 

over, Powers et al. [116] have provided an excellent discussion of the issues 

concerning the system design. Reducing the transmitted bandwidth diminishes 

the overlap but also causes a loss in axial resolution. At higher transmitted 

intensities, scattering of the tissue-generated harmonics may partially mask the 

harmonic signal produced by contrast bubbles. One method proposed for 

reducing its effects is based on transmitting a signal at the second harmonic 

frequency in the absence of a contrast agent and then using the received signal 

to cancel out the received second harmonic tissue signal that is produced when 

the contrast agent is present [118]. An alternative approach, as described 

below, is to use subharmonic imaging. 

Subharmonic Imaging 

When encapsulated gas bubbles are excited at higher pressures, in addition 

to the harmonics (2/,4/...), subharmonics (f/2) and ultraharmonics (3/72,5/72 
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Figure 8.36 Contrast media harmonic imaging, (a) Standard B-mode image, (b) B- 
mode image using fundamental scattering signal from tissue and from contrast agent 
in blood vessel, (c) Second harmonic image showing strong contrast: the blood vessel 
produces a strong scattering signal, the tissue a much smaller one. 

...) can be produced [104,119], Investigations [120] of the subharmonic gen¬ 

eration properties of certain contrast agents approved for clinical use, e.g., 

Optison, have shown that for bubbles with a resonant frequency of f0, the 

threshold for generating subharmonics is minimized when the excitation fre¬ 

quency is at 2f„, i.e., the subharmonic is at f„. Moreover, it is found that the 

subharmonic component undergoes a fairly rapid increase in the intermediate 

incident pressure range, i.e., 0.5-1 MPa, as compared to lower and higher pres¬ 

sures. Given the right excitation conditions, it has been reported that certain 

types of contrast agents can generate more subharmonic power than that gen¬ 
erated at the second harmonic frequency. 

Because subharmonics do not appear to be generated by nonlinear propa¬ 

gation in tissue, for imaging applications, subharmonic scattering should avoid 

the reduced blood-to-tissue contrast that can occur in harmonic imaging. This 

idea appears to have been first reported by Shi et al. [121] in 1997 and subse¬ 

quently implemented [122,123], Some potential advantages and disadvantages 

of this contrast imaging mode have been considered by Shankar et al. [124], 

They point out that although the resolution may be less than that achieved 

with harmonic imaging, it should be no more so than with conventional 

imaging at a frequency of 2fa. Moreover, because the subharmonic signal 

suffers less attenuation than either the fundamental or the second harmonic, 
the imaging depth should be improved. 

Perfusion Measurement and Imaging 

A noted earlier, the shells of microbubble contrast agents can be disrupted 

when the incident pressure pulse (or a succession of pulses) has sufficient 

intensity and duration. For certain agents, a catastrophic disruption of the shell 

occurs, causing the gas inside to be very rapidly ejected. The sudden localized 

pressure change produces a wideband acoustic signal that can be readily 
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detected. This stimulated acoustic emission mode [125,126] offers opportuni¬ 

ties for blood perfusion14 imaging and measurements. 

Measurement of the flow into an organ is a challenging task, especially if 

the flow is pulsatile. A very important application is for myocardial blood flow 

imaging, whose objective is to determine the adequacy or otherwise of flow to 

certain regions. A widely used method for myocardial stress testing requires 

the intravenous injection of a short-lived radioactive isotope (e.g., Tc99m 

with a half-life of 6.03 hours, emitting gamma-2 rays with a mean energy of 

140.5 eV). A tomographic detection technique SPECT (single photon emission 

computed topography) can be used to obtain the perfusion image pattern in 

fairly thin (~5 mm) myocardial slices. The disadvantage of using radioactive 

isotopes and the expense of complex nuclear imaging equipment makes the 

use of contrast-based ultrasound methods a rather attractive possibility. In 

1998 Wei et al. [127] described and demonstrated a scheme that used high MI 

ultrasound for sudden microbubble destruction and B-mode harmonic 

imaging for subsequent microbubble concentration measurements. Harmonic 

power contrast flow imaging (see subsection 10.10.4) was subsequently used 

for the purpose of detecting coronary artery stenosis by measuring the tran¬ 

sient changes associated with bubble destruction in the myocardium [128], 

Suppose that the concentration of microbubbles in an organ is allowed to 

reach a steady state during a steady intravenous infusion. If the concentration 

is suddenly reduced to zero by performing a high MI scan over the region of 

interest (see Fig. 8.37), the perfusion will cause the contrast agent concentra¬ 

tion to eventually return to its earlier state. It is reasonable to expect that 

the normalized microbubble image intensity can be characterized by A[\ - 

exp(-f/x)], where x is a time constant. Wei et al. [127] showed experimentally 

that Al x and 1/x are proportional to the perfusion rate. Thus, by performing low 

MI imaging scans, subtracting the background, integrating each scan to deter¬ 

mine the average backscattered intensity, and fitting the results to an expo¬ 

nential, x can be estimated. However, to find the actual perfusion rate from this 

requires additional information concerning the imaging slice thickness and the 

relation between the intensity and the microbubble concentration. 

Multipulse Transmission Methods 

Several methods have been proposed and used to overcome the limitations 

on the contrast and resolution imposed by the spectral overlap seen in Fig. 

8.33b. In the pulse inversion detection scheme [129-131] illustrated in Fig. 

8.38a, two transmission pulses are used, the second being an inverted copy of 

the first. If we suppose that the first transmitted pressure pulse is denoted by 

Pi(t), then the second will be p2(t) = -p\(t - T), where T is the pulse interval. 

Let us suppose that both pulses are scattered by a bubble at a fixed depth z, 

corresponding to a transit time of x = 2z/c0, so that the echoes can be denoted 

14. The blood perfusion of a volume of tissue is defined as the volume of blood per unit time 

that flows through the microvessels. 



546 Biomedical Ultrasound 

HighM/Scan 

1 
Low A// 2nd Harmonic Images 

Q 

Flow 

GO o O 
© _ _ 

© © q 
©_ o o 

~ © o 
p 8Q O, 

o° 
l°o0oo 

?8°° 
P O ° a 

Region with 
Steady-State 

Uptake of 
Microbubbles 

Mil! 111 

© 
O o e 

o°c ° 
§8 

© On O 
0 0 

° n 2 o 
,° o 

0 

° a 

Scan 

t=0 

c 0 ° ' 

o 
o o 

D ° 

o °o 

o ; 
0. 

t=0 

© 
© 

o o 

2/ 

© _ o 

o ° 
D 

° 
o 

o o 
° n 

O 

° o 3 
O ° o 

s. 

° o o 6 
o° o c 

3 o e 
Po„ e 
o° ^ 8 

lo ©o G O o 
Gg°0 
,°,o ° 

t-At t=2At t=2,At 

Integrated 
Intensity 

Figure 8.37 Sketch illustrating the principle used to determine the relative 
volumetric perfusion of blood into a tissue region. Following the start of a 
continuous contrast agent injection, this region (represented by the rectangle) is 
allowed to reach a steady-state microbubble concentration. A high MI frame is then 
used to fragment the bubbles and subsequent low MI images are used to plot the 
change in the intensity (integrated over each area) with time. The concentration of 
microbubbles, following their extinction, can approximately be represented by an 
exponential. After subtracting the background from each image and then by fitting 
an exponential to the integrated intensity curve, the characteristic time-constant x 
and the saturation intensity A can be determined. 

by Pie(t - x), p2e(t -T-x). To gain a physical understanding of the process, we 

shall assume that the returned echo can be written as a power series expan¬ 
sion of the incident pulse pressure, i.e., 

Ple(* - X) = X ClnP"(t ~ x) and P2e{t-T-X) = Yjanp’i{t-T-X), 
«=1 n=1 

where the a„'s depend on the scattering properties of the bubble (for a linear 

scattering process an = 0 when n> 1). If we form the sum of the received pres¬ 

sures (time-shifted by T), then, because the odd terms cancel out, 

pu(t-x) + p2e(t-t) = 2Y^a2npln{t-x), 
n= 1 
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and for the difference, the even terms cancel, i.e., 

Pu 0 - t) - p2e{t - x) = 2a2n-\p\"~x (t - x) . 
n=1 

As an example, we take ar = 1, a2 = 0.4, a3 = 0.1, a4 = 0.05, an = 0 for n > 4, 

and assume a Gaussian transmit pulse. Although several simplifying approxi¬ 

mations have been made, it will be noted from Fig. 8.38a that the fundamen¬ 

tal component has been eliminated from the sum. However, movement of the 

contrast medium between transmissions will degrade the result. 

Jiang et al. [132] have considered an alternative approach, the scaling or 

power modulation method, and have compared its performance to the inver¬ 

sion technique. As illustrated in Fig. 8.38b, the two waveforms are identical 

except that the second pulse is a scaled version of the first. Consequently, if 

the scaling factor is denoted by k, the echo from the second pulse can be 
written as 

Transmit 1 Echol 

(b) 

Figure 8.38 Methods for improving harmonic detection using two transmissions of a 

Gaussian pulse. Note that the bubble echoes have not been accurately calculated, (a) 

Pulse inversion technique [129-131]. (b) Scaling scheme [132] in which a scaling 

factor (A:) of 2 has been assumed. 
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P2e{t-T-x) ~^an 
n=l 

plit-T-x) 

k" 

Taking the product of the second echo with k and then subtracting this from 

the first echo, we obtain 

u \ , (t \ ^anpC(t-x) 
Pu(t ~ x) - kp2e(t - x) = 2_!--r~— 

n=2 K 

which is independent of au though it does depends on a2, a2,... Because of 

the reduced size of the second signal, it is reasonable to expect that the SNR 

of the scaling method will be inferior to the inversion technique, as noted by 
Jiang et al. 

8.6.2 Tissue Harmonic Imaging 

The idea of using the nonlinearity of a medium to generate harmonics of the 

incident field can be traced back to the work of Kompfner and Lemons [133] 

in 1976. They described a transmission scanning acoustic microscope with a 

fundamental frequency of around 400 MHz that was capable of generating 

second harmonic images at 800 MHz. Using a ~5 pm thick specimen of a mouse 

larynx, they obtained transmission images demonstrating that second har¬ 

monic images had improved resolution. They noted that these harmonic 

images were generated in the region of the beam focus and differed somewhat 

from linear transmission images that they also made at 800 MHz. Shortly 

thereafter, Muir [134] described an underwater harmonic imaging system that 

used an approach very similar to that of subsequent diagnostic systems. The 

sonar system illustrated in Fig. 8.39a used a 100 x 10 cm2 transducer operating 

at a fundamental frequency of 100 kHz, emitting 200 ps CW pulses at a pulse 

power of 1.3 kW. The bandpass filters enabled images to be constructed from 

the fundamental up to the fifth harmonic. For targets between 50 and 200 m 

from the source, the images of a floating barge shown in (b) clearly demon¬ 

strate improved angular resolution. Specifically, the measured beam profile 

showed improvement in the -6dB resolution from 0.8 to 0.5 degrees in going 
from the fundamental to the second harmonic. 

Proposals for using tissue harmonic imaging to improve the quality of ultra¬ 

sound diagnostic systems were first described at a 1995 conference by Ward 

et al. [135], fuller details being presented early in 1997 [136]. At the same time, 

Christopher [137], who may have been unaware of Muir's earlier sonar paper 

and the conference presentation of Ward et al., also presented proposals, 

though no images were shown until his subsequent paper [143]. In late 1997 

Averkiou et al. [138] presented the first in vivo harmonic images. Since then, 

a number of papers [139-141] have studied the clinical advantages on a 

qualitative basis and found significant advantages in terms of penetration, 

increased contrast resolution, improved side lobe suppression, and overall 

image quality. In addition, computational studies of image formation includ¬ 

ing simulated tissue images based on the KZK equation using a simple focused 

disk transducer have been presented by Li and Zagzebski [145], They also 
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beam patterns. (Reproduced, with kind permission of Springer Science and Business 
Media, from Muir [134], Vol. 9 of Acoustical Imaging, Plenum Press, © 1980 Kluwer 

Academic Publishers.) 
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demonstrated small improvements to the image quality by using the pulse 

inversion (two-pulse) technique [130,131] discussed earlier in this section. 

An important issue to consider is whether a harmonic imaging system can 

offer improved performance over a conventional system that operates at twice 

the fundamental frequency of the harmonic system. For the harmonic system, 

the harmonic amplitudes become greatest in the regions of high intensity, i.e., 

close to the focal point. Because of the frequency-dependent attenuation, a con¬ 

ventional system operating at twice the fundamental frequency of the harmonic 

system, i.e., 2/0, would require increased transmitted pulse energy to achieve 

the same scattered signal strength. But because the second harmonic is typi¬ 

cally 10dB below the fundamental, there may be little or no net gain in 

efficacy. Further issues concern the resolution and side lobe levels. As noted in 

Chapter 4 (Fig. 4.11), the side lobes in the lateral response of the harmonics 

fall off more rapidly than the fundamental, and as a result it can be expected 

that image haze due to side lobes should be reduced. On the other hand, the 

lateral resolution may be somewhat worse than that of a conventional 2/0 system. 

To help answer some of these questions, the lateral and elevation responses of 

a 64-element phased array, when excited at 2 and 4 MHz, are compared in Fig. 

8.40. It can be seen that for 4 MHz excitation at low amplitudes, the funda¬ 

mental response has a narrower main lobe but much higher side lobes. 

Maps of the azimuthal and elevational fields for CW excitation of a 64- 

element phased array are shown in Fig. 8.41 [142]. The calculations were per¬ 

formed using an operator splitting approach (see subsection 4.10.1) that used 

incremental steps of diffraction, attenuation, and nonlinear propagation. An 

angular spectrum algorithm was used to calculate the effects of diffraction and 

attenuation, and a lrequency-domain solution to Burgers' equation was used 

for nonlinear propagation. The calculations assumed a focal distance of 10 cm 

in the azimuthal plane and no focusing lens in the elevation plane. Some fea¬ 

tures that have previously been mentioned in Chapter 4 should be noted. For 

example, in (a) and (c) it can be seen that the peak response occurs at a loca¬ 

tion somewhat prior to the azimuthal focus. In addition, it can be seen that the 
second harmonic contains substantially lower side lobes. 

The effect of lower side lobes is evident in the clinical images shown in Fig. 

8.42. Also contributing to the improvement may be the reduced effects of dis¬ 

tortion caused by inhomogeneities in the surface layer [137,144] and reduced 
reverberation effects [144], 

8.7 Ultrasound Computed Tomography 

In x-ray computed tomography15 (CT) as originally developed,16 an image of 

the attenuation coefficient distribution in a slice was reconstructed from a 

15. The word “tomography” is in part derived from the Greek word tomos, meaning slice or section. 

16. The development of x-ray CT originated with the work of Cormack published in 1963 and 

1964 and the work of Hounsfield, who independently developed the first practical CT system for 

medical use in 1972. Cormack and Hounsfield were jointly awarded the 1979 Nobel Prize in 
Medicine. 



Figure 8.40 Computed azimuthal (a) and elevation (b) lateral profiles of a CW 

excited 64-element phased array with no elevation lens in a tissue-like medium. Solid 

lines are the nonlinear second harmonic profiles when excited at 2 MHz with a 

source pressure amplitude of 347 kPa. Dashed curves are the profiles in the absence 

of any nonlinear propagation when excited at 4.0MHz. Note that the harmonic 

profiles have a wider main lobe than that for the higher-frequency source, but much 

lower side lobes. For both excitation frequencies the azimuthal focusing was at z - 10 

cm and the 64-element had the following dimensions: H = 10 mm, W = 375 pm, inter¬ 

element gap = 93.8 pm. The tissue was assumed to be characterized by c0 = 1550 m/s, 

p0 = 1050kg/m3, n = 1.1, (3 = 5, and a0 = 3dB/(cm x MHz"). (Reproduced, with 

permission, from Zemp et al. [142],/. Acoust. Soc. Am., 113,139—152, © 2003 

Acoustical Society of America.) 
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Figure 8.41 Computed transmit profiles for nonlinear propagation in a liver-like 

medium from a linear phased array excited with a 2-MHz CW signal. Fundamental 

and second harmonic profiles in: (a), (b) azimuthal plane and (c), (d) elevation plane. 

The array had 64 elements, each with a height of 20 mm, width of A./2, and spacing of 

A./4, giving a total length ~ 3.7 cm. Focusing in both the azimuthal and elevation 

directions was at a depth of 4 cm. The properties of the medium are the same as 

those listed Fig. 8.40. The scale gives the pressure in MPa. Tire source velocity 

amplitude was 0.23 m/s (source pressure amplitude - 347 kPa). See also color insert. 

(Reproduced, with permission, from Zemp et al. [142], J. Acoust. Soc. Am., 113, 
139-152, © 2003 Acoustical Society of America.) 

sequence of transmission measurements. With the enormous success enjoyed 

by x-ray CT, it was perhaps natural to suggest that it could be used in other 

medical imaging modalities, including ultrasound. In particular, it was sug¬ 

gested that images of the distribution of the absorption coefficient or the prop¬ 

agation speed distribution throughout the region being examined could be 

obtained. However, it was soon realized that the use of ultrasound posed 

certain problems that were not present with x-rays. First, refraction causes the 
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31-WEEK FOUR CHAMBER HEART 
FUNDAMENTAL IMAGING 

31-WEEK FOUR CHAMBER HEART 
TISSUE HARMONIC IMAGING 

Figure 8.42 Comparison of (a) fundamental and (b) harmonic images of the fetal 

heart at 31 weeks, showing the four chambers. (Reproduced from Philips Medical 

Systems website.) 

paths of the incident radiation to differ from straight lines. Second, because 

every object point should be insonated over a wide range of angles to achieve 

error-free reconstruction, the presence of highly reflecting regions such as 

bone would cause serious difficulties. 
The objective of ultrasound CT is to enable one or more of the intrinsic 

properties of the medium to be reconstructed from a sequence of experimen¬ 

tal measurements. It is an inverse problem of considerable difficulty that seeks 

to discover the distribution that gives rise to the measurements. In x-ray CT, 

because of the very small associated wavelengths, the effects of diffraction can 

be ignored, so that the laws of geometric optics govern the ray paths.17 In ultra¬ 

sound CT the wavelengths are no longer small compared to the structures, and 

as a result diffraction should be accounted for. However, finding an inverse 

solution is a challenging task, and in most approaches the laws of geometric 

optics are generally assumed. 

8.7.1 Transmission Tomography 

The first work concerning the practical development of ultrasound CT was 

that reported in 1973 by Greenleaf et al. [148], in which they described a 

17. Starting from Euler’s equation and the continuity equation, which describe the acoustic 

field in an inhomogeneous medium, Greenleaf [146] has shown that if ?e —^ 0 and the density is 

constant, these equations reduce to the Eikonal (from Greek: enctTlvv = image) equation. As dis¬ 

cussed in Born and Wolf [147, pp. 109-113], this is the basic equation of geometric optics. 
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(r) 

Figure 8.43 Initial part of the process for determining the 2-D property of an object 

from projections by first performing a sequence of measurements along parallel 
beam paths to find the ray-sum for a fixed 9. 

method for reconstructing the 2-D ultrasound absorption coefficient distribu¬ 

tion from a large sequence of projection transmission measurements made at 

different incident angles. Subsequently, the same group described [149] how 

the speed distribution could be reconstructed through time-of-flight measure¬ 

ments. Glover and Sharp [150-151] have described development of a system 

that was used for preliminary clinical tests of the speed distribution and have 
reported on the results obtained for breast imaging. 

As shown in Fig. 8.43, a rectangular coordinate system is assumed to be 

fixed in the region being measured, and the function f(x,y) specifies the quan¬ 

tity being imaged. For example,/(x,y) could describe how the ultrasound atten¬ 

uation or the propagation speed is distributed. If the beam path is assumed to 

be a straight line, then the coordinates r, s, and 9 can be used to denote the 

location, the distance along it, and the angle it makes with respect to the x- 

axis. Measurement of a property of the beam, such as the amplitude, transit 

time, or intensity, along each of the paths shown enables a 1-D function to be 

constructed from the samples. This ray-sum or projection will be denoted by 

pe(/), in which the subscript indicates that the measurements were made with 

the beam direction inclined at an angle 9. In fact,pe(r) is the Radon [152,154, 

p. 517] transform of/(x,y). It is the line integral of/along the path j, i.e.'. 
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y)} = Te (0 = J f(x, y) ds , 
r,e 

where K is the 2-D Radon transform operator. Tliis equation can be expressed 
as 

«{/(*•?)} = JJ f{x, y)5(s - x cos 0 - y sin 0) dxdy , 

in which 5(.) is the Dirac 5-function. 

To relate f(x,y) to the attenuation coefficient distribution, we note that 

,/ \ r ~2\a(x,y)ds 
I{r) = I0e J 

and that/(.r,y) = a(.r,y). It therefore follows that the ray-sum is related to the 

normalized transmitted beam intensity by 

Pe(r) = -hn[I(r)/I0\. 

If the function f(x,y) is continuous, then an infinite number of projections 

would be needed to perform an exact reconstruction of the function. In prac¬ 

tice, a finite number of equally spaced projections are used over the range from 

0 = 0 to 7i. A variety of reconstruction methods have been developed for deter¬ 

mining the 2-D distribution function from projection measurements [152,153, 

154 Chapter 15]. One of these is based on a fundamental relationship between 

the Radon transform and the 2-D Fourier transform, which was recognized 

and illuminated by Bracewell [155,154 Chapter 14] in relation to the problem 

of obtaining a map of the microwave emission from the sun’s disk. In his classic 

1956 paper,18 Bracewell developed what is now widely referred to as the (2- 

D) projection-slice theorem, which is used in a variety of fields as the basis for 

reconstructing a distribution function from projection measurements. In one 

form it states that the 1-D Fourier transform of the ray-sum at a given angle 

0 is equal to the 2-D Fourier transform of f(x,y) along a line in the spatial fre¬ 

quency plane that makes the same angle, i.e., 

3 id {Pe(r)j = [3 2D {f(x, y)}]0. 

Thus, as illustrated in Fig. 8.44, by taking the Fourier transform of the ray-sum 

obtained at an angle 0, the set of values on the line that makes an angle of 0 

with the kx axis is obtained. By making measurements over 180 degrees the 

Fourier plane can be fully defined, enabling f{x,y) to be reconstructed from a 

2-D inverse Fourier transform: 

/(^,y) = 32D[3iD{p(r,0)}]. 

18. Bracewell was not aware of Radon’s 1917 paper, whose translated title is “On the deter¬ 

mination of certain functions from their integrals along certain manifolds” (a translated copy 

appears as Appendix A in [156]). 
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Figure 8.44 The steps involved in reconstructing the function f(x,y) from sets of 

projections by using the projection-slice theorem. Note that interpolation is needed 

prior to taking the inverse Fourier transform to determine the spatial frequencies on 
a rectangular basis. 

This final step assumes that the nonrectangular points obtained on the Fourier 

plane have been interpolated to enable the values to be specified on a rec¬ 
tangular coordinate system. 

8.7.2 Pulse-Echo Tomography 

Although the primary focus of ultrasound CT has been in transmission meas¬ 

urements, it should be noted that Norton [156-158] proposed methods for 

tomographic reconstruction from pulse-echo backscattering measurements. 

As illustrated in Fig. 8.45, he assumed a 2-D distribution of scatterers whose 

distribution function was to be determined from a sequence of measurements 

and an appropriate reconstruction technique. The transmit/receive (T/R) 

transducer element is assumed to launch a cylindrical wave consisting of a 

short pulse. If the propagation speed is constant throughout the object space, 

then the backscattered signal at any given time will consist of the contribu¬ 

tions from all scatterers that lie on a circle whose radius corresponds to this 

propagation time. As the wavefront expands, information from the entire 

object space is generated. By assuming weak scattering and a negligible atten¬ 

uation, the received signal consists of the line integral of the scattering func¬ 

tion over each circle. When the T/R element is located at an angle p on the 

circle of radius a that encompasses the region, the integral over the circle of 
radius R(t) shown in (b) can be written as 

P*(r) = $f(x>y)ds, 
<t» 
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which can be expressed as 

00 2k 

p^(R:t) = j J rf(r,6)5[Vr2 + a2 - 2ar cos(0 -<())- R(t)]drdQ. 
0 0 

By repeating the measurements over a suitably chosen aperture, Norton 

showed that sufficient information could be acquired to enable the recon¬ 

struction to be performed. Specifically, for the circular aperture geometry 

shown in Fig. 8.45, Norton [157] found that the above equation can be exactly 

inverted and that numerical evaluation requires measurements of p^R-.t) for 

a range of (|) from 0 to 2k. Norton [156] also examined the alternative case in 

which an omnidirectional T/R element was translated linearly along the 
boundary of a half-plane containing the 2-D object. 

An alternative pulse-echo CT method described by Hiller and Ermert [159] 

is illustrated in Fig. 8.46. It is based on transmitting a narrow, pencil-like beam. 

With the object orientated at an angle <)>, A-mode traces are recorded from a 

sequence of locations sufficiently closely spaced so that the entire object 

region is scanned, as could be achieved by using a linear array. Such a set of 

recordings contains the information that is normally used for displaying a B- 

mode image. However, in this case integration (averaging) is performed at a 

constant depth to form the pseudo-projection shown. This bears some simi¬ 

larity to the ray-sum described earlier, but instead of integrating f(x,y) along 

the beam, it is now performed in a perpendicular direction. This process is 

repeated for small increments of 0 over a range from 0 to n. From this set of 

pseudo-projections f(x,y) can be reconstructed by using, for example, a filtered 

backprojection algorithm. The additional pulse-echo information gathered by 

varying 0 is similar to that obtained in B-mode imaging by using compound 

scanning. Experimental results using test objects and excised organs were 
reported by Maderlechner et al. [160], 

8.8 Ultrasound Elastography 

Palpation is a valuable and traditional qualitative method that is widely used 

by physicians for detecting abnormalities and enables some of the physical pro¬ 

perties of a region to be described. It is also widely used for self-examination 

of the breast. By applying pressure to a region it is possible from a combina¬ 

tion of “feel” and experience to determine the presence of any abnormal struc¬ 

tures that might indicate the presence of a tumor. In essence, palpation is a 

means of assessing the elastic behavior, though its qualitative nature and the 

inability to access many regions limit its use. For many years ultrasound 

has been seen as a potential tool to provide such an access, and beginning 

in the mid-1980s, the possibility of generating 2-D images of the elastic pro¬ 

perties was actively explored. Sarvazyan et al. [162] have pointed out that 

the development of methods for producing elastic images would provide the 

physician with a “virtual finger,” enabling internal regions of the body to be 

quantitatively assessed. Of particular importance in these developments was 
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Figure 8.45 Principles of reflection tomography as described by Norton for a 2-D 

object. A T/R transducer is moved to a sequence of points on the boundary of a 

circle encompassing the object. The T/R transducer is assumed to transmit a 

cylindrical wave consisting of a brief pulse, (a) At any given instant of time, the 

received signal consists of the contributions from all scatterers that lie on a circle 

whose center is at the T/R element, (b) Assumed geometry in which the T/R element 

is located at («,())) and a scatterer is at (r,9). 
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the earlier work of Wilson and Robinson [163] and Dickenson and Hill [164]. 

Wilson and Robinson proposed methods of determining the strain and veloc¬ 

ity distribution along an A-line caused by aortic pulsations and demonstrated 

their application for in vivo measurements in the liver. Dickenson and Hill pro¬ 

posed a method for estimating tissue displacement based on cross-correlating 

successive A-scans. Two reviews19 [165,168] published in 1996 and one [169] in 

1999 provide a good summary of the background leading to these develop¬ 

ments and outline the measurement techniques, some of which are discussed 

below. 
Elastography was the name used by Ophir et al. [166] to describe ultrasound 

methods for visualizing the elastic properties of a medium. Subsequently, when 

it was realized that several other imaging techniques can also be used (e.g., 

magnetic resonance [170-173]), it was suggested [165] that elastography is 

appropriate for all such visualization techniques, and that the more specific 

name of sonoelastography [167] could be used for ultrasound methods. 

To obtain a strain image, it is necessary that the region under examination 

be subjected to a stress and that the resulting strain be measured. Generally 

speaking, soft tissue is an anisotropic medium that possesses hysteresis, making 

it very difficult to characterize its behavior from a measurement of the strain 

distribution. In soft tissue sonoelastography, isotropy and elastic behavior are 

usually assumed; moreover, because the stress may be non-uniformly distrib¬ 

uted and the measured strain may be a single component, not necessarily in 

the direction of the stress, it may be difficult to deduce the elastic constants. 

Stress in soft tissue can be generated internally by the periodic expansion and 

contraction of vessels that normally occur in pulsatile flow. The vessel move¬ 

ment produces a periodic stress in the surrounding tissue regions. Unfortu¬ 

nately, the magnitude and direction of such stresses are not readily 

determined, making it difficult to estimate the spatial distribution of the elastic 

properties from a measurement of the strain distribution. A stress can also be 

generated externally, and this could consist of a quasi-static, a periodic, or tran¬ 

sient force. Bercoff et al. [174] have investigated the use of a transient force, 

produced by a simple electromagnetic vibrator, for breast tumor detection. 

The system used a two cycle, 60Hz sinusoid pulse in conjunction with a very 

high frame rate imaging system (6000 Hz) to obtain a shear modulus map of 

the medium [175,176]. 

An alternative method for producing low-frequency vibrations is that based 

on the radiation force produced by an intense focused ultrasound beam.20 An 

equation relating the instantaneous vector force to the acoustic intensity 

19. An important source of information is the special issue of Phys. Med. Biol. (Vol. 45, June 

2000) entitled “Tissue Motion and Elasticity Imaging," guest edited by M.E Insana and J.C. 

Bamber. It includes papers involving both ultrasound and magnetic resonance imaging. 

20. The effect of viscous losses on the propagation of shear, longitudinal, and coupling waves 

in soft viscoelastic tissue has been described by Bercoff et al. (IEEE Trans. Ultrason. Ferroelect. 

Freq. Contr., 51, 1523-1536, 2004). They obtained the Green’s function solution to the linearized 

Navier-Stokes equation. As noted at the beginning of Chapter 2, this problem was previously 

addressed by Poisson and Stokes. 
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vector I(r:r) and to the amplitude attenuation coefficient a of the medium is 
commonly taken to be given by 

F(r :t) 
2oJ(r:f) 

c0 

Its use for generating low-frequency shear waves was probably first 

described by Andreev et al. [161]. Subsequently, Sarazyan et al. [162] discussed 

its application for medical diagnosis. They used a focused ultrasonic source of 

several MHz that was amplitude-modulated at a frequency in the kHz range, 

enabling low-frequency shear waves to be generated in the focal zone. Their 

presence was detected by using either magnetic resonance imaging or a laser- 

based optical detection method. In the somewhat different scheme discussed 

by Nightingale et al. [177], several long CW transmissions, e.g., four 28 ps pulses 

in 0.7 ms, from a linear array were used to produce a transient radiation force 

in the focal zone. Using correlation-based tracking they measured in vivo 

tissue displacements of around 10 pm. Using a high frame rate B-mode 

imaging system, Bercoff et al. [178] obtained images of shear wave propaga¬ 

tion from the focal zone where the radiation force was created. By using very 

high frame rate imaging, they also demonstrated shear wave generation by a 

supersonic source that created quasi-plane shear wavefronts propagating in 
opposite directions. 

An alternative method for generating a localized radiation force is that 

described by Fatimi and Greenleaf [179,180], It uses two fairly intense high- 

frequency ultrasound sources whose frequencies differ by a small amount. In 

the zone where the two beams overlap, a time-varying radiation force is pro¬ 

duced at the difference frequency. The use of this technique was theoretically 

and experimentally investigated by Konofagou and Hynynen [181] using 

sources of around 2.27 MHz, with difference frequencies in the range of 200 
to 800 Hz. 

The use of ultrasound for measuring the displacement field produced by 

either an internal or external force requires the presence of scattering struc¬ 

tures, such as those due to the cellular nature of tissue that are also responsi¬ 

ble for B-mode speckle. It is the changes in the backscattered signal arising 

from the movement that makes it possible to determine the spatial distribu¬ 

tion of displacement. In the case of blood flow, the force is internal and pro¬ 

duces a pressure gradient that causes the speckle pattern to change with time. 

As noted earlier (section 8.2), changes in the location of a particular speckle 

pattern between successive frames can be used as the basis for estimating the 

local 2-D velocity field. As illustrated in Fig. 8.47, the displacement of a small 

area of the speckle pattern can be found by searching in the succeeding B- 

mode frame for the position of a maximum in the cross-correlation. Repeat¬ 

ing this for the entire B-mode area enables the 2-D displacement field to be 

imaged, enabling the 2-D flow velocity field to be estimated. The basic idea 

underlying this approach for measuring the soft tissue velocity distribution was 

reported in 1982 by Dickenson and Hill [164] and by Robinson et al. [184]. It 
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Figure 8.47 The speckle tracking method for measuring the 2-D flow velocity vector 

in a blood vessel. Two image frames are acquired. A small kernel region is selected, 

and the best match of this within a larger search region of the second frame enables 

the displacement vector to be estimated. From this and the time between frames, the 

velocity vector can be calculated. By repeating this cross-correlation process 

throughout the vessel, a map of the 2-D velocity profile can be obtained. 

was subsequently developed for 1-D and 2-D blood flow velocity mapping 

[11,12,182,183] as well as for determining tissue displacement [185,188,189], 

such as for mapping localized movement of the myocardium [186], 

By extending these ideas to much higher frequencies, the elastic properties 

on a microscopic scale can be imaged. Cohn et al. [190-192] have described 

an elasticity microscope operating in the neighborhood of 50 MHz that enables 

strain images to be achieved with resolutions of less than 100pm. 

8.8.1 Correlation Methods 

A technique based on the using of a quasi-static force and time-domain cor¬ 

relation was developed by Ophir et al. [166], Fig. 8.48 shows a cross-section of 

tissue with a force plate on the upper surface. Not shown is a simple pulsed 

transducer placed at the center of the force plate. In the absence of any force 
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4 

Cross-Correlation 
► 

Figure 8.48 A method of producing an elastogram by cross-correlating the pre- 

and post-compression A-scan lines [166]. For simplicity, a specimen with a fairly 

incompressible layer is illustrated. It is assumed that a simple pulsed transducer 

element is embedded in the center (at the arrowhead) of the force plate, and that it 

produces an ideal pencil-like beam. 

other than that needed to make good acoustic contact to the specimen, an A- 

scan is recorded and digitized; then, following the application of a force, a 

second A-scan is digitized. Because of the reduction in the path length, the 

signal duration will be reduced by 2Az/ca, where Az is the reduction in path 

length. To equalize the number of digital samples of the two A-scan lines, 

either zero padding or a stretching process can be used on the post-compres¬ 

sion signal. The two pairs of lines are then divided into overlapping time seg¬ 

ments, and corresponding segments are compared by cross-correlation 

methods to determine the change in the time of arrival due to the compres¬ 

sion. If the time shift for the z’th segment is Ath then the strain in the axial for 

this segment is given by 

(8.23) 
Af,+i-Ah 

2 A z! ca 

By repeating the above process for all segments and then duplicating for 

different lateral transducer positions, a 2-D image of the axial strain can be 

obtained. Better ways exist for determining the time shift than simply cross- 
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correlating portions of the two (real) RF signals. For example, as discussed by 

Ledoux et al. [189], performing a cross-correlation of the analytic form of the 

RF signals improves the accuracy with which the time shift can be estimated. 

The analytic21 form of a signal in fact consists of two signals: the first is the 

original real signal and the second consists of a -90-degree phase-shifted copy 

of the real RF signal, which can be obtained by means of a Hilbert transform. 

The results of this method are illustrated in Fig. 8.49, where two analytic signals 

are shown that could correspond to portions of the pre- and post-compression 

RF signals from the same location. Calculation of the magnitude of the spatial 

correlation function accounts for both the real and imaginary parts and results 

in an improved estimation of the delay. 

In practice, problems arise in accurately estimating the strain, and these can 

be attributed to the presence of a gradient operation in (8.23). Alternative 

estimation methods have been developed [194] that make use the power 

Real RF Signals 

(a) 

Imaginary RF Signals 

Figure 8.49 Cross-correlation of an analytic signal consisting of real (a) and 

imaginary (b) parts. Two RF lines are shown that could correspond to the pre- and 

post-compression signals, (c) The magnitude of the cross-correlation has a well- 

defined peak, enabling a better estimation of the delay to be made. (Reprinted by 

permission of Elsevier from Ledoux et al. [189], Ultrasound Med. Biol., 24, 

1383-1396, © 1998 World Federation of Ultrasound in Medicine and Biology.) 

21. The analytic signal associated with a real signal x(t) = a(t) cos [<>(0], >n which a(t) is the 

instantaneous amplitude, and <|>(t) is the instantaneous phase, can be written as z(t) = 

a{t) exp [/<K0]- Note that Re[z(t)] = a(r) cos [0(0] = x(t) and that Im[z(r)] = a(t) sin [((>(?)]. For a 

careful discussion of the issues surrounding the properties and definitions, see [193]. 
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spectrum, and these, because they make no use of the phase, are incoherent. 

In essence, power spectrum methods are based on the scaling property of the 

Fourier transform, whereby compression in the time domain corresponds to 

expansion in the frequency domain and vice versa. It can be shown that some 

of these methods are able to estimate the strain in a direct manner without 

requiring a gradient operation and hence are more immune to the effects of 

noise. For example, by estimating the power spectrum from a region in the 

pre- and post-compressed state, it has been shown that a cross-correlation 

between the two estimates is sensitive to small shifts in the spectra and there¬ 
fore to the estimation of small strains [195], 

From the sketch of Fig. 8.48 it can be seen that compression of the tissue 

in the axial direction will also cause a lateral strain in off-axis locations unless 

the tissue is clamped laterally. For in vivo application this would not be prac¬ 

tical. A measure of the coupling between the axial and lateral strains is 

Poisson s ratio (subsection 1.2.2): a value of zero means no coupling and a 

value of 0.5 implies perfect coupling. Soft tissue is generally considered to be 

nearly incompressible, with a Poisson’s ratio very close to 0.5. Consequently, 

to estimate the axial strain in response to axial force, it is necessary to correct 

for the lateral deformation. A procedure for doing this has been described by 

Konofagou and Ophir [196], who also demonstrated imaging of the lateral dis¬ 
placement (lateral elastogram) in tissue. 

In vivo examples of breast B-mode images and elastograms are illustrated 

in Fig. 8.50 [197], It should be noted that the apparent transverse diameter of 

the benign tumor is less than that of the B-mode image, whereas for the malig¬ 

nant tumor the opposite is true. A possible explanation is that the benign 

tumor is weakly coupled to the surrounding tissue, whereas for the malignant 

tumor the opposite is true, making the surrounding tissue less compliant and 
thereby expanding the apparent size. 

8.8.2 Pulsed Velocity Estimation Methods 

The use of pulsed wave velocity estimation schemes (see Fig. 8.51) for sonoe- 

lastography have been described by Yamakoshi et al. [198] and Learner et al. 

[167,199,200]. The idea of measuring the characteristics of a low-frequency 

wave as it propagates through tissue has been explored for many years. When 

a low-frequency periodic force is applied to a tissue specimen, the scatterers 

present will be displaced in a periodic manner. As described in Chapter 10, 

the scatterer velocity can be estimated from the change in reception time of 

the scatterer signature between successive transmissions. If the ultrasound 

PRF is synchronized to the vibration frequency, the velocity spectrum will 

consist of symmetric array of discrete harmonic components, each separated 

from its neighbor by the vibration frequency. As will be shown, the spectral 

components enable the displacement amplitude to be estimated, enabling an 

image to be produced that represents the disturbance created by the propa¬ 

gation of the low-frequency wave. It can be expected that any localized non¬ 

uniformity in the propagation medium should be evident in such an image. 
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Sonogram Elastogram 

Figure 8.50 In-vivo B-mode and elastogram images, (a) Benign breast tumor 

(fibroadenoma) and (b) malignant breast tumor (invasive ductal carcinoma). The 

strain used was approximately 0.01. Note that the darker regions correspond to 

stiffer regions where there is less strain. In (a) the patient was sitting and the 

direction of compression was parallel to the body. For (b) the patient was supine and 

the compression was applied perpendicular to the body. (Reproduced, with 

permission, from Konofagou et al. [197], IEEE Trans. Ultrason. Eerroelect. Freq. 

Contr., 48, Frontispiece, © 1997 IEEE.) 

The analysis can be simplified by assuming that the vibration angular fre¬ 

quency is coL and that the ultrasound beam is aligned with the tissue move¬ 

ment directions so that the insonation angle is zero. Also, the transmitted pulse 

will be treated as a narrowband signal whose angular center frequency is coc. 

If the tissue displacement at a particular location for a given instant of time is 

denoted by £,(f) = £,0sin(coLt + (j>), then its velocity is given by v(t) = £,0(£>Lcos(u>Lt 

+ (()). The instantaneous angular center frequency of the slow-time received 

signal can be obtained by substituting the latter into (10.2) and adding an 

offset frequency of (0o, yielding 

,, 2cocCn(oL cos((oLt + <b) 
(0PW (t) =-e-S2-E--— -^ + 0)o 

Co 

where, to ensure that (£>PWis always positive, co0 > 2(0c^oC0,lc0. 

Now the normalized slow wave received signal can be written as X(t) = 
sin[0(f)], where the phase angle is given by 
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Figure 8.51 Measurement of tissue elastic properties using a low-frequency vibration 

source, (a) Simplified scheme using a single-element transducer with a pulsed 

velocity estimation method, (b) Elasticity imaging system using a phased array. 

0(f) = J coPW (t)dt = Mf sin(coLf + <])) + co0 + cp, 

where Mf = 2co£jc0 and cp is a constant. Consequently, the slow wave signal 
can be written as 

(8.24) X(t) = sin[co0r + Mf sin(coLf + p) + cp]. 

This is identical in form to that of a frequency-modulated wave with a modula¬ 

tion index of Mf. To obtain the spectrum, first expand (8.24) by using the expres¬ 

sion for the sum of two angles, namely sin(a + (3) = sin a cos P + cos a sin p. 

Then the following Bessel function expansions 

cos(a sin P) = J0(a) + 2^ J2m (a) cos(2mP) 
m= 1 

sin(a sin p) = 2 ]T J2m+1 (a) sin[(2m + l)p], 
m= 0 

(8.25) 
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can be used. These enable (8.24) to be rewritten as 

X(t) = sin(c0ot + <p)| J0(Mf) + 2'^jJ2m(Mf)cos[2m((0Lt + 4>)] i 
l m=l J 

+ cos(co0f + <p)j 2 ^/2m_i(M/)sin[(2m - l)(a>Lf + <|>)] L 
l m=l ^ 

Using 2 sin a cos P = sin(a + p) + sin(a - (3), the above equation can be 
rearranged in a form that enables the frequency components to be obtained 

as 

X(t) = /0(A//)sin(caof+ cp) 

+Jt (Mf ){sin[(co0 + coL )t + <p + <]>]- sin[(o)0 - coL )t + <p - <)>]} 

(8.26) +/2(M/){sin[(to0 + 2coZj)r + (p + 24>] + sin[(co0 -2toL)t+ cp-2<|)]} 

+J3(Mf){sin[(co0 + 3coL)t + (p + 3(j)]- sin[(co0 - 3coL)t + tp- 3(j)]} 

+ ... 

This demonstrates the presence of harmonic components whose amplitudes 
depend on the modulation index through the Bessel functions and whose fre¬ 
quencies differ from the offset frequency by a multiple of the vibration fre¬ 
quency. The manner in which spectral component amplitudes change for two 
displacement amplitudes {^0 = c0Mf/(2(i>c)} is illustrated in Fig. 8.52. The mod¬ 
ulation index can be found from the harmonic component amplitudes, thereby 
enabling the displacement amplitude to be determined. This process can be 
repeated throughout the observation slice plane, yielding a 2-D map repre¬ 
senting the displacement amplitude of the low-frequency disturbance in the 
propagation medium. 

8.8.3 Shear Wave Propagation in Tissue 

The question as to the manner in which low-frequency vibrations propagate 
in tissue has been studied for many years [201,202], When a low-frequency 
(10-500 Hz) periodic uniaxial stress is applied to tissue, in the manner illus¬ 
trated in Fig. 8.51, the energy propagates primarily as transverse (shear) waves 
with a speed of propagation several orders of magnitude less than compres- 
sional waves. In fact, the wavelength of a compressional wave may be several 
hundred times less than the dimensions of an organ examined, whereas for a 
low-frequency transverse wave it may be of similar magnitude. With increas¬ 
ing frequency the shear wave suffers increasing attenuation, and eventually 
the energy it contributes becomes small in comparison to the compressional 
wave. 

In B-mode imaging it is the changes in acoustic properties, primarily the 
bulk modulus, that determine the image. However, such changes are relatively 
small compared to the shear modulus, whose values may change by many 
orders of magnitude, depending on the tissue. A comparison of the bulk and 
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Deviation from Offset Frequency, ((0o-CQ)/cd^ 

Figure 8.52 Frequency spectra from a pulse wave system due to scattering from a 
sinusoidally displaced region by a low-frequency vibration source. A narrowband 
transmitted signal was assumed. The spectra for two modulation indices are shown 
Assuming a transmitted frequency of 4 MHz, the displacement amplitude (£„) in 
water would be 0.06mm for (a) and 0.15 mm for (b). 

shear moduli properties, as summarized from the literature, is shown in Fig. 

8.53. This suggests that by imaging one or more characteristics of shear wave 

propagation, improved sensitivity to localized changes in elastic properties 
could be achieved [162], 

Because of the rapidly increasing attenuation with frequency, it is not pos¬ 

sible to use high-frequency shear waves, which suggests that the spatial reso¬ 

lution might be rather limited. However, the presence of even a relatively 

small non-uniformity in elasticity could create an appreciably larger distur¬ 

bance to the shear wave propagation: much like dropping a small pebble into 

a pond and observing the resulting surface wave disturbance. 

For waves propagating in a viscous medium of density p0 whose shear 

modulus is denoted by [i( and shear viscosity by p, the propagation speed and 

attenuation can be obtained by starting with the linearized Navier-Stokes 

equation for an isotropic solid as given by (1.66). By splitting this into irrota- 

tional and incompressible components, the elastic equations for longitudinal 

and transverse waves were obtained as (1.68). For plane harmonic transverse 

waves, it can be readily shown from (1.68b) that the propagation speed and 

attenuation are given by [201]: 
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Figure 8.53 Summary and comparison of the shear (pf) and bulk moduli (1/k) of 

hard and soft tissue. The lower half shows the shear modulus and the upper shows 

the bulk modulus (N/m2 s Pa). (Reprinted by permission of Elsevier from Sarvazyan 

et al. [162], Ultrasound Med. Biol., 24,1419-1436, © 1998 World Federation of 

Ultrasound in Medicine and Biology.) 

c t — 
i 2(|4 + coV) 

po([U +V|4| +C02)!2) 

(8.27) 

I poC02(V|4f+C02li 2 -|4f j 

) 2(p|+ oo2|i2) 

In the limit as co —> 0, or if the shear modulus dominates over the viscous 

losses (|i€ » cop), then cT —> Vflf/p0, which is the result given in Chapter 1. 

Examining (8.27), it can be seen that the speed is strongly influenced by the 

angular frequency, and this is illustrated in Fig. 8.54 for soft tissue. Also shown 

are the wavelength and attenuation as a function of frequency. For the 

assumed parameters, the wavelength at 200 Hz is 2.8 cm and attenuation is 

about 2cm-1 (~17dB/cm). 

The corresponding equations for compressional waves can be obtained 
from (1.68a) as 

(8.28) 

1 /cL= Vp~Re{B} 

aL = —coVp7 Im{5} , 

where B-llJ(A,f+2p€) + /co 
4 ) 

in which is the first Lame constant 
V j y 

and pB is the bulk viscosity. Assuming that (X( + 2pf)»co 

simplifies to 

14 } 
— p + pB ,(8.28) 
j J 
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Figure 8.54 Propagation characteristics of low-frequency shear waves in a tissue-like 

medium (p„ * 1100 kg/m3, p( = 2500Pa, p = 15Pa.s). Note that the LH scale for the 

speed is in m/s, while for the wavelength and attenuation the RH scale is in cm and 

cnr1. Note that the strong dispersion is associated with the high shear attenuation. 

(8.29) 

aL ~ to* 

V(^-c + 2pf) / p 

f 4 
p5 +-p /(2Pocl) 

The first approximate equation for the speed was previously obtained as 

(1.70), while the second equation is identical to the classic Stokes formula for 

the attenuation of a viscous liquid, which was derived as (3.113). 

Equation (8.27) suggests that the viscoelastic properties of soft tissue can 

be determined by measuring the phase speed and attenuation using low-fre¬ 

quency CW excitation. Catheline et al. [203] point out that three sources of 

error can arise in attempting to do so on a confined specimen. The first arises 

from the interference of waves reflected from boundaries, the second from 

diffraction effects associated with the use of a finite-size source, and the third 

from the effects of interference between the axial components of shear and 

compressional waves. To overcome these problems they used an impulse tech¬ 

nique in which the characteristics of the propagating shear and compressional 

waves were measured prior to any boundary effects becoming important. 

8.9 Ultrasound Microscopy and Biomicroscopy 

8.9.1 Background 

The invention of the optical microscope opened a window that enabled the 

optical properties of matter to be visually perceived at a microscopic level, 

and this led to many important discoveries in biology and medicine. The sub- 



572 Biomedical Ultrasound 

sequent invention of other imaging modalities, such as the electron microscope, 

the scanning electron microscope, and the atomic force microscope, provided 

additional important new tools for research. These modalities generated the 

image contrast through microvariations in the medium properties or topogra¬ 

phy, sometimes revealing important new features. Likewise, one of the aims in 

using ultrasound radiation as a means for generating image contrast at the 

microscopic level was to provide a detailed view of the acoustic properties. 

Ultrasound biomicroscopy22 [204] is generally associated with the imaging 

of living tissue (see subsection 8.9.3). It is a more recently developed field than 

acoustic microscopy, and its resolution is generally limited by a compromise 

between the depth of penetration and the frequency-dependent attenuation. 

Rapid expansion of this field has been made possible through improved 

methods of fabricating high-frequency transducers [e.g., 205,206] and the 

development of piezoelectric materials with enhanced characteristics (see 

subsection 6.1.2). Initially, high-frequency imaging was performed using single¬ 

element mechanically scanned transducers [207]. More recently, considerable 

effort has been made to develop arrays [208-210] that can provide the flexi¬ 

bility needed to enable tissue acoustic microstructure to be imaged at frame 

rates sufficient to resolve rapid dynamic changes. 

One method that avoids the difficulties associated with fabricating high- 

frequency arrays has been described by Tutwiler et al. [211]. It uses an array 

with much wider elements, e.g., 2A,, displaced in sub-wavelength steps by a 

piezoelectric actuator. After each step the data needed for synthetic image 

reconstruction were acquired. To demonstrate feasibility, they used a 12- 

element 50 MHz phased array with an inter-element spacing of 105 pm and an 

actuator that performed 14 steps of 7.5 pm (14 x 7.5 = 105). Each step was 

equivalent to moving the array by a distance of X./4. By this means they were 

ale to demonstrate a lateral resolution performance (~22pm) equivalent to 

that of a 64-element array operating at the same center frequency. 

The idea of using ultrasound for imaging at the microscopic level appears 

to have originated with the work of Sokolov [212,213] in the former USSR. 

In a short paper published in 194923 that described a possible means to achieve 

this, he appears to be the first to use the term “ultrasound microscope” and 

pointed out that at a frequency of 3 GHz the wavelength would be similar to 

optical wavelengths, yielding a similar resolution. It was some 10 years later 

that the first practical steps were taken towards its realization. Dunn and Fry 

[214] used a very fine thermocouple wire junction (~13pm) placed immedi¬ 

ately adjacent to the specimen to measure the absorption of ultrasound by the 

specimen when irradiated with ultrasound pulses at a center frequency of 

12 MHz. By slowly moving the specimen they were able to demonstrate that 

22. As pointed out by Foster et al. [204], optical biomicroscopy is well-established term used 
to describe an optical means for visualizing living tissue, and hence it is logical to use the term 
ultrasound biomicroscopy to describe the same using ultrasound. 

23. A number of papers have suggested that Sokolov developed the basic ideas in the 1930s 
and have quoted various patents and publications to support this. 
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a graph could be produced that represented the local absorption 
characteristics. 

In the early 1970s, two different approaches to ultrasound microscopy were 

developed [221], Korpel and Kessler [215,216] developed a scheme that made 

use of a scanning laser beam to detect the local acoustic field transmitted 

through the specimen. The resulting scanning laser acoustic microscope 

(SLAM), which used excitation in the 100 to 500MHz range, could provide 

simultaneous acoustic and optical images at standard TV frame rates 

[216,217].The group under Quate, used a different approach in which an ultra¬ 

sound beam was mechanical scanned over the specimen to form C-mode 

images. The transmission and reflection acoustic microscopes [218-220] ini¬ 

tially developed by this group operated in the sub-GHz range. Subsequent 

research showed that systems of this type were capable of operating at fre¬ 

quencies of over 15 GHz, though under cryogenic conditions. 

8.9.2 Scanning Acoustic Microscope 

The earliest form of scanning acoustic microscope developed by Quate’s group 

was a CW transmission system with separate transmission and receiving lenses. 

However, the very small focal zone places considerable demands in ensuring 

that the two lenses are maintained confocal. Moreover, the very high attenu¬ 

ation required that the specimen be extremely thin. Reflection mode acoustic 

microscopy has the advantage that the same lens is used for both transmission 

and reflection that is, by definition, a confocal arrangement. In addition, spec¬ 

imen thickness is no longer an issue. The first reflection scanning acoustic 

microscope operated using CW excitation at 600 MHz and was able to resolve 

details of around 2 pm. Pulsed excitation is generally preferred since it enables 

interface reflection artifacts to be more readily separated. 

In the system illustrated in Fig. 8.55, single crystal sapphire (A1203) is used 

to form a hemispherical lens whose radius of curvature for a 1 GHz design 

may be around 40pm. At high frequencies sapphire has a very low attenua¬ 

tion (0.2-0.5dB/cm at 1 GHz), and the speed of sound (11,000m/s) is about 7.3 

times that of water. As a result, the refraction at the sapphire/water interface 

of the spherical cavity causes the ultrasound beam to focus close to the center 

of curvature (~1.3 times the radius of curvature) in a nearly ideal manner. 

The properties of the fluid used to couple the lens to the specimen are of 

major importance. In a pulsed system, a single A/4 matching layer will not elim¬ 

inate all reflections from the sapphire/fluid interface. Hence, it is necessary to 

separate the specimen from the sapphire by a sufficient thickness of fluid to 

enable the signal from the specimen to be separated in time from that pro¬ 

duced by the interface. For most fluids, the attenuation increases as the square 

of the frequency, which limits the maximum frequency that can be used for a 

given lens radius. According to the Rayleigh resolution criterion, the lateral 

resolution is given by (3.57)], i.e.. 

(8.30) Rl 1.22X F0Ca' Leng‘h 1.22 Xx f-number. 
Aperture 
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Figure 8.55 Simplified representation of a reflection scanning acoustic microscope. 

An enlarged view of the sapphire lens, transducer, and sample is also shown. A 

vacuum-deposited layer of zinc oxide is often used as the piezoelectric medium. 

Also, the depth of field is expressed by (3.58), 

(8.31) ZF(3dB) = 1.2Xx(f-number)2. 

For a water-coupled system, the smallest f-number that can be achieved is 

around 0.65 (1.3/2) yielding the lateral resolutions listed in Table 8.1. Also 

shown in this table are the attenuation coefficients of water at 20°C over a 

range of frequencies. Cryogenic acoustic microscopy [222] exploits the prop¬ 

erties of certain gases in a liquid state. For example, liquid helium has a much 

lower speed of sound than water (~230m/s), and consequently the wavelength 

is approximately one sixth of those listed. Furthermore, the attenuation below 

1°K rapidly decreases, dropping to about 0.04dB/mm at 0.1°K for 1GHz. 

These properties made it possible to achieve resolutions well beyond that pos¬ 
sible with an optical microscope [223]. 

8.9.3 Scanning Biomicroscopy 

The group led by Foster at the University of Toronto recognized the impor¬ 

tance of developing a form of acoustic microscopy that would enable living 

cellular matter to be imaged and pointed out that such an instrument could 

enable normal cellular growth to be studied as a function of time. Moreover, 

the penetration of ultrasound enables visualization of subsurface planes that 
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Table 8.1. Resolution and Attenuation for Acoustic Microscopy 

Frequency, MHz 

X, 
in H20 

Lateral Resolution 
Attenuation of 

H20 at 20°C f/0.65 f/1.0 f/ 3.0 

10 150pm 120 pm 180 pm 550 pm 0.022 dB/mm 

30 50 pm 40 pm 61 pm 183 pm 0.2dB/mm 

100 15pm 1.2 pm 18pm 55.0pm 2.2 dB/mm 

300 5 pm 4.0 pm 6.1 pm 18.3 pm 0.02dB/pm 

1000 1.5 pm 1.2 pm 1.8 pm 5.50 pm 0.22dB/pm 

3000 0.5 pm 0.4 pm 0.61 pm 1.83 pm 2dB/pm 

are inaccessible to optical methods. One of the first instruments they devel¬ 

oped is the 100 MHz backscatter microscope [224] illustrated in Fig. 8.28. It 

contained a cylindrically symmetric focused PVDF transducer with a 3.0-mm 

aperture and a focal length of 4.0mm so that the /-number was 1.33. The meas¬ 

ured slice thickness was around 30 pm, with a lateral resolution (FWHM) of 

17.5 pm. It was mechanically scanned on the x-y plane to obtain a C-scan 

image at a given depth: each scan consisted of 256 x 256 pixels and took about 

10 minutes to acquire. Additional subsurface planes were obtained by chang¬ 

ing the transducer/specimen distance. The system performance was illustrated 

by obtaining images of several subsurface planes through a tumor spheroid.24 

A problem with the above system was the length of time (10 minutes) 

required for each scan. By changing from C- to B-mode Sherar et al. [225] 

reported that the performance was dramatically improved, since this required 

mechanical scanning in just one direction. They used a PVDF focused trans¬ 

ducer similar to that illustrated in Fig. 8.56, though with a smaller aperture 

corresponding to an /-number of 2.0. From (8.30) and (8.31) this results in 

a greater depth of field (0.43 mm), though with some loss in axial resolution 

(35 pm). With this system and an image size of 512 x 512 pixels, they were able 

to achieve five frames per second. 

The success of the above methods stimulated high-frequency B-mode 

imaging work in a several clinical areas, specifically ophthalmology, dermatol¬ 

ogy, and intravascular ultrasound. It also stimulated investigations into the use 

of frequencies in the 100 to 200 MHz range [226]. The depth to which satis¬ 

factory images can be obtained depends on the frequency-dependent attenu¬ 

ation, the backscattering coefficient, and the depth of field. For soft tissue, the 

approximate frequency dependence of the attenuation and backscattering 

coefficient are illustrated in Fig. 8.57. 

24. A spheroid is a aggregate of living cells that is grown in vitro; it has been used to model 

the effects of tumor growth [224]. 
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Figure 8.56 Principles of an ultrasound backscatter microscope designed for 

obtaining C-scan images of living tissue by mechanical x-y scanning. To obtain the 

peak backscattered signal corresponding to the focal plane, the received signal was 

sampled by a gate. C-scan images from various planes were obtained by changing 

the transducer/tumor separation. (Reprinted, with permission of Macmillan 

Magazines Ltd., from Sherar et al. [224], Nature, 330, 493-495, © 1987 Macmillan 
Magazines Limited.) 

8.9.4 Biomicroscopy of the Eye 

In ophthalmology, the group directed by Foster [227-229] developed a high- 

frequency imaging system that made use of an oscillating lever to achieve 

real-time imaging. The first commercial system25 based on their prototype is 

illustrated in Fig. 8.58. The increase in attenuation with frequency limits the 

depth to which structures can be satisfactorily imaged, though this is partially 

offset by the increase in the backscattering coefficient. To obtain satisfactory 

images of the globe and orbit, frequencies in the range of 10 to 20 MHz are 

generally used, but for the anterior structures much higher frequencies are 
possible. 

For frequencies much above 20 MHz, the attenuation and limited depth of 

field restricts the imaging and measurement capability to the anterior segment 

of the eye. Nonetheless, the cornea is the most significant refractive element 

of the eye and is the site of surgical intervention for correcting refractive prob¬ 

lems. In addition, the trabecular network at the junction (the angle) of the iris 

and sclera is the site for aqueous fluid drainage, and abnormalities in this 

region can be a cause of glaucoma. A high-frequency image of the anterior 

portion of the eye obtained with a wideband 50 MHz system is presented in 

25. Paradigm Medical Industries, Salt Lake City, UT. 
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Figure 8.57 Approximate (a) backscattering and (b) attenuation properties of soft 

tissue at higher frequencies. All measurements were made 37°C except the bovine 

tissues, skin, and dermis, all of which were made at 22 to 24°C. (See [204] for sources 

of the original data. Reprinted by permission of Elsevier from Foster et al. [204], 

Ultrasound Med. Biol., 26,1-27, © 2000 World Federation of Ultrasound in Medicine 

and Biology.) 

Fig. 8.59, together with an anatomic map. A normal cornea is approximately 

12 mm in diameter, with a central region thickness of about 0.5 mm. In vitro 

imaging of the cornea at 200 MHz has also been demonstrated, enabling its 

various layers to be clearly visualized [226]. 

Lateral images of the entire anterior portion of the eye are shown in Fig. 

8.60 under light and dark conditions. These were obtained with a system 

designed to automatically perform a B-scan scan over nearly the entire lateral 

dimension of the cornea using a transducer with a nominal frequency of 
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Figure 8.58 Commercial version [25] of a B-mode eye scanning system. An 

articulated arm supports the probe housing. The probe makes acoustic contact to the 

eye through a coupling fluid such a physiologic saline. This version can be used with 

a low-frequency probe (10MHz, 13 or 18 frames/s) for examination of the globe and 

orbit, and with a high-frequency probe (50 MHz, 8 frames/s) for examination of the 
anterior segment of the eye. 

50 MHz. The scanning motion was in the form of an arc that closely matched 

the cornea, thereby maintaining normal incidence and a constant range rela¬ 

tive to the cornea. By scanning at various meridians and using appropriate 

signal-processing software, 2-D color-encoded maps were produced showing 

the thickness variations of the cornea and its various sublayers [230], This 

information could be particularly useful for planning and evaluation of corneal 
excimer laser-assisted refractive surgery [231]. 

8.9.5 Biomicroscopy of Skin 

A second field of application for high-frequency imaging that could be clini¬ 

cally important is in dermatology. Some of the first applications were to 

measure the thickness of the skin both in a normal and an abnormal condi¬ 

tion [232], Subsequently, imaging methods were developed and applied by 

Dines et al. [233] using 25 and 50 MHz transducers, though the 50-MHz trans¬ 

ducer gave inferior images to the 25 MHz transducer due to a long ringdown 

time. Serup [234] has provided a useful review of many of these early devel¬ 

opments. During the 1990s a number of groups described the development of 
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Figure 8.59 Ultrasound biomicroscope imaging of the anterior portions of the eye. 

(a) Image of approximately 4 x 4 mm2 made at 50 MHz: only a small section of the 

lens boundary is visible, (b) Schematic identifying the various structures. 

(Reproduced, with permission, from Foster et al. [229], IEEE Trans. Ultrason. 

Ferroelect. Freq. Contr., 40, 608-617, © 1993 IEEE.) 
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Figure 8.60 Ultrasound arc-scans of the anterior portion of a normal eye showing 

the effects of pupil adaptation to (a) the absence and (b) the presence of light. 

Images were obtained with a 50 MHz Artemis system (Ultralink LLC, St. Petersburg, 

FL). (Reproduced, with permission, from Ultralink LLC.) 

systems with center frequencies up to 200 MHz that were used for dermato¬ 
logic imaging [226,235-238]. 

8.10 Endoluminal and Intravascular Imaging 

With the development of miniature transducers, imaging became possible 

from within various body cavities and vascular lumina. Intravascular ultra¬ 

sound imaging is the term usually used to describe the technique that enables 

a vessel to be imaged from the inside and that can provide a high-resolution 

picture of the vessel wall and the tissue that immediately surrounds it. Strictly 

speaking, endoluminal ultrasound is a more general term referring to all 

nonpercutaneous methods, but it is often used to describe all nonvascular 
applications. 

The beginnings of endoluminal and intravascular imaging [239] can be 

traced to the early work reported by Wild and Reid [240] in 1955. They con¬ 

structed a rigid probe with a piezoelectric transducer mounted at one end that 

projected a beam at right angles to the probe axis. By means of an electric 

motor and worm gear, the transducer could be simultaneously rotated and 

slowly withdrawn, enabling a sequence of radial 360 degree B-mode images 

to be recorded. The system was used on a volunteer by inserting the probe 

into the rectum and recording on film the sequence of B-mode images of the 
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wall of the bowel. Probes sufficiently small for use in intravascular imaging 

were first developed during the 1960s by Cieszynski [241], Omoto et al. 

[242,243], and Wells [244], Commercial versions of several mechanically 

scanned systems became commercially available toward the end of the 1980s. 

More modern versions of these side-viewing probes use either rotation of the 

transducer or rotation of a 45-degree mirror with the transducer fixed. In addi¬ 

tion, they may be equipped with a motorized transport to slowly withdraw the 

catheter from the vessel, enabling images to be obtained from successive loca¬ 

tions within the vessel. The long mechanical coupling cable (drive cable) that 

passes through the catheter lumen can cause nonuniform rotation when the 

vessel is long and tortuous, resulting in image distortion [245], 

8.10.1 Side-Viewing Transducers 

In the early 1970s the group led by Bom [246] developed the cylindrically 

organized phased array transducer illustrated in Fig. 8.61, in which 8 of the 32 

elements were used to form each B-mode line. This scheme avoided the need 

for mechanical rotation of either the transducer or a reflecting mirror. 

However, the image quality was relatively poor, due in part to the high side 

lobes and a long ringdown time that prevented imaging close to the catheter 

surface. 

The technical challenges associated with designing and manufacturing a 

cylindrical phased array sufficiently small to be incorporated into an intravas¬ 

cular catheter for coronary arterial examinations are considerable. O'Donnell 

et al. [88,248] adopted a synthetic aperture approach (see section 8.5) using 

transmission and reception from a single pair of elements at a time. With this 

scheme, the signal processing to be performed in close proximity to the PZT 

elements is simplified and, most importantly, the number of wires required to 

be threaded down the catheter lumen is greatly reduced, e.g., six. Schulze- 

Clewing et al. [247] have provided details of a practical form of this catheter- 

tip design, and a sketch is presented in Fig. 8.62. In this design, five custom IC 

chips were needed to multiplex the array into a single channel at a time. The 

chips incorporated the preamplifiers, driving amplifiers, and all the circuits 

needed for selecting a single transducer for transmission and one for recep¬ 

tion [249]. Of the 64 elements, a group of 14 can be used as an active aperture. 

For such a group, it can be shown [88] that the number of non-redundant trans¬ 

mit/receive firing combinations needed to synthetically reconstruct a single 

beam line is 105. If the group of 14 is incremented around the 64-element array, 

one element at a time, a total of 14 x 64 x 105 = 94,080 firings would be required 

to provide all the data needed for reconstructing a complete frame. 

A coronary intravascular image obtained with an early version of this 

phased array is illustrated in Fig. 8.63. In this image a central black region cor¬ 

responds to the region occupied by the catheter. A ring arising from scatter¬ 

ing/reverberation by the outer acoustically transparent sheath of the catheter 

surrounds it. Between about 3 and 5 o’clock can be seen a very strongly scat¬ 

tering region, which likely consists of calcified plaque, and this creates a strong 
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Figure 8.61 Early 5.6-MHz phased-array endoluminal imaging catheter with an 

outer diameter of 3.2 mm (9F) and consisting of 32 crystal elements, (a) Sketch of 

phased array. (Reprinted by permission of Elsevier from Bom et al. [246], © 1972.) 

(b) Cross-sectional view showing some elements and illustrating the scanning scheme 

in which successive groups of eight elements were used for each angular increment 
of 360/32 - 11.25 degrees. 

shadow. Between 10 and 1 o’clock can be seen a crescent-shaped area that 
probably consists of soft plaque. 

With increasing frequency, improved radial and lateral resolution can be 

expected. For example, at 40MFlz the radial resolution for a single-element 

transducer can be expected to be less than 100 pm, and the lateral resolution, 
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Figure 8.62 Sketch of a synthetic aperture intravascular imaging catheter according 

to the design of Schulze-Clewing et al. [247]. The PZT slab is mounted on a 

preprinted flex-circuit prior to dicing. The ICs needed for element driving, 

amplification, and selection are also mounted on the flex circuit. 

which decreases with radial distance and depends on the number of imaging 

lines, would be substantially less. However, with increasing frequency, the scat¬ 

tering from blood surrounding the probe increases more rapidly relative to 

that from other media (see Fig. 8.57a). As a result it becomes increasingly dif¬ 

ficult to distinguish between the two, thereby diminishing the accuracy with 

which the ratio of the areas of the plaque to lumen can be estimated. One 

method to help restore the contrast is to make use of the fact that the speckle 

produced by moving blood will be time-dependent, making it possible to 

devise filter schemes for reducing its effect [250,251]. Observation of the time- 

dependent region of the image can help delineate the lumen boundary, as can 

the use of contrast agents. An example of the contrast improvement made pos¬ 

sible by using a filter is illustrated in Fig. 8.64 [252]. These images, which show 

mild atherosclerosis, were obtained using a single-element 40 MHz transducer 

rotated at 1,800rpm, which corresponds to 30 frames/s. They display what 

appears to be a fairly uniform thickness of soft plaque that can be more readily 

distinguished from the region containing blood when filtering is used. The 

medium (weak scattering, ring-like region) surrounded by the more strongly 

scattering adventitia also appears to be more clearly delineated. 

8.10.2 Three-Dimensional Imaging 

The ability to slowly withdraw the catheter probe and record successive 

images enables longitudinal and cylindrical visualization of an entire vessel 

segment to be made. As noted in Chapter 7,3-D reconstruction from freehand 

2-D images obtained with a 1-D array normally requires a 3-D position 
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Figure 8.63 Single-frame coronary intravascular image using a 20-MHz synthetic 

phased-array imaging system at 30 frames/s and a catheter with a diameter of 1.2 mm 

(3.5F). (a) Image with tick mark separation of 1mm. (Reproduced with permission 

from O’Donnell et al. [88], IEEE Trans. Ultrason. Ferroelect. Ereq. Contr:, 44, 

714-721, © 1997 IEEE.) (b) Sketch indicating the likely characteristics of various 
regions. 

measurement system. However, if it is assumed that the catheter moves in a 

straight line, the only information needed for a simple 3-D reconstruction is 

the catheter displacement. Software has been designed and clinically used to 

provide a variety of other 3-D image display formats and also to automate 

the determination of plaque and lumen volumes as a function of the axial 
location [253,254], 

Three-Dimensional imaging at a given location in a vessel can also be per¬ 

formed using the forward viewing, 2-D synthetic aperture array that is 

described in the next subsection. An alternative approach developed by a 

group at Duke University is designed for intracardiac imaging [255,256] and 

makes use of a full 2-D transducer array mounted in a 3.8 mm (12F) or a 

2.8 mm (9F) catheter. The 5-MHz array consisting of 13 x 11 PZT elements 

spaced by 200 pm with a 25 pm kerf is mounted on a flexible polyamide sub¬ 

strate. Subsequently, the same group described [257] a 7 MHz catheter- 
mounted PZT array fabricated on a silicon substrate. 
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Figure 8.64 Examples of 40-MHz coronary intravascular images in a 0.87-mm- 

diameter (2.6F) catheter, (a) Without filtering algorithm, (b) Same image but using a 

filter algorithm to reduce the contrast produced by the moving blood. (Reproduced 

with permission from Hibi et al. [252], Circulation, 102, 1657-1663, © 2000 American 

Heart Association.) 

A major challenge associated with a more conventional method of beam¬ 

forming is the need for a large number of active channels required for simul¬ 

taneously transmitting data along the inside of the catheter. As briefly 

discussed in subsection 6.8.2, ribbon cables provide a partial solution to this 

problem. For example, Smith et al. [256] have reported that up to 143 chan¬ 

nels can be activated in a 3.8-mm catheter. As illustrated in Fig. 8.65a, two 

array mounting designs have been considered: a side-viewing array and a 

beveled, the latter providing a mixture of side and forward imaging. The 
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Figure 8.65 Catheter-based echocardiography 2-D array intracardiac imaging 

system, (a) Side and beveled mounting at the catheter tip along with ring electrodes 

for collecting electrocardiography signals and for delivering RF ablation energy, (b) 

Pyramidal scan volume from which various 2-D images can be displayed. (Reprinted 

by permission of Elsevier from Light et al. [255], Ultrasound Med. Biol.. 27, 

1177-1183, © 2001 World Federation of Ultrasound in Medicine and Biology.) 

pyramidal imaging volume provided by the array enables both B- and C-mode 
displays to be obtained. 

8.10.3 Forward-Viewing Transducers 

By 1990 it was appreciated that the inability to view ahead was a significant 

limitation of side-viewing intravascular imaging systems. Specifically, the side¬ 

viewing transducer must traverse the lesion by several millimeters to obtain 

an image. In the case of severe partial blockages of a vessel, there is a danger 

that the tip could restrict the flow; this, for a coronary artery, would increase 

the risk of myocardial ischemia. The ability to assess a severe lesion without 

having to cross it could help decide on the most appropriate interventional 
therapeutic approach and to measure its effects. 
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In 1991 a design [258] based on the use of a single-element transducer that 

could be rotated to achieve conventional side imaging (Fig. 8.66a, top) was 

proposed. By withdrawing the drive cable, the beam was reflected by a conical 

mirror and formed a conical image in the forward direction (Fig. 8.66a, 

bottom). About the same time, Busse and Dietz [259] described the results of 

simulations and scaled up experimental investigations of a sparse 2-D array 

of elements mounted on a disk at the tip of a catheter. This avoided the need 

for mechanical actuators, offered the possibility of real-time 3-D imaging, and 

represented an important initial step toward a more practical solution to the 
design problems. 

An alternative design [260] is illustrated in Fig. 8.66b. In this, a mechanism 

was used for converting a single rotation of the drive cable into a 90-degree 

rocking movement of the crystal mount, thereby enabling sector scan to be 

produced. Subsequently, Liang and Hu [261] described a forward-viewing 

catheter (1.7 mm, 5F) that used a fixed transducer and a rotating mirror that 

redirects the beam into an arc. However, both of these, along with a more 

recent design [261,262], lacked side-view imaging, a feature considered impor¬ 
tant for clinical use. 

To perform both side and forward imaging in the same catheter, the scheme 

illustrated in Fig. 8.67 was proposed by O’Donnell et al. [88] and subsequently 

described in more detail [263,264], It contains two synthetic aperture transducer 

arrays. For side viewing, a 64-element 20 MHz array, similar to that illustrated 

in Fig. 8.62, was proposed. For forward viewing it was proposed that the array 

consist of 64 radially oriented elements equally spaced around an annular ring 

with inner and outer diameters of 1.1 and 1.3 mm, respectively, and with a res¬ 

onant frequency of 10.4 MHz. The lower frequency was to provide increased 

depth of penetration and to avoid interference with the side-viewing array. 

The question as to how the radially oriented elements of this array could 

provide forward viewing over a range of angles with adequate resolution is 

vital to the success of this proposal. Norton [84] studied the problem of syn¬ 

thesizing a full disk aperture by means of a large number of arbitrarily small 

elements equally spaced around an annular ring. He showed that by suitably 

weighting all the received signals obtained from all possible transmit/receive 

pairs of elements, it was possible to obtain a point spread function (PSF) equal 

to that of a full disk whose diameter was twice the annulus diameter. 

For elements of non-zero size, it is helpful to first consider the effective 

receive aperture function that was defined in subsection 7.2.10. Although this 

is a CW approach, it does give a fair idea as to the pulse-echo characteristics. 

For 2-D apertures whose transmit and receive apertures are expressed in polar 

coordinates, i.e., 5Y(r,0) and ^(r,©), the effective aperture is given by 

5£(/',e) = Sr(r,0)**5SR(r,0), 

where the origin is at the center of the aperture. 

If the two apertures are identical and are of the form shown in Fig. 8.67b, 

then the effective aperture will be the 2-D convolution of the array aperture 

with itself, i.e.. 
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(b) 
Figure 8.66 Some early designs of a forward-viewing intravascular catheter (a) © 
Side-view imaging: the central rod is displaced forward so that the beam misses the 
edge of the conical mirror. © Forward viewing: the central rod is withdrawn so that a 
conical mirror producing an image that is formed from the surface of a cone reflects 
the beam. (Based on Lee and Benkser [258].) (b) Rotation of the drive cable causes 
the transducer to be rocked through 90 degrees, enabling a sector scan to be 
produced. 
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Figure 8.67 Side- and forward-imaging intravascular catheter, (a) Showing two 64- 

element arrays, (b) Forward-imaging synthetic aperture 64-element array. 

(Reproduced with permission from Wang et al. [263], pp. 1573-1576 in: 2001 IEEE 
Ultrasonics Symp., © 2001 IEEE.) 
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where 5, with the appropriate subscript, denotes the aperture function of an 

individual element of the A-element array [266], Two examples are shown in 

Fig. 8.68. In (a) a full transmit aperture is convoluted with receive aperture 

elements at 0 and 90 degrees. In (b) a full transmit aperture is convoluted with 

receive elements at 180 and 270 degrees. Also indicated in this case are the 

contributions of 0 and 90 degrees, had they been present. From these exam¬ 

ples it can be seen that the center region is common to all transmit elements 

and that a full self-convolution would be expected to result in an effective 

aperture whose amplitude is fairly intense at the center. This is evident in Fig. 

8.69, which also demonstrates that the effective receive aperture diameter is 

twice that of the annular ring. The non-uniform amplitude of the response can 

be expected to give rise to strong side lobes that would seriously degrade 

the imaging performance. By using various non-uniform receiver-weighting 
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Figure 8.68 Effective receive aperture for a full transmit array and two receive 

elements (a) at 0 and 90 degrees, and (b) at 180 and 270 degrees, (c) Central cross- 

section of the effective aperture for full transmit and receive apertures. (Modified 

version reproduced, with permission, from Wang et al. [263], pp. 1573-1576 in: 2001 

IEEE Ultrasonics Symp., © 2001 IEEE.) 

Figure 8.69 Effective receive aperture response for the annular array of Fig. 8.67b. 

Because of near-cylindrical symmetry, this graph represents the entire result of the 

2-D convolution as expressed by (8.32). (Reproduced, with permission from 

Dynamedia, from Crowe et al. [266], Ultrasonic Imaging, 23,19-38, © 2001 

Dynamedia.) 

functions, it has been shown that the response [263,266] can be improved, 

though with some loss in SNR. 

Full coverage of the effective receive aperture using the 64-element ring 

array described earlier requires 64 x 33 = 2,112 single transmit/receive pair 

firings. For an intravascular catheter, using a single transmit/receive pair at a 

time, the length of time required for this number of transmissions would result 
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Figure 8.70 Point spread function for a 64-element annular ring for (a) no steering 

and (b) steering of 23.6 degrees. The PSF (solid lines) are for 210 firings; the dashed 

lines are for all 2112 firing combinations. (Reproduced, with permission, from Wang 

et al. [263], pp. 1573-1576 in: 2001 IEEE Ultrasonics Symp., © 2001 IEEE.) 

in serious motion artifacts. Wang et al. [263] have proposed a sparse scheme 

that uses only 210 firings to form a complete image, though with some addi¬ 

tional (to the apodization method) loss in SNR. They computed the PSF for 

a 10-MHz system with no steering and steering of 23.6 degrees, and the results 

are shown in Fig. 8.70. Wang and O’Donnell [265] have also explored the use 

of compounding (see subsection 8.2.2) to reduce the effects of speckle noise, 
with encouraging results. 

8.10.4 Flow Measurement 

A method of measuring the blood flow within a vessel using a side-viewing 

transducer is that proposed by Li et al. [267,268], It makes use of the relation 

between the flow velocity and decorrelation. Specifically, the received RF 

signal from successive transmissions through a moving scattering medium 

decorrelates more rapidly as the velocity increases in the direction normal to 

the beam. Thus, if the relation between the correlation coefficient and the dis¬ 

placement is known, measurement of the correlation coefficient between suc¬ 

cessive A-mode transmissions should enable the velocity to be calculated. 

The above method was subsequently used with a side-viewing imaging 

array catheter [269]. Suppose that such a catheter is positioned coaxially in a 



*> 

Vessel Wall 

Vessel Wall 
Transducer 

Element 

Figure 8.71 Method for measuring blood flow using decorrelation of the RF signal 

from an intravascular catheter array, (a) Intravascular side-viewing catheter array, 

(b) Sample volume generated by excitation of several adjacent elements, (c) 

Decorrelation of an ensemble of scatlerers as they pass through the sample volume. 

592 



Ultrasound Imaging Systems 593 

vessel, as illustrated in Fig. 8.71a. If a small number of adjacent elements are 
joined together, e.g., 4 out of 64, and these are used for A-mode transmissions 
and leceptions, then the range-gated sample volume could be as illustrated in 
(b). Suppose that the RBC scatterer locations in relation to the sample volume 
for an A-mode transmission at a time t0 are those shown in (c). If the scatter- 
ers are moving in the transverse direction, then, for a subsequent transmission 
at ta + tPRI, the number of original scatterers in the sample volume will be less, 
and even less for transmission at t0 + 2tPRl. A new scatterer ensemble would 
have replaced the one that was displaced from the sample volume. Conse¬ 
quently, successive A-mode RF signals become decorrelated. 

It is reasonable to expect the correlation coefficient to decrease nearly lin¬ 
early with increasing velocity and with increasing tPRI (see subsection 10.4.2 
tor further details). These relationships provide a potential means of measur¬ 
ing the volumetric flow rate [268,270], Specifically, a transducer calibration is 
performed of the correlation coefficient versus displacement of an ensemble 
of scatterers. This enables the slope to be determined as a function of z. 
Then, the RF signals from successive transmissions are measured and 
correlated to determine the correlation versus time relation as a function 
of z. For a given z, the ratio of the measured time slope (s'1) to the 
calibration displacement slope (m_1) can be shown to be equal to the blood 
velocity (m/s). By performing the same process for each group of transducer 
elements around the catheter, the velocity distribution between the catheter 
and the vessel wall can be found. By using the B-mode images to determine 
the spacing between the vessel and the catheter, the volumetric flow can then 
be determined. 

In Fig. 8.71, it was assumed that flow was along the vessel axis and that the 
catheter was coaxial with the vessel. In practice, the blood velocity may have 
an appreciable component in the beam direction, and this will cause decorre¬ 
lation. Other effects, such as the presence of noise in the RF signal or a veloc¬ 
ity distribution within the sample volume, can also contribute to errors in flow 
velocity estimation [267]. 
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Principles of Doppler Ultrasound 

9.1 Historical Background 

In a paper given in 1842 before the Royal Bohemian Society of Learning, 

Christian Doppler (1803-1853) [1] proposed that when a wave source is 

moving with respect to an observer, the frequency perceived by the observer 

will differ from that transmitted by an amount proportional to the relative 

velocity and the transmitted frequency. A full account of this work was pub¬ 

lished in the society’s proceedings in the following year [2]. Three years later 

a young Dutch scientist confirmed the application of this theory to acoustic 

waves. As recounted by Jonkman [3], Buys-Ballot (1817-1890) arranged for a 

locomotive to transport brass horn players through a station where musicians 

recorded the change in pitch. Within the experimental errors, the results cor¬ 

responded well with the predictions made by Doppler’s theory. 

The first recorded observations concerning the Doppler effect at ultrasonic 

frequencies appear to be those made just prior to the end of World War I. This 

work, conducted in the United States off Key West in the Gulf of Mexico, 

established ultrasonic transmission over a 3 km path and showed that a pro¬ 

nounced change in the received frequency was caused by a moving target. It 

may not have been appreciated by those conducting the experiments that 

measurement of the frequency shift could provide a means for measuring the 

velocity component of the target in the beam direction. At about the same 

time, Chilowski and Langevin [4], working in France, filed a U.S. patent 

relating to ship and submarine motion measurement methods that clearly 
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described the underlying principles. Filed at the U.S. Patent office in May 1917, 

the patent contains the following statement: “The relative motion of the obsta¬ 

cle and the observation post may be determined by applying Doppler’s 

method, that is to say, by observing the change in frequency due to the move¬ 

ment. In Chilowski’s subsequent patent [5] filed in 1924, specific methods are 

described for measuring the speed of a vessel by beams projecting from the 

bottom of the vessel onto the underlying sea bed, measuring the backscattered 

frequency, and using a heterodyne method for determining the frequency shift. 

Lynnworth [6], in a review of ultrasonic flow measurement methods, lists 

eight categories of principles and methods, and this includes transit-time, 

Doppler, correlation [7], and deflection techniques. Of these, the transit-time 

and Doppler methods have been most widely used for biomedical flow esti¬ 

mation. In the transit-time method, which makes no use of the Doppler effect, 

the difference in transit time or phase between acoustic waves propagated 

upstream and downstream enables the fluid velocity to be determined. 

Although the first practical noninvasive transit-time method for fluid flow 

measurement was described by Karnus et al. [10] in 1954, it should be noted 

that the method is based on an idea that was disclosed many years earlier. For 

example, in 1928 Rutten [8] described a means based on transducers that were 

mounted within the flow field. Even earlier (1921), Kunze [9] described a 

transit-time technique for measuring air velocity. Subsequent developments, 

along with the availability of improved electronic techniques, resulted in their 

widespread use for industrial flow measurements [6] as well as for blood flow 
estimation. 

Satomura et al. [11], working at Osaka University, first described in-vivo 

Doppler signal measurements. Their results1, as presented in 1956, provided 

convincing evidence that the signals were created by moving tissue structures. 

They pointed out the potential of the method in the diagnosis of cardiovas¬ 

cular abnormalities [13]. Using a 3 MHz continuous wave ultrasound source 

and system (Fig. 9.1), they observed and recorded Doppler-shifted ultrasonic 

return echoes from moving structures in the heart. The externally placed 

transducer consisted of an annular structure with separate transmit and 

receive elements. 

In subsequent experiments, first described in 1958, Satomura reported the 

presence of Doppler-shifted ultrasound signals from blood vessels [15-17], In 

fact, he and Kaneko performed a frequency analysis of these signals and 

showed that quite broad ranges of frequencies were present, ranging up to 

several kilohertz. With the 5 MHz system illustrated in Fig. 9.2, they measured 

Doppler signals from a number of vessels and showed that the Doppler fre¬ 

quency was related to the blood velocity. Satomura and Kaneko correctly 

anticipated that the technique would be of clinical value in assessing arte¬ 

riosclerosis. However, they were mistaken in suggesting that the observed 

Doppler-shifted signals arose primarily from reflections of the incident ultra- 

1. Dr. Kaneko, a research colleague of Dr. Satomura, has written an authoritative account of 
the early stages in the development of the Doppler flowmeter [12]. 
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(a) 

Figure 9.1 Transducer (a) and schematic (b) of system used by Satomura to show 

how movement of the cardiac structures could be detected by the ultrasonic Doppler 

effect. (Reproduced, with permission of the International Federation for Medical & 

Biological Engineering, from Satomura et al. [14], © 1961 IFMBE.) 

sound from regions of turbulent flow in the vessel. It was not until the early 

1960s that the origin of the observed Doppler signals from within blood vessels 

was correctly identified. In 1962 Kato and his colleagues [18] offered conclu¬ 

sive evidence that the primary cause, at least for the low-hematocrit blood 

used in their experiments, was due to red blood cell (RBC) scattering. 

Subsequently, Reid et al. [19,20] demonstrated the same was true for normal- 

hematocrit blood and also showed that the backscattered power was propor¬ 

tional to the fourth power of the frequency, in agreement with the predicted 
behavior of Rayleigh scatterers. 

Like the design used by Satomura, early CW Doppler ultrasound systems 

had separate transmit and receive transducer elements and did not have direc¬ 

tional sensing capabilities. Consequently, if the velocity in a vessel reversed 

during part of the cardiac cycle, as it does in certain vessels, the reverse veloc- 
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Figure 9.2 Doppler blood flow velocity measurement system as first described by 

Satomura. (a) System, (b) Recording from the radial artery along with the ECG 

waveform. (Reproduced, with permission of the International Federation for Medical 

& Biological Engineering, from Satomura et al. [14], © 1961 IFMBE.) 

ity signal would appear incorrectly as a forward flow signal. The importance 

of developing methods for extracting the flow direction was quickly recog¬ 

nized. Kato and Izumi [21] in Japan were the first (1966) to describe a method 

based on the use of the heterodyne technique. Subsequently (1967), McLeod 

[22], working at Cornell University, described a Doppler system that used 

phase-quadrature demodulation for extracting the forward and reverse flow 

velocity components. 

9.2 Ultrasonic Transit-Time and Phase-Delay Methods 

Transit-time and phase-delay methods are based on the change in the appar¬ 

ent speed of propagation caused by motion of the propagation medium with 
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Uniform Flow 

<- 
(a) 

Figure 9.3 Snapshot showing the idealized CW wavefronts produced by a point 

source in a medium with a uniform flow velocity, (a) Effect of flow on the 

wavefronts from a stationary source at C. A stationary observer at D would find that 

the wavefront separation increases with flow velocity, (b) Analysis of the wavefront 

crest separation as seen by a stationary observer. 

respect to the source and receiver.2 These methods, unlike Doppler methods, 

do not require the presence of moving scatterers: they rely on the change in 

propagation caused by the moving medium. In the case of pulse transmission, 

it is the upstream/downstream transit-time difference that enables the fluid 

flow to be determined. On the other hand, for a CW source, it is the change 

in phase of the received signal due to propagation in the two directions that 

provides the flow information. In fact, the first practical flowmeter, as 
described by Kamus et al. [10], used this technique. 

Franklin et al. [23,24], whose publications concerning transit-time and 

phase-delay measurement methods started in 1959, pioneered the develop¬ 

ment of pulsed transit-time ultrasonic techniques for animal blood flow 

studies. About the same time, Herrick and Anderson [25], using a CW phase- 

delay method, reported the measurement of blood flow in animals using the 

phase-delay method. Also proposed by Franklin [26] was the use of frequency 

modulation as a means of avoiding the need to switch between the pairs of 
elements. 

The effect of uniform flow on the wavefronts is illustrated in Fig. 9.3a, where 

the pressure wave created by the point source can be expressed as 

2. Because flow velocity measurements are a major application of both ultrasonic Doppler 

and transit-time flow velocity measurement techniques, it seems appropriate to discuss them in 

this chapter, even though, as previously noted, the Doppler effect is not involved in transit-time 
methods. 
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p(r\t) = — 
r 

and the wavenumber vector k is taken to be normal to the wavefront in the 

propagation direction. A downstream observer at the point D will see crests 

that are further apait, while the opposite will be true for an upstream observer. 

Next, an expression will be obtained that relates the upstream-downstream 
phase difference over a path length L to the flow velocity. 

If the medium is stationary, the crests will be separated by r2n = X = df. 

However, for a medium flowing with a uniform velocity v, adjacent crests will 

be separated by a distance that generally differs from X. As illustrated in Fig. 
9.3b, the crest separations are now given by 

t2k = r2lt + v// = r2ir + vX/c. 

By evaluating the modulus squared and noting that r2n = X, we obtain 

X2 = v2 X2/c2 + (r- 2 v • t2kX/c . 

Noting that v-r2jl = vr2ltcos0, where 0 is the angle between r2n and v, the crest 
separation can be expressed as 

|r2Tt |e = cos 0 + Vl-eLsin20), 

where em - vie is the Mach number. If the transmission is in the opposite direc¬ 
tion. then 

lr27t|n_e = X(emcos{tz - 0) + Vl-eisin2(7t-0)) 

= -X[eMcos0- Vl-e«sin20]. 

It therefore follows that the upstream-downstream phase difference over a 
path length L is given by 

(9.1) A(p = — Lir^\o-f2n\K-e} =^^cos9 
X2 ca X 

Thus, the change in phase is directly proportional to the velocity component 
in the measurement direction. 

To account for a non-uniform flow velocity profile over the measurement 

path, we assume the transmission of an acoustic pulse and that the 

upstream-downstream transit-time difference is determined using the trans¬ 

ducer arrangement shown in Fig. 9.4a. Over an incremental distance ds, the 

travel time for a pulse is given by dt = ds/(c0 ± vcos0), so that the total transit 
time is given by 

1 
ds ~ —(1 -£McosQ)ds, 

c0(l + £mCOS0) Jc c, 

for em « 1. Consequently, the upstream-downstream transit-time difference 
is 
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Figure 9.4 Transit-time transducer schemes for volume flow estimation, (a) Direct 

transmission, (b) Reflector scheme. 

2 fD 
(9.2) At ~ — v cos Qds. 

A* 2 JC 
L/o 

For example, consider the case of a parabolic velocity profile in a circular pipe 

of radius R, i.e., v = vmax[l - (r//?)2]. It can readily be shown that for the same 

average flow velocity, the non-uniform flow will cause a 33% overestimation 

of the volume flow rate as compared to that estimated for uniform flow. 

Because of the dependency on the flow profile, calibration corrections may be 

needed to improve the accuracy. In the presence of pulsatile flow, because the 

velocity profile generally changes over the flow cycle, calibration corrections 

become difficult. 

An extensive range of transit-time ultrasonic flowmeters and transducers 

exist for use in production monitoring and measurements. For the measure¬ 

ment and monitoring of blood flow in animals, a variety of clamp-on trans¬ 

ducers are available for vessels with diameters ranging down to about a 

millimeter; they generally have one of the transducer arrangements shown in 

Fig. 9.4. 

9.3 Doppler Equation for Moving Scatterers 

The formula that characterizes the frequency change due to ultrasound scat¬ 

tering by a particle that moves with the local flow field can be derived in two 

steps. The first consists of obtaining the Doppler frequency shift seen by an 

observer located on the moving particle. The second consists of obtaining the 

frequency shift seen by an observer on a fixed (laboratory) frame of reference 

due to emission by the scatterer moving with the fluid. By combining both 

results, the overall Doppler shift can be calculated. 
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Figure 9.5 Deriving the Doppler equation due to a scatterer S that moves with the 

fluid velocity v, a fixed transmitter at T, and a fixed observer at R (the receiver). 

To simplify the analysis, the flow field will be assumed constant throughout 

the region of interest. As illustrated in Fig. 9.5, a transmitter T located at rT 
emits a monochromatic wave into a flowing medium. A scatterer S, located at 

rs at a time t, is assumed to be moving with a constant velocity v when meas¬ 

ured in a fixed laboratory coordinate system. The frequency seen by an 

observer located on the moving scatterer can be found by noting that the two 

coordinate systems are related by a Galilean transform. As shown below, fre¬ 

quency is not a Galilean invariant, and therefore the observed frequency 
depends on the velocity. 

Consider the Galilean transform from an unprimed to a primed Cartesian 

coordinate system moving with a constant velocity v. Such a transform can be 
expressed by 

(9.3) 

‘t ' l 0 0 O' V 

X -Vx 1 0 0 x' 

y ~vy 0 1 0 y 
_z. -~VZ 0 0 1. _z'. 

where vx, vy, and vz are the components of the fluid velocity measured with 

respect to the fixed (unprimed) system. We will first apply this transformation 
to the gradient function <j) = (j)(x, y, z: t), i.e., 

_ d§ ~ d(|) ~ 3d) 

V dx y dy dz 

where the curly overscore denotes a unit vector. Now the x-component can be 
expressed as 

d(j) _ 3<|) dx' d<J) dt' 

dx dx' dx dt' dx ’ 
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with similar expressions for d§/dy and d§/dz. Using (9.3), these reduce to 

9(j) d(|) 3(j)_ 3<)) 3c|)_ 3<|) 

dx dx' dy dy' dz dz' 

and consequently the gradient is a Galilean invariant, i.e., V(f> = V'(|). 

We now identify §(r': t') as the phase function as seen in the moving coor¬ 

dinate system and use the chain rule to express its partial derivative with 

respect to t' as 

d(j) _ d§ dt 9(|) dx' d(j) dy' d(J) dz' 

dt'-~dtd? + d?-dr+dy' dt' +a?at7' 

Using the transformation given by (9.3) and the Galilean invariance of the 

gradient, this equation simplifies to 

d<Krs:t') 
dt' 

dty(rs:t) 

dt 
+ v-V<J>(r-s:t). 

Now, the angular frequency of a harmonic function can be defined as the deriv¬ 

ative of the phase, i.e., co = d§/dt. Thus, the transmitted angular frequency seen 

by a stationary observer in the laboratory coordinate system can be written 

as co0 = d(j)(rs:t)/dt and that seen by the observer on the moving scatterer is 

to' = 3c|>(rs: r')/3G. In addition, because the wavenumber vector is given by 

kT = —V4>(rs: r) = (tOo/c0)kT/|kTl, the above equation simplifies to 

(9.4) to'= co0 - v kT. (a) 

The second step in the derivation is to consider the scatterer as a radiation 

source that has an angular frequency of to' in the primed frame of reference 

and that moves with the local flow field. We wish to determine the angular fre¬ 

quency to" that would be measured by an observer whose position is fixed at 

rR in the laboratory frame of reference. This also involves a Galilean trans¬ 
formation and results in 

(9.4) co' = to"- v-kR, (b) 

where, as indicated in Fig. 9.6a, kR = (co"/c0)kR/|kR| is the vector whose direc¬ 

tion is from the scatterer to the receiver. Subtracting (9.4a) from (b) enables 

the Doppler angular frequency shift to be expressed as 

coD = (o -o)0 = v-(kR-kT) = — v- to-co0 — 
co v kR kT 

or as 

(9.5) COo 
VCOo (0 

V «>o 
COS 0 p + COS 07 

Both of the angles in this equation are shown in Fig. 9.6a and are given by 

cos0R =-—U and cos07- = ■- r. For small Mach numbers (v/c„« 1), (9.5) 
vkR vkT /’v / 

simplifies to 
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Figure 9.6 Doppler shift produced by a scatterer moving with the flow velocity v. In 

(a) , the directions of the wave vectors are indicated. A simplified sketch is shown in 

(b) for the case where the transmitter and receiver are at the same location, (c) The 

incident and scattered beams paths can no longer be assumed to be straight lines 

when the scatterer is transported at high speed by flowing medium. The change in 

transport speed results in refraction, causing the incident and scattered beams to 
differ. 
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When the transmitter and receiver lie on the same straight line joining them 

to the scatterer (Fig. 9.6b), the well-known Doppler formula for the change in 

frequency produced by a moving scatterer results, namely 

(9.6) fD = fR~fT = -—/Ocos0 
cn 

(a) 

in which the negative sign indicates that the received frequency is less than 

the transmitted frequency when flow is away from the source. The angle 0 is 

generally referred to as the Doppler angle. Suppose that the transmitter and 

receiving crystals are mounted in the same probe holder at an angle (p to one 

another. If the angle made by the bisector between the transmitting and receiv¬ 

ing transducers and the velocity vector is now defined as 0, it can be readily 
shown that 
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(9.6) fD --—facos0cos(cp/2) 
Co 

(b) 

9.3.1 Refractive Effects 

In the presence of a non-uniform flow velocity profile with velocities 
approaching c0,the incident and scattered ray paths can be quite different from 
the geometric paths. The change in the speed of propagation relative to the 
laboratory coordinate system causes refractive bending of the beam in the 
manner illustrated in Fig. 9.6c. Depending on the flow profile, the incident and 
scattered angles can differ substantially. 

To illustrate this effect, we shall assume a linear change on flow velocity 
with depth. For an ultrasound beam incident at an angle of 0, at (xc, z0) on a 
region whose flow velocity is in the x-direction and increases linearly with 
depth (z), Ziomek [27, Chapter 5] has shown that the path of the ultrasound 
ray can be determined from 

z = z0 + 
Co sin[9,-(z)] 

sin0, 
- 1 kand cos[0r (z)] = cos0,-6 Sm — (x-x0), 

where 0r(z) is the angle of refraction at a depth z and b is the slope given by 
b = [c(z) - c0\/(z - Zo) By eliminating 0r from these two equations, the coordi¬ 
nates of the beam can be obtained, enabling the path to be calculated. This is 
illustrated in Fig. 9.7 for a fluid whose velocity in the lateral direction is 
assumed to change linearly with depth. Such conditions are not realistic in 
practice. Moreover, for physiologic flow conditions, because the peak flow 
velocities are less than 0.1% of c0, worst-case angle corrections for the inci¬ 
dent or scattered beam are well below one degree. 

9.4 Continuous-Wave Doppler Systems 

As noted previously, early versions of CW Doppler systems were insensitive 
to the flow direction. Consequently, when both forward and reverse flow com¬ 
ponents are present in a vessel, as occurs in some arteries, the flow velocity 
profile can be misinterpreted. Subsequent development of a variety of demod¬ 
ulation methods enabled the forward and reverse flow signals to be separated. 
One such technique, using phase-quadrature demodulation, will be described 
shortly. 

Over the 10-year period from the mid 1970s, CW Doppler systems were 
widely used for the assessment of vascular disease and provided a relatively 
simple means by which the normality or otherwise of the flow could be deter¬ 
mined in a noninvasive manner. Unlike pulsed measurement systems, CW 
systems have limited depth discrimination; therefore, when the sensitive 
(sample) volume intersects more than one vessel, the required Doppler signal 
can be seriously corrupted. As will be shown, pulsed systems do not make use 
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(Relative to a fixed laboratory frame) 

Lateral Distance, cm 

Figure 9.7 Effect of a moving fluid on acoustic wave propagation when the fluid 
speed varies linearly with depth. It is assumed that at a depth of z = z„ the speed of 
sound c(z0) = c„ = 1500m/s. (a) Sound speed depth profile c(z), i.e., speed relative to 
a fixed laboratory frame as a function of depth), (b) The beam path in the depth- 
lateral plane for incident angles of 45 and 135 degrees. 

of the Doppler effect (see section 10.1). Nonetheless, because the approximate 

equations relating the velocity and frequency shift are identical for both types 

of system, a description and analysis of CW systems provides a good founda¬ 

tion for understanding pulsed systems. Subsequently, these will be referred to 

as pulsed wave (velocity estimation) systems, in accordance with the termi¬ 

nology used by Jensen [35]. 



620 Biomedical Ultrasound 

For typical clinical peak flow velocities (e.g., 100 cm/s) and transmission fre¬ 

quencies (3-10 MHz), the Doppler frequencies are in the audio frequency 

range. For example, if the peak flow velocity ranges from 4 to 70 cm/s for a 7 

MHz system, and the Doppler angle is 60 degrees, then, from (9.6), the peak 

Doppler frequency would be in the range from 190Hz to 3.3 kHz. Because of 

this, the Doppler signal is generally converted to an audio output, enabling the 

time variations of the Doppler frequency to be assessed. In Chapter 8 it was 

noted that the backscattered signal from non-aggregating whole blood is typ¬ 

ically several orders of magnitude smaller than that from tissue; as a result, 

obtaining a Doppler signal that has a good SNR is normally of considerable 

importance. Generally, CW systems, with their very narrow bandwidth and 

relatively large insonated blood volume, can achieve a better SNR than for 

pulsed wave systems. 

9.4.1 Probe Design 

The design and performance of CW Doppler probes has been reported and 

discussed in several papers [28-30], Although it is possible to use the same 

element for both transmission and reception [33], most CW systems use probes 

with separate elements, thereby enhancing the SNR and avoiding the problem 

of cancelling out the large transmit signal at the receiver input. Of major 

importance in vascular assessment is the size and shape of the sample volume. 

For CW systems this is determined by the transducer geometry. The D-shaped 

transducer design illustrated in Fig. 9.8a consists of two transducers mounted 

a small angle to one another. Roughly speaking, the Doppler sample volume 

can be expected to correspond to the region of geometric overlap. Measure¬ 

ment and calculation of this volume is of considerable practical importance, 

and a variety of methods have been used. One scheme is to use a small vibrat¬ 

ing target immersed in water that can be scanned through the transmit-receive 

field [30-32]. The nature of the sample volume shape will be discussed in 

Chapter 10 (subsection 10.3.4) when discussing pulsed wave flow measure¬ 
ment systems. 

9.4.2 Extracting the Doppler Signal 

To extract the forward and reverse components of the Doppler signal, a variety 

of methods are feasible. In the early stages of development three demodula¬ 

tion techniques prevailed: single-sideband, heterodyne, and phase-quadrature 

demodulation. The basic principles, along with design details, are given in the 

books by Atkinson and Woodcock [34], Jensen [35], and Evans and McDicken 

[36]. The phase-quadrature demodulation method, one of the most widely used 

techniques for both CW and pulsed wave systems, will be briefly described. 

The phase-quadrature method illustrated in Fig. 9.9 provides in-phase and 

quadrature output signals that enable the flow velocity components to be 

readily extracted. It consists of two multipliers that generate sum and differ¬ 
ence frequencies and two bandpass filters. 
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Figure 9.8 Example of an 8-MHzCW Doppler probe showing the two-way spatial 

response characteristics, (a) Transducer with separate transmit and receive hemi- 

disks elements, mounted at an angle to one another, (b) The measured (two-way) 

response in two lateral directions at various axial distances as obtained using a small 

vibrating target in water. (Reproduced, with permission, from Douville et al. [30],/ 

Clin. Ultrasound, 11, 83-90, © 1983 Wiley. This material is used by permission of John 
Wiley & Sons, Inc.) 

A simple approach for understanding this method is to assume that the 

received signal consists of three frequency components: a forward (2Af, co/? 4>y), 

a reverse (2Ar, a>n (]/), and a carrier component (2A0, co„, <(>„), where the ampli¬ 

tudes, angular frequencies, and phases are denoted by 2A, to, and <(>, respec¬ 
tively. Thus, the received signal can be written as: 

R(t) = 2A0cos(co0f + <])0) + 2A/cos[(co0 + co/)f + <|>/] + 2Arcos[(oo0 -©,)? + <(>r ], 

which, when multiplied by cos(oy) and sin(ov), enables the in-phase (I) and 
quadrature (Q) signals to be expressed as 

I(t) = Aa cos[(2gv + <|)0) + cos (])0 ] + A/{cos(caft + tyf) + cos([2co0 + «/]! + 0/)} 

+ Ar {cos(gv - 4>r) + cos([2co0 - to, ]f + §r)}, 
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Figure 9.9 Example of an analog CW Doppler system for flow velocity estimation 

using a phase-quadrature demodulator. The flow separator is based on performing an 

analog Hilbert transform, enabling the forward and reverse flow components to be 

extracted. 

and 

Q{t) = A(,[sin(2oV + <|)0) - sin (j)0 ] - Af {sin(toft + §f) + sin([2co0 + 0if ]t + §f)} 

+ Ar {sin(oV -<(>,•) + sin([2co0 - mr ]f + <{>,.)}. 

If a bandpass filter is used to reject the DC and high-frequency components, 

these equations reduce to 

I(t) - AfCos((Oft + ()>/) + Arcos((drt -§r) (a) 

(9.7) Q(t) = -Afsin((tift + §f) + v4rsin(co,f - <\>r) 

Af cos 
Tl 'i ( 

(aft + §f + — \ +Arcos tort-tyr- 
2 J v 

Tt (b) 

Comparison of these two equations shows that there is a 90 degree phase dif¬ 

ference between the two signals. If flow is away from the Doppler probe, then 

the in-phase signal leads the quadrature signal by 90 degrees. 

Because of the pulsatile nature of arterial flow and the elastic nature of 

vessel walls, substantial vessel wall movement (e.g., 5%) occurs over the cardiac 

cycle. The associated velocity creates a strong low-frequency clutter compo¬ 

nent in the Doppler spectrum, and this typically has frequency components 

extending to around 200 Hz. If a bandpass filter is used to eliminate this and 

the high-frequency sum components of the mixer, the low-frequency cutoff is 

generally set within the range 100 to 200 Hz. However, this also removes the 

Doppler signal arising from slow-moving RBCs in the immediate vicinity of 

the vessel wall. To minimize noise, the high-frequency cutoff should be set to 

around the maximum Doppler frequency anticipated, e.g., 10kHz. 

A wide variety of methods have been proposed and used for extracting the 

forward and reverse Doppler frequency signals from the I and Q components. 

A particularly straightforward method is that illustrated in Fig. 9.9. It uses a 
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Figure 9.10 Method for extracting the spectra and forward and reverse flow signals. 

The subscripts or superscripts R and I refer to the real and imaginary parts, 

respectively, and the subscripts R and F (not italicized) refer to the forward and 

reverse flow components, respectively. (Based on a similar drawing by Aydin et al 
[38].) 

Hilbert transform (the equivalent to a filter that performs a 90 degree phase 

shift over the frequency band of the Doppler signal), followed by addition and 

subtraction. For the I and Q signals given by (9.7), it can be seen that this 

process extracts the forward and reverse signal components, i.e., 

Vf = I(t) + Q(t) = 2 A/cos( (Oft + (j^) 

Vr = I(t) - Q(t) - 2Arcos((ort - (]),). 

For the analog systems initially used, achieving a 90 degree phase shift with 

sufficient accuracy over the entire Doppler signal bandwidth (e.g., 10 Hz to 15 

kHz), was particularly challenging. Digital methods provide a more accurate 

and convenient means for performing the Hilbert transform, enabling the 

time-domain form of the velocity signals to be extracted, as has been described 

by Aydin and Evans [37,38], Their scheme is illustrated in Fig. 9.10. It uses a 

complex FFT to extract the real and imaginary parts of the spectrum, filters 

to obtain the in-phase and quadrature components of the forward and reverse 

flow spectra, and finally an inverse FFT (IFFT) to obtain the time-domain 
signals. 

9.5 Continuous-Wave Doppler Spectrum Related to 
Velocity Profile 

Spectral analysis of the Doppler signal can provide information concerning 

the underlying hemodynamics. The potential clinical importance of this rela¬ 

tion was first appreciated in the 1960s by the group working with Kaneko 

[12,39] in Japan. They developed several on- and off-line frequency analysis 

schemes that were used in the early clinical studies [40]. 

As described in Chapter 5, the CW backscattered signal from stationary 

blood arises from the interference effects produced by scattering from a very 

large number of RBCs. Moreover, it was noted that the signal is a zero-mean 

Gaussian random process that can be completely specified by its autocorrela- 
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tion function. If a range of RBC velocities are present in the sample volume, 

a corresponding spectrum of frequencies will be present in the Doppler signal, 

and this will vary in a periodic manner over the cardiac cycle. Of considerable 

importance in the noninvasive assessment of arterial disease is the relation 

between the Doppler spectrum and the flow velocity profile. In principle, with 

the pulsed method it is possible to use a sufficiently small sample volume so 

that the flow velocity at a given location can be sampled and measured over 

a cardiac cycle. However, in CW Doppler the sample volume tends to be large 

and may completely envelop the entire cross-section of a vessel. Moreover, 

attenuation can cause the sensitivity to vary with depth. These added compli¬ 

cations can make it more difficult to properly interpret the spectrum in terms 

of the flow velocity profile. 

9.5.1 Steady Flow Spectra 

The relation between the flow velocity profile and the Doppler power spec¬ 

trum can be derived in a simple manner by ignoring the stochastic aspects of 

the problem and making a number of additional simplifying assumptions. 

Roevros [41] used this approach in studying the Doppler spectrum produced 

by a suspension of scatterers flowing in a cylindrical tube. The predicted spec¬ 

trum corresponds to that determined from a very long time-domain record 

under steady flow conditions. His derivation also assumed fully developed 

laminar flow in a cylindrical tube of inner radius R, and a flow velocity profile 

given by 

(9.8) v(r) = vmax\l-(r/R)" 

where n characterizes the flow velocity profile and vmax is the flow velocity 

at the center. As illustrated in Fig. 9.11, Poiseuille (parabolic) flow conditions 

Figure 9.11 Examples of flow velocity profiles in a circular tube according to (9.8). 
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(a) (b) 

Figure 9.12 Geometry used for calculating the CW Doppler power spectrum due to 

flow in a circular tube, assuming a rectangular slab sample volume. 

correspond to n = 2, while n - °o corresponds to a flat profile. Roevros also 

assumed that the ultrasound sample volume intersected the vessel at an angle 

0 and that the intersection region consisted of the volume whose length in the 

flow direction is given by €/sin0 (Fig. 9.12). The scattered signal was assumed 

to arise from randomly distributed point scatterers within the intersection 

volume. For a constant sensitivity in the intersection volume, the total received 

signal intensity could therefore be taken as the sum of the intensities from 

each individual scatterer, thereby making it unnecessary to consider interfer¬ 

ence effects. In addition, by ignoring the effects of attenuation and spectral 

broadening, his analysis predicted the correct ensemble averaged form of the 
power spectrum. 

The first effort to account for the stochastic nature of the backscattered 

signal from blood and to relate the Doppler spectrum to the velocity profile 

appears to be that presented by Fahrbach in 1969/70 [42], In fact, this work 

precedes the often-quoted 1971 report by Brody [43] and the paper by 

Roevros [41] in 1974 that also addressed these issues. Brody assumed that the 

RBCs could be modeled as independent point scatterers and derived an 

expression for the autocovariance function. By taking its Fourier transform, 

an expression was then obtained for the power spectrum. A more general 

approach based on the analysis given by Bascom and Cobbold [44] is pre¬ 
sented below. 

We shall assume that the scatterers have a non-zero size and their spatial 

distribution is as described in Chapter 5. From the definition of the backscat- 

tering coefficient aBSC [see (5.59)}, the backscattered power from an elemen¬ 
tal volume dV of scatterers is given by 

(9.9) dP = aBSCQdV, 

where Q is the solid angle suspended at the receiving transducer by dV. Such 

a volume element can be taken to encompass all scatterers having a velocity 
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range from v to v + dv, provided its dimensions are small compared to its dis¬ 

tance from the receiving transducer. If the velocity profile is monotonic and 

axiymmetric, this velocity range will correspond to an incremental radial dis¬ 

tance range from r to r + dr. With the help of Fig. 9.12b, the elemental volume 

can therefore be expressed as 

(9.10) dV = —— 2nrdr. 
sinG 

According to (5.71), the backscattering coefficient is given by aB5C = 

abHW(H)/Vs, where ob is the scattering cross-section, H is the hematocrit, the 

scatterer volume is denoted by Vs, and the packing factor W, is a function of 

the hematocrit. By substituting this expression and (9.10) into (9.9), the 

backscattered power is given by 

(9.11) dP = a»HW(H) ain — rdr. 
Vs sinO 

In velocity space, the Doppler power spectrum <3>(v) can be defined by 

dP(v) = O (v)dv = O(v) 
dv 

dr 
dr, 

which, when substituted into (9.11), enables the Doppler spectrum to be 
expressed as 

O(v) 
cbHW{H) Q2n£ fdvY1 

Vs sin 0 v dr, 

When the differential coefficient of (9.8) is substituted into this equation, we 
obtain 

0(v) = GbHW{H)Q2nt R2 L_vJtV 

V, sinO nvmax v ^max / 

This can be expressed in Doppler frequency space by using the Doppler equa¬ 
tion given by (9.6), yielding 

(9.12) ®(/d) = 
ghHW(H) Q2nl R2 

Vs sin 0 nfoax 

f 
1 

v 

fp 
cma 
D 

2-n 

where /gax = 2(vmax/c0)/0cos 0 is the maximum Doppler shift and O(fD)dfD is the 

total backscattered power in the frequency range from/D to fD + dfD. This equa¬ 

tion is similar to that derived by Roevros [41], except that it now accounts for 
the scatterer size. 

For parabolic flow (n = 2), (9.12) predicts a constant power density spec¬ 

trum from zero frequency up to a maximum corresponding to the spectra 

generated by scatterers at the center of the vessel that move with the peak 

velocity. This case, together with the other flow profiles of Fig. 9.11, are illus- 
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Figure 9.13 Relation of the flow velocity profile to the CW Doppler spectrum. For 
parabolic flow (n = 2), the spectrum is flat extending up to a frequency determined 
by the maximum flow velocity. For a flat velocity profile (n = °o), the profile is a 5- 
function at fD/foax = 1 • 

trated in Fig. 9.13. In practice, the sample volume is unlikely to be well modeled 

by a rectangular slab, and other assumptions such as a circular beam [45] and 

a Gaussian weighted beam [46] have been numerically and analytically 
examined. 

Based on certain simplifying assumptions, Brody [43], Arts and Roevros 

[47], and Nakayama and Furuharta [48] have shown that the mean Doppler 

shift is proportional to the mean scatterer velocity and is independent of the 

velocity profile. Specifically, if the transmit/receive sensitivity is uniform over 

the insonated volume and spectral broadening effects (see section 9.7) can be 

neglected, the mean velocity estimate can be expressed in terms of the 
complex power spectral density as 

f9-13) V = /<>*(/„ )dfj] 4>(/D )dfD, 

which is independent of v(r). Now, for a cylinder with an inner radius of R, the 

instantaneous volume flow rate (e.g., ml/sec) is given by £) = nR2k This rela¬ 

tion and (9.13) have frequently been used as the basis for determining the 
volume flow rate in blood vessels.3 

9.5.2 Characteristics of Pulsatile Blood Flow in Arteries 

For pulsatile flow, the Doppler spectrum will change over the cardiac cycle, 

with the maximum flow velocity occurring close to peak systole. As an 

3. See subsection 10.11.2 for further details of CW Doppler techniques based on this approach. 
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Table 9.1. Values Used for Calculating the Velocity Profiles in Fig. 9.14 

Artery 

Diameter 

(mm) 

Kinematic 

Viscosity 

(cS) 

Mean 

Flow 

(ml/s) 

Peak 

Flow 

(ml/s) cc0 

Period 

(sec) 

Common carotid 7.31 3.60 7.4 28 5.22 0.85 

Common femoral 9.0 3.60 5.8 35 6.42 0.85 

Data obtained from Shehada et al. [49]. 

example, we shall consider blood flow in the common carotid and femoral 

arteries of man. Based on the unsealed waveforms given by Evans and 

McDicken [36, p. 13] for a normal volunteer and the data given in Shehada et 

al. [49], volumetric flow waveforms are shown in Fig. 9.14 along with computed 

velocity profiles over a flow cycle. The basis of these calculations is the method 

described by Evans [50] that makes use of equations derived by Womersley 

[51] for the velocity profile produced by a sinusoidal flow waveform in a rigid 

tube. These equations assume that the flow is fully developed so that the profile 

does not depend on the axial distance; the flow is laminar; the fluid is incom¬ 

pressible; and the fluid viscosity is independent of the shear rate. The overall 

velocity profile can be determined by first Fourier analyzing the flow wave¬ 

form. The flow profile associated with each component can then be determined 

and finally, by summation, the overall profile can be found. Further details of 
this process are given below. 

For fully developed pulsatile laminar flow through a tube of radius R, the 

velocity profile can be expressed in terms of the radial coordinate r. If the vol¬ 

umetric flow <2(0 is periodic with a fundamental angular frequency oo0, the 
flow can be expressed as a complex Fourier series: 

(9.14) Q{t) = Qo + yZQmei(m^m\ 
m=1 

where Qm and §m denote the amplitude and phase of the mth harmonic, 

respectively, and Q0 is the steady flow component. Following the procedure 

given by Evans [50], the following form for the instantaneous velocity profile 

can then be obtained from (9.14) in combination with the Womersley 
equations: 

v{r.t) = 

(9.15) 

kR 
Re \2Q0\l-(r/Ry + YjQ» 

m-1 

(t/ii ) "tm'A) (Tv Ttn ) 
(^m ) ~~ 2./j (Tm ) 

where xm - amiiL, in which a,n = R^ma)0 p/p is the Womersley number for the 

m’th harmonic, p is the shear viscosity, and p is the fluid density. Examination 

of this equation shows that in the absence of any pulsatile components the 

velocity profile is parabolic, with a maximum value equal to 2Q0/(nR2), as 
expected. 
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50 100 
Velocity, cm/s 

Figure 9.14 Examples of the estimated flow waveforms for (a) a normal human 

common carotid artery and (b) a normal femoral artery. The corresponding flow 

velocity profiles shown in (c) and (d) were calculated using (9.15) together with the 

data in Table 9.1. 

9.5.3 Characteristics of the Doppler Signal and its 

Power Spectrum 

Two 10-ms segments of a CW Doppler signal measured at peak diastole and 

late diastole from a common carotid artery are shown in Fig. 9.15. Both seg¬ 

ments were Fourier transformed, and the resulting power spectra are shown 

in (b) and (d). Although the Doppler signal is non-stationary, the 10ms inter¬ 

val in late diastole is likely sufficiently short so that the signal can be consid¬ 

ered quasi-stationary over this period. Around peak systole, the flow profile 

changes much more rapidly, and an analysis window of around 5 ms would be 

preferable. Examination of systolic spectrum indicates that most of the power 

is concentrated at higher frequencies. According to the results of Fig. 9.13, this 
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Figure 9.15 Measured time-domain segments of 10-ms duration from a normal 

common carotid artery, together with Doppler signals and their spectra, (a) Close to 

the systolic peak, (c) Close to late diastole. In (b) and (d) are shown the spectra of 

the two time-domain signals of (a) and (c), respectively. (Reprinted by permission of 

Elsevier from Cobbold et al. [52], Ch. 5. in Cardiovascular Applications of Doppler 

Ultrasonography, Churchill Livingstone, © 1989 Longman Group, UK, Limited.). 

suggests that the velocity profile is closer to being flat rather than parabolic, 

which is in agreement with the theoretical profile shown in Fig. 9.14c for the 

phase angle of 30 degrees. Some noise is present, and this is particularly 

evident at frequencies where the Doppler signal power is negligible. 

A traditional method of displaying the time-varying spectra is to use a gray 

scale for the spectral power or amplitude, as illustrated in Fig. 9.16. This picture 

for a normal human internal carotid artery clearly indicates the absence of 

lower-frequency components in the region of the systolic peak. Apart from the 

effects of the high-frequency filter (-300Hz), in the diastolic region the spec¬ 

trum looks much flatter, corresponding to a velocity profile that is closer to 

parabolic. At peak systole, the power is primarily confined to frequencies 

between /odX and /™n. Instead of gray scale, color encoding can also be used 

to display the amplitude, and by using tracking algorithms, the variations of 

/™x and f'o" can be displayed. Moreover, all of this information can be shown 
as a running display that is continuously updated. 

An alternative display format is the pseudo-3D graphs shown in Fig. 9.17. 

In (a), the absence of low-frequency components in the neighborhood of the 
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Time, sec. 

Figure 9.16 Gray-scale display of the amplitude spectrum from a normal human 

internal carotid artery. Each spectrum was calculated for a 10-ms segment and 

displayed in gray scale. (Reprinted by permission of Elsevier, from Kassam et al. 

[53]. Ultrasound Med. Biol., 11, 425-433, 1985, © 1995 World Federation of 

Ultrasound in Medicine and Biology.) 

systolic peak should be noted. For (b), much higher frequencies are seen 

throughout the flow cycle, particularly in the neighborhood of peak systole. 

This indicates the presence of a stenosis that would cause the flow to be con¬ 

fined to a smaller cross-section area, possibly resulting in the formation of a 

jet and accompanied by flow separation. Such methods of analyzing and dis¬ 

playing the Doppler signals are sometimes referred to as spectral Doppler. This 

is in contrast to methods that analyze and display the mean flow as a 2-D color 

map, which will be referred to as pulsed wave flow imaging (see section 10.7). 

To help interpret the Doppler spectra obtained from insonating normal and 

diseased vessels, a flow model can be very helpful [54], Such a model can be 

either physical or mathematical. Computational fluid dynamic models have 

the advantage that changes in geometry and flow conditions can be readily 

made, often enabling predictions to be made that would be difficult to test 

experimentally. Because such a model enables the velocity vector throughout 

the vessel to be predicted at each instant of time, the Doppler spectrum for a 

given sample volume shape can be estimated. Such models do make a number 

of assumptions that are not required for a physical model. A physical model 

extensively studied is that illustrated at the top of Fig. 9.18. It consists of an 

acrylic tube with an inside diameter of 4.6mm and a 70% asymmetric area 

stenosis in the entrance region. It is designed to approximately simulate the 

conditions seen in a partially blocked vessel, without causing a significant 

reduction in the mean volumetric flow. This model has been used to study the 

changes in spectra obtained with insonation location [44, 55, 56] using either 

steady or pulsatile flow and either CW or pulsed wave [57] measurement 

systems. 
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Figure 9.17 3-Dspectral displays of CW Doppler spectra from human carotid 

arteries, (a) Normal and (b) abnormal Doppler spectra. For (b), the much higher- 

frequency components correspond to higher flow velocities and indicate the presence 

of a moderately severe stenosis. (Reprinted by permission of Elsevier from Cobbold 

et al. [52], Chapter 5, in Cardiovascular Applications of Doppler Ultrasonography, 
Churchill Livingstone, © 1989 Longman Group, UK, Limited.) 

The fluid displacement profile sketches shown in Fig. 9.18 were based on 

measurements of the displacement profiles obtained with a nearly identical 

model using a photochromic dye visualization technique [58]. For both CW 

Doppler and pulsed wave measurements, a fluid consisting of a suspension of 

outdated human RBCs suspended in saline (to prevent aggregation) was used. 

A CW probe was directed downstream at an angle of 50 degrees to the axis 
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of the tube, whose inner diameter was 4.6mm. For the photochromic meas¬ 

urements, the test section had an inner diameter of 5.1 mm and the fluid con¬ 

sisted of kerosene with small amount of dye. A pulsed laser beam was used to 

activate the dye. By photographing the trace shortly after the pulse, the veloc¬ 

ity profile was measured, and this was repeated at various axial locations. To 

ensure similar flow conditions in the two sets of experiments (the fluids had 

different kinematic viscosities), the same Reynolds number (R£ = 2Rvp/p) was 

used for both. For pulsatile flow, both the Reynolds number and Wormersly 

parameter were matched for the two sets of experiments. 

Using a parabolic inlet velocity profile at a Reynolds number of 545, four 

regions distal to the stenosis can be identified, and these are associated with 

Doppler spectra that have distinctly different characteristics [55], As can be 

seen from the middle portion of Fig. 9.18, prior to the stenosis the spectrum 

is quite flat, corresponding to the parabolic inlet flow. In the first region (I) the 

high jet velocity gives rise to a high Doppler frequency. In addition, the ret¬ 

rograde flow in the separation zone causes a reverse Doppler spectrum. As 

the probe is moved further downstream (II), the maximum Doppler frequency 

is reduced, the spectrum becomes peaked at the low-frequency end, and the 

reverse spectral power is diminished. Further downstream (III), the Doppler 

spectrum becomes peaked toward the high-frequency end and the maximum 

frequency is further reduced as a result of the complete dissipation of the jet 

flow. The spectrum is similar to that expected from a velocity profile that is 

relatively flat, such as that arising from steady turbulent flow in a circular tube. 

As the insonation point is moved even further downstream (IV), the flow field 

begins to re-laminarize, and at 20D the Doppler spectrum is essentially flat, 

indicating a return to parabolic flow. 

The total backscattered power at seven locations is shown at the bottom of 

Fig. 9.18. In the laminar flow regions, apart from the reduction in the throat of 

the stenosis, the power remains reasonably constant. However, in the turbu¬ 

lent zone, a significant increase in the backscattered power occurs. As briefly 

discussed in Chapter 5 (see Fig. 5.24), turbulence can be expected to cause an 

increase in the local variance of RBC number density, thereby increasing the 

backscattering coefficient. Measurements made with 4% hematocrit blood 

showed no significant change in backscattered power in the turbulent zone, 

which is in agreement with the discussion in subsection 5.9.4. 

9.6 Properties of the Doppler Signal 

9.6.1 Statistical Properties 

In considering the statistical properties of the Doppler signal, we shall assume 

that the sample volume contains N identical scatterers, each of which has a 

scattering cross-section of ab. The backscattered RF signal from the ith scat- 

terer moving with a velocity v, can be written as 

x, (r) = A Va7cos[(co„ - too )t + (j), ], 
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Figure 9.18 Changes seen in the Doppler spectrum and total backscattered power 

for a 5 MHz CW system as the insonation site was moved relative to a 70% (by 

area) stenosis. The experimental results were obtained under steady flow conditions 

at a Reynolds number of 545 using a 40% suspension of human RBCs in saline. The 

Doppler probe axis was at 50 degrees to the tube axis. Note that the power reaches a 

maximum in the turbulent region. (Reproduced, with permission, from Bascom and 

Cobbold [44], IEEE Trans. Biomed. Eng., 43, 562-571, © 1996 IEEE, and reprinted 

by permission of Elsevier from Bascom et al. [55], Ultrasound Med. Biol., 19, 

197-210, © 1993 World Federation of Ultrasound in Medicine and Biology.) 

where A is a constant and where the Doppler equation, namely (9.6), expresses 
to‘D in terms of v„ i.e., 

(9-16) coo = 2(to0/c0)vj cos0 = 2k• v;. 

Using this to eliminate coi, from the previous equation yields 

x,(/) = AVo7cos[(w0 + 2k \j)t + <]>,]. 
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Figure 9.19 Statistical properties of the Doppler signal, (a) Measured CW Doppler 

amplitude distribution in the time domain for steady flow of a 42% hematocrit 

suspension of RBCs. A Gaussian distribution is shown for comparison, (b) Power 

distribution at 1.5 kHz measured over 1,500 successive 10-ms time intervals, 

providing evidence that the power at a specific frequency is chi-squared distributed 

with two degrees of freedom. (Reprinted by permission of Elsevier from Bascom et 

al. [55], Ultrasound Med. Biol., 19, 197-210, © 1993 World Federation of Ultrasound 

in Medicine and Biology.) 

When all such components are summed over the N identical scatterers within 

the sample volume and the resulting signal is demodulated and low-pass fil¬ 
tered, the Doppler signal is obtained as 

N 

x{t) = AVo7 X cos[(2k • v, )r + ()>, ]. 
i=i 

In this equation v, is a function of r„ which, like <^>„ is a random variable. Because 

x(t) is formed from the sum of a large number of independent contributions, 

it tends toward a Gaussian random process that has a zero mean; consequently, 

it can be completely specified by its autocorrelation function [59], 

Experimental evidence that the Doppler signal in the time domain is Gauss¬ 

ian distributed has been presented by Bascom et al. [55]. Using the model illus¬ 

trated in Fig. 9.18 with a 42% hematocrit suspension of RBCs, a 1.0s duration 

demodulated Doppler signal was recorded and digitized from a region where 

laminar flow was expected to be present. As can be seen in Fig. 9.19a, the 

sampled amplitude has a distribution that is close to Gaussian. Measurements 

at other locations, using short-duration windows, also indicated that through¬ 

out the flow model the signal was Gaussian. A second aspect concerns the 

statistics of the power spectrum: specifically, the characteristics of the power 

distribution at a specific frequency. For a Gaussian-distributed time series it 

can be shown [60, pp. 466-468] that the power distribution at a specific fre¬ 

quency should be chi-squared distributed with two degrees of freedom.4 

4. An exponential distribution is the same as the special case of a chi-squared distribution 

with 2 degrees of freedom. 
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Experimental results obtained in a laminar flow region are shown in Fig. 9.19b, 

and these show close agreement with the predicted distribution. However, in 

the turbulent zone, Bascom et al. [55] reported that the hypothesis of a chi- 

squared distribution should be rejected. 

9.6.2 Doppler Simulation Models 

A Doppler signal model [61,62] can be based on a voxel approach for describ¬ 

ing the scattering by blood; as will be seen, this results in a form that is par¬ 

ticularly convenient for simulation purposes. In Chapter 5, it was pointed out 

that if the sample volume is divided into elements of volume that are small 

compared to a wavelength, then each voxel will contain differing numbers of 

RBCs, depending on the statistics. The backscattered pressure waveform was 

shown to arise from the effects of these variations throughout the sample 

volume. We first recall (5.66), which was derived for the backscattered RF pres¬ 

sure waveform created by a given stationary realization of RBCs within the 

sample volume. This equation can be readily adapted to account for the effects 

of flow and demodulation through the following steps. First, the crystallo¬ 

graphic term can be ignored. Second, to obtain the Doppler demodulated 

signal we replace to by co)>, as expressed by (9.16). Third, we divide the total 

range of velocities within the sample volume into M velocity bins and use the 

index i to denote one of these bins. The number of voxels in the z'th bin whose 
velocities are v, will be denoted5 by m,. 

From (5.66), making use of the above substitutions and notational changes, 

the demodulated time-domain Doppler signal can be expressed as 

_ M mi 

(9-17) x(t) = X n' i(t - hi) cos(2fk ■ V, + (]),■,■), 
t=1 /=1 

where n,;(t-ri;) denotes the deviation of the number of RBCs in they'th voxel 

of the ith bin from the mean value at a time (;t - tuj), where tu is the time taken 

for the scattered wave to travel back to the transducer. Also, <\>Qis the corre¬ 

sponding voxel phase that can reasonably be assumed to be uniformly dis¬ 
tributed over (—7T, 7t). 

By proceeding in a manner similar to that enabling (5.60) to be transformed 
into (5.62), it can be shown [61] that (9.17) can be transformed to 

M 

(9-18) x(t) = Ayfo^^jai(t)cos(2tk\i + \\fi), 
1 

where the phase \]/, is uniformly distributed over (-n, n) and a,(t) = 
Fmi 

is a Rayleigh distributed random variable. If each bin has an 

5. The sum of the m-values over all velocity bins will equal the number of voxels in the sample 
volume, i.e., I" m, = Nx. 



Principles of Doppler Ultrasound 637 

incremental frequency range of A/, then the Doppler signal power of the zth 
bin is given by 

But from (9.18), the power of the zth component is AP,(t) = obaj(t)l2. Conse¬ 
quently, (9.18) can be written as 

M 

(9.19) 
i=i 

where is a chi-squared random variable with two degrees of freedom and a 

mean value of unity. The advantage of this model is that it enables the Doppler 

signal to be simulated for any assumed spectral shape. As shown by Mo and 

Cobbold, (9.19) enables realistic Doppler signals to be simulated for both 

steady [63] and pulsatile flow [64] conditions. For example, in the case of steady 

parabolic flow, it may be reasonable to specify a flat spectrum extending from 

a wall cutoff frequency of ffi" up to /Sax. Then, with M = (/^ax -fT)!AfD and 

a constant value of 0(/o, t) over this frequency range, (9.18) can be used to 

generate the Doppler signal. On the other hand, if the flow is pulsatile, the 

variation of the Doppler spectrum must be specified over a complete flow 

cycle. However, the model does not simulate the effects of the low-frequency 

clutter signal created by vessel wall movement. As noted earlier, these move¬ 

ments create signal components with spectra that are typically below 200 Hz, 

though with amplitudes many times stronger than that from blood. 

An alternative simulation approach is to assume that the backscattered 

signal is created by a random distribution of small identical particles trans¬ 

ported in fully developed pulsatile flow. The velocity profile equation given by 

(9.15) can be used to determine the velocity distribution within the insonated 

volume. This, together with an appropriate scattering model, enables the 

backscattered signal and its non-stationary spectrum to be predicted. Bastos 

et al. [65] used this simulation method to examine the influence of accelera¬ 

tion and other parameters on the spectra obtained with a pulsed wave meas¬ 

urement system. Subsequently, in studying methods for removing the clutter 

component, Zhang et al. [66] extended this simulation approach by including 

a low-frequency component that simulated the effect of vessel wall movement. 

For various clutter-to-blood ratios, they showed that a wavelet approach could 

be used to advantage for separating the clutter signal with minimum loss of 

the true flow signal. 

9.7 Doppler Spectral Broadening 

An ideal Doppler velocity determining system when measuring a single scat- 

terer moving with a constant velocity should have a power spectrum with a 6- 

function response at the Doppler frequency. Spectral broadening refers to an 

increase of the spectral bandwidth; as will be described, several potential 
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sources can be identified. Spectral broadening is also important in optics, par¬ 

ticularly in association with Doppler laser flow measurements, in weather 

radar (wind shear information can be derived from the Doppler broadening), 

as well as in Doppler ultrasound. 

In Doppler radar, it is well established that ambiguity (uncertainty) exists 

in simultaneously measuring the range and speed of an object. This is also true 

for Doppler ultrasound measurements. To illustrate this, we shall consider the 

accuracy that can be achieved using long- (pseudo-CW) and short-pulse radar 

transmissions for determining the range and speed of an object. Long-pulse 

radar is a narrowband process, and the accuracy with which the Doppler shift 

can be measured is limited by the SNR and the transit time of the object 

through the beam. However, considerable uncertainty will exist as to the target 

range. Short-pulse transmissions enable the range to be determined much 

more accurately, but the wider bandwidth and the resulting higher noise 

increase the ambiguity in determining the Doppler frequency. It can be shown 

that for an optimal matched filter reception system, the product of the range 

and speed measurement errors is determined by the SNR and the time- 

bandwidth product of the measurement system. For such a system, the ambi¬ 

guity function introduced by Woodward [67] provides a useful means of 

optimizing the system so that it best meets the desired performance. Similar 

limitations and optimization tasks are present in Doppler ultrasound. First, it 
is helpful to look at the ambiguity arising from spectral broadening. 

Green [68] seems to have been the first to identify and analyze several dis¬ 

tinct causes of spectral broadening in Doppler ultrasound flowmeters. This 

work was extended by Brody [43], who included both the transit-time and geo¬ 

metric effects as distinct causes of broadening (see also [69] and [70]). As indi¬ 

cated in Table 9.2, the many possible causes of Doppler spectral broadening 

can best be discussed by categorizing them according to whether they are 

intrinsic or extrinsic to the transduction and analysis processes. Intrinsic refers 

to those processes that are an inherent part of the measurement and analysis 

methods. Extrinsic processes are those associated with the nature of the veloc¬ 

ity field. Using the pulsatile-flow Doppler signal simulation model described 

in the last subsection, Bastos et al. [65] have examined the influence of several 
of these processes on the overall spectral broadening. 

The contribution of Brownian motion to the overall broadening has been 

shown to be very small [68], and consequently it will be ignored in the ensuing 

Table 9.2. Causes of Doppler Spectral Broadening 

Intrinsic Extrinsic 

'Transit-time 

Geometric 

Brownian motion 

*Spectral analysis window 

Spatial velocity distribution 

Vector velocity direction 

Turbulence 

^Acceleration 

f* Not independent sources: see discussion. 
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discussion of intrinsic and extrinsic processes. Although our focus is on CW 

Doppler spectral broadening, it should be noted that many of the sources of 
spectral broadening in pulsed wave systems are identical. 

9.7.1 Intrinsic Broadening 

Transit-time broadening can be understood by considering the Doppler signal 

produced by the movement of a scatter through a sample volume. For sim¬ 

plicity, we shall assume that within the sample volume the phase iso-contours 

are planes. As sketched in Fig. 9.20a, the Doppler waveform from a single scat- 

terer is gated by the movement into and out of the sample volume, resulting 

in a spectral spread about the center frequency, i.e., broadening arises from 
windowing a constant frequency waveform. 

On the other hand. Fig. 9.20b shows that as the scatterer moves through the 

sample volume, it suspends a range of angles to various spatial locations on 

the transducer surface. At each location, the scatterer will see elemental 

sources on the transducer surface at different angles; thereby producing a 

spectrum of Doppler frequencies, and this spectrum changes as the scatterer 

traverses the sample volume. This spectrum will be further broadened on 

reception because every point on the receiving transducer aperture also sub¬ 

tends a range of angles. Thus, ambiguities in the vector directions on both 

transmission and reception are present, and both must be accounted for to 

determine the overall spectral shape. When the same transducer is used for 

both transmission and reception, Bascom et al. [45] pointed out that by 

using the principle of reciprocity the received amplitude spectrum can be 

expressed as the autocorrelation of the complex spectrum seen by the scat¬ 
terer, i.e., by 

i &BW 

(9.20) J^./?(co0) = - f (©a — (a) 
2co^ -oL 

where (£>BW is the angular frequency bandwidth and the complex conjugate of 

the spectrum seen by the scatterer is denoted by J4*(co/;). An alternative form 

for (9.20a) is that subsequently obtained by Censor et al. [71], in which the 

received spectrum is expressed in the form of a self-convolution given by 

(9.20) ^ ^i'(wo)*‘^7'(wd)i (b) 

which they called the Doppler spectrum convolution theorem. In fact, this and 

(9.20a) can be shown to be equivalent. 

The spectrum seen by the scatterer as it traverses the beam can be obtained 

by treating the transducer as a distribution of incremental sources and the 

spectrum as a distribution of incremental frequency bins. By summing the 

complex signal amplitudes that contribute to each frequency bin, the complex 

amplitude spectrum JAT(u>D) can be obtained. Then, by evaluating (9.20), the 

received Doppler amplitude spectrum can be calculated. Details of a method 

that uses this approach have been reported for calculating the CW Doppler 



Figure 9.20 Sketches showing how spectral broadening can arise from the 

movement of a constant velocity scatterer through the sample volume, (a) 

Broadening due to the transit time of a scatterer through the sample volume. The 

time waveform is shown for (i) a constant response over the beam width and (ii) a 

Gaussian-like response, (b) Broadening due to a range of angles that the particle 

suspends to different points on the transducer surface. All points on the transducer 

surface act as both transmitters and receivers: both frequency and amplitude 
modulation occur. 
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spectrum for transducers with square and circular geometries and when these 
insonate various flow velocity profiles [45], 

A somewhat different approach originally discussed by Fish [72] was sub¬ 

sequently implemented by Ata and Fish [73]. It requires that the complex pres¬ 

sure p(r) of the transmitted field be determined at incremental points along 

the scatterer trajectory. If it is assumed that the same transducer is used for 

both transmission and reception, then the principle of reciprocity can also be 

used to calculate the received signal from the signal seen by the moving scat¬ 

terer. Specifically, if the scatterer position is denoted by r, the backscattered 

signal will be proportional to p2(r)e,“°r. Because the scatterer is moving, its posi¬ 

tion r will be a function of time, and since the demodulation process elimi¬ 

nates the carrier frequency co0, the analytic Doppler signal over the entire 

trajectory will be proportional to p2(r). Because the spectrum is simply the 

Fourier transform, i.e., JAr(g)d) = %{p(t)p(t)}, by using the convolution product 

theorem as given in Appendix B, this is seen to be proportional to J4r(co0) * 
J4r(to0), which is the same as that given by (9.20). 

As an example of the above method. Fig. 9.21 shows both the waveform 

and the spectrum of a single scatterer as it moves with a constant velocity 

(10 cm/s) on a path at 45 degrees to the axis of a simple piston transducer. The 

two sets of results correspond to a path that intersects the transducer axis at 

half the last maximum {cfIX) and one that intersects the last maximum. In the 

first case it will be noted that because the scatterer passes through an axial 

region close to the last minimum, the Doppler signal amplitude is greatly 

reduced for a substantial time, and this is partially responsible for the complex 

nature of the spectrum. A much smoother spectrum results when the scatterer 
path passes through the last maximum. 

Spectral broadening in laser Doppler flowmeters is directly related to 

broadening in Doppler ultrasound. Edwards et al. [74] presented a detailed 

analytical study of spectral broadening in laser Doppler flowmeters. They 

showed that transit-time (referred to as Doppler radar ambiguity) broaden¬ 

ing and geometric (referred to as wave vector ambiguity) broadening are 

equivalent to one another in the focal region. In other words, calculation of 

transit-time broadening also accounted for geometric broadening, and vice 

versa. As part of continuing studies on Doppler ultrasound broadening, 

Newhouse et al. [75] stated “that geometrical broadening and transit time 

broadening are one and the same effect under the conditions that hold for 

Doppler ultrasound measurement.” In discussing this statement, Jones [76] 

used a simple example to illustrate why this equivalence is not necessarily true. 

Consider the sketch of Fig. 9.22, in which a scatterer is moving with a con¬ 

stant velocity through the CW field produced by a point source. It can be seen 

that as the scatterer starts to approach the source, the amplitude increases and 

the Doppler frequency reduces, as expressed by the Doppler equation [see 

(9.6a)}. On passing by the source, the instantaneous frequency then starts to 

increase in a negative direction and the amplitude starts to diminish, 

approaching zero as the distance approaches infinity: at this point, the Doppler 

frequency approaches -2vf0/co. Consequently, the Doppler signal is modulated 
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Figure 9.21 Calculated CW Doppler waveform and its amplitude spectrum 

produced by a point scatterer moving with a velocity of 10 cm/s at 45 degrees to the 

axis of a 5 mm radius piston transducer excited at 5 MHz. For a straight-line path 

through the axis at (a) 0.5 of the last maximum and (b) the last maximum. In the 

absence of spectral broadening, the spectrum would be a 5-function at 741 Hz. The 

results were obtained by using (3.22) with fr(z, R) = 1 for calculating the normalized 
pressure. 

in both amplitude and frequency. It should be noted that the assumption of a 

point source/detector means that just a single angle is subtended at any given 

scatterer location. This should be contrasted to the situation shown in Fig. 

9.20b, where a range of angles exists at each scatterer location, causing a spec¬ 

trum of Doppler frequencies, and this spectrum changes as the scatterer moves 
through the sample volume. 

For a point source and detector, the demodulated backscattered signal can 

be written as A(f)ei2t[k(,)y], in which both the magnitude and direction of k are 

functions of r and therefore of time. Jones [76] pointed out that the amplitude 

modulation term A{t) leads to what one might intuitively regard as transit- 
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Figure 9.22 Sketch showing the time-domain Doppler signal and its spectrum 

produced by a scatterer moving with a constant velocity in the field produced by a 

CW point source that also acts as a receiver. Note that both the amplitude and 

frequency are functions of r, and therefore of time. (Based on a similar sketch by 
Jones [76].) 

time spectral broadening. On the other hand, the exponent contains the term 
vcos[0(r)], which describes a change in Doppler frequency with the scatterer 
position. However, this term, which can be considered to account for the effect 
of geometric broadening, is not equivalent to A(t). As noted by Jones, the the¬ 
oretical proof given by Edwards et al. [74] assumed a constant angle between 
k and v within the sample volume, i.e., the wavefronts are planes. While this 
may be a reasonable approximation in the focal region, it is unlikely to be the 
case elsewhere. Fig. 9.23a provides an intuitive picture of how changes in 
the direction of k over the scatterer trajectory can affect the Doppler 
waveform. 

Ata and Fish [73] examined the planarity assumption using a computational 
model that calculates p(r) over the path as described earlier in this section. 
They calculated the CW Doppler spectrum produced by a small scatterer as 
it traversed the field produced by apodized and unapodized plane and focused 
disk transducers. They assumed that it moved with a constant velocity at 45 
degrees to the beam axis and intercepted the axis at either the focal point or 
halfway from it. Comparison of the spectral shapes with and without frequency 
modulation showed that when the particle passed through the focus, the effect 
of the planar assumption was relatively good (<16%). However, at half the 
focal distance, much larger errors (up to 234%) were found. Part of the con¬ 
fusion over the statement concerning the equivalence of transit-time and geo¬ 
metric broadening arises from the failure to provide a clear definition of 
geometric spectral broadening. If it is defined in terms of the angles subtended 
to all points on the transducer surface from the scatterer, as depicted in Fig. 
9.20b, then transit-time broadening is not equal to geometric broadening; 
rather, it is a subset of it [76], 
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Figure 9.23 The effects of deviations from plane-wave conditions on the Doppler 

signal and spectrum, (a) Simplified sketch for plane wave and non-plane wave 

conditions. Note that for non-planar conditions, the frequency increases as the 

scatterer moves through the sample volume. (Modified version, reproduced, with 

permission, from Ata and Fish [73].) (b) More realistic sketch showing the change in 

the wave vector direction and magnitude as the scatterer moves through the focal 
zone. (Based on a similar sketch by Fish [72].) 

Another contribution to intrinsic spectral broadening arises from the 

method of spectral analysis and the choice of signal sample window. For meas¬ 

urements on human arteries, it is generally assumed that the signal is quasi¬ 

stationary over a duration of around 5 ms. This suggests that by dividing the 
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signal into overlapping 10-ms segments every 5 ms and performing an FFT on 

each segment, a reasonably accurate representation of the true spectral vari¬ 

ation can be obtained. However, the windowing process is a cause of spectral 

broadening, and this becomes more severe as the duration is reduced. 

9.7.2 Extrinsic Broadening 

Extrinsic broadening refers to effects extrinsic to the Doppler system. The sim¬ 

plest case, corresponding to the first form of broadening listed in Table 9.2, 

arises when the scatterers within the insonated volume have a range of veloc¬ 

ities but their vectors all point in the same direction. For example, in the case 

of a small vessel, the range of velocities will range from zero to a maximum 
and give rise to the spectra described in section 9.5. 

A second form of extrinsic broadening arises from a distribution of veloc¬ 

ity directions within the insonated volume. This can arise from the flow bound¬ 

ary causing a change in the flow direction or the inclusion of a separation line. 

In a turbulent region, there will be a range in velocity vector directions. In 

addition, because a turbulent region can be expected to have an increased vari¬ 

ance of the voxel scatterer number density (see subsection 5.9.4), resulting in 
increased backscattering, the spectrum may be broadened. 

In pulsatile flow, changes in the mean velocity will occur within the window 

used for spectral analysis, giving rise to spectral broadening. Acceleration 

broadening (also called non-stationary broadening) has been studied by 

several groups using theoretical analysis [77,78], Doppler signal simulation 

methods [65], and experimental measurements [79], In their simulation study 

using a common femoral artery waveform, Bastos et al. [65] showed that for 

windows of very short duration, e.g., 2 ms, broadening will be dominated by 

the nature of the window rather than by the effects of acceleration. However, 

for longer windows, the effects of acceleration become important and need to 

be accounted for in predicting the overall spectral broadening. 

9.7.3 Maximum Velocity Estimation Errors 

Pulsed wave ultrasound measurements of the peak systolic velocity are widely 

used for determining the severity of a stenosis in a variety of vessels. Typically, 

a phased-array transducer is used to position a small sample volume in a 

central region of the vessel. The method is used as a clinical screening tool to 

determine which patients need an angiogram prior to surgery; in some insti¬ 

tutions, peak velocity measurement is the only preoperative diagnostic tech¬ 

nique used prior to carotid endarterectomy and reoperative surgery on bypass 

grafts. However, studies using phased-array transducers have shown the pres¬ 

ence of significant errors in peak velocity estimations; these can range from 

-4% up to 47% [80], leading to serious misdiagnoses. Several potential sources 

of error have been suggested [81]: those associated with the ultrasound system 

itself; those associated with the technologist, including the examination tech¬ 

nique; and those arising from the geometry of the vessel, such as its tortuos- 



646 Biomedical Ultrasound 

ity. Spectral broadening is a primary cause of errors in the ultrasound system 

itself. Spreading out the frequency distribution causes the measured peak fre¬ 

quency to be higher than the value corresponding to the true peak velocity. 

Several methods for error correction have been proposed and evaluated 

depending on the assumed origin of the spectral broadening. Correction tech¬ 

niques for intrinsic spectral broadening have been proposed by several groups 

[82-86], In addition, a correction method to account for the effects of accel¬ 

eration and window broadening has been proposed by Wang and Fish [87], 

In the method proposed and experimentally verified by Tortoli et al. [83], 

it is assumed that the beam-to-flow angle is relatively large, so that the scat¬ 

tered cross the waist of the ultrasound beam, and the influence of the sample 

volume axial dimensions is unimportant. If it can be assumed that the Doppler 

spectrum is close to symmetric about the value given by the Doppler equa¬ 

tion, then the maximum frequency and the Doppler bandwidth BD are related 

to the velocity of a streamline by 

O 1 

fr = — .f0cosQ + -BD. 
c0 2 

For a focused transducer with cylindrical symmetry. Censor et al. [71] have 

shown that the bandwidth is proportional to the scatterer velocity component 

normal to the ultrasound beam direction (vsinO) and inversely proportional 

to the f-number. Specifically, they found the Doppler bandwidth associated 

with a streamline of velocity v is given by 

Bd = ^ — v sinG, 
c0 F 

where © is the transducer aperture and F is the focal length. Although this 

relation was derived for a focused transducer with cylindrical symmetry, 

Newhouse and Reid [88] state that the above proportionality relations can be 

extended to focused rectangular apertures [89]. By combining the above two 

equations, it can be seen that the observed maximum frequency is related to 

the true velocity by 

2 f v r id) 
(9.21) fr = ^- cose + --sin0 . 

Co 2 F 

Using a pulsed wave ultrasound system with a focused piston transducer, 

Tortoli et al. [83] reported experimental results over a range of beam-to-flow 

angles. By using (9.21) to predict the scatterer velocity in the beam direction 

from the measured maximum velocity, they showed that the accuracy was sig¬ 

nificantly improved over a range of angles from 70 to 90 degrees. 
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10 

Pulsed Methods for Flow 
Velocity Estimation 
and Imaging 

The question as to whether pulsed Doppler makes use of the Doppler effect 

has been considered on several occasions. To address this question in a satis¬ 

factory manner requires that we first agree on a definition of the effect that 

bears Doppler’s name. 

Christian Doppler studied the optical spectrum emitted by stars and pro¬ 

posed a theory that described the change in wavelength (frequency) of each 

component of the received spectrum caused by the relative movement of the 

source and observer. It is clear from the discussion in Chapter 9 that when a 

CW acoustic source is used and there is relative motion between the source 

and target, the apparent change in frequency should be referred to as the 
Doppler effect. 

Unlike the line optical spectrum from a star, the spectrum of a single brief 

acoustic pulse is continuous. Thus, when such a pulse is transmitted from a 

moving source, each incremental spectral component would be subject to a 

frequency change proportional to its frequency, causing a small change in the 

received spectral shape from that transmitted. In principle, then, by measur¬ 

ing the change in spectrum of the received pulse, it should be possible to esti¬ 

mate the target velocity from the information provided by transmitting a single 

pulse. Here again, the basis of this technique for estimating the velocity is the 

Doppler effect. An alternative but equivalent way of examining the classic 

Doppler effect on a pulse is to consider the transmission of a square ultra¬ 

sound pulse and a scatterer moving with a velocity of v in the beam direction. 

In the absence of any attenuation and frequency-dependent scattering, it is 
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shown in section 10.3 that the received pulse duration would be changed by a 

factor of (c0 + v)/(c„- v).This factor is exactly the same as that calculated from 

a frequency-domain analysis using the classic Doppler formula to determine 

the change to each frequency component and then performing an inverse 

transform to determine the received pulse duration. However, as discussed 

below, if the transmission medium has frequency-dependent attenuation 

and/or the target has frequency-dependent scattering, and if these properties 

are not precisely known, velocity estimation would be very difficult, if not 

impossible. Thus, unlike the line spectra produced by stars, whose components 

can be clearly identified on reception, the spectrum of a single pulse is con¬ 

tinuous, thereby preventing identification of the changes that occur to a spe¬ 
cific component on reception. 

It is therefore apparent that a possible definition of the Doppler effect 

would include any phenomenon for which a change occurs in the spectral 

content due to a relative motion of the source and target and from which the 

relative velocity can be estimated. Such a definition is restricted in its scope 

and does not include methods based on measuring the change in position of 

a target at two or more instants of time. This definition is the one adopted in 

this book. A much broader definition could have been chosen, such as that 

used by Gill [3, p. vii]. He defines the Doppler effect as “the change in appar¬ 

ent time interval between two events, which arises from the motion of an 

observer, together with the finite velocity of transmission of information about 

the events.” Such a definition makes no distinction between a process in which 

successive pulse-echo measurements are made to determine the change in 

position of a target (such as that used in M-mode ultrasound) and measure¬ 

ments based on the frequency change caused by relative motion of the source 

and target. Nonetheless, it should be pointed out that prior to the develop¬ 

ment of pulsed “Doppler” ultrasound, radar techniques had been developed 

and widely used for estimating the velocity from changes to the received signal 

between successive transmissions. At least one book [4] refers to this as pulsed 

doppler radar, with no capitalization of Doppler’s name. 

10.1 Introduction 

If a single transmit pulse is used and the transmission medium has frequency- 

dependent attenuation, the shape of the spectrum will be changed. In fact, as 

discussed in Chapter 1 (subsection 1.8.1), a transmitted pulse will be down¬ 

shifted in frequency—an effect that could easily mask the Doppler effect. As 

an example, consider a Gaussian modulated 5-MHz sinusoidal transmitted 

pulse with a -6-dB fractional bandwidth of 5%. Moreover, we will assume an 

attenuation factor of a0 = 0.7dB/(cm x MHz) (i.e., one that is directly pro¬ 

portional to the frequency). The analytical expression as given by (1.126) gives 

the change in peak frequency as 9kHz at a 1-cm depth. For a typical blood 

flow measurement, such a change is considerably greater than the Doppler 

shift. Second, as discussed in Chapter 5, scattering is a frequency-dependent 
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process, and for a scatterer whose dimensions are small compared to the wave¬ 

length, the backscattered pressure increases as the square of the frequency, 

causing the peak frequency of the returned echo to be upshifted. Thus, for a 

transmitted pulse with a relatively broad bandwidth, the backscattered spec¬ 

trum from a moving target can be significantly changed. Newhouse et al. [1] 

provided the first detailed discussion and showed that both effects on the spec¬ 

trum could be accounted for by a linear filter. Subsequently, the combination 

of both effects was examined by Round and Bates [2], who derived an ana¬ 

lytical expression for the pulse-echo response in the case of a Gaussian trans¬ 

mit pulse and a power law frequency dependence of the attenuation and 

scattering. In the absence of knowledge concerning the spatial and frequency 

dependence of both effects, the task of extracting the scatterer velocity from 

a single pulse appears to be intractable. 

How, then, do pulsed “Doppler” ultrasound systems work? As will be seen, 

they require a minimum of two transmit pulses and, based on our decision to 

use the narrow definition of the Doppler effect, they make no use of the 

Doppler effect. However, the Doppler effect is present in the form of a small 

artifact that has a negligible influence on the accuracy with which the veloc¬ 

ity can be estimated. The velocity component in the beam direction can be 

estimated from changes to the received signal caused by movement of the 

target in the interval between two transmit pulses. Such changes include a 

change in phase and/or a change in delay. Based on our choice of a narrow 

definition of the Doppler effect, it seems inappropriate to use Doppler’s name 

for characterizing the operation of pulsed-wave flow systems. Furthermore, 

use of the name can cause confusion and lead to a misunderstanding of the 

basic operating principle of such systems. 

An important step toward a proper understanding of pulsed wave systems 

was the 1983 paper by Newhouse and Amir [5] in which they correctly 

described many of the key properties. In 1986 Bonnefous and Pesque [8] 

pointed out that pulsed “Doppler” systems do not measure the Doppler fre¬ 

quency shift; rather, they measure the target displacement. Thomas and 

Leeman in their 1991 conference paper [9] also addressed this issue. In a 

section entitled “Pulsed Doppler Flowmeters—The Missing Doppler Effect,” 

a theoretical basis was developed. Subsequently, they created a more complete 

picture [6,7] that formed the basis of the theory of pulsed Doppler measure¬ 

ments presented in the book by Jensen [10], The simplified theory given in 
section 10.3 is partially based on their work. 

A useful means of illustrating the differences between velocity estimation 

based on the changes that occur between successive received signals and that 

based on the classical Doppler effect is illustrated in Fig. 10.1. In this, the scat¬ 

terer displacement waveform is assumed periodic with a frequency of exactly 

half the PRF and the medium is assumed to contain no frequency-dependent 

scattering and attenuation effects. In (a), the transmit pulse arrives at the scat¬ 

terer when its velocity is zero, so that the received pulse will have exactly the 

same shape as that transmitted, i.e., no Doppler-shift change. In (b) the trans¬ 

mit pulse arrives when the scatterer displacement is zero but the velocity is 



Scatterer Velocity 

Scatterer Displacement 

Transmission Pulses 

(as seen by scatterer) 

a n n n Receive Signal 

Velocity from transit time changes 

0 
Velocity from classical Doppler=0 

0 

(b) 
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Scatterer Displacement 

Transmission Pulses 

(as seen by scatterer) 

n_n_Tl_n_n Receive Signal 

Velocity from transit time changes=0 
0- 0 

Velocity from classical Doppler 

Figure 10.1 The differences between velocity estimation based on the change in 

scatterer location and that from the classical Doppler effect, (a) The velocity 

estimated from the change in transit time correctly reproduces the velocity 

waveform. However, because the received signal is identical to that transmitted, no 

Doppler shift occurs and the Doppler velocity is zero, (b) Here, the transmitted 

pulses arrive when the scatterer displacement is zero. No transit time changes occur, 

yielding a velocity of zero. However, each received pulse will be slightly distorted 

due to the classical Doppler effect, enabling the velocity to be extracted. (Based on 

the example presented by Thomas and Leeman [9].) 
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non-zero. For this case, the classic Doppler effect will cause the received pulse 

to have a slightly different spectrum, which in principle enables the velocity 

to be extracted. 

10.1.1 Historical Background 

Much of the initial work on the development of pulsed “Doppler” systems cen¬ 

tered around four groups in the late 1960s: one in England, one in France, and 

two in the United States. It seems that a common motivation was to overcome 

some of the limitations of CW systems, such as the need for two transducers 

and the absence of any depth discrimination. It could be argued that the work 

by Peronneau in France had precedence in that he filed a patent application 

in April 1967 describing a pulsed system [11], It used a single transducer and 

generated a relatively long pulse to encompass the entire blood vessel, while 

rejecting signals from other vessels in the beam path. Although the patent does 

not seem to suggest that a much shorter gate could enable the flow velocity 

profile to be measured, the ability of such a system to measure the velocity 

profiles was experimentally demonstrated two years later [12] and is well 

described in subsequent papers [13] by the same group. Also in 1967, Baker 

and Watkins [14] at the University of Washington (Seattle) described a range¬ 

gated pulsed system that was under development and that used separate 

transmit and receive transducer elements. Details of the method, together with 

measured velocity profiles both in vitro and in vivo, were subsequently 

described [15,16]. A second group in the United States also reported on the 

development of a pulsed system [17], though details were limited to a one- 

page conference digest. The final report, also in 1969, was that by Wells [18], 

who provided a full description of a pulsed system that used a single trans¬ 

ducer element. The system was designed to explore the potential of pulsed 

velocity measurements, and its application was illustrated for measuring the 

velocity of cardiovascular structures but not for blood flow. 

An important development was that of combining B-mode imaging with 

pulse velocity measurements in the same system. Initially developed in the 

1970s by the group at the University of Washington, they are generally referred 

to as duplex scanners [19,20], By incorporating B-mode imaging, the sample 

volume placement and the beam-to-vessel angle could be determined, 

enabling the velocity to be estimated. It was found that with the addition of 

spectral flow analysis, such systems were especially valuable for the diagnosis 

of vascular disease. Although separate transducers for imaging and velocity 

measurements were initially used, recent systems use the array elements to 
perform both imaging and velocity estimation roles. 

These early reports and many subsequent papers appear to base their dis¬ 

cussions and explanations on the classic Doppler effect, which was subse¬ 

quently shown to be an artifact in pulsed wave systems. Specifically, it was 

assumed that the change in phase of the received signal between successive 

transmissions resulted from Doppler frequency changes. It seems likely that 

contributing to this misunderstanding is the fact that under the same approx- 
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Axial Distance, mm 

Figure 10.2 Received signal obtained from a single line-of-sight transmission 

through liver. Vertical lines mark the approximate location of a portal vein. 

(Reproduced, with permission of Cambridge University Press, from Jensen [10], 

Estimation of Blood Velocities using Ultrasound. ©1996 Cambridge University Press.) 

imation, namely vz « c0, the equation relating the velocity to the frequency 

for pulsed wave systems is identical to the CW Doppler equation.1 Nonethe¬ 

less, this early work did provide a vital stimulus for research on the develop¬ 

ment of pulsed velocity measurement systems, leading eventually to color flow 
imaging. 

One of the difficulties associated with blood velocity measurements is the 

relatively weak scattering produced by red blood cells (RBCs) in comparison 

with the surrounding structures. This is illustrated in Fig. 10.2, where an in vivo 

portion of the received RF signal from liver is shown [10]. It can be seen that 

within the portal vein, whose boundaries are marked by vertical lines, the 

signal is much smaller than the surrounding tissue, especially from the vessel 

wall-blood boundary. Typically, the signal from blood may be 20 to 60 dB less 

and have an SNR in the range 0 to 20dB. Associated with pulsatile arterial 

blood flow is the radial movement of the vessel wall, which may be about 5% 

of the vessel radius, depending on its elastic constants and the pressure change 

over a cardiac cycle. Because of the strong vessel wall signal and its associated 

velocity, separating out the signal caused by blood moving close to the vessel 

wall can be a particularly challenging task. 

1. It appears that Atkinson and Woodcock in their 1982 book [21, pp. 32-36], were the first to 
point this out. However, in describing “Pulse-Doppler” systems they speak of the Doppler-shifted 
components. 
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Sample Volume^ SV 
SV lateral dimension=2.0 mm 
Scatterer velocity=33 cm/s 
Scatterer path through SV=2.3 mm 
Scatterer enters SV at 1.5 cm from transducer 
Angle to beam axis = 6(f 
Center Frequency, 5.0 MHz, 
Pulse Duration, approx =1ps (5 cycles) 
PRF=5kHz 
Assumed c0=1500 m/s 

(b) 

Figure 10.3 Simplified pulsed-wave system for determining the velocity component 

in the beam direction of a scatterer. (a) A concave transducer is shown with a 

sample volume whose dimensions are given in (b). Passage of the scatterer through 

the SV at an angle of 60 degrees is shown. The center frequency is an integer 

multiple of the PRF. Direct sampling of the RF signal is assumed to be coherent, and 

the resulting samples go to a boxcar integrator. A bandpass filter removes the abrupt 

changes as well as the pseudo-stationary clutter component. 

10.2 Physical Principles of Pulsed Systems 

Before providing a theoretical explanation, it is helpful to consider a simpli¬ 

fied model of a pulsed system that ignores attenuation and frequency-depend¬ 

ent scattering. This will be used to develop a physical picture of the process 

by which a single scatterer generates a signal whose frequency after sampling 

and reconstruction is proportional to its velocity. For this purpose, consider 

the block diagram of Fig. 10.3, where a simple concave transducer produces 

the sample volume indicated. A single scatterer is shown moving through this 

volume with a constant velocity in the direction away from the transducer. We 

shall assume that the response is constant within the sample volume and drops 

to zero at its boundaries. Consequently, a scatterer anywhere within this 

volume creates a similar response. Let us assume that the transmitter produces 
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Sampled Amplitude 

(a) 'Fast' Time, ps (b) 

Figure 10.4 Waveforms corresponding to the simplified pulsed velocity 

measurement system shown in Fig. 10.3(a) for the parameter values of Fig. 10.3(b). 

(a) Portions of the backscattered RF signals due to transmission of a Gaussian pulse. 

The first signal corresponds to a moving point target as it enters the sample volume 

at 1.5 cm from the transducer. Each waveform (only alternate pulses are shown) 

corresponds to a PRI of 200 gs (fPRF = 5.0 kHz). Movement of the scatterer through 

the sample volume causes its distance from the transducer to increase for each 

transmission. The RF received signal is sampled at the same instant of time (vertical 

dashed line) following transmission, (b) Sampled amplitudes sampled once each PRI 

at the times indicated by the dashed line in (a). With sufficient samples, the entire 

shape of the transmitted pulse can be reconstructed though the reconstructed time 

axis is now scaled by a factor of 2vcos B/c0 and is sometimes referred to as “slow” 

time. The particle velocity component in the beam direction is related to the center 

frequency of this waveform by (10.2). 

a simple Gaussian modulated pulse with a center frequency of 5 MHz. In the 

absence of frequency-dependent effects, the received signal will also consist 

of a Gaussian pulse with the same shape but with a delay that increases with 

each PRI. We shall assume that sampling is performed on the RF received 

signal in a coherent manner, i.e., the sampling frequency is synchronized to the 

center frequency and PRF. 

Suppose that the scatterer moves sufficiently slowly so that a large number 

of received signals are obtained over the transit time of the scatterer through 

the sample volume, such as those shown in Fig. 10.4a. As can be seen, these 

start when the scatterer enters the sample volume (n = 1) and finishes when 

it leaves (n = 28). If each received signal is sampled with exactly the same delay 

from transmission, then, as shown in subsection 10.3.1, the sampled signal will 

be a sampled replica of the transmitted signal but with a time scale that is 

greater by a factor of approximately cj(2vcos 0). Thus, if the waveform is rep- 
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resented by G(t) and there are N transmissions, the sampled signal can be 

expressed as the convolution 

where x is the time of flight to and from the scatterer. 

The terms “slow” and “fast” are used to refer to the time scale for the 

received waveform and the sampled waveform, respectively. The spectrum will 

be identical to the transmitted spectrum but scaled down in frequency by 

2vcos Q/c0. Consequently, the fractional bandwidth will be the identical to that 

of the transmitted pulse. Fig. 10.4b shows the sampled received pulse together 

with the reconstructed signal when the scatterer is moving away from the 

transducer, as in Fig. 10.3. Flad it been moving in the opposite direction, the 

reconstructed signal would be a time-reversed, time-stretched replica of the 

incident pulse. All of the above properties were predicted in the paper by New- 
house and Amir [5], 

If the scatterer velocity is denoted by v and tPRI denotes the pulse repeti¬ 

tion interval, then the distance moved in the beam axis direction between suc¬ 

cessive transmissions is given by Az = (vcos0)?m. Now, the change in delay 

between successive received signals is given by Ax = 2Az/c0, which can be re¬ 
expressed as 

(10.1) 
. 2vcos0 

Ax — tpri . 

Alternatively, this can be rewritten as 

(a) 

(10.1) Cp Ax 

2tpRi cos0 (b) 

Now the center frequency of the slow-time waveform can be found from 

2nfpw = dtydt ~ A(j)/tPRI, where A<f) is the phase shift of the slow-time signal. 

However, the fast- and slow-time signals have the same phase shift, so that 

A^ = 2ji/cAx, where fc is the center frequency of the transmitted waveform. 

This enables the slow-time (pulsed wave) center frequency to be written as 

fPW = fcAx/tPRh which, after substituting for Ax as given by (10.1a), becomes 

(10.2) 
_ 2vcos0 

JPW ~-fc 
_ Co 

In the absence of any frequency-dependent processes, the spectrum of the 

reconstructed waveform from a single scatterer will be the same as that trans¬ 

mitted but scaled by a factor of 2vcos0/co. However, a number of processes 

combine to broaden the spectrum. For example, if the field within the sample 

volume is non-uniform, as is normally the case, the spectrum will be modu¬ 

lated by the changes in field as the scatterer traverses the sample volume. A 

second example arises when there are a range of scatterer velocities in the 

sample volume. If the transmitted waveform consists of many cycles, e.g., 8-20, 

the slow-time spectium from a single scatterer in the absence of noise will be 
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quite narrow. Thus, the presence of a distribution of velocities in the sample 

volume will cause the slow-time signal to have a spectral shape related to the 
velocity distribution. 

10.2.1 Velocity Estimation Methods 

The problem of estimating the mean value of a quantity under different SNR 

conditions is one that has been addressed in many fields. A considerable 

number of methods exist, and many of the most useful of these have been 

compared in terms of bias, variance, and speed of computation [22,23]. Perhaps 

the simplest are those based on measuring the frequency with which the signal 

crosses through zero (zero-crossing method), and those use frequency track¬ 

ing [24]. However, under low SNR conditions and/or the presence of a wide 

spectrum of frequencies, these techniques have large biases and variances 

[25,26], A straightforward technique is that based on estimating the power 

spectrum and using this to extract the mean, the maximum, and higher-order 

moments. Evans and McDicken [24, Chapter 8] have reviewed a variety of esti¬ 

mation methods for use in Doppler and pulsed wave ultrasound. Details of 

these techniques together with comparisons, based on simulated signals using 

various SNR conditions, have been presented by Vaitkus et al. [27,28]. 

Equation (10.2) shows that the mean velocity of a scatterer can be obtained 

by estimating the mean slow-time frequency. If the transmitted fractional 

bandwidth is relatively small, such a technique is often referred to as a nar¬ 

rowband method. A narrow bandwidth enables the SNR to be improved; 

however, the use of a long-duration multi-cycle transmitted pulse causes the 

spatial resolution in the axial direction to be diminished. Estimation methods 

that use much shorter-duration transmit pulses have a number of potential 

advantages, and these are sometimes referred to as wideband methods. Alam 

and Parker [29,30] have suggested that the classification of estimation methods 

into narrow and wideband techniques is not particularly satisfactory.They pro¬ 

posed the following three principal categories based on the signal models: (i) 

time-domain methods based on the relative change in the time at which the 

echo occurs (see section 10.4); (ii) frequency/phase methods based on the rate 

of change in phase (see sections 10.5 and 10.8); and (iii) multiple burst (track¬ 

ing) methods (see section 10.9). The sections indicated will describe these 

methods and present examples. 

As noted in Chapter 9, spectral Doppler is a term sometimes used to 

describe the method used for estimating and displaying the spectrum pro¬ 

duced by an ensemble of moving scatterers within a sample volume. However, 

to be consistent with our earlier decision to use a narrow definition of the 

Doppler effect, we shall apply this term only for a CW system. For a pulsed 

wave system, the estimation and spectral display will be referred to as the spec¬ 

tral flow method. When information concerning a parameter of the signal is 

extracted and displayed as a 2-D color map, we shall refer to the resulting 

method as pulsed wave or color flow imaging. In spectral flow, the emphasis is 

on estimating the spectrum using the received information from many (e.g.. 
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40) transmissions (generally referred to as the packet size) along the same 

direction from one or many sample volumes. On the other hand, with color 

flow imaging (see section 10.7), the estimation method of choice would be one 

that can estimate the value of a single flow parameter along the beam direc¬ 

tion using a relatively small number of transmissions (e.g., 4-15). In essence, 

each beam is divided into incremental (sample) volumes whose spacing 

determines the axial resolution of the measurements. 

At this point, it is perhaps helpful to draw a practical distinction between 

spectral flow and color flow imaging. In spectral flow, the user specifies a spe¬ 

cific sample volume, axial length, and location for interrogating the flow within 

the lumen of a vessel. In this case, the optimization problem is essentially how 

to select the best combination of the transmit waveform and receive filter (e.g., 

the box-car integrator illustrated in Fig. 10.3) to achieve the desired sample 

volume length (axial resolution) while maximizing the SNR. On the other hand, 

in color flow imaging, the user specifies a relatively large area of interest but 

not a specific range resolution, so that the problem reduces to that of finding 

the best combination of transmit waveform and receive filters to optimize the 

balance between axial resolution and SNR over the region of interest. 

10.2.2 Critical Velocities 

Three velocity limit values can be identified. The first relates the velocity at 

which aliasing first occurs to the depth of measurement. The second concerns 

the smallest velocity that can be successfully distinguished from clutter. The 

third relates to the minimum velocity needed for the slow-time waveform to 
be a complete copy of the fast-time waveform. 

Range-Velocity Limitation 

The number of samples taken from a given scatterer depends on the scatterer 

velocity, the size of the sample volume, and the PFR. According to the Nyquist 

sampling criterion, for the demodulated frequency to be unambiguously 

determined, two or more samples must be obtained within one period of the 

transmitted center frequency. This criterion enables the maximum velocity 

component in the beam direction to be calculated. Specifically, we first 

note that in one PRI, the z-distance traveled by a scatterer is given by Az = 

vcos Q/fPRF. Assuming the scatterer is moving away from the transducer, 

the additional time needed for the pulse to reach this new location is given by 

A? = 2Azlc0 = 2vcosQ/(c0fPRF). If aliasing is to be avoided, this time must be 

no greater than a half period of the fundamental transmission frequency, i.e.. 

At < l/(2/c). Consequently, the condition for no aliasing can be written as 

(10.3) v< vn = ± CofpRF 

4 fc cos 0 

For example, at an angle of 60 degrees for a 5 MHz pulse and a PRF of 10 kHz, 
this maximum velocity is given by 
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21 Fast Time,us 22 Sampled 
Signal 

Figure 10.5 Similar to Fig. 10.4, except that the scatterer is moving quite slowly and 

toward the transducer. Note that the sampled signal consists of about one 

transmitted cycle for nine A-lines. This corresponds approximately to the minimum 

velocity that can be distinguished from stationary clutter. 

1500(m/s) x 10,000 (Hz) 

4 x 5.106(Hz) x cos60° 
150 cm/s. 

If the maximum depth over which the velocity is to be estimated is denoted 

by zmax, then to allow sufficient time between pulses for the echo to reach the 
transducer prior to sending the next pulse, 

V fpRF ^2 z max /Co 

By substituting this into (10.3), the range-velocity limit can be expressed as 

(10.4) 
c2 ^o 

wnax Kmax 
8 fc cos 9 

This shows that the maximum range and maximum velocity are inversely 

related, i.e., the velocity at which aliasing first occurs reduces as the measure¬ 

ment depth is increased. Using the values assumed in the previous example, 

the maximum depth at which the velocity can be unambiguously determined 

is given by 

[1500 (m/s)]" 

8 x 5.106(Hz) x 1.5 (m/s) x cos 60° 
7.5 cm. 

Minimum Velocity 

As indicated in Fig. 10.5, the minimum velocity that can be detected is deter¬ 

mined by the requirement that at least one period of the transmitted wave- 
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form must be sampled. The scatterer would have moved a distance of Az = 

NtPR/v cos 0 over N transmissions, and over this time interval the received pulse 

would be delayed by 

At = 2 A z/c0 = 2NtPR1vcosQ/c0 

Thus, to observe the transmitted pulse for at least one period, (At > 1 lfc), 

requires that 

(10.5) v> vn 
CpfpRF 

2Nfc cos0 

For example, consider a 5 MHz pulse with a PRF of 10 kHz and a scatterer 

moving at 60 degrees to the beam. If the spectrum is calculated every 50 PRIs, 

the minimum velocity that can be distinguished from clutter is given by 

1500 (m/s) x 10,000 (Hz) , , 
-----—— = 6 cm/ s 
2 x 50 x 5.106(Hz) x cos 60° 

Minimum Velocity Needed to Reproduce the 
Transmit Waveform 

Suppose that the transmitted waveform consists of M cycles of the center fre¬ 

quency. If there are N transmissions and the PRI is tPRI, the scatterer velocity 

needed to ensure that the entire transmit waveform is reproduced as a slow¬ 
time waveform can be found from (10.5) as 

(10.6) v>Vm= 'SAdiU . 

2Nfc cosO 

For example, if the same values are assumed as in the previous example and 
M = 5, the minimum velocity is given by 

1500(m/s)x5xl0,000(Hz , 
v >-~ —r--—- = 30 cm/s. 

2 x 50 x 5.106(Hz) x cos60° 

In addition, for the same assumed values, the maximum velocity for no alias¬ 
ing can be obtained from (10.3) as 150cm/s. 

10.3 Simplified Theory 

Based on the simplified block diagram of Fig. 10.3, expressions for the sampled 

signal will be obtained with the help of Fig. 10.6 [5,7,10], This figure contains 

the space-time equations for the transmitted 6-function pulse and the received 

pulse. For example, if the transmit pulse path intersects a scatterer moving with 

a velocity of vz at a depth of zs, then the scattered pulse will arrive at the trans¬ 
ducer at a time tr. 

Our objective is to derive an expression for the received signal due to a 

point scatterer moving with a velocity of v when a sequence of identical pulses 
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(a) 

Echo 
◄ 

Pulse/Echo 

Transducer 

n=0 

t 
to 

► 
Pulse 

(b) 
n= 1 

t. 
f * 
PRl f +f 

lPRl lO 

Scatterer 

•e 

4 v 

n=N 

1 
N tpm+ tQ 

Figure 10.6 Calculation of the received signal due to a scatter moving with a 

velocity v through a plane wave consisting of a transmitted 8-function, (a) Assumed 

geometry, (b) Transmission of N pulses (5-functions) with a pulse repetition interval 

of tPRI. (c) Time/depth graph giving the equations for the scatterer, transmission 

pulse, and received pulse. The scatterer is at the location zs when the transmitted 

pulse, emitted at time intercepts it. Note the symmetry about the time ts when the 

transmitted pulse intercepts the scatterer. 

are transmitted with a pulse repetition interval of tPRI. We shall neglect the 

effects of attenuation and associated dispersion and assume that the trans¬ 

mitted pulse consists of a plane wave. Our starting point is to consider the 

transmission of a single impulse at a time t0 as expressed by 8(f - tn) and 

suppose that at time t = 0, the z-coordinate of the scatterer is Zo- First, we shall 

determine the time ts at which the impulse arrives at the scatterer. By this time, 

the scatterer will have moved to a new z-location given by z5 = z0 + O'cos 0 = 

z0 + vzts, where = vcos0. Consequently, the impulse reaches the scatterer at 

its new location at a time given by 
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, _ , Zs _ , Z§ Zo 
l S t-O ' ^ o ' 

Co cq c0 vz 

The time interval for it to arrive at this new location is 

A t = ts-t„ = 
C0t o + Zo 

c0-vz 

= t ( Co A | Zo t0vz | Zo 

°\C0-VZ ) cQ-vz c0-vz cQ-vz 

Because the echo pulse takes exactly the same time to arrive back at the trans¬ 

ducer, the echo will be detected at a time of 

tr —10 + 2 A t — ta + 
2t0vz | 2z0 

Co-Vz C0 ~VZ 

Thus, the impulse response is given by 

(10.7) 

h(t) = 5{t-tr} = 6{(f -k )- (tr -10)} 

t - tc ' Co + V; N 

V C0 - vz 

In this equation, the factor of (ca + vz)/(c0 - vz) corresponds to time-scale 

expansion or contraction depending on the direction of vz. 

Now consider a sampled version of the transmitted waveform G(t), sampled 
at regular intervals of x and expressed by 

G&(t)= ^ G(nAx)5(r-nAx). 
n=-oo 

Here, the nth sample is a 5-function weighted by the value of G(t) at a time 

of rzAx, i.e., G(nAx)b(t - nAx). It is important to recognize that each point in 

the discretized signal has its own start time (t0) that can be recognized as nAx. 
Thus, the received waveform can be expressed as 

«cW= i G(«Ax)5|/1-«Ax| 
n=-°° k 

In the limit as Ax —» 0, this becomes 

Cg+Vz 

yc0-vz j 

2zo 

7?c(0 = £G(ro)5{t-t, 
cn + V, 

Vc0-vz; 

which can be evaluated to yield2 

2z0 

c0-vz 

N 

2. In eqn. 4 of [7], the received signal can be rewritten as: RN(t) = Cq - v, 
cn + v. 

— tpR/n 

2 Zo 
Co + V; 

. If there is just one pulse (n = 0), this reduces to Ri(t) = G 
Cq ~ V; 
C„ + Vz 

t- 

which, apart from the amplitude factor, is the same as (10.8) derived above, and is also the same 

as eqn. 5 in [6], It differs from eqn. 12 in [9] but can be reconciled by assuming the definition that 
was given for a should have been that for 1/a. 
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(10.8) Rc(') = 
\ca+vz J 

G 
'c0-vzY 

Lv Co + Vz J 

2zp ' 

co — Vz / 

Here again, the factor of (c0 + v,)/(c0 - vz), which is present as an argument of 

G, corresponds to the expansion or dilation of the time scale, as originally 
observed by Newhouse and Amir [5]. 

Consider a transmit waveform consisting of a square wave of unit ampli¬ 

tude given by G(t) = 3C(?)3C(7 — f), where 3C(.) denotes a Heaviside step func¬ 

tion that starts at t = 0 and ends at t = 7. The received waveform can be 
obtained from (10.8) and is given by 

(10.9) Rc(t) 
cn-v7^ 

9C 
2zo 

\c0 + v. J L ca - vz _ 
3C 

2 Z0 rjy C O “t 

As illustrated in Fig. 10.7b, the pulse arrives after a delay of 2zj(c0 - vz) and 

has a duration of 7 (cG + v,)/(c0 - v,), corresponding to an expansion if vz > 0 

and a contraction if v. < O.This small change in duration arises from the classic 
Doppler effect. 

As a second example, consider two transmitted pulses each of duration 7, 

the second pulse occurring at a time tPRI. In this case, the received waveform 
can be written as 

(10.10) Rc{t) = 
Cn-V, 

\c0 + vz) 

3C 

3C 

3C 

2zo 
3C 

t- 

ca-vz J 

2zo 

_2zo_ + Tf c0 + vz 

-t PRI 

Co+Vz 
(T + tpRi) + 

f C0 + Vz v 

V Co VZ )- 

2zo 

v ca v z J 

X 

-t + 

Co-Vz 

which is shown in Fig. 10.7d. It can be seen that the interval between the trans¬ 

mitted pulses and their duration have been changed by a factor of(c0 + vz)/(c0 

- V;.). Thomas and Leeman [7] pointed out that this minor time-scale change 

is a direct result of the Doppler effect and is caused by the relative movement 

of the source and scatterer. 

To show that the Doppler-induced time shift is indeed small compared to 

the difference in arrival times of the received pulse for successive transmis¬ 

sions, which forms the primary basis of pulsed wave velocity estimation 

methods, we proceed as follows. In the example illustrated in Fig. 10.7d, the 

time interval between the two received pulses is given by 

At pri — 
Cg + Vz 

V ca vz J 
tpRi —tpRi 

2v7 
tpRi, for vz « ca. 

In addition, the change in pulse duration due to the Doppler term is 

A T = 'Co+VzXf j 

yCQ-Vz J 

2vz 

c0 
7, for vz « c0. 
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Vco-vzy 

vc»-vzy 
lPRI + 

Figure 10.7 Pulse-echo waveforms for a plane wave incident on a small scatterer 
moving with a velocity of v whose component in the z-direction is vz. (a) 
Rectangular transmit wave of duration T. (b) Received waveform from a small 
scatterer that is at a depth of z0 at t = 0. (c), (d) Same as (a) and (b) but with two 
pulses having a repetition interval of tPRI. The waveforms in (b) and (d) correspond 
to (10.9) and (10.10), respectively. 

Thus, the ratio of the two effects is given by AT/AtPR, = T/tPRI. For instance, if 
T- 1 Rs and tPRI = 100 |is, corresponding to a PRF of 10kHz, the Doppler arti¬ 
fact is about 1% of the change in the time interval between successive pulses, 
which is sufficiently small to be neglected. 

As a final example we consider the important case of a sequence of N 
transmit pulses with a repetition interval of tPRI, as illustrated in Fig. 10.8. 
The received signal from a scatterer whose axial location is z0 at t = 0 is given 
by 
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n~° n=\ n=N 

t _ t.1 
to PRI tPRI+ ta NtPRI+ ta 

Figure 10.8 Convolution of a sequence of 6-functions separated by tPRI with the 

transmit waveform to produce a sequence of TV + 1 transmit pulses. 

(10.11) 

n=0 

Co-vz 

Rc(t) — /CJ G(t0)by — (ntpRi + to) 

)iG 

fc0 + vz ) 2zo 1 
lc0-vzJ Co-vz J 

dtn 

Co+Vz z / n=0 

( r — V ^ uo v z 

\Co + VzJ 

(■t ~ ntPRI) — 
2(zo+vzntPRI)' 

Co 

Doppler Time Time shift due to 
effect change scatterer movement 

Apart from the amplitude factor, which is very near unity, this expression is 

identical to that given by Thomas and Leeman [9, equation 12], 

For the purpose of simplifying the analysis in the next two subsections, it is 

helpful to re-express (10.11) by writing t —»tF + ntPRh i.e., by using a fast-time 

scale that resets to zero every transmitted pulse so that 0 <tF< tPR,. Substitu¬ 

tion for t enables the received scattered signal to be expressed as 

2(zo + vzntPRi) 
tF 

Co - Vz 

RC(h,n)- 
(c — V ^ l-o y z 

v + vz 7 
G 

V c0 + vz 

Further simplification results by putting 
A _ £o-and 

c„ + v7 
B = , yielding 

Co-Vz 

(10.12) Rc(ft) - ^ G 
2ntPR,vz 

Co-vz 

which will be used in the next section. 

10.3.1 Demodulation by Direct RF Signal Sampling 

Thomas and Leeman [9] pointed out that the essence of a pulsed system can 

be understood by assuming that each RF A-line signal is sampled at the same 
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instant of time following emission3 (see Fig. 10.4). An analog output signal can 

then be obtained by using a circuit that maintains the same amplitude 

until the next transmission. In the following analysis we shall assume a non- 

directional system and 5-function sampling of the RF received signal for a 

scatterer moving with a constant velocity through the sample volume. 

Consider the sampling function of 5(tP - x), which can be used to extract 

the values of Rc(C, ft) at a time x following the transmission of each pulse. 
From (10.12) 

R5(x, ft) = Rc(tF, n)d(tF - x) = AG A x- 
V c 

2 ntPRIvz 
B 

JA 

For a sinusoidal pulse whose envelope is a(t) and with a center angular fre¬ 

quency of ay, the discrete time demodulated signal is 

(10.13) RF(x,n) = a 4 r 2nt™Vz £?+tY1 cos w(/4 
(2 ntFRIvz+B Yl 

_ ^ Co-Vz )] l Co-vz )\ 

For vz « c0 this equation reduces to 

Rf (x,«) 
' 2 vzntPRI 

V cQ 

\ 
cos to. 

( 2 vzntpRI 2zo\ 

/ ^ Co CQ ) _ 

which shows that if sufficient transmissions are used, the demodulated signal 

replicates the sampled transmitted pulse but is scaled in time by a factor of 

2v-Jc0. If the number of transmission is insufficient, the spectral bandwidth will 

be greater than that of the transmitted waveform, i.e., spectral broadening will 
be present. 

10.3.2 Phase-Quadrature Demodulation 

Virtually all earlier pulsed flow systems used demodulation to baseband fre¬ 

quency. A coherent analog phase-quadrature demodulator, similar to that used 

in CW systems (see subsection 9.4.2), can be used as the first stage for extract¬ 

ing the spectrum for both forward and reverse flow. As illustrated in Fig. 10.9a, 

the in-phase and quadrature outputs can then be sampled using range-gates 

that are opened at a time determined by the starting location of the sample 

volume. An intuitive choice, originally suggested by Peronneau et al. [31], is to 

make the range-gate duration equal to the transmit burst duration and to inte¬ 

grate the signal envelope over this duration, as opposed to sampling at a spe¬ 

cific instant of time as described in the previous subsection. By this means, 

significant SNR improvements can be achieved (see subsection 10.3.3). 

An alternative approach is to use a quadrature scheme in which the RF 

signal (or an intermediate frequency) is sampled twice in each center fre¬ 

quency period: once at a time t and subsequently at a time of t + 1/(4fc). The 

3. The velocity direction remains ambiguous with a single sample. As described in subsection 

10.3.2, quadrature sampling of the RF signal enables the direction to be recovered. 
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sin(coc/) 

Figure 10.9 Pulsed-wave system using quadrature demodulation, (a) Analog system, 

(b) Digital scheme using quadrature sampling in which the RF signal is sampled 

twice per period. The receive filter is not restricted to an integrator for either 

spectral flow or color flow imaging. 

second sample amplitude in relation to the first enables the flow direction to 

be determined. Such a scheme is illustrated in Fig. 10.9b. 

We start by considering just the in-phase process and will assume a sinu¬ 

soidal pulse with a center angular frequency of toc and an envelope of a(r), i.e., 

G(t) = a(t)cos(av)- 

Ignoring the amplitude factor in this and subsequent equations, (10.12) 

becomes 

(10.14) Rc(tF,n) = a A If 2n'n’Vl Si cos 

3
 

1
_

 

( 2 ntPRIvz ) 
t p D 

L ^ c0-vz ). v CQ V z ) - 

Multiplying this by cos(toctF) enables the in-phase demodulated signal to be 

obtained as 



672 Biomedical Ultrasound 

Rd (tF ,n) = a tF 
2ntPRIvz 

B 
t 

cos (ocA 
)\ V 

2nt prjV z 
B x cos(coctF). 

Using the relation 2 cos A cos B - cos(^4 - B) + cos(^4 + B) to expand the 

product of the two cosine terms yields 

RD(tF, n) = a A tP- 
2 ntPRIvz 

-B x 

cos CO, tp(A-l)- nt PRI 

+ cos (0C. tp (A + 1) — nt 

2Avz 

c0-vz 

2 Av7 
PRI 

-AB 

-AB 

Now the argument of the second cosine term contains the term u>ctF(A + 1) 

which for vz « c0 is approximately equal to 2ooctF. Consequently, the second 

cosine term can be eliminated by using a low-pass filter, leaving4 

Ri(tF, n) = a 
Co ~ V; 

Vc + u 
t F — 

2ntPRlvz 

cQ + vz 

2 Zg 

c0 + vz 
cos 

2co, 

L Ca+Vz 
(tFvz + ntPRIvz + Zo) 

For vz « c0 (as is usually the case), and recalling that 0 < tF < tPRh this 
simplifies to 

~{tFvz+ntPRIvz + Zo) ■ 

If the received signal for each transmission is integrated over the duration of 

a sample gate that extends from xF to xF + Ax, the sample values are given by 

R, (tF, n)~ a tF 
2 ntPRIvz 2 Zo 

cos 

(10.15) R,(n) cos 
2©, 

-itr+AX 

(ntPRIvz + Zo) 
1 " 

2 ntPRIvz 

Co 

2\ 

cit p. 

This equation was obtained by making use of the fact that over the sample- 

gate duration the cosine term is nearly constant and can therefore be taken 
outside the integral sign. 

For example, suppose that the transmitted envelope is the Gaussian func¬ 

tion exp(-o^) where the -6-dB (0.5) fractional bandwidth is equal to 
3.33aJ(ac. Then, from (10.15) 

(10.16) 

Ri(n) ~ cos 
2co, 

{ntPRIvz + z0) x 

Tf +Ax f r- 

1 exp 
2ntPRIvz 

Co 

2 Zo 

Co 

|2N\ 
dtp. 

J 

(a) 

4. This is identical to the mh term in eqn. 12 of [7], 
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Figure 10.10 Demodulation of the range-gated signals from a scatterer moving in 

the z-direction. A Gaussian modulated sinusoidal transmit pulse of approximately 

1-ps duration (four cycles of 4 MHz) was assumed. The reconstructed waveform 

assumed a range-gate duration of 1 ps and a single scatterer moving with a high 

velocity through the sample volume. In arriving at the discrete output as given by 

(10.16), each envelope of the received demodulated signal is integrated over range- 

gate duration and each value is then multiplied by the slow-time cosine wave for 

that time. 

In a similar manner, multiplying (10.14) by sin(oyy) enables the quadrature- 

demodulated signal to be obtained as 

RQ(n) sin 
2(0 c 

c0 
(ntPRIvz + z0) x 

(10.16) I/t+At 
f 

( 
2 2 ntpujVz 2 z0~ 

2X 

J eXP —W) tF 
J 

*F L c0 c0 J ) 

(b) 

Examination of either of these results reveals that for a given n, the received 

envelope is integrated in fast time over the range-gate to yield a single value. 

When this is multiplied by the value of the trigonometric term for the corre¬ 

sponding r7-value, the final slow-time sampled signal is obtained. For the in- 

phase component and a four-cycle Gaussian transmitted pulse, these steps are 

illustrated in Fig. 10.10. Moreover, as the gate duration is increased, so the 

effect of envelope truncation decreases, causing the bandwidth of the output 
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signal to be reduced. Alternatively, if the gate duration is reduced, to improve 

the axial spatial resolution, the spectral broadening is increased. 

It should be noted that the above result assumed that the scatterer moves 

in a uniform transmit/receive field throughout the entire interrogation process. 

In practice, as the scatterer moves through the sample volume, the field vari¬ 

ations will modulate the received signal in a different manner to that caused 

by range-gating of the demodulated signal. Consider, for example, a cylindri- 

cally symmetric geometry with a transmit/receive profile denoted by M(r,z) 

and a scatterer whose initial position is (r0,z0)- To account for the additional 

modulation introduced by a scatterer with velocity components of vr and vz, 

the function M[ra + vr(tF + ntPRI), zG + vz(tF + ntPR,)] must be placed under the 

integral sign of (10.15). 

10.3.3 Axial Resolution, SNR, and Range-Gate Duration 

The axial resolution is primarily governed by the characteristics of the trans¬ 

mitted pulse and the duration of the receive range-gate. As noted in the last 

subsection, a good choice is to make the duration of the range-gate and trans¬ 

mit pulse equal to one another. Depending on the SNR conditions and the 

sample volume length required, the transmit pulse might consist of between 5 

and 20 cycles. Under ideal conditions, the information provided by just two 

transmit firings could be used to estimate the velocity, but in practice many 

more are needed to achieve a good estimate. 

A useful starting point is a 1-D analysis in which it is assumed that the trans¬ 

mitted and scattered waves are confined to the same straight line and that 

ignores the effects of noise and statistical fluctuations in the received signal. 

With the help of these assumptions, a qualitative understanding can be 

obtained as to how the axial resolution and sensitivity are related and how the 

sample volume axial length depends on the transmit pulse and range-gate 

duration. This simplified model will be followed by a more accurate analysis 
that accounts for the 3-D nature of the sample volume. 

For this 1-D analysis, we also assume a transmit pulse with a rectangular 

envelope and duration of T.Thus, the distance from the transducer to the start 
of the sample volume is given by 

zs = c0 (ts-T)/2, 

where x5 is the interval from the start of the transmit pulse to the opening of 

the range-gate. Similarly, the end of the sample volume can be expressed as 

zE - c0(xs + At)/2, 

where Ax is the range-gate duration. It follows from the above equations that 
the sample volume length is given by 

(10-17) Ze ~ ZS = c0(T + Ax)/2, 

which shows that the length can be increased by increasing the transmit pulse 
duration, the range-gate duration, or both. 
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Normalized Time from Start of Range Gate, tIT 

Figure 10.11 1-D simulation results showing the effect of four different range-gate 

to transmit durations (At/7) on the sensitivity within the sample volume axial length. 

The simulation assumed a nine-cycle sine-tapered transmit pulse with a 13% 

fractional bandwidth propagating in a medium with no attenuation. 

An improved 1-D model is that first presented by Peronneau et al. [31], and 

that more recently described by Evans and McDicken [24, p. 48], Such a model 

takes account of the partial truncation of the signal by the range-gate. Shown 

in Fig. 10.11 are the computed results for a nine-cycle burst, tapered at the two 

ends by a sine function and having a duration of T. To obtain this graph, the 

range-gated received signal for a scatterer placed at a given location was first 

determined. The energy was then obtained by multiplying the received signal 

FFT by its complex conjugate and integrating. This process was repeated for 

all scatterer locations that contributed energy. Plots are shown for the same 

transmit pulse amplitude for four different values of At IT. Time, normalized 

to the duration of the transmit signal, is shown on the horizontal axis. It can 

be converted to the axial position within the sample “volume” by multiplying 

by e0772.The vertical axis is proportional to the gated received energy. It can 

be seen that when the range-gate duration Ax » T or Ax « T, the response 

over the sample volume becomes more uniform compared to that when Ax = 

T. However, because the transmitted pulse amplitude was held constant, the 

signal energy is reduced as Ax/T is reduced beyond unity. 

Noise is a major factor limiting the spatial resolution. There are two primary 

sources: clutter caused by stationary or near-stationary scatterers, and thermal 

noise generated in the receiver system, particularly in the preamplifier. Vessel 

wall and adjacent tissue motion is often considered to be source of clutter 

though, as noted in Chapter 8, the information as to the wall displacement over 

the cardiac cycle can be an important means of assessing the vessel elasticity. 

For small sample volumes close to the vessel wall or long sample volumes that 

encompass the entire vessel, a clutter reduction filter is needed (see subsection 

10.8.2). A simple high-pass filter could be used, as could a means for subtract- 
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ing successive A-line signals, in the form of a delay-line canceller. As will be 

seen, a tradeoff exists between the SNR and axial resolution. In an important 

paper, Kristoffersen [32] addressed the question as to the best value for the 

ratio AxlT for the optimal combination of sample volume resolution and SNR. 

Cathignol [33] pointed out that the SNR of any measurement system 

depends on the total energy received over the measurement interval. He also 

noted that for pulsed velocity measurement systems, improvements in the 

SNR could only be achieved by: (i) increasing the peak power, (ii) increasing 

the transmission pulse duration, and (iii) increasing the packet size. Increas¬ 

ing the peak power is permissible within limits that may be governed by safety 

considerations and the onset of nonlinear effects. Increasing the transmission 

pulse duration decreases the spatial resolution, as expressed in (10.17). Finally, 

if the packet size is increased for the same number of lines per frame and PRF, 

the frame rate will be decreased. 

When the transmit duration is reduced to improve the axial resolution, a 

greater signal bandwidth will be needed, which can be achieved by increasing 

the preamplifier and/or the matched filter bandwidth. To compensate for the 

reduction in SNR associated with the increased bandwidth of the shorter 

transmit pulse, its amplitude should be increased. From a patient safety stand¬ 

point, it can be argued that such an increase can be in proportion to the reduc¬ 

tion in pulse duration so that the same average power is maintained. However, 

as noted above, patient safety, as well as the onset of nonlinear effects, sets 

certain limits on the peak power. 

10.3.4 Shape of the Sample Volume 

The sample volume can be defined as that region over which the received 

gated signal power is a specified number of dB’s below the peak value. Such 

a definition takes into consideration the fact that noise will be present and will 

limit the volume over which a useful backscattered signal can be obtained. A 

reasonable choice is a threshold of -12 dB, and this will be assumed in the 

discussion that follows. The shape is determined primarily defined by the 

transmit waveform, the receive gate duration, and the characteristics of the 

transducer beamforming system. For a simple disk transducer, the sample 

volume will be cylindrically symmetric. However, for a 1-D array of the type 

typically used in B-mode imaging, the shape will have a lower order of sym¬ 

metry, and as a result numerical methods are generally needed to determine 
its contours. 

Work on characterizing the nature and properties of the sample volume was 

first described in the 1973/74 publications of Morris et al. [34], Baker et al. 

[35], and Jorgenson and Garbini [36], Simplified 1-D models were generally 

used in which the transmit waveform incident on a scatterer was assumed to 
be in the form of a teardrop.5 

5. In the literature the 3-D shape of the sample volume is sometimes inappropriately assumed 
to be similar to a teardrop. 
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For a 1-D model, the sample “volume” is simply the segment of a line whose 

boundaries correspond to the —12 dB points of the gated received signal power. 

These points can be determined from the sample “volume” sensitivity function, 

which can be found with the help of Fig. 10.12. In the time/depth graph of (a), 

it is assumed that scatterers are distributed throughout the medium. Also 

assumed is a rectangular receive gate that has a duration the same as the trans¬ 

mitted pulse and that starts at time fi.Two transmitted waveforms are shown: a 

rectangular pulse and a teardrop pulse. Within the receive gate, the time/depth 

path of the transmit pulse leading edge corresponds to the lines marked with 

the filled black arrows, while those for the trailing edge are marked with the 

gray arrows. It can be seen that information first arrives at time tx due to the 

scattering of the leading edge by a scatterer at z2. In fact, all scatterers that lie 

between z\ and Zi will simultaneously contribute receive components at t\ due 
to scattering of the remaining portion of the transmitted pulse. Similarly, at time 

tii information arrives from all scatterers in the region from zi to Z3 by scatter¬ 

ing of the leading through to the trailing edge of the transmitted pulse. The 

process whereby the received signal within the receive gate is generated corre¬ 

sponds to convoluting the transmit and receive waveforms, and this is illus¬ 

trated in (b) for the two assumed transmit waveforms. Thus, the sample 

volume sensitivity function can be found by convoluting, giving a time- 
domain waveform, and then converting from time to depth. 

A considerably more complex situation arises when the 3-D nature of the 

sample volume must be considered: generally, numerical methods must be 

used, especially when the source/receiver geometry is complex such as for a 

1-D array. The result of such computations for a linear phased array have been 

described by Steinman et al. [37], and contours for regions of constant energy 

for various planes for a phased linear array are illustrated in Fig. 10.13. Note 

especially that for a fixed focus lens, the sample volume in the elevation/axial 

plane is much greater than that in the azimuth/axial plane, especially when the 
azimuth focus is well away from the elevation focus. 

10.3.5 Ensemble of Scatterers 

Up to now, the passage of a single point scatterer has been studied as it passes 

through the sample volume. A more complex situation arises when the sample 

volume contains an ensemble of moving scatterers, such as that illustrated in 

Fig. 10.14. In this case, the received signal consists of a superposition of indi¬ 

vidual backscattered signals. Moreover, movement of the ensemble causes 

the sample volume to contain less of the original pattern, until ultimately the 

entire original ensemble has been replaced. An efficient way of computing the 

backscattered signal is to make use of the hybrid model (see subsection 5.9.4) 

in which the fluid is divided into voxels with volumes of (Ao/20)3. The number 

of RBCs in a given voxel is a Gaussian variable whose variance depends on 

the hematocrit though (5.69). Knowledge of the point spread function of the 

measurement system and the backscattering cross-section for each voxel 

within the sample volume enables the backscattered signal to be estimated. 
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Figure 10.12 1-D model for estimating the characteristics of the sample “volume.” 

(a) Depth/time diagram enabling the sample “volume” sensitivity function to be 

estimated. Examples are shown for a transmit waveform consisting of (i) a 

rectangular pulse and (ii) a teardrop-shape waveform. A rectangular receive gate of 

the same duration has been assumed, (b) Sample volume sensitivity functions. The 

vertical axis gives the sensitivity as a function of the z-position. Note that the shape 

extends from z\ to z3, where z3 corresponds to the leading edge of the transmit pulse 

and Z\ to the trailing edge. 
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Figure 10.13 Sample volume characteristics obtained using a 3-D simulation model 

for a 5-MHz, 58-element array at the azimuthal focus of 35 mm. The array elements 

were 0.27 mm wide and 4 mm high in the elevation direction, and the 

kerf was 0.03 mm. Propagation was into a medium with an attenuation of 

0.7 dB/(MHz.cm). A lens with a focus at 11.25 mm was assumed in the elevation 

plane. The transmitted excitation pulse was a tapered 5-MHz multi-cycle sine wave 

with 9 cycles (1.5mm axial length) and 15 cycles (5.0mm). The receive gate had the 

same duration as the transmitted pulse. Contours correspond to relative total 

energies of -1, -3, -6, -9, and -12 dB. Lateral E-number = 2. (a) Axial versus 

elevation, (b) Axial versus lateral, (c) Elevation versus lateral at a depth of 35 mm. 

((a) and (b) reprinted by permission of Elsevier from Steinman et al. [37], 

Ultrasound. Med. Biol., 30, 1409-1418, ©2004 World Federation of Ultrasound in 
Medicine and Biology.) 

10.3.6 Coded Excitation 

Soon after the first publications appeared describing pulsed velocity systems, 

methods of improving the sensitivity by using coded excitation were discussed 

[38,39]. These and subsequent developments, together with the basis princi¬ 

ples, were discussed in section 8.4. However, not discussed there was the use 

of frequency modulation as a means for extracting range and velocity infor¬ 

mation from a moving target. As with many ideas for improving the perform¬ 

ance of medical ultrasound systems, this technique was first developed and 
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Figure 10.14 How decorrelation arises with successive A-lines. For simplicity, it has 

been assumed that flow is in the direction of the range-gated ultrasound beam. A 

certain ensemble of scatterers that is wholly within the sample volume when the first 

transmit pulse reaches it at time t„ is shown as filled circles. As it moves away from 

the transducer in the z-direction, it is gradually replaced by a new ensemble (empty 

circles), causing decorrelation of successive range-gated samples. The scatterer 

arrangements in the sample volume are also shown at times of ta + tPR, and t0 + 2tPRr. 

used for improving the performance of radar systems [4, pp. 448^-56; 40]. In 

1974 McCarty and Woodcock [41,42] proposed that if the transmitted signal 

was frequency modulated, the problems arising from the lack of range dis¬ 

crimination in CW Doppler ultrasound could be circumvented. As illustrated 

in Fig. 10.15a, they examined the use of a continuous signal, frequency modu¬ 

lated in a linear periodic manner. For a fixed scatter at a depth za, it can be 

seen that the sawtooth, representing the instantaneous frequency of the 

received signal, is displaced in time. If the repetition period of the transmitted 

waveform is greater than 2zJC„ and if the rate of change of the transmitted 

frequency is constant, the instantaneous frequency difference between the 
transmitted and received signals is given by 

_ 2z0 df 

cQ dt ’ 
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Figure 10.15 Frequency modulation schemes, (a) The CW, linear FM scheme 

proposed by McCarty and Woodcock [41,42], (b) Scheme described by Wilhjelm and 

Pedersen [44] that uses a long FM pulse that might have a duration of 60 ps and be 

repeated every lOOps. 

where dfjdt is the rate of change of the transmitted frequency. Thus, the axial 

location of a fixed scatterer can be determined by measuring A/. If the scat- 

terer is moving, the Doppler effect will cause the received instantaneous fre¬ 

quency to differ from A/. In this case, if the demodulator consists of a multiplier 

whose inputs are the transmitted and received signals, then the low-pass 

filtered signal at its output will have an instantaneous frequency of 

(10.18) A/(») = —^±/D(<). 
c0 dt 

where fD(t) is the Doppler frequency shift. Because the instantaneous fre¬ 

quency of the incident wave changes with time, the Doppler frequency will 

also be time-dependent, making A/a function of time. In (10.18) there are two 

unknowns: the depth of the scatterer and its axial velocity component (through 
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A/o). The ambiguity can be resolved by extracting additional information 

through frequency-domain analysis. 
In radar, the range/velocity ambiguity for a single target can be resolved 

through frequency-domain analysis [40]. However, Bertram [43] found that in 

a blood vessel, where a multiplicity of scatterers can move with different veloc¬ 

ities through the sample volume, the ambiguity could not be resolved using 

the transmit scheme of Fig. 10.15a. Subsequently, Wilhjelm and Pedersen 

[44,45] proposed the use of the relatively long linearly modulated FM pulses 

shown in Fig. 10.15b. As with the previous scheme, separate transmit and 

receive transducers were required. They showed that the center frequency dif¬ 

ference between successive demodulated signals was directly proportional 

to the axial velocity component. This difference was determined by cross¬ 

correlation of successive real spectra [45]. Using a fluid seeded with small 

scatterers, they demonstrated that the system was capable of measuring flow 

velocity profiles. They also compared the performance with that of a more 

conventional pulsed wave system that used cross-correlation to determine the 

time shift (see section 10.4) and found similar levels of performance. 

10.4 Velocity Estimation using Time-Shift 
Cross-Correlation 

Estimation of the distance traveled by a scatterer in a specified interval of time 

forms the basis of the time-shift method for estimating its mean velocity. This 

distance can be estimated from the pulse-echo transit-time difference between 

successive transmitted pulses. Denoting this difference by Ax, the scatterer 

velocity can be obtained by rewriting (10.1) as 

(10.19) 
c„Ax 

v =- 
2 tPRI cos0 

A significant advantage of this method in comparison to methods based on 

frequency or phase is the elimination of aliasing. Under ideal circumstances, 

the maximum velocity that can be estimated is limited by the need for the scat¬ 

terer to remain within the sample volume for several PRIs. However, if the 

target is blood, signal decorrelation between successive PRIs must be suffi¬ 

ciently small that the time delay can be reliably estimated. In practice, delay 

estimate errors can arise from noise. The false peaks created by this source 

can be removed by nonlinear processing; however, the jitter errors arising from 

sampling effects remain [46], Nonetheless, as noted by Jensen [47], under 

favorable SNR conditions the maximum velocity can be several times greater 

than the aliasing velocity as expressed by (10.3). 

10.4.1 Time-Delay Estimation 

By the 1960s, it was generally accepted [48] that the cross-correlation function 

provided an excellent method for estimating the relative delay between two 
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partially correlated signals in the presence of uncorrelated noise. The appli¬ 

cation of this technique to estimate Ax and hence to obtain the velocity using 

(10.19) was first described by a group working in Milan. Dotti et al. [49], in a 

1976 paper, described a correlation system they used for measuring the flow 

velocity profile of blood flowing in an 8 mm diameter tube. A more detailed 

description that included improvements to the measurement system was pre¬ 

sented by the same group [50] in 1979. In vitro results from their steady and 

pulsatile flow velocity profile measurements using blood, together with in vivo 

measurements of the velocity profile on a superficial arm vein and from a 

common carotid artery, were subsequently published [51]. Nearly ten years 

later two other research groups announced the development of similar veloc¬ 

ity measurement systems: one focused on its use for volumetric blood flow 

estimation [54,55], the second for use in color flow imaging [8,56]. The first 

proposal for estimating tissue displacement by cross-correlating successive A- 

scans appears to be that reported by Dickenson and Hill [52] in 1982 (see 

section 8.8). Since then, estimation of soft tissue movement and its velocity in 

1-D and 2-D by cross-correlation has been extensively investigated. In a 1993 

review, Hein and O'Brien [53] discussed a variety of estimation methods and 
assessed their relative advantages. 

In essence, the cross-correlation method consists of taking a range-gated 

portion of the received signal and searching for the time shift that gives the 

best match with a subsequent A-line signal. Two successive received RF A-line 

signals are shown in Fig. 10.16. These simulated echoes were produced with a 

wideband transmit pulse whose fractional bandwidth was about 50%, propa¬ 

gating into a simulated blood-like medium. The range-gated portion of the first 

echo is cross-correlated with the second echo to yield a lag waveform whose 

maximum has a lag equal to the delay between the two echoes in the gate 

region. To obtain an estimate of the flow velocity with a relatively small vari¬ 

ance, the average time shift over several (e.g., 5-10) transmissions must be 

used. Because the echo signal will usually be in the form of sampled data, the 

cross-correlation estimate will be in a discrete form. For two successive signals 

yn(t) and yn+i(t), the cross-correlation estimate over the range-gate is given by 

„ l Ns~ 1 

Rn,n+i {st Arto) — — y„(NZo + l)yn+] (NZo +1 + 5), 
w s h0 

where NZo denotes the sample number at the beginning of the range-gate, i.e., 

ia = NZo/fs, fs is the sampling frequency, s/fs corresponds to the lag, Ns is the 

number of samples within each range gate, and the hat on R is used to indi¬ 
cate that it is an estimated value. 

As discussed by Foster et al. [55] and Jensen [61], several error sources can 

be identified that detract from the reliability with which the velocity can be 

estimated. For low SNR conditions, maxima in the cross-correlation can occur 

for time delays that are unrelated to the true velocity. By restricting the range 

over which the cross-correlation is performed, e.g., to the regions between the 

two side lobe peaks of the cross-correlation function [47], the probability of 

detecting a false maximum can be reduced. However, this also limits the 
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Figure 10.16 The cross-correlation method for estimating the time delay from 

range-gated portions of successive A-lines. The location of the maximum is equal to 

the delay. By using a multiplicity of A-lines, the probability of correctly estimating 

the delay can be improved. (Reproduced, with permission, from Vaitkus [57].) 

maximum velocity that can be estimated. By limiting the range to the two side 

lobe peaks, this maximum may be no better than the aliasing velocity as given 

by (10.3). 

Limitations on the sampling rate are likely to cause the maximum value of 

the cross-correlation lag to differ from the true delay value At. Foster et al. 

[55] proposed that around the maximum the sample values could be fitted 

to a parabola, enabling the true maximum to be estimated with improved 
accuracy. 

10.4.2 Effects of Decorrelation 

When cross-correlation is used for estimating the blood flow velocity, decor¬ 

relation of the signature produced by a particular ensemble of scatterers is of 

considerable importance in determining the accuracy with which the velocity 

can be estimated.'1 The influence of decorrelation was first mentioned by 

6. Decorrelation has been proposed as a means for estimating blood flow using intravascular 

side-view imaging probes (see subsection 8.10.4). 
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Figure 10.17 The manner in which an initial ensemble of scatterers becomes 

decorrelated in the sample volume because some scatterers will exit and new' ones 

will enter between PRIs. The solid line is based on measurements. The normalized 

lateral separation distance is 1.2 v?p«/sinO/W. Measured and empirical results are 
those obtained by Foster et al. [55], 

Bassini et al. [50] and was more fully discussed by Bonnefous [58] and Foster 

et al. [55]. Bonnefous derived an expression for the estimated maximum value 

of the normalized cross-correlation coefficient ^(Ax) as a function distance 

that an ensemble of scatterers moves in one PRI and velocity dispersion. If 

velocity dispersion can be ignored, her expression for the correlation 
maximum can be written as 

(10.20) /?i2 (At) = 1 - vtpR‘ sin6, 

where W is the beam width at the measurement site, 9 is the angle the flow 

velocity makes to the beam axis (same as the Doppler angle), and the quan¬ 

tity under the bar is the mean distance traveled by the ensemble in one PRI. 

This equation shows that the maximum value falls off linearly with the lateral 

distance traveled by the scatterers. Modulation of the RF signal by the beam 

profile and velocity dispersion caused by turbulence in the sample volume can 

be expected to further reduce Rn (Ax). The measurements shown in Fig. 10.17 

indicate that up to a normalized lateral distance of 0.6, the behavior is close 

to linear, though a factor of 1.2 was needed in the second term of (10.20) to 

obtain a good fit. 

To account for the effects of noise on the time delay estimate, Foster et al. 

[55] used a number of simplifying assumptions to develop an approximate 

equation for the variance of the time delay estimate. If Ax denotes the true 

delay, then for high SNRs and long spatial windows compared to a wavelength, 

the standard deviation of the estimate is given by 
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Figure 10.18 Variation in estimating the time delay when using the cross-correlation 

method versus the true time delay as calculated from (10.22). The sample volume 

was assumed to have a width of 1 mm. bandwidth 2.0 MHz, and SNR 10. The angle is 

0 is defined in Fig. 10.17. 

(10.21) 
V2 

2nAfRu (Ax)SNR ' 

where A/is the bandwidth. A useful normalized indicator of the imprecision 

with which the delay can be estimated is the coefficient of variation. Also 

known as the normalized random error, it can be defined by [59] e = oa*/At. 

Substituting (10.20) into (10.21) (including the factor of 1.2) and using (10.19) 

to eliminate v, the coefficient of variation can be expressed as 

(10.22) £ = <3 at / Ax ~ 
_WV2_ 
2nAf(W - 0.6co Ax tan Q)SNR ' 

The manner in which this coefficient of variation changes with the delay for 

various angles of incidence is shown in Fig. 10.18. With shorter time delays, the 

effect of noise dominates, while for much longer delays and small angles of 

incidence, decorrelation also contributes to the coefficient increase. For inter¬ 

mediate delays, the coefficient of variation reaches a minimum and, in the 

absence of any bias, the best estimates of the true delay are achieved. 

A further source of estimation error arises from non-uniformity of the 

pulse-echo response over the sample volume [55]. As the ensemble of scat¬ 

tered within the sample volume moves between successive transmissions, each 

RBC will see a different incident pressure, causing the received signal to 
change. 

The maximum measurable flow velocity can be estimated from the equa¬ 

tion describing the effect of decorrelation. If it is assumed that a good esti¬ 

mate of the time shift requires that the correlation coefficient between two 

successive A-mode transmissions be >0.5, then from (10.20) 

(10.23) t;max = 

WfpRp 

2sin0 

For example, if W = 1 mm, fPRF = 5 kHz, and 0 = 60 degrees, then vmax = 

288 cm/s. However, the presence of noise would require several A-mode 
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Figure 10.19 Comparison of the computed correlation coefficient using the full 

sampled data (solid line) from two range-gated signals with that computed using the 

sign of the data values (dashed line). There were 32 samples in the data that had an 

SNR of 10. (Reproduced, with permission of the International Federation for 

Medical & Biological Engineering, from Jensen [61], Med. Biolog. Eng. Comput., 32, 
S165-S170, ©1993 IFMBE.) 

transmissions to achieve acceptable accuracy. If this is taken to be five, then 

the maximum velocity in the above example would be 58 cm/s. 

10.4.3 Approximate Method for 

Cross-Correlation Calculation 

Determination of the cross-correlation between range-gated data involves a 

very significant computational burden, especially when it is desired to extract 

the velocity data over an entire axial region rather than over a single sample 

volume. An approximate method of finding the cross-correlation function for 

sampled data is based on first reducing the data to one-bit values, values that 

correspond to the sign of the sampled values. Cross-correlation is then per¬ 

formed using the one-bit arithmetic. Justification for this approach is based on 

the knowledge that for two Gaussian distributed signals with zero mean and 

an infinite number of samples, the sign method [10, pp. 239-240] yields the 

exact cross-correlation function. It appears that this method was originally 

used by Bassini et al. [50] in applying the cross-correlation approach for ultra¬ 

sound velocity measurements, and was subsequently used by others. 

The simplicity of one-bit arithmetic enables the necessary calculations to 

be performed in real time using custom-designed hardware [60], For a simu¬ 

lated RF signal segment, Fig. 10.19 shows that the times at which the exact and 

approximate maxima occur are essentially the same. More sophisticated 

schemes with improved performance have also been described. For example, 

a two-bit scheme has been described by Wang et al. [62], who used an adap- 
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tively selected threshold. They reported that for reduced SNR conditions, the 

performance was significantly better than the one-bit scheme. 

10.5 Velocity Estimation Based on Phase Shift 
and Frequency 

One of the first techniques to be used for velocity estimation in a real-time 

flow imaging system was that described in 1982 by Namekawa et al. [63], It 

was based on estimating the phase shift between the signals received from suc¬ 

cessive transmitted pulses by using an autocorrelation technique. Sometimes 

referred to as the Kasai [64] or the 1-D autocorrelation estimation method,7 

it was incorporated into the first commercially available color flow imaging 

system8 and was used in many subsequent commercial systems. Its develop¬ 

ment and application was in fact preceded by important developments several 

years earlier, based primarily on radar techniques developed during the 1950s. 

Specifically, in 1975 Grandchamp [65] pointed out that by estimating the phase 

shift between successive A-mode lines at a given location, the flow velocity at 

that location could be calculated. He also pointed out that the technique was 

capable of estimating the velocity throughout the entire depth of the A-lines. 

Brandestini [66] demonstrated the practical use of this technique. Both 

authors recognized the importance of greatly reducing the large echo ampli¬ 

tudes that arise from stationary or slowly moving structures. Generally, these 

form a dominant part of the received signal and can seriously degrade the 

accuracy with which the phase difference can be estimated. 

With reference to the simplified sketch of Fig. 10.4a, it should be noted that 

for a single scatterer, the phase shift between any pair of received signals can 

be estimated. If the shift lies in the range from -180 to +180 degrees (to avoid 

any wrap-around ambiguities) the time delay can be related to the phase shift, 

enabling the velocity to be estimated. Alternatively, as demonstrated in Fig. 

10.4b and expressed by (10.2), the velocity can also be estimated from the 

center frequency of the slow-time waveform. 

In the presence of a multiplicity of scatterers moving with different veloc¬ 

ities in the sample volume, the scattered waveform will have a more complex 

form due to the effects of interference, as previously described in Chapter 5. 

Because the scatterer distribution changes between successive transmissions, 

it therefore becomes more difficult to extract velocity information. However, 

before considering phase-shift and frequency estimation methods in more 

detail, it may be helpful to examine some of the results from Mayo and 

Embree’s [67] experiments, as reproduced in Fig. 10.20. 

We first focus attention on the RF signal and stack gray-scale images of 

successive A-lines side by side to form a 2-D image. Such images were obtained 

7. Different authors refer to this method with different names, such as the covariance 

estimator, the autocorrelation estimator, and the correlation phase estimator. 

8. The first commercial system, the SSD-880CW, was introduced in 1983/4 by Aloka of Japan. 
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Figure 10.20 Frequency and phase methods for estimating the flow velocity. The 

measurements used a 5-MHz wideband transmit pulse and an ultrasound beam that 

intersected the flow at 45 degrees in a 7.0-mm-diameter tube. Because the beam/flow 

angle was 45 degrees, the path within the vessel is 9.9 mm. The fluid contained a high 

density of small scatterers and had a flow velocity profile that was approximately 

parabolic with a peak velocity of 24.3 cm/s. (a) Successive 384 RF received signals 

(A-lines) are displayed in gray scale side by side, (b) Portions of the three successive 

A-lines indicated in (a). 
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Figure 10.20 (Continued) (c) Complex signal obtained from two low-pass filtered 

range gates (A and B) of the first 150 A-lines, (d) Phase of the RF signal within the 

two range gates for the same 150 A-lines. (Reproduced, with permission of the 

International Society for Optical Engineering, from Embree and Mayo [67], pp. 

70-78, in: lnt. Syrup, on Pattern Recognition, Vol. 0768, ©1987 SPIE.) 

using a simple steady-flow model consisting of scatterers suspended in water 

flowing in a 7.0 mm diameter tube. As illustrated in Fig. 10.20a, the presence 

of flow causes a gray-scale pattern to emerge that is directly related to the par¬ 

abolic flow velocity profile. The complex signals shown in (c), which were 

obtained from the first 150 lines of the two range-gates (A and B), clearly indi¬ 

cate their stochastic nature. It should also be noted that the mean frequency 

from range-gate A is much lower than that obtained from B, whose position 

is close to the center of the flow axis. By estimating the mean frequency of 

these waveforms, the mean velocities at the sample volume locations can be 

determined from (10.2). Note that the in-phase and quadrature signals enable 
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the direction of flow to be determined. Specifically, because the in-phase 

signals lags the quadrature component, flow is directed away from the trans¬ 

ducer whose beam/flow angle is 45 degrees. As is illustrated in (d), the pres¬ 

ence of both components also enables the center frequency phase shift to be 

determined. From the slope of the phase shift, the velocity can be estimated. 

Techniques that can be used to achieve this are discussed in section 10.8. 

10.6 Multigate Pulsed Wave Methods 

In an artery, the flow changes rapidly with time, especially in the neighbor¬ 

hood of systole; as a result, the flow velocity profile changes over the cardiac 

cycle. For a considerable time, it had been realized that measurement of the 

profile could provide a useful means for assessing the status of a vessel. A 

single-channel instrument can be used to achieve this by stepping the range- 

gate across the vessel [68], However, for pulsatile flow, this requires a means 

for synchronizing the time at which the information is obtained to the phase 

of the cardiac cycle. A much better scheme, and one that allows real-time pro¬ 

filing (Fig. 10.21a), is through the use of a multiplicity of range-gated channels. 

McLeod and Anliker [69], working at Stanford University, appear to have 

been the first to report the development of a multigate system. Their system 

used transmitted pulses of 1 ps duration with a center frequency of 8 MHz and 

employed sixteen gates whose sample positions were automatically adjusted 

to provide uniform spacing along a path intersecting a flow profile. Measure¬ 

ments of the flow velocity profiles obtained with steady-flow models showed 

excellent agreement with theory. Complications arise in arterial vessels due to 

the elastic nature of blood vessels. The pressure changes responsible for the 

pulsatile flow not only cause the velocity profile to change over the cardiac 

cycle but also result in significant changes in the vessel diameter (Fig. 10.21b). 

A detailed account of the design and application of a sixteen gate system 

was presented by Peronneau et al. [31,70]. Measurements of profiles for steady 

and pulsatile flow in tubes and for pulsatile flow in the artery of a dog were 

reported. About the same time (1974), Anliker’s group in Zurich developed a 

fourteen channel pulsed system that was used extensively for profile meas¬ 

urements in a variety of human vessels [71,74], Subsequent developments were 

reported by Fish [72], Brandestini [73], and Hoeks et al. [75], To simplify the 

signal processing needed for each channel, a zero-crossing processor was often 

used. These time-domain processors determine the zero-crossing frequency of 

the demodulated signal. Under ideal SNR conditions, it can be shown [76] that 

the zero-crossing frequency is proportional to the RMS frequency of the input 

signal. However, the presence of noise can significantly degrade the perform¬ 

ance, causing serious errors [77,78], 

10.6.1 System Design 

One example of a multigate system is that developed by Reneman’s group in 

Holland [79], It had a center frequency of 6.1 MHz, a PRF of 18kHz, emission 

and gate durations of 2/3 ps, a sample volume of 1.2 to 1.7 mm3, and 64 gates. 
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(a) Transducer 
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Figure 10.21 Method for using a multigate system for estimating the instantaneous 

flow profile. A pulsatile profile accompanied by changes in the vessel diameter is 

illustrated for two instants of time in the flow cycle, (a) A multiplicity of sample 

volumes within a blood vessel at two times in the flow cycle, (b) Velocity profiles for 
the same two times. 

In vivo measurements from the right common carotid artery of a young vol¬ 

unteer are shown in Fig. 10.22 [80], A sequence of time waveforms taken from 

14 range-gates that cross the vessel is shown in (a). The waveform at the 

bottom shows the relative diameter changes that occur over the cardiac cycle, 

details of which were subsequently reported by Hoeks et al. [81]. From (b) it 

is clear that in the neighborhood of peak systole, the profile is relatively flat 
and the vessel is maximally distended. 

10.6.2 Deconvolution Correction 

Ideally, the sample volume should be sufficiently small that the signal obtained 

from a given channel represents the flow velocity component at its location. 

However, for most blood vessels, a typical pulsed ultrasound sample volume 

includes scatterers with a range of velocities; furthermore, in a multigate 
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Figure 10.22 Measurement of the velocity profile in the right common carotid artery 
and its changes over the cardiac cycle for a young volunteer, (a) Time variations of 
the signal from 14 range gates; also shown are the relative changes in vessel 
diameter, (b) Profile variations reconstructed from the measurements shown in (a). 
(Reproduced, with permission of Research Studies Press, from Reneman and Hoeks 
[80], Chapter 4 in Doppler Ultrasound in the Diagnosis of Cerebrovascular Disease, 
©1982 John Wiley & Sons.) 

system there can be significant overlap between adjacent sample volumes, as 
illustrated in Fig. 10.23. A simple detector that estimates the RMS pulsed wave 
frequency (e.g., a zero-crossing detector) or the mean frequency takes no 
account of the location and relative weights of the velocities encompassed, 
causing the estimated velocity profile to be in error. Deconvolution procedures 
for obtaining a more accurate estimate were first noted by McLeod and 
Anliker [69] and subsequently were used by others [35,36,82]. 
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Figure 10.23 A multigate system makes possible the measurement of the flow 

velocity profile. The spatial locations and the sensitivity functions are shown for five 

sample volumes. Each encompasses a range of velocities and each overlaps the 
information from adjacent volumes. 

10.7 Principles of CW and Pulsed Wave Flow Imaging 

Of considerable importance in the diagnosis of vascular disease is the ability 

to image the flow and to superimpose such a flow image on the structural B- 

mode image. One of the initial major impediments to achieving this in real 

time was the problem of developing a technique for estimating the flow veloc¬ 

ity sufficiently quickly with the computational speed then available. A number 

of significant developments, discussed in the first subsection, led to a method 

for overcoming this problem. Two examples of color flow images, superim¬ 

posed on their respective gray-scale B-mode images, are shown in Fig. 10.24. 

The first shows the common carotid artery (shades of red) and the jugular vein 

(shades of blue). It was obtained with a 5 MHz linear array using beam steer¬ 

ing. The second shows the fetal umbilical cord imaged using a curvilinear 

phased array. A further example is shown in Fig. 10.25. The upper portion 

shows a color flow display of the common carotid artery. A white marker indi¬ 

cates the location where a spectral flow sample volume is formed, separate 

from the color display, by using an aperture of adjacent array elements. The 

slow-wave “gray-scale” spectrum from this sample volume is shown at the 

bottom. It is similar to the Doppler gray-scale spectral display shown in 

Fig. 9.16 except that it is derived from a sample volume near the vessel center 
instead of from the entire vessel. 

10.7.1 Historical Background 

During a period when CW Doppler ultrasound was still being clinically 

assessed, initial steps in the development of Doppler and pulsed wave flow 
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Figure 10.24 Two examples of color flow imaging. For both, the color flow image is 

added to the gray-scale B-mode image and the color bar scale gives the flow velocity 

component in the beam direction in cm/s. Vertical tick marks are 1 cm apart, (a) 

Common carotid artery (red scale) and the jugular vein (blue scale): 15 frames/s, 5.0- 

MHz center frequency; the focal point is marked by a < close to the RHS. 

(b) Sector scan showing the umbilical cord (two arteries and one vein) at 29 weeks: 

4 frames/s, 2.5-MHz center frequency. (Courtesy Philips Ultrasound.) See color 

insert. 

imaging were reported. In 1971/2 three brief reports appeared. Using CW 

Doppler ultrasound, Reid and Spencer [83] described a scheme that used a 

sharply focused 5 MHz transducer. As illustrated in Fig. 10.26a, the transducer 

was scanned over the surface, and if Doppler frequencies above 300 Hz were 

present at a given location, the recorded intensity was modulated by the 

Doppler shift frequency. A transducer position resolver was used to determine 

the position on the scan plane, enabling the lateral (C-mode) tracings of 

Fig. 10.26b to be obtained, much like those of a conventional transmission 

x-ray image. 
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Figure 10.25 Example of a spectral flow display from a sample volume located near 

the center of the common carotid artery. Two small white lines mark the range-gate 

boundaries and the white dots show the spectral beam direction. The beam/flow 

angle was estimated to be 59 degrees, resulting in a peak flow velocity of 43 cm/s. The 

envelope of the spectral display, indicated by the gray line, gives the variation from 

within the sample volume of the peak flow velocity over each cycle. (Courtesy 

Siemens Ultrasound.) See color insert. 

Figure 10.26 Method developed by Reid and Spencer [83] for flow mapping using 

CW Doppler ultrasound, (a) Schematic of scanning transducer, a vessel, and the 

scanned C-mode image. (Reprinted by permission of Elsevier, from Reneman and 

Spencer [83], Ultrasound Med. Biol., 5,1—11, ©1979 World Federation of Ultrasound 

in Medicine and Biology.) (b) Subsequent carotid artery recording showing a 

scanned right carotid artery indicating the presence of very little flow to the internal 

carotid aitery due to the presence of a stenosis. Reproduced, with permission of 

Science, from Reid and Spencer [84], Science, 176, 1235-1226, ©1972 AAAS.) 
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About the same time, two groups described the use of pulsed wave systems 

for flow visualization. In the pulsed system described in 1971/2 by Hokanson 

et al. [87,88], a 2-D map was generated that indicated flow in the plane of the 

vessel, similar to that of Fig. 10.26a. On the other hand, the pulsed wave system 

described by Fish [85,86] generated a map to indicate the flow velocity over a 

vessel's cross-sectional area, i.e., normal to the plane shown in Fig. 10.26a. This 

system, like the other early systems, required many minutes of examination 

time to obtain satisfactory clinical images. Subsequently, Fish [72] described a 

30-channel multigate system that was capable of imaging in several planes9 

enabling the vascular examination time to be greatly reduced. 

Apart from the problem of examination time, these preliminary systems 

provided only a rough measure of the flow velocity, due in part to the method 

of display. White and Curry [89,90] made a significant improvement by color¬ 

encoding the maximum Doppler shift frequency and recording this on color 

film from a color CRT. Their CW Doppler system, which was manufactured10 

under the brand name of Echoflow, used a multiplicity of filters to determine 

the maximum Doppler frequency. Venous flow signals that might be picked up 

along with arterial signals were rejected by the phase-quadrature detection 

scheme. 

Over the period 1975 to 1982 a number of schemes were proposed for more 

rapidly estimating the flow velocity component in the beam direction over the 

entire length of an A-line echo, and extending this to a 2-D map. The work of 

Grandchamp [65] and Brandestini [66], previously mentioned in section 10.5, 

was an important step toward achieving real-time flow imaging. Specifically, 

they demonstrated how the velocity component at a succession of locations 

along an A-line could be estimated by measuring the phase shift between suc¬ 

cessive A-lines. In 1978, Brandestini and Forster [91] described how this tech¬ 

nique could be used to produce flow images in which the velocity field was 

color-encoded and superimposed on a gray-scale B-mode image. A subsequent 

publication from the same group [92] showed the color images that are repro¬ 

duced in Fig. 10.27. To obtain these images they used a modified Duplex system 

with a scan head consisting of three rapidly rotating transducers for generat¬ 

ing B-mode images, and these were coupled to the tissue via a water-filled 

boot. In addition, a single-element pulsed wave transducer was used for flow 

velocity estimation, and this was mounted on a pivot, enabling its direction to 

be manually adjusted. 
A composite color-encoded flow image of a common carotid artery is shown 

in Fig. 10.27a. Originally published in 1981 [92], many of the features of this 

image are similar to those obtained with subsequent commercial systems.8 It 

9. MAVIS (Movable Arterial and Venous Imaging System), a range-gated scanner, was one 
of the first commercially available multigate systems. It was based on the design by Fish [72] and 
produced by GEC Medical Equipment Ltd. in the latter part of the 1970s. As described by 
Woodcock and Atkinson [21, Chapter 4, pp. 129-133], the MAVIS C contained imaging capability 
along with the ability to compute the velocity profile and the volumetric flow rate. 

10. Diagnostics Electronics, Lexington, MA. 
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Figure 10.27 Early color-encoded flow images, (a) Common carotid artery flow 

image superimposed on a gray-scale B-mode image, (b) Three-second M-mode 

recording showing the movement of tissue and vessel walls in gray scale and blood 

flow in color. The beam passes through the jugular vein (blue) and then through the 

common carotid artery. (Reprinted by permission of Elsevier, from Eyer et al. [92], 

Ultrasound Med. Biol., 7, 21-31, ©1981 World Federation of Ultrasound in Medicine 
and Biology.) See color insert. 

shows the color-encoded flow velocity along approximately 25 lines superim¬ 

posed on a gray-scale B-mode image. The instantaneous phase along a given 

A-line was estimated from the real and complex parts of the received signal. 

By subtraction, phase differences were determined, enabling the velocity to 

be estimated. For each probe direction, the velocity was color-encoded using 

the velocity/color scale shown on the left, and then superimposed on the stored 

B-mode image whose scale is shown on the right. The image shown in (b) con¬ 

tains a color-encoded M-mode recording over a three second period during a 

Valsalva maneuver. Because the beam passes through both the jugular vein 

(on top) and common carotid artery (below), it displays the blood velocity 

component in the beam direction. This image is superimposed on a conven¬ 

tional gray-scale pulse-echo M-mode recording showing movement of the 

tissue. Because a fixed beam direction was used, the composite display shows 

the tissue movement and the component velocity along the beam as a func¬ 
tion of time. 
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A closely related pulsed wave technique for generating a velocity estimate 

as a function of depth is that described by Nowicki and Reid [93] in 1981. Like 

Brandistini [66], they recognized the importance of achieving a high degree 

of stationary echo cancellation. Using two analog (delay-line) moving target 

filters in series, reductions of around 50 dB were reported. Moreover, their 

technique was sensitive to flow direction. Another technique for flow imaging 

is that described by Arenson et al. [94,95] in 1980/82. It used a linear array of 

32 elements in which each transducer element was mounted at 30 degrees to 

the surface. Groups of six elements were used for reception and phased trans¬ 

mission. A mirror driven by a stepper motor provided scanning normal to the 

linear elements. Using a long-pulse Doppler CW system, flow imaging was 

achieved at five frames per second, with each frame consisting of 10 x 27 pixels. 

As noted in section 10.5, one of the first real-time flow imaging systems to 

be described was that reported in 1982 by Namekawa et al. [63], This group, 

working at the Aloka Institute in Japan, initially used a mechanical scanning 

transducer but changed to a phased array in the middle of 1983. In 1982, 

Bommer and Miller [96] from the University of California also reported the 

development of a 2-D color flow imaging system. The flow image had 64 x 156 

sample-sites per plane and a frame frequency of 60 Hz, and the final image 

contained a superimposed B-mode frame. They reported cardiac measure¬ 

ments on dogs and normal subjects as well as patients with tricuspid valve 

regurgitation and demonstrated significant enhancement of the signal level by 

using contrast agents. These and other developments have been summarized 

in Omoto's valuable historical review [97] that recounts the early development 

of color flow mapping, its commercialization, and clinical application. 

10.7.2 Pulsed Wave Color Flow Imaging 

Of central importance in the initial development of real-time flow imaging in 

the presence of pulsatile flow was a means for rapidly estimating the mean 

flow velocity along each A-line direction. Such estimators should have rela¬ 

tively small bias and variance, especially under the relatively poor SNR con¬ 

ditions that are often encountered in practice. Some of the methods discussed 

earlier, e.g., time-delay correlation and phase shift detection, have been 

successfully used in commercial systems, and details of these, along with 

some alternative approaches, will be presented. However, before considering 

the details, the basic principles underlying color flow imaging will first be 

described. 

10.7.3 Principles 

A sequence of five A-mode RF signals obtained from transmissions in the 

same beam direction is shown in Fig. 10.28. As noted earlier, in the absence of 

noise just two lines are sufficient, but from 5 to 20 may be needed to obtain a 

sufficiently good velocity estimate within each segment into which the 

received signals have been divided. To extract the required information, each 
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Figure 10.28 A sequence of five RF received signals are shown, each of which is 

divided into Q range-gated segments. The signal in each segment is sampled and 

integrated over the segment duration. 

received signal can be quadrature demodulated (see subsection 10.3.2) to 

obtain its in-phase and quadrature components. These are then sampled and 

integrated over the range-gated segment duration. For eight such lines and a 

selected segment, the in-phase and quadrature analog signals, together with 

the sampled and integrated signals, are illustrated in Fig. 10.29 (a) to (d).The 

magnitude of the complex signal obtained from eight lines is shown in (e). As 

illustrated in (f), the superposition of these signals on a common time axis 

clearly shows that movement of an ensemble of scatterers within the sample 

volume produces a phase shift. From this, the mean scatterer velocity in the 

beam direction can be estimated for this particular segment. By repeating this 

process for all segments and then encoding this information in color, a single 

line of color-encoded flow can be displayed. By repeating this entire process 

so as to cover an entire region, a single frame of color-encoded velocity infor¬ 

mation can be displayed. As will be described, to successfully extract and 

display this information, the effects of stationary or slowly moving tissue must 
be either eliminated or greatly reduced. 

10.8 One-Dimensional Autocorrelation Methods 

As noted earlier, the first successful real-time color flow imaging system was 

based on an algorithm first described by Namekawa et al. [63,64],11 Funda- 

11. In the context of this and related sections, the names “1-D” and “2-D” refer to the nature 
of the input data, not to the spatial dimensions. 
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mentally, the method is a phase-domain technique that provides an estimate 

of the mean pulsed wave frequency and variance from the autocorrelation 

function and its derivative at zero lag. Namekawa and Kasai may not have 

been aware of a highly relevant paper by Miller and Rochwarger [98] pub¬ 

lished some 10 years earlier. It described how the moments of the spectral 

density of a complex Gaussian signal process could be estimated from the 

complex signal of successive A-mode transmissions. As will be seen, the com¬ 

putational complexity of this approach for estimating the mean and variance 

is considerably less than that based on estimating the power density spectrum 

and, from this, estimating the moments. 

Now the range-gated sampled signal from a single scatterer moving with 

velocity v is that illustrated in Fig. 10.4b, and its velocity is related to the slow¬ 

time frequency by (10.2). Consequently, for a distribution of scatterers the 

signal will have a mean pulsed wave angular frequency of (bPW that is related 

to the spatial mean velocity and the incident center frequency (coc) by 

(10.24) 
— c0a>pw 
v =- 

2coc cosG 

By definition, the mean angular frequency co (temporally dropping the sub¬ 

script on to) and its variance are given by 

(10.25) co = 

poo 

J coO(co)c/co 

J O(co)c/co 

J (co-co) O(co)dco 

J O(co)dco 

where O(co) the power density spectrum of the noise-free sampled complex 

signal. Now the Wiener-Khinchin relation [99, pp. 206-207] provides a funda¬ 

mental link between the time- and frequency-domain properties of complex 

processes. Specifically, it states that the autocorrelation function R(x) and the 

power density function O(co) form a Fourier transform pair. One member of 

this pair is 

(10.26) R(x) 
2k 

| 0(co)e;tOTdco. 

From this it can be seen that R(0) is the average signal power. Differentiating 

this once and twice with respect to x gives 

R(x) = = — f ;oL)0(co)e/tOTc/co, 
dx 27C C 

(10.27) -j2p/T\ _|~ 
R(x) = -—— = — [ (o20(co)e;“Tc/(o. 

dx2 2k j 

Consequently, setting x = 0 in (10.26) and (10.27) and substituting these into 

(10.25) results in 

o - ,A°) p 
*(0)’ % .mi m' (10.28) 
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Both equations were derived by Miller and Rochwarger [98]. Because they 

require reasonably accurate estimates of the zero-lag autocorrelation function 

and its first and second derivatives, there are considerable difficulties in imple¬ 

menting this technique with discrete data. An alternative approach described 

by Miller and Rochwarger is to first express the covariance function in polar 
form, i.e., 

(10.29) R(t) = A(t)exp[/(^(x)], 

where A(x) = |R(t)| is a real even function and 4>(t) is a real odd function of 

x. Using this, (10.28) yields 

(5PW = -jR(0)/R{0) = ${0) 

Since the velocity of the target can be assumed constant during the interval 

between two pulses tPRI, the phase derivative is approximately given by 

(10.30) 

— _ [^(Ur/)-<Ko)} _ d(UR/) 
(Opw = i-r -- 

l tpRi J tPRi 

-V arctanlIlT1—— 
tpRi lRe[R(f/w)]J tp^ 

-arg R(tPRI). 

To determine the variance, according to (10.28) the first and second deriv¬ 

atives of the covariance function must be evaluated for zero lag. The deriva¬ 

tives can then be obtained from (10.29) as 

7?(0) = ;A(0)<j)(0) and R(0) = A(0)- A(0)[<j>(0)]\ 

where use has been made of the fact that A(0) = 0 and b(0) = 0. Consequently, 

(10.28) for the variance can be written as 

(10.31) 
,2 X(0) 2 

>1(0) tpR; 

1 ^4(Ur/) 2 

L >i(o) J 12 
IPRI m J 

--- 

Figure 10.29 Scatterer simulation results to illustrate the properties of the received 

complex envelope over eight transmission cycles. Following phase-quadrature 

demodulation, eight successive range-gated portions (1.2-ps duration) of the in-phase 

/(?) and a quadrature Q(t) signal are shown in (a) and (b), respectively. If these are 

then integrated over the receive gate duration and sampled, the resulting sample 

values [I(m), Q(m)] are shown as the crosses in (c) and (d). The magnitude 

■slQ2(t) + I2(t) of the range-gated complex envelope is shown in (e). Shown in (f) are 

the waveforms from m = 1 to 7 of the range-gated pulse trains in (e) using a 

common time axis. With increasing m, the time-shift arises from the movement of the 

scattering ensemble through the sample volume toward the transducer. In (a), (b), 

and (e), the time scales of each waveform have been expanded from the true 

duration to enable the form of each waveform to be seen. For this simulation tPRI = 

0.128ms and fc = 5.0MHz (BW_3dB = 2.5 MHz). (Reproduced, with permission, from 

Vaitkus [57].) 
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Figure 10.30 Method for estimating and displaying a color flow velocity images, (a) 

Overall scheme that can be used to estimate and display the velocity corresponding 

to a given image display pixel, (b) Estimating the mean pulsed-wave angular 

frequency using the Kasai algorithm. (Based on a similar diagram in Evans and 
McDicken [24, p. 252].) 

in which the approximation made consists of expanding A{x) as a series, 
neglecting third- and higher-order terms, and inserting x = tPRI. 

Equations (10.30) and (10.31) show that the mean angular frequency and 

the variance of the slow-time signal can be estimated from the magnitudes 

and phases of the autocorrelation function at lags of 0 and tPRI. Miller and 

Rochwarger [98] showed that maximum-likelihood estimates can be obtained 

from successive pairs of samples of the complex received signal, and this is the 
basis of the practical scheme described below. 

Consider the signal processing scheme of Fig. 10.30a in which the RF signal 

is phase-quadrature demodulated to baseband. After filtering, the analog in- 

phase and quadrature signals are converted to digital form. Each signal pair 

gives the flow velocity information for a given segment (see Fig. 10.28), and 
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consequently the signals obtained from the sequence of M firings that make 

up a packet can be expressed as a complex vector of M elements. To improve 

the SNR, filtering (e.g., integration over the segment duration) can be used 

prior to A/D conversion. As discussed in subsection 10.8.2, the high-amplitude, 

low-frequency clutter caused by vessel wall movement should be removed 

before estimating the mean flow velocity. Moreover, because the color flow 

image is usually displayed as a superposition on the corresponding B-mode 

image, a threshold must be used to determine whether or not the flow infor¬ 

mation should be written on the corresponding image pixel. One method of 

achieving this is to use a threshold based on the signal power for each pixel. 

The complex signal at a particular range for successive A-lines can be 

written as g(m) = I(m) + jQ(m), where I(m) and Q(m) are the in-phase and 

quadrature signal amplitudes for the mth A-line. If M transmissions (the 

packet size) are used for making the velocity estimate (M > 1), then the 

correlation function estimates (denoted by hats) at lags of 0 and tPRl can 

be written as 

M-1 

^(°) = 2(m~\) ^ -^7 ~ ^ + and ^tpR^ = mTT ^ ^m ~ 

When these equations, along with the definitions given above for g(m), are 

substituted into (10.30) and (10.31), the estimated mean velocity, as given by 

(10.24), can be expressed as 

v = 
c0 

f M 

tan 1 ~ 1 )-Q{m ~1 )/(m) 
m=1 2tPRi(oc cos 9 

(10.32) MA A 

^ I{m)I(m - 1) + Q(m)Q(m - 1) 
m=1 

and its variance by 

55 = 
tpRi cor COS0 Wu 

M-1 

M 
77 X G(m)7 (m -!) - Q(m - !)7 (m) 

1 m=1 

(10.33) 

M 

i M-l 
— ^ I(m)I(m -1) + Q(m -\)Q(m) 

1 

-.2 , 1/2' 

where 

/, 1 M-\ 
(10.34) ww = ——'£jQ2(m) + l2(m) 

M 1 m= 0 

is the estimated average power. Thus, the velocity can be estimated from suc¬ 

cessive sample pairs obtained at the same depth. It should be noted that the 

Kasai estimation scheme illustrated in Fig. 10.30b corresponds to (10.32) and 

that the power estimate used in the thresholding scheme of Fig. 10.30a makes 

use of (10.34). Although the variance can be reduced by increasing the packet 

size, as noted earlier, movement of the scatterers through the sample volume 
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causes the signal from within this volume to become decorrelated. Moreover, 

for a given measurement depth, increasing M causes the number of lines per 

frame and/or the frame rate to be decreased. 

The range over which the velocity can be unambiguously determined 

depends on the algorithm used for the arctan operation in (10.32). By pre¬ 

serving the signs of both the numerator and denominator in the argument, a 

four-quadrant arctan algorithm achieves a range from -n to +n. Consequently, 

by replacing the arctan function by these limit values, the unambiguous veloc¬ 
ity range is given by 

(10.35) Ci ax — 

Cofl PRF 

4 fc cos 0 ’ 

which is identical to (10.3). The latter was derived by using the Nyquist sam¬ 

pling criterion for unambiguously determining the slow-time demodulated 
center frequency. 

An important advantage of the autocorrelation approach is the absence of 

any bias, even under poor SNR conditions. Sirmans and Bumgarner [22] com¬ 

pared the autocorrelation method to an FFT technique in which the noise 

spectrum is subtracted from the signal spectrum. They showed that at very low 

SNR conditions the variance of the autocorrelation method is superior, while 

for other SNR conditions it is equal. Moreover, they found the influence of 

noise on the variance to be negligible for SNRs of greater than 15 dB. 

An alternative method for obtaining an expression for the instantaneous 

frequency estimate can be obtained by first noting that the instantaneous 

frequency is the derivative of the phase. Between the rath and ra - 1 trans¬ 
missions, it is given by 

U>m ,pw — —--- 

at tPR1 

= {tair‘ [Q(m)/.I(rn)] - tan"1 [Q(m -1)//(ra -1)]}, 
lPRI 

as proposed by Grandchamp [65] and used by Brandestini [66] in a multigate 

pulsed system. By combining the two arctan functions, Barber et al. [100] 
pointed out that the above expression can be written as 

oy^J-tan 
tpm |_ / (ra)/(ra — l) + <2(nt)Q(ra —1) 

which has the same form as a single component of (10.32). This derivation 

clearly shows that the autocorrelation method is based on measuring the 

phase-shift information from a multiplicity of sampled data pairs. 

10.8.1 Effects of Frequency-Dependent Attenuation 
and Scattering 

As shown in Chapter 1, frequency-dependent attenuation causes a reduction 

in the center frequency of a wideband signal, whereas the opposite is true for 
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frequency-dependent scattering. For Doppler (CW) ultrasound under linear 

propagation conditions, neither the narrowband transmitted signal nor the 

scattered signal will be affected. However, for pulsed wave ultrasound flow 

measurement systems, the influence of frequency-dependent processes on the 

bias and variance of estimation methods needs to be considered. Newhouse 

et al. [1] considered their influence on a pulsed random and pseudo-random 

blood flowmeter system. Subsequent work by others [101,102] has confirmed 

that depth-dependent errors in the mean velocity estimate can occur with 

certain methods. Assuming a circular transducer operating in the far field, 

Ferrara et al. [102] conducted a theoretical investigation of four estimation 

techniques. They concluded that of the three estimation categories (see sub¬ 

section 10.2.1), frequency/phase methods can give rise to significant depth- 

dependent errors, whereas time-domain and multiple burst (tracking) methods 

do not. In addition to the influence of frequency-dependent scattering and 

attenuation, the effect of dispersion, which accompanies attenuation as a con¬ 

sequence of the Kramers-Knonig relations (see subsection 3.10.1), should be 

considered. In their examination of the influence of all three phenomena. Fish 

and Cope [103] pointed out that dispersion should not cause a change in the 

pulse energy spectrum. However, because it changes the phase relations 

between various frequency components, it can affect the pulse shape, and this 

could be significant for very small sample volumes. 

In time-domain correlation methods, cross-correlations are made between 

successive received signal segments to estimate the time delay, which is then 

used in (10.19) to calculate the velocity. Because the transmit/receive paths 

lengths are almost the same for the two transmissions, shifts in the spectrum 

will affect the two received signals in a virtually identical manner, causing 

essentially no error. However, for phase/frequency estimation methods, an 

error can arise from frequency-dependent attenuation in combination with 

frequency-dependent scattering. In the analysis given below, we shall consider 

just the effects of attenuation when a is proportional to frequency (n = 1) and 

the transmitted pulse is a Gaussian modulated sinusoid. 

In Chapter 1 it was shown [see (1.126)} that when transmitted signal has a 

Gaussian envelope and that propagation is in a medium whose attenuation 

increases in proportional to the frequency, the two-way change in frequency 

due to a frequency-independent scatterer at a depth z can be expressed as 

Afc= - a0z(2.66BW fc)2/(4n2). In this, BW = o0)/(2.66/c) is the -6-dB fractional 

bandwidth. Now in section 10.2 it was shown that the slow-time center fre¬ 

quency for a single scatterer is scaled by a factor of 2vcos0/co. Consequently, 

center-frequency error is given by (10.2), i.e., AfPW = 2A/cveos0/co. It follows 

that the fractional error in the estimated velocity is given by 

(10.36) 4^ = ^ = -<*<,-%/. (2.66 W)2. 
V fc 47T 

In other words it is proportional to the depth and the square of the bandwidth. 

For the case an = 0.5dB/(cmMHz), fc = 5.0MHz, and a variety of fractional 

bandwidths, it can be seen from Fig. 10.31 that the fractional error can be rel¬ 

atively large for wideband signals. 
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Figure 10.31 Fractional velocity estimation error caused by frequency-dependent 

attenuation when n = l.The two-way error was calculated from (10.36) assuming a 

Gaussian-shaped transmit pulse. Note that z is the depth of the scatterer, so that the 
two-way distance is 2z. 

The assumption of a Gaussian shape, as used in the above calculation, 

is unlikely to be valid for the pulses generally used in narrowband 

frequency/phase estimation methods. Typically, they may contain from 8 to 20 

cycles with tapered edges. For the nine-cycle sine-tapered pulse illustrated in 

Fig. 10.32, it can be seen that the velocity estimation error (100Av/v) increases 

linearly with depth and is less than 0.7% for depths of up to 10 cm. If the effects 

of frequency-dependent scattering had been included, it would have been even 

less. Such small estimation errors are generally considered negligible in rela¬ 
tion to other uncertainties. 

For a Gaussian transmit envelope, Evans and McDicken [24, pp. 174-178] 

have examined the combined frequency-dependent effects as the effective 

number of cycles in the transmitted pulse is varied. They point out that for 

narrowband frequency/phase methods, the estimated velocity error is small, 
though if needed a depth-dependent correction can be applied. 

10.8.2 Clutter Rejection Techniques 

The presence of very-high-amplitude signals from the vessel wall and sur¬ 

rounding quasi-stationary tissue presents major difficulties in trying to esti¬ 

mate the flow close to the vessel wall. These clutter signals are typically 40 to 

60 dB higher than that from blood. Though, because they are produced by sta¬ 

tionary or relatively slowly moving structures, their spectrum is typically well 

below 1 kHz. The problem of removing their influence without introducing 

bias in the blood velocity estimates is a major challenge, especially since the 

blood flow velocity approaches zero at the vessel wall. Even when the sample 
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Figure 10.32 Two-way changes that occur due to a frequency-dependent attenuation 

of 0.5dB/(cm.MHz). It was assumed that the transmit signal was a narrowband (13% 

bandwidth), nine-cycle, sine-tapered pulse with a center frequency of 5 MHz. (a) 

Velocity estimation error and FWHM reduction, (b) Power spectral density, showing 

the changes that occur when the transmitted signal is backscattered at a distance of 
10 cm from the source. 

volume is well away from tissue, the beam side lobes may produce significant 
clutter. 

Many of the high-pass filter schemes initially examined were those devel¬ 

oped for Doppler radar, where a similar problem of extracting the signal from 

a background of low-frequency clutter exists. A major difficulty with the choice 

and design of an effective filtering scheme arises from the transient nature of 

the digital signals to be filtered. A reasonable frame rate with adequate spatial 

resolution over a given area can be achieved only by limiting the number of 

packets sent in each direction (typically from 5 to 16). Because of the tran¬ 

sient nature of this signal, a filter with a poor transient response can introduce 

serious bias and variance in the velocity estimate. On the other hand, a filter 

with a fast response is likely to have unsatisfactory roll-off characteristics. 

Many of these issues have been reviewed in Evans and McDicken [24, pp. 

246-250] and in Bjaerum et al. [104], 
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Papers that initially addressed the problem of optimizing the design 

primarily considered FIR (finite impulse response) and HR (infinite impulse 

response) filters [105-107]. Filters of the FIR class are non-recursive, in that 

the current output is derived from the current and past inputs and their non¬ 

zero response to an impulse is finite [108]. On the other hand, an IIR filter is 

recursive in that the output is derived from the present and past inputs and 

outputs. Because of its feedback nature, its response to an impulse can be infi¬ 

nite. However, associated with this is a relatively poor transient response that 

can cause serious bias to the estimated mean frequency. To minimize transient 

effects, various schemes have been investigated for providing appropriate 

initial conditions for the filter; these include step, zero, projection, exponen¬ 

tial, and zero initialization schemes. Their purpose is to compensate for the 

fact that there is no prior input and no output when the first input arrives. 

A different class of clutter filter, first investigated by Hoeks et al. [106] and 

subsequently by Kadi and Loupas [109], are regression filters. In these, 

the clutter signal component is fitted to a polynomial by performing a 

least-squares analysis. Once this has been achieved, the clutter signal is then 

subtracted from the total signal, leaving the blood flow signal and higher- 

frequency noise. A further class of this filter is based on methods that can adapt 

to the characteristics of the received signal [110,111]. In one such form, the 

clutter mean frequency over a packet is first estimated, and then, using this 

frequency as the reference, the entire signal is downshifted so that the clutter 

spectrum is centered around zero. A high-pass filter with a narrow stop-band 

can then be used, enabling significantly lower blood flow velocities to be esti¬ 

mated. Alternatively, the average clutter signal can be subtracted from each 

firing and the flow velocity estimated from the residual. 

10.9 Two-Dimensional Methods 

In the previous discussion of the color flow system shown in Fig. 10.30a, it was 

noted that one method for obtaining a pair of digital I and Q values from a 

given segment is to integrate the analog in-phase and quadrature signals over 

the segment duration. For a given packet size the information for this segment 

can be stored as a complex vector whose elements form a 1-D set. In the Kasai 

method, an autocorrelation approach is used to process this vector, enabling 

the velocity estimate to be obtained. The integration process reduces the noise 

and at the same time averages out the received signal. For a narrowband trans¬ 

mitted pulse there should be no loss of information. However, for wideband 

transmission it can be argued that information is lost. In 1988, Mayo and 

Embree [112] proposed a method for velocity estimation based on using all 

the information available over a segment duration rather than basing it on a 

single value.12 Independent work by Wilson [114], published in 1991, described 
a similar approach. 

12. It is perhaps of interest to note that in a patent applied for in 1987, Kim [113] described 

a method for velocity estimation based on making better use of the available information. 

Arguably, it can be regarded as a 2-D approach. 
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Figure 10.33 Digital signal processing scheme for color flow imaging. The 

quadrature-sampling scheme illustrated in Fig. 10.9b could also have been used. 

To describe the above technique it is helpful to consider the front-end struc¬ 

ture shown in Fig. 10.33 and the received RF signal segments between the 

depths of Zo and Zn-\ for the packet shown in Fig. 10.34. If each signal in the 

segment is sampled N times and there are M signals in a packet, there will be 

a total of M x N sample values. Moreover, for an analytic signal whose real 

and imaginary components are denoted by I and Q, each matrix element can 

be denoted by g(m,n) = I(m,n) + jQ(m,n), where the first index (m) indicates 

the row number and the second (n) the column number. This complex matrix 
can be written as 

«(0,0) 8(0,2) • 

(10.37) G = 
s(U) 8(1,2) ■ • £(1,W-1) 

g(M-1,2) • • g(M -1, A -1) 

A single column of this matrix is a snapshot of the analytic signal at a specific 

time with respect to the start of each gate segment and can be written as 

|(n) = [g(0, n), g( 1, «),... g(M -1, n)]r. 

Thus, G is a complex snapshot matrix that contains all the sample values within 

the segment for the entire packet. On the other hand, a row vector gives the 

sample values on a particular received waveform segment. By integrating 

along all the rows, a single column vector is produced, one element of which 
is given by 

AM AM 

g(m) = £ g[m, n) = Yu 7(m’ n) + JQ(m> n\ 
«=o «=o 

As described in section 10.8, the elements of this vector were used for the 

1-D autocorrelation velocity estimator. 

As pointed out in [116], the number of statistically independent snapshot 

vectors in the matrix G is determined by the spatial time-bandwidth product 

of the portion of the backscattered echo from the segment. This product can 

be thought of as an indication of the “richness” of information contained in 
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Figure 10.34 Relationship between backscattered echoes and the 2-D Doppler 
signal snapshot matrix. By stacking portions of successive RF backscattered echoes, a 
matrix G of column vectors is obtained. Each column corresponds to samples of the 
RF signal taken at the same time (with respect to the sample gate) from each 
received signal of the packet. A packet containing four realizations is illustrated. 
Note that it is actually the complex (analytic) form of the echo signal that 
corresponds to each matrix element, yielding a complex matrix G. (Reproduced, with 
permission from Vaitkus and Cobbold [116], IEEE Trans. Ultrason. Ferroelec. Ereq. 
Contr., 45, 939-954, ©1998 IEEE 1998.) 

the signal. It can be compared with the number of realizations or independ¬ 

ent samples needed to estimate the probability density function of a stochas¬ 

tic process. The spatial time-bandwidth product or “effective” number of 

independent snapshot vectors over the segment is given by Neff= NAf/fs, where 

fs is the sampling frequency and A/is the RF echo bandwidth. The estimation 

variance is inversely related to Neff. For example, if B = 2.5 MHz, fs = 50 MHz, 

and the receive gate window is 1.2 ps, there will be 60 vectors in total, but the 

number of statistically independent vectors will be only three. 

10.9.1 Discrete Fourier Transform Methods 

By taking the 2-D Fourier transform of the discrete data contained in the 

matrix G, Mayo and Embree [112] showed how a velocity estimate could be 

extracted in a very straightforward manner. The discrete Fourier transform of 
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such an array yields an array of values that, depending on the sampling rate 

and scatterer velocity, can exhibit aliasing.To provide a simplified explanation, 

the approach given by Wilson [114] allows these complications to be avoided. 

He assumed that the returned signal g(z,x) was real, continuous, and infinite 

with respect to fast and slow time. Consequently, this 2-D function can be 

expressed as a 1-D function g0(z) that moves along the z-axis with a velocity 

of ve = 2vcos0/co, i.e., g(z,x) = go(z + vex). From Appendix B, the 2-D Fourier 
transform can be written as 

3{g(z, x)} = G(kz ,kT) = jjgo(z + veT)e^+k^dzdx. 

Denoting the Fourier transform of g0(z) by G0(kz) and using the shifting prop¬ 
erty of the Fourier transform, this simplifies to 

(10.38) 3{g(z,x)} - Gc{kz) J e^e^dx = 2%G0(kz)b(kzve-kx). 

A sketch of this function is shown in Fig. 10.35a, where the horizontal and ver¬ 

tical axes correspond to frequencies of slow time and fast time, respectively. 

It can be seen that the 2-D Fourier transform of the continuous data in the 

packet is zero everywhere except on die straight line through the origin. The 

slope, which can be expressed as ?e =fPJfc = tancp, enables the scatterer veloc¬ 
ity to be estimated from 

(10.39) 
Cqfpw _c0 tancp 

2/ccosQ 2cos0 

Mayo and Embree [112] proposed that (p could be estimated by perform¬ 

ing line integrals (projections) along radial lines from the origin and search¬ 

ing for the angle that yields a maximum. For an analytic signal, the elements 

in G are complex and its discrete 2-D Fourier transform consist of a 2-D array 

of points on a rectangular grid. Because the radial lines do not generally inter¬ 

sect these points, interpolation is needed to perform the line integrals. 

A spectrum of frequencies in the transmitted pulse, along with the finite 

number of transmissions and decorrelation, results in a spread on the fre¬ 

quency plane. This can be seen in Fig. 10.36, which illustrates the 2-D trans¬ 

form for 16 A-lines obtained for wideband transmitted pulse [117], The spread 

is also represented by the contours in the aliased 2-D transform of Fig. 10.35. 

Frequency-dependent effects such as attenuation, scattering, the transducer 

bandwidth, and nonlinear propagation, cause the received signal center fre¬ 

quency to change from that transmitted. Moreover, the stochastic nature of 

the signal produces fluctuations in the estimated center frequency. From Fig. 

10.35a, it is clear that the location where the power is a maximum enables 

the center frequency of the received pulse to be estimated. If fc in (10.39) 

is replaced by this estimated center frequency, the accuracy with which the 

scatterer velocity can be estimated should be improved. Loupas and Gill [118] 

have proposed that the information available from the full range of frequen¬ 

cies present in the transmitted bandwidth can be used by taking slices through 



RF Pulse 
Bandwidtl 

*» 

Figure 10.35 Sketches illustrating the 2-D Fourier transform of the matrix G. The 

slope of the line corresponding to the maximum value of the line integral gives the 

velocity estimate, (a) Simplified sketch showing the transform to the frequency plane 

for a continuous signal of infinite duration (see text). The insert shows the contours 

and the spectrum corresponding to a 1-D slice. Panel (b) provides an interpretation 

of the aliased signal in (c). Panel (c) is the 2-D spectrum of the signal from a normal 

human artery when the mean slow-time frequency is equal to fPRF. Because a high- 

pass filter was not used, the wall movement spectrum and its aliased components 

were retained. The effects of aliasing on both spectra are evident. (Reprinted by 

permission of Elsevier from Torp and Kristoffersen [115], Ultrasound Med. Biol., 21, 

937-944, ©1995 World Federation of Ultrasound in Medicine and Biology.) 
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Fast Time Frequency 

Figure 10.36 2-D Fourier transform of simulation data consisting of 16 A-lines 
created by a wideband transmitted pulse. (Reproduced, with permission, from Jones 
[117], Critical Reviews in Biomed. Eng., 21, 399-483, ©1993 CRC Press.) 

the 2-D transform parallel to the slow-frequency axis. Each slice would then 

give the spectrum corresponding to a particular RF frequency, as illustrated 

by the insert of Fig. 10.35a. The information obtained in this way should 

provide a reduction in the velocity variance. Either direct sampling of the 

analytic RF signal or quadrature demodulation and processing of the / and Q 

signals (Fig. 10.30a) can be used. In the latter case, the RF frequency spectrum 
is translated about zero. 

Several authors have addressed the relation between the 1-D and 2-D 

approach. As noted earlier, for the 1-D method, integration is performed along 

the rows of the complex matrix G. According to the projection-slice theorem 

(see subsection 8.7.1), the vector that results from a projection (integral) along 

each row of G corresponds to a slice through the Fourier transform plane. For 

the demodulated signal, this corresponds to a slice along the slow-frequency 
axis. 

10.9.2 Two-Dimensional Autocorrelation Methods 

One problem that arises from using the 2-D discrete Fourier transform on data 

derived from stochastic signals concerns the issue of stability. In 1995, Foupas 

et al. [119] proposed a new approach based on 2-D autocorrelation. Although 

prior proposals exist for 2-D autocorrelation methods [120,121], the method 

developed by Foupas et al. enabled the mean received RF frequency for each 

row of data within the segment to be estimated. Because of the stochastic 

nature of the signal, variations of this estimate should be matched by the 

corresponding variations of the mean slow-wave frequency estimate. Since the 

velocity estimate is proportional to the ratio of these two mean frequency 

estimates, the variance of the velocity estimate should be reduced. 

A useful starting point for obtaining an expression for the estimated veloc¬ 

ity is to proceed in an analogous manner to that used for the 1-D autocorre¬ 

lation and to follow the analysis given by Foupas et al. [119], We shall assume 

that the M x N matrix G is a snapshot of a zero-mean multivariate stationary 

Gaussian process. First, it is necessary to write down expressions for the mean 

RF and the mean slow-wave angular frequencies in terms of the 2-D power 
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density spectrum {see (10.25)}. These will be denoted by (tiRF and copW, respec¬ 

tively. Now the 2-D autocorrelation and the 2-D spectrum form a 2-D Fourier 

transform pair. This enables the two mean frequencies to be written in terms 

of the autocorrelation function and a derivative. The sampling period along 

the rows is denoted by ts and that for the columns corresponds to the PRI (i.e., 

tPRI). In a similar manner to the method used in obtaining (10.28), Loupas 

et al. have shown that the estimated mean pulsed wave and RF angular 

frequencies are given by 

\dR(m',n') / dm'] , , 
/ i A A A\ — • L —x 7 a m =n =0 — 

(10.40) (£)pw — —] rj/n ’ ®RF 
tpRlll(U, 0) 

[dR{rn',n')ldn']m,^ 

tsR{ 0,0) 

where R(m',n') denotes the 2-D discrete autocorrelation function of the ele¬ 

ments in G at lags of m' and n'. 

Following the same procedure used for the 1-D derivation and making use 

of the properties of G, expressions for the mean scatterer velocity can be 

obtained. By expressing the autocorrelation function in polar form, it can be 

shown that both expressions in (10.40) can be written in terms of a partial 

derivative of the phase angle. For the smallest available lag the ratio of the 

two angular frequencies can be obtained, enabling the estimated mean scat¬ 

terer velocity to be expressed as 

(10.41) 

^ C0 (&PW 
v =-—— 

2 cos 0 o) RF 

Co ts 
-arctan 
2 cos0 tPRi 

arctan 
lm[g,(0,t5)] 

Re[/L(0,rs)j 

Re[a„(<™,0)jj/ 

where Ra(x,'R) is the autocorrelation function of the analytic signal for time 

and radial lags of x and R respectively. 

Loupas et al. [119] also applied the 2-D autocorrelation method for a phase- 

quadrature demodulated signal. If the reference angular frequency is denoted 

by (*)Ref, then the mean velocity estimate is given by 

(10.42) 

c0 (0 pw 

2 cos 0 co pp 

C o t s 
-arctan 
2 cos0 tPRI 

[im[iL(/pR/,o)]| / 
I.Re[^rf(trw,0)]j / 

jtsCOfi,,/ + arctan- 
Im[g,(0,G)]1] 

Re[Rd(0,G)]JJ’ 

where Ra(x, R) is the autocorrelation function of the demodulated complex 
signal. 

In both of the above expressions, the real and imaginary components of the 

autocorrelation function can be written in terms of the real and imaginary 

components of the elements of G, similar to that for (10.32). Evans and 

McDicken (10.24, Chapters 8 and 11), in their comprehensive review of color 

flow imaging methods, point out that when the change in center frequency is 
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not accounted for, (10.41) is equivalent to that used by Hoeks et al. [120] and 
Torp et al. [121]. 

In an experimental evaluation reported by Loupas et al. [122], the results 

of the 2-D method were compared to those obtained with the 1-D autocorre¬ 

lation technique. They also examined the effect of including the frequency cor¬ 

rection and showed that, depending on the incident angle, the two velocity 

estimates were quite closely correlated. In comparison with the 1-D method, 

they found that the 2-D estimation method gave consistently better velocity 

and power estimates. Power estimates, which can be calculated from the 

zero-lag autocorrelation coefficients, were also compared. For the 1-D case it 
is given by (10.34) and for 2-D case by 

W2D = ^rr—r^Y<Q2(m'n) + l2(m'n)- 

As with the velocity estimate, the 2-D power estimate showed significant 
improvements over the 1-D estimate. 

10.9.3 Target Tracking Techniques 

Movement of the scatterers between successive transmissions causes changes 

in the received signal. Methods based on finding the best match between a 

model of these changes and the actual received signals have been called track¬ 

ing methods. If the scatterers can be assumed to move with a constant flow 

velocity over the packet duration, a relatively straightforward model can be 

used. The velocity can then be estimated by finding the velocity that provides 

a best match between the received signals and the model. In fact, as pointed 

out by Alam and Parker [29], the 2-D Fourier transform method described in 

subsection 10.9.1 can be considered as a tracking method since it involves a 

search for the 2-D transform of the signal that best matches the true trajec¬ 

tory. A more direct tracking approach is the scheme originally proposed by 

Ferrara and Algazi [123] in 1989 and subsequently detailed in their journal 

publications [124,125]. It uses a model of the range-gated complex envelope 

of the backscattered signal to produce a mean velocity estimate. By searching 

over all possible trajectories, the maximum likelihood velocity is found from 

the trajectory that produces a best match. It is a matched filter approach, and 

consequently its performance depends on accurate prior knowledge of the 

signal model. 

Tracking approaches that make direct use of the 2-D slow/fast time wave¬ 

forms have been described by Torp and Kristoffersen [115] as well as by Alam 

and Parker [126]. Torp and Kristoffersen showed that if the power is summed 

along a line that matches the scatterer velocity, a peak in the spectrum should 

occur at a value corresponding to the scatterer velocity. This is illustrated in 

Fig. 10.37, in which 13 successive RF signals are shown for a scatterer moving 

away from the transducer. They showed that this spectral estimation method 

is equivalent to integrating the 2-D spectrum along lines of differing slope that 

pass though the origin. Evans and McDicken [24] have pointed out that the 
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Depth (Fast Time) 

Figure 10.37 The method described byTorp and Kristoffersen [115] in which a 
matrix of values was obtained for a scatterer moving with a uniform velocity. The 
power is estimated along line © by summing the values. Because the slope matches 
the scatterer velocity, the power will be a maximum. The power estimated along 
other lines, such as @ and ©, yields much smaller values. (Reprinted by permission 
of Elsevier from Torp and Kristoffersen [115], Ultrasound Med. Biol., 21, 937-944, 
©1995 World Federation of Ultrasound in Medicine and Biology.) 

method is also equivalent to the method proposed by Loupas and Gill [118]. 
The “butterfly search” technique developed by Alam and Parker is similar to 
the above in that the power associated with each possible slow/fast time tra¬ 
jectory is estimated. Other estimation techniques, based on the radar method 
for determining the direction of arrival of an incoming signal to a passive array, 
have also been proposed and evaluated [57,116,127,128], It can be seen that 
the dashed line in Fig. 10.34 has the appearance of a 2-D wavefront whose 
direction can be characterized by the wavenumber vector k. It is evident 
that the wavefront direction is directly related to the velocity. Vaitkus et al. 
[128] have investigated the performance of a root-MUSIC (Multiple Signal 
Classification) algorithm to estimate the direction of k for both simulated and 
in vivo ultrasound signals under different SNR conditions. 

The 2-D approach to velocity estimation provides a number of opportuni¬ 
ties for resolving the ambiguity problem when the maximum velocity is 
beyond the Nyquist limit. Wilson [114], in his 1991 paper, proposed a scheme 
to enable the spectrum to be displayed without contamination by aliasing arti¬ 
facts. For pulsatile arterial blood flow containing velocities well beyond the 
Nyquist limit, Torp and Kristoffersen [115] demonstrated that their technique, 
as illustrated in Fig. 10.37, enables major improvements to be made in the 
quality of the gray-scale spectral display. 
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Table 10.1. Color Flow Display and Estimation Techniques 

Technique Typical Display Method Method 

Color Flow 
Imaging 

Red and blue hues used to 
indicate the forward and 
reverse velocities. Display 
is superimposed on a 
gray-scale B-mode image. 

The mean velocity component is 
estimated from successive A-mode 
transmissions over an area. 

Color Power Flow 
Imaging 

Color Power Image in which 
the hue indicates power 
without regard to direction. 
Shades of orange are often 
used. It may be superimposed 
on a gray-scale B-mode image. 

Total backscattered power above a 
certain threshold is estimated from 
both forward and reverse flow and 
the sum is displayed in color. 

Directional Color 
Power Flow 
Imaging 

Same as for color power flow 
imaging except that two colors 
are used whose hue indicate 
the power in the forward and 
reverse directions. 

Same as above, but with power of 
both flow components estimated 
and displayed using separate 
colors. 

Harmonic Flow 
Imaging 

Velocity is encoded in color and 
displayed on a gray-scale 
B-mode background. 

Nonlinear oscillations of contrast 
agent microbubbles generate 
second harmonic signal. Velocity 
distribution is displayed. 

Harmonic Power 
Flow Imaging 

The second harmonic power 
produced by a contrast agent 
or by tissue is estimated and 
displayed in color. 

Same as above, but the harmonic 
power is estimated and displayed 
using a single color hue. 

Color M-Mode 
Flow Imaging 

The velocity or power is encoded 
in color and displayed as a 
depth versus time 2-D 
color-encoded image. 

Multiple transmissions along a single 
path are used and the velocity or 
power is estimated. Their variation 
with depth and time is displayed. 

Color Tissue 
Imaging and 
Color M-Mode 
Tissue Imaging 

Same as for color flow imaging 
or color M-mode flow imaging, 
but the blood flow velocity 
signals are suppressed. The 
tissue velocity or power is 
encoded in color and displayed. 

To suppress blood flow signals, either 
a low-pass filter can be used or the 
gain threshold can be increased. 
The clutter filter cutoff is lowered 
to enable tissue velocity or power 
to be displayed. 

10.10 Enhanced Flow Imaging Methods 

A variety of techniques has been developed to improve the flow image quality, 

to enhance the sensitivity to small flow rates and for real-time imaging of soft 

tissue velocity distributions. Some of these make use of contrast agents that 

were previously discussed in relation to linear and nonlinear B-mode imaging 

(see subsection 8.6.1). Table 10.1 provides a summary of the primary tech¬ 

niques, details of which are provided in the following subsections. 
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10.10.1 Color Flow Imaging: Frame Rate Considerations 

Up to this point in the current section our discusion has focused on conven¬ 

tional color flow imaging. However, some aspects relating to the frame rate 

were not considered, and these are especially important when the imaged 

volume undergoes rapid changes, as in cardiac flow imaging. The area to be 

imaged, the spatial and velocity resolution needed, and the maximum accel¬ 

eration of the blood or tissue all relate directly to the minimum frame rate 

needed. Furthermore, an appropriate strategy must be used for acquiring both 

color flow and structural B-mode images. As noted earlier, color flow images 

require a significant number (packet size) of transmissions (5-15) for each line 

of information, and the choice is directly related to the SNR. Consequently, 

it may not be possible to obtain a sufficiently high-quality color flow map 

in real time over the region seen with B-mode. Moreover, the mapped area 

may also be limited by transducer geometric considerations. While it is possi¬ 

ble to achieve B-mode frame frequencies of over 100 Hz and flow imaging 

frequencies exceeding 40 Hz, if a superimposed display of both images is 

needed, considerably lower rates may have to be used, though there will likely 

be some loss in spatial and temporal resolution. 

10.10.2 Power Flow Imaging 

Estimating the average flow velocity for each sample volume is particularly 

challenging when the flow is small and the vessels are at a considerable dis¬ 

tance from the transducer. Even if a vessel is relatively straight, the presence 

of noise can result in a color-encoded velocity image with a somewhat mottled 

appearance. Moreover, obtaining color flow images of structures that contain 

networks of smaller vessels can be quite confusing due to the variety of angles 

they make to the beam direction.The priority encoding software used to deter¬ 

mine whether the velocity or the B-mode signal for a pixel should be displayed 

can also contribute to border jaggedness. As described below, many of these 

problems can be overcome by using color power flow imaging (also called 

color power angiography). However, quantitative information on the flow 

velocity and its variations is forfeited and flow changes that occur over a 

cardiac cycle may be lost. Tlius, color power flow imaging gives primary 

emphasis to detecting the presence or absence of flow with the best sensitiv¬ 
ity and resolution. 

Shortly after the introduction of color flow imaging,13 it was recognized that 

certain qualitative advantages over conventional color velocity imaging could 

be achieved when the total backscattered power in each volume segment was 

encoded and displayed. This information can be readily obtained from 

the zero-lag autocorrelation function as shown by (10.26). In a key paper 

13. It seems that several early commercial color flow imaging systems incorporated a power 

mode. For example, the Toshiba and Diasonics systems both incorporated this feature. An earlier 
description is the 1989 book chapter by Moore [129], 
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Figure 10.38 Color power flow imaging scheme. Simplified binary display method in 

which the backscattered power in the forward and reverse flow directions is each 

encoded in fixed colors—e.g., red and blue for directional, red for nondirectional. 

The use of a clutter filter has been assumed such that when the power falls below a 

certain level, the corresponding flow cycle regions are encoded in black. Many cycles 

can be averaged to enhance the sensitivity. 

published in 1994, using machines that incorporated modified signal process¬ 

ing, Rubin et al. [130] provided convincing evidence of the potential advan¬ 

tages of power mode display, and this revitalized interest in its use. They 

demonstrated that highly tortuous vessels and complex vascular networks, 

such as those in the kidney, could be more readily identified and that the pres¬ 

ence of much smaller vessels could be detected. 

The advantages of power flow imaging are a combination of several factors. 

First, as noted in Chapter 5, provided that turbulence and the effects of aggre¬ 

gation can be ignored, the backscattered power from blood is essentially 

independent of the flow conditions. Second, the backscattered power is 

independent of the beam-to-flow angle. Third, with conventional color flow 

imaging the stochastic nature of the backscattered signal causes fluctuations 

in the color pattern, while in the power mode, using a display with a single 

color, such fluctuations are far less evident. Finally, because the background 

noise spectrum for each segment volume is also integrated along with the flow 

spectrum, the SNR is improved, thereby improving the sensitivity. 

Because directional information is not displayed, aliasing effects are no 

longer seen, enabling the PRF to be reduced. This allows much smaller flow 

velocities to be measured. Moreover, because no attempt is made to display 

pulsatile flow variation, the signal can be averaged over many cardiac cycles, 

thereby greatly improving the sensitivity. 

As illustrated in Fig. 10.38, if the flow velocity is greater than the threshold 

set by the clutter filter, the power mode image will consist of a constant inten- 
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Figure 10.39 Nondirectional power flow image of a kidney. The hue and brightness 

of the colors indicate the relative power. Note that close to the vessel walls, where 

the segment volume is only partially in the vessel, the power falls and, in this region, 

the power scale merges from orange to purple through to black. (Courtesy Siemens 

Ultrasound.) See color insert. 

sity region. At the edge of the vessel, where the segment volume partially 

intersects the flow region, the power is diminished and, when a continuous 

range of colors are used, the vessel edge has a smoother appearance compared 

to the conventional color velocity flow image. An example is shown in Fig. 
10.39. 

A significant problem that is particularly troublesome for power flow 

imaging of deep rapidly moving structures is the “flash” artifact that appears 

as a transient flash in certain regions of the display. It arises from the tissue 

motion that occurs between successive transmissions, resulting in a failure to 

achieve proper cancellation of the large tissue signal. As subsequently noted, 

the use of harmonic contrast flow imaging largely avoids this. 

10.10.3 Tissue Imaging 

The development of methods for imaging tissue movement in real time based 

on the flow estimation methods described in this chapter is of particular poten¬ 

tial significance in the assessment of impaired myocardial function. Other tech¬ 

niques for imaging tissue movement based on speckle tracking (see section 

8.8) and contrast agent perfusion studies (see subsection 8.6.1) have already 

been discussed. However, one method that makes use of many standard flow 

imaging techniques is of considerable potential importance. It is based on the 

realization that the tissue signal, normally regarded as clutter in blood flow 

imaging, has a much higher amplitude (20-40dB) than that due to blood flow, 

and the associated velocities are relatively small. For healthy volunteers, 

myocardium contiactile velocities from 6 to lOcm/s have been reported. 
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Figure 10.40 Sketches used to illustrate the different approaches used for blood flow 

and tissue velocity imaging, (a) In blood flow imaging, the clutter arising from tissue 

motion is removed, (b) For tissue velocity imaging, the blood flow signal can be 

removed either by a threshold adjustment or by a low-pass filter. (Based on a similar 
figure in Yamazaki [146].) 

whereas blood velocities in the ventricular cavities might range from 10 to 
100 cm/s. 

The above differences between blood and tissue regions, which are quali¬ 

tatively illustrated in Fig. 10.40, have enabled real-time tissue velocity imaging 

of the myocardium to be made. McDicken et al. [ 141-143] first (1992) reported 

the developments needed to achieve this along with a myocardial color image. 

An example of such an image is shown in Fig. 10.41. Independent work in 

Japan, initially reported in 1993 by Miyatake et al. [144], and subsequently in 

more detail by Yamazaki et al. [145,146], was also followed by trials to deter¬ 

mine its clinical value. Because infarcted areas of the myocardium should show 

much reduced or zero velocities, the method offers the potential for identify¬ 

ing damaged areas without requiring the use of contrast agents. By using a 

power display method (see subsection 10.10.2), improvements to the sensitiv¬ 

ity and less color fluctuations should enable infarcted areas to be more readily 

identified. 

In their initial account, McDicken et al. [141] reported using a modified 

commercial flow imaging system. The modifications included are those sug¬ 

gested in Fig. 10.40b, together with a reduced PRF. The latter was needed to 

accommodate the smaller velocities while maintaining a sufficiently high 

frame rate and resolution. The PRF reduction was made possible by the fact 

that tissue SNR is much greater than that for blood. 

10.10.4 Contrast Flow Imaging 

As discussed in Chapter 8 (section 8.6), B-mode harmonic imaging can be 

based either on the nonlinearity of the tissue response to high-amplitude pres- 
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Figure 10.41 Color-encoded tissue velocity image of the heart. The time in the 

cardiac cycle at which the image was obtained is indicated by the bottom line. A low- 

pass filter has been used to suppress the blood flow information. (Courtesy Professor 

McDicken.) See color insert. 

sures, or on the nonlinear response of contrast agents in the form of encapsu¬ 

lated microbubbles [131]. Suitable contrast agents for clinical use consist of 

encapsulated gas bubbles whose diameters are sufficiently small to enable 

them to pass through the lung capillaries. Conventional flow imaging of small 

vessels is limited by the effects of clutter, which place a lower bound on the 

velocities that can be satisfactorily estimated. By using the nonlinear response 

of injected microbubbles to generate harmonics of the incident frequency, the 

flow in small vessels can be detected. In collaboration with others. Burns 

[132-134] has made important contributions to the development of these ideas 

and their clinical application. The basic ideas follow directly from the initial 

work of Schrope and Newhouse [135] published in 1992/3 on second harmonic 

flow measurements. As shown in the following subsections, a variety of tech¬ 

niques have been developed specifically for use with ultrasound contrast 
agents. Much of this has been reviewed by Burns [136], 

Harmonic and Power Harmonic Flow Imaging 

The basic principles of harmonic flow imaging are illustrated in Fig. 10.42. 

If a high-amplitude transmit pressure pulse with a center frequency of f is 

incident on the microbubbles, a second harmonic signal at 2f will be gener¬ 

ated. In addition, scattered signals at the fundamental frequency will be 

produced by the vessel wall, RBCs, and the microbubbles. The second 

harmonic component can be separated from the fundamental by means of an 

RF filter, though some clutter remains due to tissue nonlinearity and filter 
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Transmit Center Frequency Movement 

Figure 10.42 Principles of contrast agent harmonic flow imaging. By separating the 

second harmonic signal from the fundamental, the clutter can be rejected, leading to 

improved imaging close to the wall and the ability to measure smaller flow velocities. 

The large sample volume shown is for the purpose of illustration. 

imperfections. Nonetheless, the sensitivity improvement is sufficient to enable 

flow in much smaller vessels to be detected. 

The imaging sensitivity can be further enhanced by using the power mode 

technique to display the second harmonic power rather than attempting to 

display the velocity variations. Burns et al. [134,137] first described this method 

in 1994, and reported that it enabled flow to be detected in vessels that were 

about 10 times smaller than the system imaging resolution. They also noted 

that the flash artifact, caused by tissue movement (see subsection 10.10.2), was 

greatly reduced. Subsequently, Hope Simpson et al. [138] pointed out that 

because of the correlation between the RF and slow-time signals for both the 

bubbles and tissue, by properly coordinating the RF and clutter filter designs, 

the contrast could be significantly improved. 

Pulse Inversion Methods 

A limitation of harmonic flow imaging using contrast agents arises from some 

overlap between the fundamental and second harmonic spectra. Linear scat¬ 

tering by tissue will cause a portion of the received fundamental spectrum to 

overlap the second harmonic spectrum produced by microbubble contrast 

agents. This reduces the contrast produced by the microbubbles. To improve 

the contrast, a higher transmit intensity could be used to increase the second 

harmonic signal relative to the fundamental. However, due to contrast agent 

destruction (see subsection 8.6.1), this reduces the microbubble lifetime. On 

the other hand, if a narrower bandwidth transmit pulse is used to reduce the 

extent of spectral overlap, the spatial resolution will be degraded. A method 
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for overcoming these limitations was proposed in 1997 by Hope Simpson and 

Burns [139], which they called pulse inversion Doppler (also known as power 

pulse inversion imaging). It is a generalization of the pulse inversion imaging 

method described in subsection 8.6.1 and consists of a frequency-domain 

method for distinguishing between the echoes from bubbles and moving 
tissue. 

In the above scheme, multiple pulses are transmitted with alternate pulses 

being inverted. We shall first consider the echoes from a scatterer that 

responds in a linear manner. If the pulse repetition frequency is denoted by 

fpRF — 1 IT, successive received pressure echoes from a scatterer moving with a 
velocity v in the ultrasound beam direction can be written as [140] 

Pn+1 [t - T{n -1)] = -pj; [t - Tn - At], 

where Ax = 2Aztcm Az is the change in z-location of the scatterer in the 

interval T, the superscript L indicates a linear scattering process, and n is the 

pulse index number. The phase shift between successive echoes is given by 

A<t> = 2nfcAx + 7i, where the additional n corresponds to the inversion of suc¬ 

cessive pulses and fc is the center frequency of the transmitted pulse. Because 

the fast- and slow-time phase shifts are identical, the estimated pulsed wave 
frequency is given by 

(10.43) fpw = (2ve / c0 )fc + fPRI / 2, 

where ve — vcosO. This shows that the pulsed wave spectrum is now centered 

about the Nyquist frequency rather than about zero, as is normally the case. 

Consider now the case of a nonlinear scatterer. The echoes for normal and 

inverted pulses can be decomposed into even and odd components. Thus, for 
the two transmitted pulses, the echoes can be written as 

PNNL{t) 

P/VL0) = p\ 

j-.NL,Even 
r N 

NL,Even 

(t) + pNNL-°dd 

(t) - p"LOdd 
(0 
(O’ 

where NL indicates the nonlinear scattered echo, N the normal transmitted 

pulse, and / the inverted version. As noted in subsection 8.6.1, this equation 

shows that the even and odd components can be extracted by addition and 

subtraction. The pulsed wave center frequencies can be extracted from these 
two components, yielding 

(10.44) fpw '°dd - (2ve / ca)fc + fPRI / 2 

fpw’Evm - (2v0 / c0)fc 

This shows that the odd component pulsed wave frequency is identical in form 

to that of linear scattering, as given by (10.43). On the other hand, the even 

term yields a frequency identical that of a conventional pulsed wave system, 

i.e., it is centered about zero and is the same as (10.2). Thus, provided all the 

pulsed wave spectra are less than half the Nyquist frequency (fPRIl2), echoes 

from stationary or moving linear and nonlinear scatterers will appear at dif¬ 

ferent regions of the pulsed wave spectrum, as illustrated in Fig. 10.43. This 
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Figure 10.43 Idealized pulse inversion pulsed-wave spectra for linear and nonlinear 

scatterers. (Reproduced, with permission, from Simpson et al. [140], ©1999 IEEE 

1999.) 

enables various combinations of the scattered components to be extracted 

with the help of appropriate filters [138], 

An important advantage of this pulsed wave inversion method is the ability 

to reduce the mechanical index (MI) to a level where contrast bubble destruc¬ 

tion is no longer an issue, e.g. MI < 0.1 [136]). This enables dynamic imaging 

of contrast agent perfusion to be performed without causing the images to be 

affected by ultrasound-enhanced microbubble destruction. For example, some 

initial work demonstrated the dynamics of myocardial perfusion at MI - 0.15 

and a frame rate of 15FIz [136], The lower frame rate is a direct consequence 

of the longer pulse sequence needed for each A-line measurement. 

10.11 Volume Flow Estimation Techniques 

Accurate noninvasive measurement of the volume flow rate in blood vessels 

and its variation over a cardiac cycle is an important goal that can provide 

useful diagnostic information and lead to a better understanding of the under¬ 

lying physiology. Of particular importance for monitoring patients, especially 

those in intensive care, is the development of a noninvasive method of meas¬ 

uring cardiac output (approximately equal to the integral of the volume flow 

in the ascending aorta over a cardiac cycle). Although many techniques have 

been proposed and tested [147,148], few offer the possibility of noninvasive 

measurement with sufficient accuracy. Of these, methods based on MRI and 

ultrasound offer the prospect for measurements on different-size vessels but 

are unlikely to be useful for long-term cardiac output monitoring. On the other 

hand, electrical impedance methods, based primarily on the work initially 

described in 1966 by Kubicek et al. [151], offers an attractive alternative. It 

uses a small high-frequency current (e.g., 2ma, at 100kHz) applied between 

electrodes placed on the thorax for measuring the first derivative of electrical 

impedance. Several commercial systems based on this technique have been 

evaluated [152] and found to give good agreement with the Fick method [148, 

pp. 306-308]. The latter is a catheter-based method, generally regarded as a 

gold standard. 
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Of considerable diagnostic importance is the measurement of tissue perfu¬ 

sion. This is generally defined as the volume flow of blood through a given 

mass or volume of tissue, e.g., units of ml/(min.l00g). For a limb, which of 

course involves both small and large blood vessels, a variety of methods have 

been used, such as strain-gauge plethysmography and radioactive tracer clear¬ 

ance techniques [148, pp. 301-306], However, quantitative measurement of 

localized perfusion in the strict sense has proven to be a challenging problem. 

It seems that in a 1981 conference presentation Hertz was the first to 

suggest that Doppler ultrasound might be used for measuring tissue perfusion 

[149], Subsequently it was shown that high-frequency CW Doppler and pulsed 

wave ultrasound methods enable flow to be detected in microvessels, e.g., 40 

pm, but adapting these techniques for perfusion measurements is difficult. In 

part, problems arise from the pseudo-random nature of the microvascular 

structure and the 3-D flow directions involved. In their extensive review of 

ultrasound perfusion techniques developed prior to 2000, Jansson et al. [150] 

point out that qualitative assessment is possible and can yield helpful results, 

especially when contrast agents are used (see subsection 10.10.4). 

A large number of noninvasive ultrasound methods have been proposed 

and tested for volume flow measurements, but inaccuracies and implementa¬ 

tion problems have hampered widespread clinical acceptance. Several 

attempts have been made to develop a satisfactory method for measuring 

cardiac output, but the success in clinical practice has been rather limited. One 

of the more promising noninvasive techniques is the attenuation compensa¬ 

tion method described in subsection 10.11.3. Intravascular ultrasound methods 

for flow estimation are also of importance. As noted in Chapter 8 (see sub¬ 

section 8.10.4), methods used for intravascular imaging can also be adapted to 

extract the flow rate. Specifically, it was shown that by using the effects of blood 

flow decorrelation, the flow velocity distribution could be estimated. This, 

together with the geometry as determined by B-mode imaging, enables the 
flow rate to be estimated. 

Many volume flow estimation methods depend on knowing the beam/vessel 

angle and the vessel cross-sectional area and make a number of assumptions 

concerning the direction of the flow velocity vectors and vessel geometry. One 

of the first reviews, including an analysis of the sources of error, is contained 

in [16, pp. 237-254], Subsequently, several authors [16,153-155] have addressed 

and reviewed this problem. Of particular importance is that presented by 
Evans and McDicken [24, Chapter 12]. 

The volume flow rate through a vessel is the volume of fluid per unit time 

passing through any surface that intersects the vessel, and whose periphery 

surrounds it. For simplicity, a plane surface that intersects a cylindrical vessel 

is shown in Fig. 10.44. If the area is divided into N incremental regions, then 
the volume flow rate is given by 

(10-45) Q( 0 = I>rAAi, 

where the summation is performed over the entire surface area. In general, 

due to the vessel elasticity and the pulsatile nature of the flow, v, is a function 
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Figure 10.44 Two methods for estimating the volume flow rate in a vessel. With the 

multigate system, the beam/vessel angle must be determined. On the other hand, the 

C-scan system using a 2-D array is angle-independent. 

of time, making the flow rate time-dependent. Thus, the mean volume that 

flows over one cardiac cycle of duration T can be written as 

— i tv 
Qt =— J X;(Vi AA*)dt- 

10.11.1 Local Mean Velocity Methods 

Shortly following their pioneering work on the development of pulsed wave 

flow velocity methods, Peronneau et al. [156] described how the flow rate in a 

vessel could be estimated from the velocity profile. Subsequently, Histland 

et al. [68] reported the results for arterial measurements in anesthetized dogs 

and found good agreement with the results obtained using electromagnetic 

flow probes. 
The 1-D flow profile method is based on a number of assumptions con¬ 

cerning the vessel and flow. Specifically, it is assumed that the vessel is cylin¬ 

drical, that the flow velocity vector points in the axial direction and that the 

vessel axis in relation to the ultrasound beam can be determined. Using pulsed 

ultrasound, the mean velocity can be estimated within incremental volume 

regions that lie on a line of symmetry that passes through the vessel. With ref¬ 

erence to Fig. 10.45 it should be noted that Ar - Af sin0, f, = r,sin0 and from 

(10.2), Vj(t) = fi(t)cj(2fccos Q). Moreover, the volume flow rate through the 

incremental area is given by AQ(t) = 7tr,Ar,v,(f). These relations, together with 

(10.45), enable the volume flow rate to be written as 

(10.46) 
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Figure 10.45 Volume flow estimation using a multigate pulsed system to determine 

the 1-D velocity profile of a cylindrical vessel. 

From (10.46) it can be seen that the accuracy with which the flow rate can 

be estimated depends critically on the accuracy with which 9 can be estimated. 

Errors also arise because the size of the sample volume may not be small com¬ 

pared to the vessel, and as a result the local mean velocity can be distorted. 

As noted in subsection 10.6.2, a deconvolution process can be used to make 

corrections. In addition, close to the vessel wall, where the sample volume 

encloses blood together with the moving vessel wall, a distorted flow signal 

results. Baker et al. [16] pointed out that the velocity profile method is best 

suited to larger vessels. For smaller vessels, errors arising from the size of the 

sample volume and the partial volume effects at the vessel/blood boundary 
become much more significant. 

An extension to the 1-D flow profile method is illustrated in Fig. 10.44. It 

makes use of a multigate pulsed flow system to scan the flow over a surface 

area that intersects the vessel. Because the component of the velocity along 

the beam direction is estimated at each location, the assumption of axisym- 

metric flow is not required. However, axial flow must still be assumed and the 
beam/vessel angle needs to be estimated. 

Fish and Walters [153] addressed the problem of estimating the beam/vessel 

angle and reviewed various approaches in terms of their accuracy and feasi¬ 

bility. In addition, as illustrated in Fig. 10.46, they proposed a method to 

account for the 3-D vessel/beam geometry. This scheme was incorporated into 

the MAVIS-C, the first commercially available multigate flow imaging system 

[21, pp. 129-133], A single-element, position-resolved probe was used to 

perform multigate scans on two planes axially separated by about 10 mm. By 

determining the average flow velocity at each sample location, the center of 

gravity on each plane can be estimated. The line joining these positions was 

taken as an estimate of the vessel axis direction, enabling the beam/flow angle 
to be found. 

A potentially useful method based on C-mode flow scanning (often referred 

to as C-mode Doppler) is also illustrated in Fig. 10.44. The mean velocity 
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Figure 10.46 The method developed by Fish [154] for estimating the beam/vessel 

angle. The dots represent the presence of flow as detected by the multigate system. 

The center of gravity on the two scan planes gives the vessel axis direction. 

component in the beam direction is determined for all sample volume ele¬ 

ments that lie on a surface that intersects the entire vessel cross-section. Thus, 

(v, • AAj/AAj) is determined for each elementary sample volume, as required 

by (10.45), and consequently the method is angle-independent. Moreover, the 

method is independent of the vessel cross-sectional geometry and direction of 

the velocity vectors. The 2-D scan can be performed by using a 2-D transducer 

array as originally proposed in 1978 by Hottinger [157], or by a fixed range- 

gate transducer that is mechanically scanned. Poulsen [158] has described four 

C-mode methods that make use of mechanical scanning; however, limitations 

of the scanning speed make it unlikely that such methods could be used for 

pulsatile blood flow estimation. The development of a 2-D transducer array 

system for volume flow measurement was described by Moser et al. [159] in 

1992. Using a 6 x 6 array and employing a synthetic aperture scheme on recep¬ 

tion, they reported [160] that the 2-D velocity distribution could be computed 

within 10 to 30 ms. However, partial volume effects at the vessel wall caused 

the volume flow rate to be overestimated. Subsequently, Liu and Burns [161] 

described a method for correcting such errors by using the power information 

from each voxel to scale each mean velocity value. 

10.11.2 Power Spectrum Methods 

It was noted in Chapter 9 that the volume flow rate in a uniformly insonated 

cylindrical vessel can be determined from an estimate of the mean CW 

Doppler frequency, the Doppler angle, and the vessel radius. For a cylindrical 

vessel and a uniform scattering, the estimated flow rate can be expressed as 
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(10.47) Q(t) = %R(tfv{t). 

In this equation, because of the time-dependent pressure combined with the 

vessel elasticity, the vessel radius R(t), is a function of time. Brody [162] and 

Art and Roevros [163] independently showed that the mean velocity can be 

expressed in terms of the normalized first moment of the Doppler power spec¬ 

tral density.14 Their derivations, which assumed that the flow velocity vectors 

all point in the same direction, yielded 

yanax / ymax 

(l°-48) * = -^- ) mfo)dfo / )f(fn)dfD, (a) 
2 Tsj COS / . 

J ° rnnn / rmin 
JD / JD 

where f™™ is the frequency above which noise dominates, /™" is determined 

by the wall-thump filter characteristics, and the power density spectrum <t>(fD), 

is taken to be real. They also noted that this equation is independent of the 
shape of the flow velocity profile. 

Based on the above relations, a number of CW flow estimation methods 

have been developed that should be independent of the beam/flow angle. Gen¬ 

erally, these involve the use of an additional Doppler probe that subtends a 

different angle to the insonated region but whose orientation with respect to 

the other Doppler probe is well defined, enabling the angle variable to be elim¬ 

inated. This, together with an A-mode probe to determine the vessel diame¬ 

ter, enables the flow rate to be estimated. Fahrbach [164,165] was probably the 

first to describe such a scheme. He used two CW probes (each with separate 

transmit and receive crystals) mounted at 90 degrees to one another, and 

determined the two mean Doppler frequencies. Using analog processing, both 

results were combined to yield an output proportional to the velocity but inde¬ 

pendent of the Doppler angle. It can be readily shown that if one probe has a 

Doppler angle of 0] and the second probe makes an angle of (p to the first, 
then the mean flow velocity can be expressed as 

(10-49) H = 77^— V/i2 +fi -2jj/2 cos<p , (a) 
2 jo sincp 

where f1 and f2 are the two mean Doppler frequencies and the Doppler angle 
is given by 

(10-49) 0! = tan~l[(cos(p-/2//1)/sin(p]. (b) 

For the case in which the two probes are at right angles to one another, these 

equations reduce to those given by Fahrbach. Details of this and other multi¬ 

probe methods can be found in Evans and McDicken [24, Chapter 12] and 
Dunmire et al. [166]. 

A modified form of (10.48a) can also be used as the basis for estimating the 

pulsed wave mean velocity at the location of the sample volume. Moreover, 

14. It should be remarked that Peronneau et al. [13] in 1970 presented the same form of equa¬ 
tion, though without proof. 
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multiprobe techniques can also be used to eliminate the angle dependence. 

Gill [167] has shown that when used in combination with B-mode imaging, 

quantitative flow measurements can be performed on relatively small, deep- 

lying vessels. By defocusing the incident beam and extending the sample 

volume axial length, a reasonably uniform intensity can be achieved. If the 

power density spectrum is complex, the mean velocity can be expressed as 

(b) (10.48) 

If the average vessel diameter and the beam/vessel angle can be determined 

from the B-mode image, this equation, when substituted into (10.47), enables 

the mean flow rate to be estimated. 

10.11.3 Compensation Methods 

In 1979, Hottinger and Meindl [168] described a noninvasive method for meas¬ 

uring volumetric flow that was based on the use of two pulsed flow sample 

volumes. One sample volume intersected the entire vessel cross-section, while 

the second was a much smaller volume entirely within the vessel lumen. By 

combining the results from these two measurements, they showed how the 

effects of attenuation and scattering could be compensated for, enabling the 

absolute flow rate to be determined independent of the beam angle. They 

called this scheme an attenuation-compensated flowmeter. To generate the 

two sample volumes they proposed the use of an annular array, an idea that 

was subsequently implemented by Fu and Gerzberg [169]. 
A practical realization of this technique, designed for noninvasively meas¬ 

uring cardiac output, was subsequently described by Evans et al. [170]. They 

used a two-element annular transducer appropriately apodized to generate the 

two sample volumes. Using an experimental version, they reported [171] excel¬ 

lent correlation (r = 0.96) in 54 patients using either a dye or thermodilution 

technique as the basis of comparison. A commercial version of this system, 

first marketed in 1986 under the trade name of Quantascope (Vital Science 

Ltd.), was clinically evaluated by a number of groups. However, some of the 

results reported were less encouraging [172], and in comparison to the ther¬ 

modilution method, at least one group reported results that were significantly 

inferior to the simpler electrical impedance method [173]. A version of this 

scheme intended for intravascular flow measurement has been proposed and 

evaluated by Gibson et al. [174]. It used a semispherical transducer that could 

produce a semispherical sample volume that entirely intersected the vessel. 

Compensation for the effects of scattering and attenuation was achieved by 

estimating the power and moment of the spectra from two sample volumes 

that entirely intersected the vessel and were at differing radial distances from 

the transducer. 
The basic theory of the compensation method can be discussed with the 

help of Fig. 10.47a. Consider a small element of area AA, on an arbitrary 
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Figure 10.47 The attenuation-compensated method for volume flow rate estimation, 

(a) A surface S intersecting the vessel such that the cross-sectional area of the vessel 

projected onto the surface is A. The sample volume surface is assumed to coincide 

with S. (b) Using a phased annular array, two sample volumes are produced: one 
intersecting the entire vessel, the other within the vessel. 

surface 5 whose periphery is a continuous line that surrounds the vessel and 

coincides with the sample volume surface. The volume flow-rate though AA, 
can be expressed as 

(10-50) A<2,(f) = AA,-v, = AA ,v, cos cp,-, 

where v, is the flow velocity vector. The total volume flow rate through the 

vessel can be obtained by summing over all such elementary areas over the 
area S, yielding 
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(10.51) Q(t) - AAiVi cos cp,. 
i 

Now the baseband pulsed wave signal power contributed by the flow through 

the elemental area AA, can be written as AW, = Fi(/?)AA„ where V^R) is a 

depth-dependent proportionality constant that depends on the round-trip 

attenuation, the backscattering coefficient, and the pulse-echo response in the 

absence of attenuation. But, because the signal power can also be written as 

AW, = | <t>we obtain the relation 

(10.52) \<t>l(f)df = T1(R)AAh 

which enables the first moment of the power density spectrum to be written 

as 

(10.53) \f^i{f)df = fTl(R)AAi. 

Assuming that the beam sample volume coincides with the surface S, then, 

from (10.2), for each incremental area the pulse-wave frequency/velocity 

relation can be expressed as 

* 2v, cos (p,- j, 
fpw - Jc » 

where fc is the center frequency of the transmitted waveform. Consequently 

(10.53) can be written as 

J cos(p,A/t,r,(fl). 
Co 

If, as shown in Fig. 10.47b, all elementary areas are at the same distance from 

the transducer, summation yields 

X j = 2/lT|(/?)Z Mv,- cos (Pi. 
i C0 

By substituting this into (10.51), the volume flow rate can be expressed in 

terms of the first moment of the spectrum and is given by 

<10-54> Q(t)=T7^wJ.mfyv- 
2/ct i(A) 

It follows that the flow rate is independent of the direction of the velocity 

vectors over the sample volume surface and is proportional to the first moment 

of the spectrum. 
To determine the volumetric flow using (10.54), T^R) which relates the 

power to the sample volume, must be found. This can be achieved by employ¬ 

ing a second sample volume measurement in which the sample volume is at 

the same distance R from the transducer and has the same axial length. This 

sample volume has a much smaller area to ensure that it lies entirely within 

the vessel (see Fig. 10.47b). The baseband signal power from this volume can 

be written as (see 10.52) 
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(10.55) w2(R) = J o 2{f)df = r2(R)A2(R), 

where A2 is the cross-sectional area. 

As noted earlier, r2(R) is the product of three terms: one that accounts for 

the round-trip attenuation, one that depends on the backscattering coefficient, 

and one that characterizes the pulse-echo sensitivity in the absence of atten¬ 

uation. If the first two terms can be assumed to be identical for both sample 

volumes and the third terms are denoted by ©i(R) and 02(R), then, from 
(10.54) and (10.55), the flow rate is given by 

(10.56) GW = 

Because the term in braces is a range-dependent constant that can be deter¬ 

mined by calibration, the flow rate can be estimated by measurement of the 
power density spectrum for the two sample volumes. 

10.12 Velocity Vector Estimation Methods 

In curved or tortuous arteries or at vessel discontinuities, the flow profile is no 

longer axisymmetric and the vectors generally point in non-axial directions. 

The three-dimensional nature of the flow field in many blood vessels has long 

been recognized to be of possible physiological importance in the formation 

and progression of arterial diseases. Furthermore, it is a source of error in some 

ultrasound techniques for estimating the volume flow rate. The development 

of in vivo methods for estimating the vector flow field could be of value in 

eliminating these errors and providing information that would improve our 
understanding of vascular physiology. 

At least three different classes of ultrasound techniques have been devel¬ 

oped for estimating two or all components of the velocity field. Peronneau 

et al. [156] in 1971/72 were probably the first to report the use of pulsed wave 

techniques for determining two of the velocity components. Since then, various 

pulsed and CW vector reconstruction techniques, in which the vector compo¬ 

nents aie estimated directly, have been reviewed by Dunmire et al. [166] and 

Evans and McDicken [24, pp. 325-336], A second class is based on tracking 

the speckle movements between successive B-mode images. As described in 

section 8.8, by cross-correlating two images taken at a known time interval 

apart, the 2-D vector components can be recovered. The third class, which does 

not requiie the presence of scatterers, makes use of the changes in the ultra¬ 

sound propagation path. This was first described by Johnson et al. [175] in the 

mid 1970s. In subsection 9.3.1 it was noted that the path taken by an ultrasonic 

ray depends on the velocity field encountered. Consequently, the transit time 

from a source to a receiver, which can be expressed as the line integral over 

the path, will depend on the velocity field encountered. By making transit 

time measurements over a multiplicity of such paths, in a similar manner to 

ultrasound transmission tomography (see section 8.7), and inverting the line 
integrals, reconstruction of the velocity field is possible. 
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Figure 10.48 Velocity vector distribution in a 0.8-cm-radius curved pipe with a 

radius of curvature of 5 cm using a pulsed-wave (fc = 4 MHz) ultrasound system. 

These appear to be the first reported 2-D pulsed measurements. They were made 

using a pair of transducers mounted on the exterior surface of the pipe at 90 degrees 

to one another. Steady flow (3.51/min) conditions were used with a fluid having a 

kinematic viscosity of 5 x lCUnF/s. Each arrow indicates the magnitude and direction 

of velocity at the position indicated. (Reproduced from Peronneau et al. [156], 

Chapter 2, in Blood Flow Measurement, ©1972, Sector Publishing Limited.) 

10.12.1 Velocity Reconstruction Techniques 

A number of different pulsed wave techniques have been proposed for esti¬ 

mating two or all velocity vector components at a point, on a line, on a plane, 

or over a 3-D volume. Using pulsed wave ultrasound, Peronneau et al. [156] 

reported in vitro 2-D velocity measurements of flow in tubes of various shapes. 

Using a pair of pulse-echo transducers connected to a two-channel pulsed 

wave system, they performed measurements of steady flow in curved tube. As 

illustrated in Fig. 10.48, the transducer elements were mounted at an angle to 

one another and placed symmetrically at the indicated locations on the tube 

surface. Shortly following this report, they [70,176] developed a multigate 

16-channel system that they used for in vivo (pulsatile flow) measurements 

of the velocity field in the aortic arch flow of a dog during acute open-chest 

experiments. 
Some of the vector methods evaluated make use of several individual trans¬ 

ducer elements;15 others are based on the use of a phased array. In fact, the first 

15. The use of two single-element transducers for angle-independent estimation of the volume 

flow rate was considered in subsection 10.11.2, where it was shown that the magnitude and direc¬ 

tion of the velocity is given by (10.49). 
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Figure 10.49 Geometry used for 2-D velocity reconstruction using a linear array, (a) 

Steered at an angle 0. (b) When the transmit beam is normal to the transducer face, 

reconstruction of the velocity along this path by dynamic steering and focusing using 
the two reception array apertures. 

report of the use of a phased array is contained in the 1981 patent granted to 

Papadofrangakis et al. [177], The flexibility realized by using a phased array pro¬ 

vides the opportunity to implement a variety of transmit/receive schemes without 

altering the transducer design and without the need to reposition the transducer. 

Following closely the analysis presented by Papadofrangakis et al. [177], we 

start by considering the linear array illustrated in Fig. 10.49 in which three sub¬ 

arrays of elements are identified. Suppose that the two outer ones are used as 

phased-array receivers and the central ones as a phased-array transmitter. 

Consider a scatterer moving with a velocity v whose instantaneous location is 

shown in the figure. At the scatterer the transmitted beam direction is given 

by the wave vector kT; moreover, the two receive directions are denoted by kL 
and kR (left and right). Following the same vector procedure as given in section 

9.3 for calculating the Doppler shift, it can be seen that at the left and right 

receivers the slow-time angular frequencies are given by co; = v • kL + v • kT 
and to* = v ■ kR + v ■ kT, respectively. These enable the sum and difference 
frequencies to be expressed as 

coL+o)s = v(kL + kR+2kT), coL-o)R = v(kL + kR). 

To simplify the analysis we shall assume that both receivers are positioned 

such that tyL = tyR = <|>. As a result (see Fig. 10.49), the vector (kL + kR + 2kr) 
will be in the transmit beam direction, and consequently its dot product with 

v gives the slow-time angular frequency of the velocity component in the trans¬ 
mit beam direction, i.e.. 
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(10.57) G) // = v-(kL + kR) + 2v-kx. 

Similarly, the slow-time angular frequency perpendicular to the transmit beam 
direction is given by 

(10.58) C0i = v-(kL-kR). 

Noting that the magnitudes of all the wave vectors are equal to (£>Jca = k, from 
Fig. 10.49 it follows that 

v ■ k L = kv cos(cp + (j>), v ■ k R = kv cos((p - <j>), and v kT = -v/ccoscp. 

When these relations are substituted into (10.58) and (10.60), the two slow¬ 

time frequencies can be expressed as 

CO// = v—[cos(cp + <\>) + cos(cp - 9) + 2 cos cpl 
Co 

= v—2 cos cp(l + cos <\>) = V// — 2(1 + cos 9) 

COj, = v — [cos((|) + cp) - cos(([) - cp)] 
Co 

■ • , CO0 0 . 
- v — 2 sin cp sin <p = v± — 2 sin f 

Co CQ 

Consequently, the velocity components parallel and perpendicular to the 

transmit beam direction can be written as 

(10.59) V// = 
CO// CQ 

2(l + cos<j)) co0 ’ 

COi Cp 

2 sin cp co0 

From the estimates of CO// = coL + co« and C0j. = CO/, - coR, these equations enable 

the magnitude and direction of v to be calculated. 

It should be noted that (10.59) are essentially the same as those originally 

derived for linear arrays by Papadofrangakis et al. [177] and subsequently 

by Hall and Bernardi [178]. The latter also considered a number of other 

possible transmit/receive subarray arrangements. Overbeck et al. [179], in 

considering three single-element focused transducers, also derived the same 

equation. 

10.12.2 Reconstruction Algebra 

The method used in color flow imaging systems for estimating [177] a single 

component of the velocity distribution over a plane can be extended to two 

or all three vector components. The ability to electronically change the direc¬ 

tion in which the color flow scan is performed enables the two flow velocity 

components on a plane to be mapped without the need for any mechanical 

movement. This was first demonstrated by Tamura et al. [180,181] in 1990 using 

a commercial color flow imaging system with beam steering and extended by 

Maniatis et al. [182], With a modified commercial system in which the linear 

array was mounted in a motor-driven harness, Rickey et al. [183] demonstrated 

the possibility of 3-D velocity reconstruction over a volume. 
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Velocity Vector 

Figure 10.50 Geometry used for flow velocity reconstruction in (a) 3-D and (b) 2-D. 

Following the analysis presented by Maniatis et al. [184], we consider three 

transducer arrays that are used to perform flow measurements of the velocity 

components in three different scan planes. Provided the three planes intersect 

along a line, the 3-D vectors can be reconstructed along that line. For the par¬ 

ticular case in which two of the scan planes coincide but their scan directions 

differ, then the reconstruction line will correspond to the intersection of the 

third scanning plane with the coincident planes. For this case, 3-D velocity 

vector reconstruction over an entire plane can be achieved by a multiplicity 

of parallel scans in the third plane such that the intersections with the coin¬ 

cident planes form a set of “scan" lines. In the coordinate system shown in 

Fig. 10.50a, the velocity vector is denoted by v and the direction of the beam 

for the s’th measurement is the unit vector dv. The component of v in the 
direction of d* is 

v,/s = v ■ ds = v, cos + vy cos 0,v + vz cos 0„, 

where Qsx, 0sy, and 0„ are the angles subtended by the beam to the coordinate 
axes x, y, and z, respectively. These are related by 

cos2 0M + cos2 0jy + cos2 0J; = 1. 

If three measurements are made from linearly independent directions, then 
the three velocity components (yv, vy, vz) can be found from 

V COS0ljt COS 01 y COS0 

Vrf2 = COS02;t COS02y COS0 

V<*3_ .COS 03* COS03y COS0 

(10.60) 
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a result that was also given by Rickey et al. [183]. 

If measurements are made from just two linearly independent observation 

diiections dj and d2, as shown in Fig. 10.50b, only two components of the veloc¬ 

ity can be found. Specifically, if the two directions lie on the x-y plane then 
from (10.60) 

Vrf, = vx cos0lv + Vy sin 0ljt 

vd2 = v.v cos 02* + Vy sin 02*. 

Solving the above system and dropping the subscript x from 0 yields 

_ vrfl sin 02 - vd2 sin 0, 

(10.61) sm(02 -0j) 

_ Vrf2 COS0! -Vdl cos 02 

sin(02-0i) 

enabling the magnitude and angle with respect to the x-axis to be found from 
M = -v/v.v +v_v and ¥ = tan_1(vy/vx), respectively. 

An illustration of the above technique is given in Fig. 10.51 for a bypass 

graft model under steady flow conditions. The fluid consisted of an aqueous 

glycerol solution with the addition of cornstarch as a scattering medium. Color 

flow images were obtained using beam steering at -20, 0, and +20 degrees. By 

Figure 10.51 Image of a bypass graft model with superimposed vectors showing the 
2-D velocity distribution for steady flow (1.41/min, Reynolds number = 1600). The B- 
mode image (7 MHz) and the flow image (5 MHz) are those obtained with a linear- 
array transducer with the beam in the vertical direction. The flow image scale gives 
the flow velocity component in the horizontal direction. The 2-D vectors were 
calculated from information obtained from color flow images obtained at -20, 0, and 
+20 degrees. (Reprinted by permission of Elsevier from Maniatis et al. [182], 
Ultrasound Med. Biol., 20, 559-569, ©1994 World Federation of Ultrasound in 
Medicine and Biology.) See color insert. 
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Figure 10.52 Estimation of 2-D velocity vectors from the femoral bifurcation. 

(a) Probe containing two wide-angle receiver transducers and a narrow beam 

transmitter. Superimposed is the outline of a femoral bifurcation on which are 

marked two dots that approximately correspond to depths of 4 and 9 mm from the 

near wall. In (b) are shown the 2-D vectors for a 75-ms interval in late systole. 

(Reproduced, with permission of The International Society for Optical Engineering, 

from Dunmire et al. [187], pp. 70-78 in Medical Imaging 2001: Ultrasonic Imaging 

and Signal Processing,\ol. 4325, ©2001 SPIE.) 

digitizing these images and using the color to velocity scale, the information 

needed to calculate the magnitude and direction of the vectors was obtained. 

These are shown as lines whose lengths are proportional to the vector mag¬ 

nitudes and whose directions indicate the angles. 

In vivo application of the use of color flow imaging system to 2-D vector 

reconstruction over a scan plane was reported by Hoskins et al. [185] in 1994 

and by the same group [186] in 1996. These publications clearly demonstrated 

the presence of spiral flow patterns in the common femoral arteries of normal 

healthy subjects. An alternative approach for acquiring the information 

needed for 2-D vector reconstruction is that described by Dunmire et al. [187], 
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As illustrated in Fig. 10.52a, the probe contains three transducer elements: two 
receivers and a focused transmitter that ideally produces a pencil-like beam. 
The former have fairly wide fields of view, enabling the scattered signal pro¬ 
duced throughout the intersection of the transmitted pulse with the vessel to 
be sensed. It should be noted that the probe geometry is essentially the same 
in Fig. 10.49b, and consequently the equations needed for reconstructing the 
two velocity components are given by (10.59). The in-phase and quadrature 
components of the velocity components v,/ and vx were obtained from the 
demodulated signals using essentially the same method as that described by 
Papadofrangakis et al. [177], Using data collected over a 3-s period from the 
femoral bifurcation, 2-D vectors were calculated and displayed over a segment 
of time. For example, the vectors at depths from 2 to 12 mm over a 75-ms inter¬ 
val in late systole are displayed in Fig. 10.52b. 
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APPENDIX A 

Properties of Time- and 
Space-Invariant Linear Systems 

Consider the system shown in Fig. A-l, in which rj denotes the vector position 

of the input and r that of the output. For example, the input x,(.) could be 

the velocity potential at the position ^ and sQ(.) could be the value at some 

output location r. We shall assume that the system is linear, time- and space- 

invariant, and causal. Time-invariance implies that the system properties 

remain constant in time. If it is space-invariant, then its properties depend only 

on - r). Causality demands that there be no output for negative times, i.e., 
that h(.) = 0 for t < 0. 

The mapping of the input into the output can be expressed by 

^0(r:t) = p{5,(ri:r)}, (A.l) 

where £>{.} denotes the (mathematical) operation of mapping. For the system 

to be linear it must obey the following superposition statement: 

p{asi (r, :/) + bs0 (r, :t)} = a (r,: t)} + b p{s0 (r, :t)}, (A.2) 

in which a and b are any real or complex numbers. 

The sifting property of the 5-function enables the input to be written as the 
following multidimensional convolution integral: 

(A.3) 

By substituting this into (A.l) we find that 
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s0(r,:t) = pjjjSi(r:x)8(ij - r:t- x)drdxj 

= JJ J/(r:x)p{8(r, - r :t- x)drdx}. 
(A.4) 

where the second step follows from the first by using the linearity property, as 
given by (A.2). If we define the impulse response function by 

/z(r - tiit-x) = p{5(ri - r :t- x)}, (A.5) 

so that (A.4) can be expressed as the multidimensional convolution integral 

sa (r: t) = JJ Si (fj: x)h(r - t, : t - x)dtidx, (A.6) 

which is the superposition integral for a time-invariant and spatial-invariant 

linear system. For brevity, this can be written in the shorthand form 

(r:t) = St(ij:x)*fi(r- r; :r - x). (A.7) 

In this equation a single asterisk has been used to denote a multidimensional 

convolution: multiple asterisks are sometimes used, one for each dimension. 

For example, if the source plane of a 2-D imaging system is x - z the image 

plane is x - z, and the impulse response (point spread function) is denoted by 

h(x-x,z- z), then for a source plane distribution of s,(x, z) the output (image) 
plane distribution can be written as 

s0 (x, z) = Si (x,z)** h(x -x,z- z). (A.8) 

s/(iyO ,(r:r) 

Figure A.l A linear system with an input s,( ), an output s„(.), and whose impulse 

response is denoted by /z(.). 



APPENDIX B 

Function Definitions and 
Transform Pairs 

Function Definitions and Some Properties 

Dirac Delta [ ' /(x)5(xWx = 
Function: *2 ^ 

8 (ax + b) = 
1 _/ 

n5 
X H- 

|«| A J 

if integration range includes x = 0 

if integration range excludes x = 0 

for a ^ 0 

§[/(*)] = X5(* 
/=1 

, where x, are the N zeros of f(x) 
X=Xi 

Other Functions: sinc(<;) =-^. 
Ttq 

rect(q) = 1 for \q\ < 0.5, rect(q) = 0 elsewhere. 

circ(q) = 1 for q < 1, circ(<;) = 0 elsewhere. 

comb(q) = jr 5(q-n) 
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Transform Definitions and Some Properties 

1-D Fourier: %(0) = 0(co) = j q(t)e-iuxdt. 

inverse: 

2-D Fourier: 3{q{x, y)} = Q(kx, ky) = JJq(x, y)e~l{kxX+kyy)dxdy. 

inverse: 3-'{Q(k,, k,)} ■ q(x. y) —MlQ(k,, k,y{t-M’y)dk,dk 
(2n) i 

Hankel (zero-order): H [q{r)} = Q(kr) = f rq(r)J0(rkr)dr 
o 

inverse: H~l{Q{kr)} = q(r) = J krq(k,.)J0(rkr)dkr. 
o 

Hilbert: «{/«} = *(<) = - j = -7 */('). 
71 lxT — t Tit 

inverse: H_1{g(0} s /(*) = j = ^-*g(f), 
71 J X — t Tit 

where the Cauchy principal value is taken in each integral. The convolution 

form enables the spectrum to be readily found and related to the Hilbert trans¬ 

form of f(t). For example, if f(t) - 8(f), then g(t) = -l/(nt). 

Noting that S{(—7tr) ‘} = -/sgn(co), where sgn(co) = < 

+1 

0 

-1 

for to > 0 

for co = 0, 

for co < 0 

the convolution theorem enables the Fourier transform of the Hilbert trans¬ 

form to be written as G(co) = -jsgn(co) x F(co). This specifies a filter whose 

transfer function is given by //(co) = G(co)/F(co) = -/sgn(co). Thus, the Hilbert 

transform is equivalent to a filter that leaves the amplitudes unchanged but 

changes the phase by -7t/2 for co > 0 and by +7t/2 for co < 0. 

Correlation and Autocorrelation Function Definitions 

If the functions f(t) and g(t) are complex, then the cross- and autocorrelation 

functions can be defined by: 

Rf-g(t) = £/*(x-0s(tKc = + 

Rjf(t) = = \~J*{x)f{T+t)dt 
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Convolution and Product Theorems 

hD Definition: f(t) *g(t) = f(t - x)g(x)dx = J_“ /(x)g(t ~ x)dx 

If 3l/(t)} =/(«) and 3{g(t)} = G(co) then 

3{/0)*g(0} = ^(o))G(co), =f(t)*g(t) 

and ^‘1{F((o)*G(co)} = 2nf(t)g(t), F(co)*G(co) = 2jr${/(f)g(t)} 

2-D Definition: f(x,y)*g{x,y) = \\ f(x-x0, y -y0)g(x0, y0)dx0dy0 

If 3{/(x, y)} = F(p, <7) and 3(g(;t, y)} = G(/y xy) then 

31/1*, y) *g(*, y)} = F(p, q)G(p, q),f(x, y)*g(x, y) = %~l{F(p, q)G(p, ry)) 

Table B.l. One-Dimensional Fourier Transform Pairs 

<7(0 = 3-'{Q(m)} Q(co) ^ 3{<7(0} 

a8(r) a 

8(t - x) e-m 

X 8(f-«t) — X5 ro— n=-<» x v x ; 
a 2n:a8(co) 

cos(af) 7i[8(co - a) + 8(co + a)] 

sin(ar) rc/'[8(co + a) - 8(co - a)] 

rect(f/x) xsinc(cox/2n:) 

Osinc(Or) rect(co/27<:0) 
g/<V 27i8(co - a>0) 

e-‘2'«2 2 xVxe-TV 
gtjl2/ 4t2 x(1±7)V2ti<>tFc»2 

Table B.2. Two-Dimensional Fourier Transform Pairs 

<7(*, y) = 3“' {Q(k„, ky)} Q(h, ky) = 3{q(x, y)} 

8(x/a, y/p) 

rect(x/a) rect(y/p) 

comb(x/a) comb(y/p) 
^(ax+py) 

^-(x2/a2+y2/|32)/4 

g/1 (*2/a2+y 2/|32)/4 

lapi 

lapisinc(a/cv/27i) sinc(pA:v/2n) 

lapicomb(aF/2n:) comb(PA:v/27t) 

4n:28(F - a, kv - P) 

47daple_(a2^+l32*)') 

;’47r 1 ap 1 + 
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Table B.3. Zero-Order Hankel Transforms 

q(r) = H-'{Q(kr)) Q(kr) = H{q(r)) 

cir c(rla) aJfakr)lkr 

Hr 1/C 

5(r - a) aJ0(akr) 

Table B.4. Hilbert Transforms 

Kt) = tf'W)} 

III 

cos t -sin/ 

sin t cost 

5(f) —1/(71/) 

References 
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pairs.) 
2. Bracewell, R.N., The Fourier Transform and its Applications, 3rd Ed., McGraw-Hill, 

New York, 2000. 



APPENDIX C 

Some Integral and 
Function Relations 

Various Forms of the Fresnel Integral 

The Fresnel integral can be defined by: F(p) = \Pe-™2/2dx 
JO 

Now Le'^dx = ^FF/a, and consequently if a = jn/2 then 

JLe dx = V277 = ^2e~1 =e n/ 4V2 = 1 -j = 1/ (1 + 7); it therefore follows that 

(1 + /)[ e~^2dx = (! + ;) [j-i™1/2dx = 1 

Bessel Functions: Values and Relations 

/0(0) = 1, /O(°o) = 0, 

J{ (0) = 0, Jl (00) = 0, Jx {x)Jx = 1/2 
lim jc->0 

For real x: J„ (~x) = J(x) 

dJn (-^) 

dx 2 Jn+x{x)\ 
n 

X 
Jn{x) + Jn-\ (x) 

Jo J0{x)dx = 1 
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[-aV*2 -c2 j [+;Wa2 +i>2 ] 

\~J0(bx)e . x(ix=e i —(eq. 25, p. 9 in [2]) 
Jo y x2 — c2 Vaz + b2 

J0(ajx2 + y2) = ~^2Ke-^oose+ysine)dQ for a > o (eq 3 937 2 in [3]) 

/0(tf) = — f:,te±Acos(0-<p)J0 for a > 0 

v ' 2k Jo 

[ J0(ax)e~bx xdx = b(b2 + a2) " (eq. 6.623.20 in [3]) 
JO 

n/^a) = Jq xJ0(x)dx 

Jn {a) = J* e/acose cos(/70)^0 

Jn (fl) = “ e-Acos(e-p)+;nedQ (p 372 in [4]) 

Bessel Function Expansions 

e-jaxcos<? _ yQ+ 2^Jn{ax)cos(n(p) (eq. 8.511.4 in [3]) 
«=i 

e-jaxcos<? = lx £(_y)"(2n + l)./+i(ax)Tn(coscp) 

2ax"=° "+2 (eq. 8.511.4 in [3]) 

= jr (-j)n(2n + l)j„(ax)P„(cos(p) 
n=0 

where J„(ax) = i/2(ax) is a spherical Bessel function of order n, and 
V 2ax 

Tn(.) is a Legendre polynomial of order n. 

Integrals in Chapter 1 for the Sommerfeld 
Diffraction Equations 

These integrals can be written as: 

1“ e~inx2/2dx~ ^ + ^ f e~jnx2l2dx - P e !KX'1 2dx _ 1 (1 + /V e-^^dx 
Jp 2 [Jo Jo \_2 2 Jo 2 
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APPENDIX D 

Some Vector Relations 

In the relations that follow, w is a scalar field, the boldface quantities u and v 

are vector fields, and r is a position vector. All unit vectors are indicated with 

a tilde 

Cartesian Coordinate Definitions 

del = V = 
(_ d _ a _ a ^ 
lx3l+JVz3lJ 

d2 d2 d2 
V2 = V V =-h-1-—- (Laplace's operator) 

dx2 dy2 dz 

dux duv duT 
div u = V • u = —- + + ■ 

dx dy dz 

, _ _ dw ~dw ~dz 

6 dx dy dz 

curl = Vxu = 

V2w = 

d _ d _ d ) 

dx dy dz) 

d2w d2w d2w 

X u 

■ + + - 

dx2 dy2 dz 
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_ 32u 52u d2u 

dx2 dy2 dz2 

= xV2ux + y V2uy + z V2uz 

Expansion Formulae 

V-(h/u) = Vh'-u + h'Vu 

V x (wu) = Vh'Xu + wV x u 

V-(uxv) = v-Vxu-u-Vxv 

V x (u x v) = v • Vu - u ■ Vv + uV • v - vV • u 

V(u-v) = v- Vu + u Vv + v x curlu + u x curlv 

Second-Order Differential Functions 

V • V x u = div(curlu) = 0 

V- Vw = curl(gradw) = 0 

V-Vw = divgradw = V2w 

Vx(V x u) = V(V-u)-V2u 

Properties of rm 

Noting that 

it follows that 

In addition, since 

it also follows that 

Vrm = mr'n~l r, 
V(r) = r and V(l/r) = -r/r2. 
V2rm = m(m + 1 )rm_2, 

V2r = 2, and V2(l/r) = 0. 

Gauss' Divergence Theorem and Deductions 

If n is a unit vector normal to a surface 5 and pointing in the outward direc¬ 

tion and V denotes the volume enclosed by 5, then Gauss’ divergence theorem 
for a vector field u is: 

HI V • udV = || u • iidS. 
V s 

From this, the following two equations can be obtained: 

HI SJwdV = || hwdS, 
V S 

III V x udV = ||n x udS. 
V s 
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Green's Theorems 

If O and \j/ are scalar point-function functions that within and on a closed 

surface 5 have continuous first- and second-order partial derivatives, d/dn 
denotes the partial derivative in an outward normal direction on S and V 
denotes the volume enclosed by S, then 

which is known as Green’s theorem. Also known as Green’s theorem is the 

relation 

jj T 
5 



List of Principal Symbols and 
Abbreviations 

Dimensions are shown in [ ] and the MKS Units in { }. 

Roman-Based Symbols 

A Cross-sectional area [L2] 
a Radius [L] 

Cl{t) Envelope function 

a Lagrangian spatial coordinate in the x-direction (Chapter 4) 
a Parameter for limited diffraction beams 
BIA Parameter of nonlinearity 

CT Electrical capacitance {Farads} 
CW Continuous wave 

Co Clamped capacitance {Farads} 
c Speed of sound [LD1] 

cl Speed of sound in Lagrangian coordinates [ED1] 
co Small-signal speed of sound [LD1] 

G Phase propagation speed [LD1] 

cg Group propagation speed [LD1] 

ce Small-signal extensional wave speed [LD1] 

ct Small-signal transverse wave speed [LD1] 

cl Small-signal longitudinal wave speed [LD1] 

CR Small-signal Rayleigh wave speed [LD1] 
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c, 
Cv 

d 

© 

D 
D 

Di 

D 
e{t) 
E 
E[.} 
E 
Si 
S 

f 

fpRF 

fc 

fo 

fpw 

/(r:0 
F(r:co) 

F 
E 
F(x,v:t) 
FWHM 

G 

G(x,v:t) 
G 
G(t) 
Gp(rlr0) 

GD(r) 
Gv(r) 
G(rlr0) 

g(rlro) 

gp(rlro) 
H 

H 

3C(0 
H(.) 

HoO) 

^(•) 
h{.) 

hP(.) 

Specific heat at a constant pressure 

Specific heat at a constant volume 

General distance variable 

Aperture diameter [L] 

Directivity function 

Electric displacement {C/nr} 

Electric displacement component {C/nr}: i = 1, 2, 3 

As a superscript, it implies that D is held constant 

Voltage waveform {Volts} 

Young's modulus [ML“'T~:] 

Expectation value of argument 

Acoustic energy [ML2T“2] {Joules} 

Electric field component {V/mj: i = 1, 2, 3 

As a superscript, it implies that S is held constant. 

Frequency [D1] 

Pulse repetition frequency [T ’] 

Center frequency [T'1] 

Doppler frequency [T_l] 

Slow-time (pulse-wave) frequency [T_1] 

Source strength in time domain [T_1] 

Source strength in frequency domain 

Focal length [L] 

Force [MLT-2] {Newton} 
Particle velocity function: nonlinear dependence [LT '] 

Full width at half maximum 

Fourier and inverse Fourier transforms 

Complex snapshot matrix with elements of g(.) 

Particle velocity function: nonlinear dependence [FT-1] 

Pressure gain for a concave transducer 

Transmitted waveform 
Point source (unbounded) Green’s function in frequency 

domain 
Green’s function for Dirichlet boundary conditions 

Green’s function for Neumann boundary conditions 

Frequency domain Green’s function 

Time-domain Green’s function 

Point source (unbounded) time-domain Green’s function 

Hematocrit: i.e., fractional volume occupied by scatterers 

(= NVJV) 
Height of transducer [L] 

Heaviside unit step function 

Spatial frequency transfer function 
Hankel transform of zero order (Fourier-Bessel integral) 

Spherical Hankel function of the 2nd kind and n’th order 

Velocity impulse response function 

Point spread function 
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hf() 
ft 

Im{ } 

l(r:0 
I(r) 

m 
jo 
U) 
4,0 
j 
k 
k 
k 
kx,ky,kz 
K 
X 
€ 

£ 
MI 

m' 

n or n 

i£() 
N 
N 
Nv or W 
Nx 

X() 
P 
PDF( ) 

PX Tj) 

TnO 
p(r:t) 

Po 

Pl=P ~Po 
<1 
Q(t) 
Qit) 

Re{ } 
r, etc 

Free-space impulse response 
Height of rim for a concave transducer [L] 
Imaginary part of a complex quantity 
Instantaneous intensity vector [MT“3] {W/m2} 
Time-average intensity vector [MT~3] {W/m2} 
In-phase signal 
Jacobian 

Cylindrical Bessel function of the first kind and the nth order 
Spherical Bessel function of the n’th order 
= Vh 

Wave number (= In/k - co/c) [L-1] 
Piezoelectric coupling factor 
Wave vector (= kk) [L_1] 
Spatial frequencies [L_1] 
Adiabatic bulk modulus (= 1/k) [ML^T-2] {Pa} 
Thermal conductivity 
Distance or thickness of a layer [L] 
General operator 
Mechanical index 
An integer 
Packing dimension 
Particle dimension 
An integer or a dimensionless variable 
Power law exponent for the attenuation coefficient 
Fluctuation in number of scatterers in a voxel 
Unit vector in the outward direction normal to a surface 
element 

Spherical Neumann function of the nth order 
Number of acoustic particles 
Number of scatterers in the sample volume 
Number of scatterers in a voxel 
Number of voxels in the sample volume 
Cylindrical Neumann function of the nth order 
Power [MT^3L2] {Watts} 
Probability distribution function 
Pair correlation function 
Legendre polynomial of the nth order 
Pressure [MT“2L-1} {Pa} 
Equilibrium pressure [MT^L-1] {Pa} 
Excess pressure [MT“2L_1] {Pa} 
General variable 
Quadrature signal 
Volumetric flow rate [L3!"1] 
Real part of a complex quantity 
Position vectors [L} 
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R 
R(.) 

Ra 
Rctf) 
R, 
Rl 
R 

ft(.) 
s 
S 

S(.) 
S(.) 
S(.) 
T 
Tl 
T, 
T 
T 
t 
tpRI, T 

t 

u, U 
var(.) 

v 

V 
Vv 
Vs or Vs 
V 

Vn 

vz(x,y,z:t) 

Vno(-) 

K 
W 
w 
W(m) 

x,y, z 
x, y, z 

x 
Kit) 
z 
zn 
Za 
Zn 
ZF 

Magnitude of distance between two points [L] 

Autocorrelation function 

Axial resolution [L] 

Received waveform 

Intensity reflection coefficient 

Lateral resolution [L] 

Unit vector in the direction of R 
Radon transform operator 

Entropy 

Strain 

Aperture function 

Spatial frequency spectral density function 

Angular spectral density function 

Temperature 

Thermal Index 

Intensity transmission coefficient 

Stress [ML_1T“2] {Pa or N/m2} 

Time period [T] 

Time [T] 

Pulse repetition interval [T] 

Time to form a shock wave [T] 

Aperture transmission function and its Fourier transform 

Variance of the argument 

Velocity vector [LT1] 

Volume [L”3] 

Volume of a voxel 

Scatterer volume 

Pulse-echo sample volume 
Velocity normal to a surface in an inward direction [LT 11 

Velocity component along the z-axis at (x,y,z) at time t 
(similarly for vx,vy) [LT1] 

Time variation component of vn 
Velocity normal to a surface [LT '] 

Width of transducer [L] 

Power [MT~3L:] {Watts} 
Packing factor (function of the packing dimension ra) 

Cartesian coordinate system components 

Unit vectors along Cartesian coordinate axes 

Shock formation distance [L] 

Source x-location (Earnshaw’s solution) [L] 

Specific acoustic impedance [ML T '] {Rayl, Pa.s/m} 

Characteristic impedance [ML"2T ') {Rayl, Pa.s/m} 

Acoustic impedance [MT1] {N.s/m} 

Normalized distance along the z-axis 

Depth of field [L] 
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Greek-Based Symbols 

a 

OCdB 

a« 
as 
a0 
a'0 
a 

a,p,y 

P 
P 
Y 
5() 
e 
e 
e 

Em 

ep 

s 
0 
K 

Kr 

X 
Xr 

Xe 

0 
Mb 

\k 

U) 

5 

p(r:0 

Pi = P - p„ 
P0 
a 

of 
a 

O BSC 

Ob 

o, 
Oj 

Os 

X 

X 

Amplitude attenuation coefficient (= a„fn) [L-1] 

Attenuation coefficient expressed in dB's 

Absorption contribution to the attenuation coefficient [L_1] 

Scattering contribution to the attenuation coefficient [L-1] 
Attenuation factor (a = aafn) [L_1T"] 

Angular frequency attenuation factor (a = a'co") [L_1Tn] 
Angle subtended 

Plane wave direction cosines 

Coefficient of nonlinearity (= 1 + BI2A) 
Volume expansivity 

Ratio of specific heats (= CPICV) 

Dirac delta function 

Permittivity {Farads/m} 

Parameter governing Gaussian apodization 

Acoustic energy density {Joules/m3} 

Mach number (= vlc0) 

Number density (concentration) of scatterers (= N/V) [M-3] 
General variable 

General angle 

Adiabatic compressibility {Pa-1} 

Isothermal compressibility {Pa-1} 
Wavelength [L] 

Rayleigh (surface) wave wavelength [L] 

First Lame constant [ML-1T-2] 

Coefficient of shear viscosity [ML-IT-1] 

Coefficient of bulk viscosity [ML-1T-1] 

Second Lame constant or shear modulus [ML-1T-2] 

Apodization function (e.g., spatial variation of the normal 
velocity component) 

Acoustic particle displacement [L] 

Standard deviation (subsequent to Chapter 5) 
Density of propagation medium [ML-3] 
Excess density [ML-3] 

Equilibrium density [ML-3] 

General variable 

Standard deviation 

Poisson’s ratio 

Backscattering coefficient (BSC) {m-1.sr-1} 

Backscattering cross-section {m2.sr-1j 

Total scattering cross-sections {m2} 

Differential scattering cross-sections {m2.sr-1} 
Shock parameter 

Retarded time (= t - (x/cQ)) [T] 

Specific instant of time [T] 
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X Stress tensor 

9 Time parameter in Earnshaw’s solution 

9 General angle 

<Kr:0 
Velocity potential in spatial and time domains [L2T '] 

O(r:co) Velocity potential in spatial and frequency domains [L2T '] 

O Power density spectrum 

X Axial elastic modulus [ML_1T“2] 

Q Solid angle 

«() Aperture function 

CO Angular frequency (to = 2nf) [T 1 ] 

C0c Center angular frequency [T"1] 

C0D Doppler angular frequency [T"1] 

COptv Slow-time (pulse-wave) angular frequency [T_1] 

Miscellaneous Symbols, Functions, and Abbreviations 

V Gradient operator 

V- Divergence operator 

V2 Laplacian operator (= V-V) 

Dot product of two vectors 

* Convolution, or complex conjugate 

<_> Time-retarded value of a quantity 

Underscore denotes a phasor quantity. 

Overscore denotes a unit vector. 

Bar overscore denotes average value. 

circ(q) Circle function, = 1 for q < 1 and zero elsewhere 

erf(q) Error function |= dq'j 

rect(q) Rectangular function, = 1 for q < 1 and zero elsewhere 

sinc(q) Sine function (= sin(7tq)/(Ttq)) 
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absolute viscosity, liquid, solid and gas 
media, llr 

absorption 

attenuation in tissue, 72 

and bulk viscosity of fluids, 84-86 

Burgers and KZK equations, 248-253 

connection with dispersion, 28-29 

effects on incident plane wave, 72 
mechanism, 79 

plane wave on specimen, 70, 71/ 
process, 69, 205 

shear wave, in fluids and tissue, 86-87 

absorption cross-section, definition, 271 
acoustical saturation, phenomenon, 247 

acoustic arrays, historical background, 425 
acoustic impedance 

definition, 42 

transducer, 364 

acoustic Mach number, shock wave 

formation, 246 
acoustic matching 

air-backed transducer, 387/ 

power transfer efficiency, 386-388 

triple-layer air-backed transducer, 
387-388, 389/ 

acoustic microscopy 

resolution and attenuation, 575/ 
scanning, 573-574 

acoustic noise factor and figure, 400 

acoustic noise figure spectrum, transducer, 
399/ 400 

acoustic particles 

concept of, 5 

incident plane wave, 229/ 

time-averaged excess pressure, 49 
acoustic power, transfer efficiency, 388, 

390 

acoustic pressure, 

time-varying, 45 
radiation, 45-49 

acoustic response, contrast agents as 

function of mechanical index, 537/ 

acoustic streaming, radiation pressure, 
46 

acoustic transducer, arrangement and 

radiation resistance, 378/ 

773 
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acoustic transmission response, 
transmission matrix method, 375/ 

acoustic wave motion 
longitudinal and transverse waves, 6-7 

physical nature of, 4-8 
Rayleigh and Lamb waves, 8 
snapshot of “particle” displacements for 

propagating waves, If 
wave propagation in semi-infinite 

medium, 4-6 
acoustic wave propagation 

effect of moving fluid on, 619/ 
liquid and gaseous media, 29-36 

solid media, 36-41 
theoretical basis of linear and nonlinear, 

3-4,15-23,230// 

acoustic waves 
radiation pressure, 45—46 
reflection and refraction, 49-62 

adiabatic bulk modulus, equation, 9 

adiabatic compressibility 

definition, 8-9 
function of temperature, 10/ 
liquid, solid and gas media, lit 

adiabatic gas, exact equation, 12,15, 22, 

231-232 
air, characteristic impedance, 42t 

air-backed transducer 
acoustic matching, 386-388 
characteristics of triple matched, 389/ 

differential phase delay, 392-393 
double matching layer design, 3871 
input impedance, 387/ 

KLM model, 379-380 
transmission power loss, 387/ 

values for triple matching layer, 389t 
algebra, reconstruction, for velocity vector 

distribution, 739-743 
aluminum, characteristic impedance, 42f 

A-nrode (amplitude) 
A- and B-mode systems, historical 

background,414-422 
imaging, 414 

recordings, 415/ 
amplitude attenuation coefficient 

complex wave number, 32 
description, 70-72 

amplitude reflection coefficient, pressure, 

53 
amplitude weighting, ultrasound array, 

451-454 

angular movement, speckle reduction, 506, 
508, 509/ 

angular spectrum method 
3-D representation of pressure from 

vibrating piston, 140/ 
analytical approach, 121 ff, 141-142 
angular spectrum of velocity potential, 

123-125 
basic principles, 121-123 
calculated axial and radial pressure 

profiles, 142/ 
Cartesian form of jinc function, 137/ 

evanescent waves, 124 

field profile, 138-139 
field profile analysis, 135-143 
Fourier transform method, 139, 

141-143 
harmonic field pattern, 121-122 

harmonic source and field pattern, 

122/ 
numerical 2-D fast Fourier transform 

(FFT), 143, 144/ 
point spread function, 126-128 

relation to Rayleigh integral, 128-129 

spatial spectrum of piston, 136-137 
transfer function, 125-126 

annular array 
effective receive aperture response, 589, 

590/ 
one-dimensional array, 433, 461/, 463 

point spread function, 591/ 

annular ring 
directivity function, 178 
Fresnel and Fraunhofer zone response, 

177-178 
impulse response, 176,177/ 

annulus 

concave, 178-180 
plane, 178,179/ 
superposition principle, 178,179/ 

aperiodic and periodic arrays, 427 

aperture function 

effective aperture, 454-455 
element, 442, 444, 446 

pulse shape expansion due to dynamic 

focusing, 459/ 

aperture geometry, pulse-echo tomography, 

557,558/ 
apertures 

effect on image quality, 478f 

full transmit, 589, 590/ 

separate transmit and receive, 454-456 

aperture selection, depth of field, 
463-464 

aperture systems, synthetic, 530, 532-535 
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apodization 

effect on depth of field for elevation 
lens, 462/ 

effect on image quality, 478f 

apodization function. See also Gaussian 
apodization 

impulse response method, 150 

linear rectangular elements, 445 
spatial variation, 110 

ultrasound array, 451^154 

approximate field calculation methods 

Fraunhofer approximation for piston 
transducer, 157-163 

Fresnel and Fraunhofer approximations, 

155ff 

Fresnel approximation for piston 
transducer, 163 

approximations 

Born, 287-290 

compressibility and density functions, 
289 

linearized propagation equations, 21-24 
point source Green’s function in far 

field, 288/ 

scattering, 268-269, 287-290 
array field synthesis 

field conjugation method. 479^180 

imaging arrays, 477, 479^181 
pseudoinverse method, 481 

arrays. See imaging arrays 
arteries 

estimated flow waveforms and flow 
velocity profiles, 629/ 

pulsatile blood flow, 627-628 

articulated arm for 3-D imaging, 469 
attenuation 

absorption and, 71/ 

absorption and scattering, 70 

accounting for, and dispersion, 212-217 
acoustic microscopy, 515t 

biological media, 75/ 871, 577/ 
classical viscous loss, 213-215 

effects of frequency dependence, 80-81 

effects on estimation accuracy, 706-708 

factor, 73, 207 

formulations for, power law, 215-217 

fractional change in phase propagation 

speed vs. frequency, 208/ 

Gaussian modulated incident pulse, 83/ 

harmonic content, 243-244 
impulse response of medium with 

attenuation varying with frequency, 
209/ 

Kramers-Kronig relationships, 79, 206ff 

ratio of second harmonic pressure 

amplitude to fundamental vs. distance, 
245/ 

response for uniformly apodized disk, 
210,211/ 

simplified models, 210-211 

spectrum of Gaussian modulated 
sinusoidal pressure pulse, 82/ 

transfer function and impulse response, 
207-210 

two-way changes due to frequency- 
dependent, 709/ 

attenuation coefficients 

absorption and scattering, 72-81 

attenuation of biological tissues, 74-76 
attenuation vs. frequency characteristics 

of biological media and water, 75/ 
broadband ultrasonic attenuation, 77-79 
contributions of scattering to, 731 

frequency dependence, 73 

osteoporosis assessment using 

attenuation and speed, 76-79 
porcine red blood cell suspensions, Ilf 

properties of soft human tissue, 76t 

temperature dependence for water, 74^ 
attenuation-compensated method, flow 

estimation, 733, 734/ 

attenuation power law, formulations for, 
215-217 

autocorrelation function 

backscattering coefficient, 318 
Golay code, 526/ 

scattered pressure, 318-319 
transmitted signal, 519 

autocorrelation methods 

clutter rejection techniques, 708-710 

covariance function, 703 

effects of frequency-dependent 

attenuation and scattering, 706-708 
estimating and displaying color flow 

velocity images, 704/ 

Kasai estimation scheme, 704/ 705-706 
phase-domain technique, 700-701 

range-gated sampled signal from single 
scatterer, 701, 703 

signal processing scheme, 704-705 

two-dimensional, 715-717 

two-way changes due to frequency- 
dependent attenuation, 708, 709/ 

axial modulus, definition, 13-14 

axial pressure profiles, angular spectrum 
method, 142/ 
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axial resolution 
imaging system, 511 

pulsed methods, 674-676 
axial transmission system, measuring speed 

of sound in bone, 78/ 
axicon. See conical (axicon) geometry 

Babinet’s principle, diffraction, 68-69, 

70/ 

backing layer, acoustic impedance, 388, 

390 
backscattering. See also scattering 

2-D representation of backscattered 

signal using voxel approach, 318/ 
autocorrelation function for calculating, 

coefficient, 318-319 
by blood, 312-324 
calculating, by plane incident wave, 

317/ 
comparison with measurements, 321-324 

crystallographic contribution, 317 
fluctuation scattering, 317 
hybrid method, 315-321 

optical microscopy, 313/ 
scatterer realizations and backscattered 

signal, 309/ 
signal from whole blood, 314/ 

soft tissue, 577/ 
total backscattered pressure waveform, 

317-318 
variation of, coefficient vs. hematocrit, 

321/ 

voxel method for calculating, coefficient, 

315/ 
backscattering coefficient 

continuous-wave Doppler spectrum, 

625-626 
definition, 308 

backscattering cross-section 
biconcave red blood cell, 295/ 

differential, 271 

spherical red blood cell, 295/ 
bandwidths, effect on image quality, 478? 

Barker coded structures, multilayer 

transducers, 357-360 
beamformer 

B-mode imaging system, 493/ 

delta-sigma single-bit analog-digital 

converter system for, 437/ 
digital, receiver system, 435/ 
equation, 435 

time-domain, 436/ 

transmission and reception, 435-437 

beam profile, pulse-echo, for 1-D and 1.5-D 

arrays, 473/ 
beam steering, linear array, 440/ 

Bessel function beam, 198-201 
binary encoding scheme, coded excitation, 

517, 518/ 
biological media 

dispersion of ultrasound speed, 29? 
longitudinal wave speeds in, 35-36 

speed of sound measurements in, 36/ 

transverse wave speed and attenuation, 

87? 

biological tissues 
attenuation, 74-76 
attenuation vs. frequency characteristics, 

75/ 
mechanism of absorption, 79 

biomicroscopy. See also microscopy 
anterior portion of eye, 580/ 579/ 
commercial eye scanning system. 578/ 

development of, 571-573 

eye, of the, 576-578 

living tissue, 572 
scanning, 574—575 

skin, 578, 580 
blood. See also red blood cell scattering 

backscattered signal, 312ff, 314/ 657 
characteristic impedance, 42? 

optical microscopy, 313/ 
blood flow 

B-flow imaging method, 527-530 

color-encoded flow images, 698/ 

Doppler, velocity measurement system, 
611/ 

equalization filter, 529/ 

equations for, 628 

flow measurement, 591-593 
image of partially stenosed common 

carotid artery, 528/ 
imaging, 527-529, 723/ 

influence of equalization parameter on 

image of carotid bifurcation, 530/ 

net intensity of signal from, 531/ 
pulsatile, in arteries, 627-628 

sketches illustrating approaches for, 723/ 

volumetric flow waveforms, 628, 629/ 
blood vessels 

Doppler-shifted ultrasound signals, 
609-610,611/ 

speckle tracking method for measuring 

2-D flow velocity vector, 562/ 

velocity vector estimation, 736 

volume flow estimation, 727 
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B-mode (brightness) 

breast, images and elastograms, 565, 566/ 
commercial eye scanning system, 578/ 
dynamic range issues, 422 

gray-scale imaging, 414, 421-422 

historical background. A- and B-mode 
systems, 414-422 

image of fetal spine, 415/ 

images of liver for coded excitation, 525, 
527/ 

imaging system, 418/ 

recordings, 415/ 

spatial compounding of two, images, 469/ 
speckle pattern, 491 ff 

tumor diagnosis with three-dimensional 
imaging, 464, 465/ 

B-mode imaging system. See also imaging 
systems 

array system design, 492-494 

changes in acoustic properties, 568 
combining with pulse velocity 

measurements, 656 

contrast media harmonic imaging, 544/ 
endoluminal and intravascular imaging, 

580-581 

envelope estimation, 494, 495/ 
estimating envelope using Hilbert 

transform, 495/ 

imaging theory, 494, 496-497 

main elements, 493/ 

point spread function (PSF), 494, 
496-497 

possible ultrasound detection schemes, 
494/ 

simplified representation, 496/ 

space and spatial frequency domains, 
498/ 

synthetic aperture systems, 530-535 

bone 

attenuation and dispersion, 29, 75/ 

characteristic impedance, 421 

ultrasonic measurement, 77-79 

wave-mode conversion, 61/ 

Born approximation 

scattering, 287-290 

time-domain scattering, 296-297 

boundaries, rigid and pressure-release, 57, 

147-148 

boundary conditions 

compressional waves in fluid media, 
52-53 

Dirichlet and Neumann, 106-107 

integral methods, 147-148 

Neumann's and Dirichlet’s, for 
calculating scattering, 292-293 

rigid baffle, 143, 145-146 
boundary value method 

compressible cylindrical scatterer, 
281-283 

compressible spherical scatterer, 
277-280 

free rigid sphere, 276-277 
immobile sphere, 272-276 

nronopole and dipole contributions to 
scattering, 279, 280/ 

polar plots, 275/ 276/ 

rigid spherical scatterer, 272-277 
scattering, 271-283 

scattering and differential scattering 
cross-sections, 274 

bounded region 

Dirichlet boundary condition, 105-106 
Green’s functions for plane surface, 

106-107 

Kirchhoff’s integral theorem, 103/ 
104-105 

lacking internal sources, 103-107 
Neumann boundary condition, 106 

specifying Green’s function, 105-106 
Boyle, Robert William, modern ultrasonics 

development, 4 

brain scanning, ultrasound images, 433n 
breast tumors, B-mode and elastogram 

images, 565, 566/ 

broadband ultrasonic attenuation (BUA), 

osteoporosis assessment, 77-79 
bubble theory 

contrast media imaging, 537-540 

rectified diffusion, 537 
bulk moduli, hard and soft tissues, 570/ 

bulk viscosity, 20, 86, 213-215 
Burgers’ equations 

frequency-domain solution for plane 
wave, 251/ 

full form, 248n 

generalized, 250 

nonlinear evolution equation, 248-250 
bypass graft model, color flow image 

showing 2-D velocity distribution, 
740/ 

capacitive transducers 

electrostatic transducers with silicon 

nitride membranes, 404-405 

full-range electrostatic loudspeaker 
(Quad ESL), 401n 
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capacitive transducers (cont.) 
model of electrostatic transducer, 402/ 

parallel plate structure, 401, 402/ 
principles of electrostatic transducer, 

403/ 
silicon microfabrication technology, 404 

ultrasound imaging, 330 

cardiac cycle 
extracting Doppler signals, 622-623 
M-mode (motion) recordings, 423-425 

vessel wall movement, 622 
cardiac output, measuring, 727, 733 
cardiac structures, movement by ultrasonic 

Doppler effect, 609, 610/ 

carotid artery 
color-encoded flow images, 698/ 

color flow imaging, 695/ 
Doppler signal and power spectrum, 

629-633 
gray-scale display of amplitude spectrum 

from normal, 631/ 
measured time-domain segments from 

normal, 630/ 

spectral displays of CW Doppler spectra, 
632/ 

spectral flow display, 696/ 

velocity profile measurement, 693/ 
carotid bifurcation, influence of 

equalization parameter, 529, 530/ 

Cassini oval, definition, 294n 

catheter 
beamforming and data transmission, 

585 
coronary intravascular images, 584/ 585/ 
echocardiography 2-D array intracardiac 

imaging, 586/ 
phased-array endoluminal imaging, 582/ 

ribbon transmission cable, 396« 

sketch of synthetic aperture 
intravascular imaging, 583/ 

Central Limit theorem 
backscattering from distributions, 311, 

318 

non-Gaussian statistics, 502-503 

speckle analysis, 501 
ceramic piezoelectric transducer, 

displacement waveform of concave, 
174-175 

ceramics. See piezoelectric ceramics 
characteristic acoustic impedance 

definition, 42 
transducer, 364 

characteristic impedance 
composite piezoceramics, 352, 353/ 354/ 

selected media, 42f 

circuit model 
approximate one-dimensional, of lightly 

loaded transducer, 370/ 

Mason one-dimensional model of 

piezoelectric plate, 366/ 
transmission and reception, 374/ 

circuits 
protection, for transducer, 393-397 

transmit/receive protection, 394/ 395/ 

circular aperture geometry, pulse-echo 

tomography, 557, 558/ 
classical viscous loss, attenuation effects, 

213-215 

clutter rejection techniques 
autocorrelation, 708-710 

regression filters, 710 
C-mode (constant depth mode), imaging, 

414,422-423 
C-mode flow scanning, mean velocity 

method, 730-731 
coded transmission systems 

autocorrelation function of transmitted 

signal, 519 
binary encoding scheme, 517, 518/ 

B-mode images of liver showing effects 
of coded excitation, 527/ 

coded excitation schemes, 517, 518/ 

comparing conventional and pulse 

compression systems, 519/ 
effect of cosine amplitude tapering on 

frequency spectrum of linear chirp, 

523,524/ 

equalization filter, 529/ 
example of FM chirp with time- 

bandwidth product, 521, 522/ 
frequency-modulated (FM) chirp, 518/ 

519-525 

frequency modulation schemes, 681/ 
Golay code, 525-527 

historical background and principles, 
517,519 

imaging blood flow, 527, 528/ 529, 

influence of equalization parameter on 
image of carotid bifurcation, 530/ 

net intensity of signal from blood, 531/ 

properties of 8-bit Golay code pair, 
526/ 

pulsed methods, 679-682 
range side lobes, 521 
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self-noise, 521 

simple pulse-echo system using FM chirp 
and matched filter, 520/ 

transducer bandpass characteristics, 
521-523 

transducer filtering effect on 

compression of chirp, 521-522, 523/ 
Tukey window, 523, 524f 

coefficient of nonlinearity 
definition, 237 

liquids and gases, 236-237 

coefficient of rigidity, shear modulus, 37 
color flow imaging 

bypass graft model showing 2-D velocity 
distribution, 740/ 

display and estimation method. 719r 
frame rate considerations, 720 
nomenclature, 631 
power, 720 

reconstruction algebra, 739-743 
use of, system to 2-D vector 

reconstruction, 742-743 

velocity estimation, 661-662 
color M-mode flow imaging, display and 

estimation method, 719t 
color M-mode tissue imaging, display and 

estimation method, 719? 
color power flow imaging 

display and estimation method, 719? 
enhanced flow imaging, 720-722 

color tissue imaging, display and estimation 
method, 719? 

compensation methods, volume flow 

estimation, 733-736 

composites 
connectivity, 349-350 
development of, 335 

effective properties, 352-354 

effects of lateral modes, 354-356 
electrical impedance group of 2-2 

composite transducer, 355/ 

fabrication method, 350-352 

piezoceramics, 349-356 
predicted characteristics of 1-3 

composite structure, 353/ 354/ 

two-phase structures illustrating 

connectivity, 350/ 351/ 
compounding methods, speckle reduction, 

507,508-510 
compound scanning 

basic principles, 419, 420/ 
photograph of Diasonograph, 420/ 

compressible cylindrical scatterer 

geometry in discussing scattering of 

plane wave incident at angle on long 
cylinder, 282/ 

scattered field, 281-283 

scattered wave as cylindrical Bessel and 
Neumann functions, 282 

compressible spherical scatterer 
Green’s function approach, 279 
scattered field, 277-280 

scattered pressure field, 278 
compressional waves 

acoustic wave propagation, 6-7 

boundary conditions and Snell’s law, 
52-53 

critical and intromission angles, 53-54 

equations for plane wave reflection and 

transmission coefficients, 56? 
fluid media, 51-59 

phase angle of reflected beam vs. angle 
of incidence, 55/ 

pressure amplitude reflection coefficient, 
55/ 

reflection and transmission coefficients, 
54-56 

rigid and pressure-release boundaries, 57 

transmission through layer for normal 
incidence, 57-59 

computed tomography (CT), ultrasound 

alternative pulse-echo CT method, 557, 
559/ 

circular aperture geometry, 557, 558/ 
development, 550, 552-553 

linear array for acquiring pulse-echo 
data, 557, 559/ 

objective of ultrasound CT, 553 

principles of reflection tomography, 558/ 
process for determining 2-D property of 

object, 554/ 

projection-slice theorem, 555, 556/ 

pulse-echo tomography, 556-557 
Radon transform, 554-555 
tomography, 550n 

transmission tomography, 553-556 
x-ray CT development, 550« 

concave and convex transducers 
approximate axial and lateral fields near 

focus, 172 

axial profiles for concave transducer, 
168/ 

axial CW intensity profile for concave 
transducer, 171/ 
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concave and convex transducers (cont.) 
comparing with experimental results, 

174-176 
concave radiator, 166 
convex radiator, 165/ 
displacement waveform in concave 

ceramic piezoelectric transducer, 174/ 

experimental and calculated pressure of 
concave transducer, 263/ 264/ 

Fraunhofer zone, 173 
fundamental analytical approximations, 

164 
gain of transducer, 169 
geometry for concave and convex 

radiators, 167/ 262/ 
gray-scale-encoded CW pressure 

magnitude contours, 169/ 
impulse response using ring function 

method, 164-166 
lateral resolution and depth of field, 

173 
measurement of on-axis pressure from 

concave transducer, 175/ 
on-axis locations, 166 
sinusoidal response, 166-170 

velocity and intensity, 170-171 
concave annulus, field profile analysis, 

178-180 

conical (axicon) geometry 
depth of field, 180 

harmonic response, 180-182 
normalized pressure magnitude on-axis 

variation, 182/ 
transducer, 180,181/ 

connectivity 
composite piezoceramics, 349-350 

composite two-phase structure 
illustrating, 350/ 351/ 

conservation of mass, continuity equation, 

18-19 

constitutive relations 
piezoceramics, 344-345 

piezoelectric equations, 339-342 
piezoelectric polymer materials, 347-349 

continuity equation, conservation of mass, 
18-19, 284 

continuous wave (CW) 

angular spectrum, 136 

annulus response, 178,179/ 

axial CW pressure and velocity profiles 

for concave transducer, 168/ 

computed CW contours for disk, 148, 
149/ 

concave transducers, 174-176 

geometry for calculating pressure 

response, 145/ 
measured and calculated pressure 

profiles, 153,154/ 
normalized pressure amplitude variation, 

148,149/ 
on-axis pressure response, 152/ 

continuous-wave Doppler spectrum 
backscattering coefficient, 625-626 

geometry for flow in circular tube, 625/ 

continuous-wave Doppler systems 
characteristics of Doppler signal and 

power spectrum, 629-633 

characteristics of pulsatile blood flow in 

arteries, 627-628 
estimated flow waveforms and flow 

velocity profiles, 629/ 
extracting Doppler signal, 620-623 

method for extracting spectra and 
forward and reverse flow signals, 

623/ 

phase-quadrature method, 620, 622/ 
probe design, 620, 621/ 

spectrum related to velocity profile, 
623-633 

steady flow spectra, 624-627 

two-way spatial response characteristics, 
621/ 

vascular disease, 618-619 

continuous wave flow imaging 

historical background, 694-695, 696/ 
vascular disease diagnosis, 694 

continuum model 

coordinate system for calculating pulse- 
echo response, 299/ 

pulse-echo response system, 297, 
298-301 

time-domain scattering equation, 296 
contrast 

contrast-detail graph, 513/ 

contrast-to-speckle ratio, 514 

images of hyperechoic and hypoechoic 
cysts, 514/ 

and resolution of imaging systems, 
512-515 

contrast agent lifetime, effect on 

conventional and harmonic contrast 
imaging, 543/ 

contrast flow imaging 

enhanced flow imaging, 723-727 

harmonic and power harmonic flow 
imaging, 724-725 
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idealized pulse inversion pulsed-wave 

spectra for linear and nonlinear 
scatterers, 121 f 

pulse inversion methods, 725-727 

contrast media imaging. See also tissue 
harmonic imaging 

acoustic response vs. mechanical index, 
537/ 

background, 536 

B-mode image using fundamental 
scattering signal, 544/ 

bubble theory, 537-540 

effect of surface layer surrounding 
bubble, 539-540 

effects of contrast agent lifetime on 
contrast imaging. 543/ 

harmonic generation by bubble, 541/ 

harmonic imaging, 535, 541-543 

influence of incident pressure field, 539, 
540/ 

methods for improving harmonic 
detection, 547/ 

microbubble angular resonant frequency, 
538 

microbubble characteristics, 538/ 

microbubble contrast agent lifetime. 542, 
543/ 

multipulse transmission methods, 545-548 
perfusion measurement and imaging, 

544-545 

power modulation method, 547-548 
pulse inversion, 545 

Rayleigh-Plesset equation, 537-538 
rectified diffusion, 537 

relative volumetric perfusion of blood 
into tissue, 546/ 

response of bubble to Gaussian-like 
pulse, 539, 540/ 

scattering cross-section of air-filled 

bubbles in water, 542/ 

second harmonic image, principles, 544/ 

small signal scattering cross-section, 539 
subharmonic imaging, 543-544 

contrast-to-speckle ratio (CSR), equation, 

514 

convection, propagation speed change due 

to, 235-236 

convex transducers. See concave and 

convex transducers 

convolution, definition and properties, 758 
coordinate systems 

Eulerian, 16-18, 228-230 

Lagrangian, 16-18, 228-229 

coronary, intravascular images, 581, 584/ 
585/ 

correction techniques, maximum velocity 
estimation errors, 645-646 

cosine taper, effect on frequency spectrum 
of linear chirp, 523, 524/ 

coupling factor. See piezoelectric coupling 
factor 

critical angle, compressional waves in fluid 
media, 53 

cross-correlation 

approximate method for, calculation, 
687-688 

correlation methods in elastography, 
562-565 

effects of decorrelation, 684-687 
estimating time delay, 684/ 

producing elastogram by, 563/ 

real and imaginary parts of analytic 
signal, 564/ 

velocity estimation using time-shift, 
682-688 

cross-coupling, in imaging arrays, 450-451 
crystallographic contribution, scattering, 

317 

C-scan system, volume flow estimation, 
728, 729/ 

curvilinear phased array, 

one-dimensional array, 461/, 462 
cylindrical harmonic waves 

inviscid fluid, 33, 35 

wave quantities, 341 

cylindrical phased array, design and 
manufacturing, 581 

cylindrical waves, scattered field, 270 

cylindrical scatterer, compressible, 281-283 

deconvolution correction, multigate pulsed 
system, 692-693 

decorrelation, cross-correlation for velocity 
estimation, 684-687 

delays 

beam steering and focusing, 431, 
432/1 

principles of dynamic focusing on 
reception, 434/ 

reducing delay errors, 435-436 

wave distortion by dynamic focusing, 456 
demodulation, direct RF signal sampling, 

669-670 

dense array, sparse, 449 

density, Langrangian, nonlinear 

propagation, 230 
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depth of field 
aperture selection, 463-464 

concave transducer, 173 

conical geometry, 180 
elevation lens, 462 
Gaussian apodization, 193-195 

design 
B-rnode imaging system, 492-494 
continuous-wave Doppler probes, 620, 

621 / 
multigate system, 691-692 

design factors, image quality, 477, 478t 
detection schemes, B-mode ultrasound, 

494/ 
Diasonograph 

photograph,420/ 
three-dimensional imaging, 465 

differential backscattering cross-section, 

expression, 271 

differential phase delay 
air-backed transducer, 392-393 

two-way insertion loss, 393/ 
differential scattering coefficient, 

definition, 308 
differential scattering cross-section. 

definition, 271 

diffraction 
approximate analysis of, by half-plane, 

64-66 
Babinet’s principle, 68-69 
comparing exact and approximate 

analysis of, by half-plane, 67/ 
comparison of intensity distributions, 63/ 

elements of, 62-69 
historical background, 62-63 
Huygens-Fresnel approach, 63, 64/ 

Huygens’ principle, 62-63 

Huygens’ principle for constructing 
secondary wavefront, 63/ 

Khokhlov-Zabolotskaya-Kuznetsov 

(KZK) equation, 250, 252 

Sommerfeld’s exact analysis of, by half¬ 

plane, 66-68 
diffraction equations, 

Rayleigh-Sommerfeld, 97-110 
diffractionless and limited diffraction 

beams 

Bessel function beam, 198-201 

constructing variety of solutions, 196 

lateral beam profile for Bessel 
apodization, 200/ 

localized wave solutions, 196 

on-axis normalized pressure response, 

200/ 
plane wave solution, 197-198 
spatial-temporal Fourier transform, 

196-197 
superluminal pulse, 201-202 

superluminal pulse waveforms, 203/ 

X-waves, 202, 204—205 
X-wave velocity potential simulations, 

204/ 205/ 
digital beamforming receiver system, block 

diagram, 435/ 

dipole 
contributions to scattering by single red 

blood cell, 280/ 

term, 279 
Dirac delta function 

definition, 99n 

Green’s function and, 98-99 

directional color power flow imaging, 
display and estimation method, 7191 

directivity function 
annular ring, 178 

definition, 160 
far-field pressure, 161/ 
Fraunhofer approximation, 160-163 

Gaussian apodization, 193,194/ 

measuring field profiles, 161 

pattern for disk transducer, 162/ 

Dirichlet boundary conditions 
calculating scattering, 292-293 
specification of. 105-106 

dispersion 

accounting for attenuation and, 212-213 

definition, 206 
effects on Gaussian modulated sinusoid, 

28-29 

effects, on-axis waveform, 213/ 
effects on propagation of Gaussian 

pulse, 217, 218/ 

group speed, 25-26 

ultrasound speed in biological media, 291 

displacement field, ultrasound for 

measuring, 561-562 

displacement profile, sinusoidal, 240/ 

displacement vector, Cartesian 

components, 37-38 

displacement waveform, concave ceramic 

piezoelectric transducer, 174-175 
distribution 

backscattering by blood, 312-324 

backscattering coefficient, 308-309 
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random, of point scatterers, 307-308 

random, of scatterers, 309-312 
scattering by, 306-324 

Dolph-Chebyshev apodization, 452-453 
Doppler, Christian, and the Doppler effect 

change of frequency, 652 

historical background. 608-611 
Doppler effect 

definition. 652-653 

pulsed systems, 652-653, 654 
Doppler equation 

beam path due to refracton, 619/ 

change in frequency by moving scatterer, 
617-618 

derivation using Galilean transform. 
615-618 

moving scatterers, 614-618 
refractive effects, 618, 619/ 

sound speed depth profile, 619/ 
Doppler signal 

effects of deviations from plane-wave 
conditions, 643, 644/ 

extracting, 620-623 

Gaussian distribution of time domain, 
635-636 

inlet velocity profile, 633, 634/ 

phase-quadrature method, 620, 622/ 
physical and mathematical flow models, 

631 

properties, 633-637 

simulation models, 636-637 
statistical properties, 633-636 

time-domain, and spectrum by moving 
scatterer, 643/ 

Doppler spectral broadening 

causes, 638? 
description, 637ff 

extrinsic broadening, 645 

intrinsic broadening, 639-645 
maximum velocity estimation errors, 

645-646 
ultrasound flowmeters, 638 

Doppler ultrasound 
blood flow velocity measurement system, 

609-610,611/ 
characteristics of Doppler signal and 

power spectrum, 629-633 
continuous wave (CW) and pulsed wave 

flow imaging, 694-699 
CW Doppler spectrum related to 

velocity profile, 623-633 
CW Doppler systems, 618-623 

Doppler equation for moving scatterers, 
614-618 

effect of uniform flow on wavefronts, 
612-613 

extracting Doppler signal, 620-623 
extrinsic broadening, 645 
flow mapping using CW, 696/ 

flow measurement methods, 609 

historical background, 608-611 
intrinsic broadening, 639-645 

maximum velocity estimation errors, 
645-646 

noninvasive transit-time method, 609 
probe design, 620, 621/ 

properties of Doppler signal, 633-637 
pulsatile blood flow in arteries, 627-628, 

629/ 

simulation models, 636-637 
spectral broadening, 637ff 

statistical properties, 633-636 

steady flow spectra, 624-627 
tissue perfusion measurement, 728 
transducer and system, 610/ 

transit-time. 

double matching layer design, air-backed 
transducer, 387? 

duplex scanners, development, 656 
dynamic focusing 

expansion of pulse shape due to, on 
reception, 459/ 

fractional expansion of pulse due to, on 
reception, 460/ 

principles of, on reception, 434/ 

steering and focusing in reception, 431, 
433-437 

synthetic aperture systems, 534-535 
wave distortion due to, 456-457, 459/ 

460 

dynamic range, effect on image quality, 
478? 

dynamic range issues, B-mode imaging 
systems, 422 

Earnshaw’s derivation and solution, 232, 

238-239, 245 

echocardiography, catheter-based, 586/ 
effective aperture, imaging arrays, 

454-455 

elastic stiffness matrix, piezoceramics, 344 

elastography. See ultrasound elastography 

electrical impedance, lateral modes, 
composite transducer, 355/ 
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electrical matching 
effect on air-backed transducer, 385/ 

networks, 383/ 
power transfer efficiency, 382-386 
transmission power loss, 384-385 

electric spark, transducer mechanism, 330 

electrocardiogram (ECG), relating motion¬ 

mode recordings to, 424-425 
electromagnetic, transducer mechanism, 

329 
electronic sequential scanning, medical 

applications, 426-427 
electrostatic transducer 

mechanism, 329 
parallel plate structure, 401, 402/ 

principles, 403/ 
silicon nitride membranes, 404-405 
simplified model, 402/ 
transmission and reception, 403/ 
ultrasound imaging, 405 

electrostrictive effect 
description, 332 
illustration, 331/, 332/ 

elevation properties, imaging array, 470t 
elevation resolution for 1-D and 1.5-D 

arrays, 473/ 
encapsulated microbubbles, 536 
endoluminal ultrasound. See also 

intravascular imaging 

beginnings, 580-581 
phased-array, imaging catheter, 582/ 
term, 580 

energy, kinetic and potential, 43 
energy density 

time-averaged, 44 
time-averaged, of incident wave, 48 

wave propagation, 43-44 
energy flux, wave propagation, 44-45 

energy loss, inclusion of bulk viscosity, 86 

engineering properties, image quality, 477, 
478f 

envelope estimation 
B-mode imaging system, 494, 495/ 

Hilbert transform, 494, 495/ 

Intensity, square-law detector, 494, 495/ 
prior to post-processing, 505/ 

equalization filter, B-flow imaging, 529/ 

equalization parameter, influence on image 
of carotid bifurcation, 530/ 

equation of state, wave propagation in 
fluids, 19-20 

equations for wave propagation in fluids 
continuity equation, 18-19 

equation of state, 19-20 
Euler’s equation of motion, 16-18 
Navier-Stokes equation, 20-21 

small-signal approximations, 21-24 

error correction, maximum velocity 

estimation, 645-646 
estimation error, maximum velocity, 

645-646 
Eulerian coordinate system, nonlinear 

propagation 

equation, 228 
field quantities, 229-230 
reduced wave equation in, 238 

speed variation, 235-236 

wave propagation speeds, 235t 
Eulerian excess pressure, acoustic wave, 

46—47 

Euler’s equation of motion, 16-18 
Euler’s equation, approximate form for 

inhomogeneous region, 283-285 
evanescent waves 

angular spectrum, 124 
compressional waves, boundary effects, 

53-54 

evolution equation, description, 248 
exact analysis. See boundary value 

method 
exact wave equation in 1-D 

adiabatic gas, 231-232 
first integral, 232-233 

inviscid medium, 230-233 

excitation, coded. See coded transmission 
systems 

expected pressure, random distributions of 

point scatterers, 307 
expected square of pressure, random 

distributions of point scatterers, 307 

extensional wave propagation, semi-infinite 
rod,41 

extensional waves 

propagation, 8 

wave propagation, 8, 9/ 

extrinsic broadening, Doppler system, 645 
eye, ultrasound scan 

arc-scans of anterior portion of, 580/ 

biomicroscope imaging of anterior 
portions, 579/ 

biomicroscopy, 576-578 

commercial B-mode eye scanning 
system, 578/ 

fabrication, composite piezoceramics, 
350-352 
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femoral bifurcation, velocity vector 
estimation, 742/, 743 

ferroelectric, characterization, 333-334 
field conjugation method 

field synthesis, 479^180 

profile using Rayleigh integral, 480/ 
field distribution, acoustic waves, 49-51 
field profile analysis 

angular spectrum method, 135-143 
annular ring. 176-178 

annulus, 178-180 

approximate methods, 155-163 
attenuation effects, 205-217 

concave and convex transducers, 163-176 
conical (axicon) geometry, 180-182 

diffractionless and limited diffraction 
beams, 195-205 

impulse response method, 148, 150-155 
integral methods, 143,145-148 

line, strip, triangular, and rectangular 
elements, 182-189 

problems, 217, 219-220 

transducer apodization, 189-195 
field synthesis methods 

conjugation 479-480 

pseudoinverse, Rayleigh integral, 481 
finite impulse response (FIR), clutter filter, 

710 
first-order statistics, speckle analysis, 

500-502 

Fisher-Tippet density function, post¬ 
processing statistics, 504 

flexural wave, wave propagation, 8, 9/ 
flow imaging 

approaches to blood, and tissue velocity 

imaging, 723/ 
color, by 2-dimensional methods, 

710-712 

color, frame rate considerations, 720 
color-encoded tissue velocity image of 

heart, 724/ 
color flow display and estimation 

techniques, 719/719? 
color power angiography, 720, 721/ 

color power flow imaging, 720, 721/ 
continuous wave (CW) and pulsed wave, 

694-700 

continuous wave flow mapping with 

Doppler ultrasound, 696/ 
contrast, 723-727 

enhanced methods, 719-727 

examples of color, 695/ 

harmonic and power harmonic, 724-725 

historical background, 694-699 

idealized pulse inversion pulsed-wave 
spectra for linear and nonlinear 
scatterers, 727/ 

nondirectional power flow image of 
kidney, 722/ 

power, 720-722 
principles, 699-700 

principles of contrast agent harmonic, 725/ 
pulsed wave color, 699 

pulse inversion methods, 725-727 
simulations illustrating received signal 

properties, 702/ 703 

sketches for approaches for blood flow 
vs. tissue velocity imaging, 723/ 

tissue imaging vs. blood flow imaging, 
722-723 

flow measurement methods 
decorrelation, 591-593 

velocity estimation, 609, 727-736 
flow model, Doppler signal, 631 

flow velocity. See also velocity estimation 

estimating and displaying color, images, 
704/ 

frequency and phase methods for 
estimating, 689/ 690/ 

geometry for, reconstruction, 740/ 

multigate pulsed wave methods, 691-693, 
694/ 

refractive effects, 618 
flow velocity vector, speckle tracking 

method, 561-562, 562/ 
fluctuation term, scattering, 317 

fluid displacement profile, 631-633 
/-number 

aperture selection, 463-464 
concave annulus, 185 
definition, 173 

imaging arrays, 431 
image quality, 478? 
frame rate, 474, 

focusing. See steering and focusing 

forward viewing, intravascular catheter, 
588/ 589/ 

forward-viewing transducers, 586-591 

Fourier transforms 
convolution properties, 758 

definitions, 98, 123, 757 

table of, 758t 

Fourier transform applications 

angular spectrum, 122ff, 139,141-143 

numerical 2-D fast Fourier transform 

(FFT), 143,144/ 
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frame rate 
effect on image quality, 478f 
two-dimensional arrays, 474-475 

Fraunhofer approximation 

accuracy, 159/ 
annular ring, 177-178 
concave transducer, 173 
directivity function, 160-163 
directivity pattern for disk transducer, 

162/ 
far-held pressure directivity function and 

lateral profile for disk transducer, 161/ 

far-held response, 157 
Gaussian apodization, 192 
geometry for expression of far-held 

prohle, 160/ 
lateral resolution measure by full width 

at half maximum (FWHM), 161 

piston transducer, 157-163 
predicting behavior of transducers, 

155-156 
Rayleigh distance, 163 
rectangular transducer, 186-187, 188/ 

free-held conditions, boundary, 103, 
147-148 

freehand image acquisition systems, 3-D 
imaging, 468M69 

free-space impulse response, Green’s 
function, 100 

frequency 

effect on image quality, 478f 
velocity estimation, 661, 688-691 

frequency-dependent attenuation 
autocorrelation method, 706-708 
effects of, 80-81, 205ff 

Kramers-Kronig relations, 206ff 

tissue, 751 

two-way changes due to, 709/ 

frequency-domain methods, nonlinear 
computation process, 259/ 
computed held prohles in axial and 

radial directions, 260, 261/ 

computed pressure prohle for piston 
transducer, 260/ 

diffraction, absorption, and nonlinearity, 
257,259-260 

frequency-domain solution, Burgers’ 
equation, 251/ 

frequency-modulated (FM) chirp 

coded excitation, 517, 518/, 680-682 

matched hlter impulse response, 520 

pulse-echo system using, and matched 
hlter, 520/ 

range side lobes, 521 

self-noise, 521 
transducer bandpass characteristics, 

521-523 
ultrasound tissue imaging, 519-520 

frequency spectra, pulse wave elastography, 

568, 569/ 
Fresnel approximation 

annular ring, 177-178 
intensity distribution in axial and lateral 

helds, 172 
piston transducer, 163 

predicting behavior of transducers, 

155-156 
radiation held, 480 

square transducer, 187-189 
full-width at half maximum (FWHM), 

resolution 

concave transducer, 173, 194 
conical geometry, 182 

contrast, 512 
rectangular transducer, 187 

gain of transducer 

concave transducer, 169-170 
dehnition, 169 

Galilean transform, Doppler equation, 

615-618 
gases 

coefficient of nonlinearity, parameter of 

nonlinearity, 236-237 
compressibility and bulk modulus, 8-13 

properties, lit 

wave propagation speed in, 233-237, 
2351 

Gaussian apodization 
depth of held and lateral resolution, 

193-195 

directivity function, 193 

effects on near- and far-held radial 
pressure prohle, 193/ 

far-held directivity function. 194/ 
held prohle, 191-192 

harmonic analysis, 189-190 
King’s harmonic analysis, 190n 

methods for achieving, 192-193 

Gaussian distribution, time domain of 

Doppler signal, 635-636 
geometry 

2-D velocity reconstruction using linear 
array, 738/ 

2-D vernier array, 458/ 

arbitrary scatterer, 291/ 
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calculating delays of beam steering and 
focusing, 432/ 

calculating pressure field for scattering 
by rigid sphere, 272/ 

circular aperture, of tomography, 557, 
558/ 

concave and convex radiators, 167/ 
concave composite transducer, 262/ 
conical, 180-182 

continuous wave (CW) pressure 
response, 145/ 

determining transmit-receive response 
for pulse-echo system, 302/ 

flow velocity reconstruction, 740/ 
periodic array of identical rectangular 

elements, 444/ 

piston transducer response, 146/ 
received signal from moving scatter with 

velocity, 665/ 

scattering of plane wave incident on long 
cylinder, 282/ 

Golay code 
B-mode images of liver, 527/ 

coded excitation, 525, 527 

properties of 8-bit, pair, 526/ 
grating lobes 

formation for linear array, 440/ 

imaging arrays, 437^138 
Nyquist criterion, 438 

gray-scale imaging. See also B-mode 
(brightness) 

dynamic range, 422 

Green’s function 
approach for scattered pressure held, 

286-287 
approach for scattered wave, 268 
approximate expression, 287-288 

free space, 291-292 
free-space impulse response, 100 
inhomogeneous wave equation, 279 

plane surface, 106-107 
solving the wave equation, 98-100 

specifying, for bounded region, 105-106 
unbounded for time-domain scattering, 

296 
volume source in unbounded medium, 

100-102 

group and phase speed 

equations for, 25-29 
Rayleigh formula, 26 

Hadamard matrix, synthetic aperture 

systems, 535 

half-plane 

approximate analysis of diffraction by, 
64-66 

Sommerfeld's exact analysis of 

diffraction by, 66-68 

Hankel transform, 757, 759 
harmonic analysis, Gaussian apodization, 

189-190 

harmonic content for nonlinear 
propagation 

amplitudes of particle velocity 

harmonics, 244/ 
effect of attenuation, 243-244 

inviscid medium, 242-243 
second harmonic pressure amplitude 

versus distance, 245/ 
harmonic detection, methods for 

improving, 547/ 

harmonic flow imaging 
contrast flow imaging, 724-725 
display and estimation method, 719f 

harmonic imaging. See also contrast media 
imaging; tissue harmonic imaging 

contrast media, 535, 541-543 
development of, 541, 548, 549/ 

performance, 550 
tissue, 535-536, 548-550 

harmonic power flow imaging 
contrast flow imaging, 724-725 
display and estimation method, 719r 

harmonic waves 
amplitudes for plane, propagating in 

water, 45f 
ideal reflecting plane, 47^18 
intensity propagating through tissue, 

80/ 
inviscid fluid, 33-35 
standing wave corresponding to 

reflection of, 48/ 

viscous fluid, 32-33 
head wave production 

concave transducer, 175 

piezoceramic disk, 154-155 

heart 
color-encoded tissues velocity image, 

724/ 
continuous wave ultrasound, 609, 610/ 

M-mode recordings of, 423^425 
heat generation 

dependence of normalized heat 

production rate on frequency, 85/ 

thermal index (TI), 516 

ultrasound absorption, 81-84 
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Helmholtz equation 

cylindrical coordinates, 33, 35 
harmonic waves, 32 

inhomogeneous form, 98 
spherical coordinates, 33 

Helmholtz’s formula, velocity potential at 

observation point, 102-103 
hematocrit 

attenuation dependence, 75, 77/ 
backscattering dependence, 312ff 

theoretical results, 523/ 324/ 

experimental, 323/ 
high-frequency materials, piezoelectrics, 

335-336 
Hilbert transform 

estimating envelope, 494, 495/ 
pairs, 209, 759 

time-delay estimation, 564 
homogeneous medium, properties, 4n 

Huygens-Fresnel analysis 

approximate analysis of diffraction, 
64-66 

comparison with Sommerfeld’s results, 67/ 
Huygens’ principle, diffraction, 62-63 
hybrid method, backscattering, 315-321 

hyperechoic and hypoechoic simulated cyst 
images, 513-514 

image line density 

effect on image quality, 478/ 
two-dimensional arrays, 474^175, 476/ 

image speckle 

2-D random walk problem, 501/ 
analysis, 500-506 

angular compounding for speckle 
reduction, 508, 509/ 

autocovariance function of simulated 

speckle image, 507/ 

Central Limit theorem, 501-503 
compounding methods, 506, 507-508 
correlation coefficient, 508-510 

first-order statistics, 500-502 
granular background, 497-498 

non-Gaussian statistics, 502-503 
post-processing statistics, 503-504 

probability distribution function (PDF), 
501, 502/ 

Rayleigh PDF, 502/ 

reduction techniques, 506-510 

scatterers for producing, 499-500 

second-order statistics, 504-506 

simulation example for a linear phased 
array, 499/ 

theoretical PDF for tissue-mimicking 

phantom, 504, 505/ 

image width and depth, effect on image 
quality, 478/ 

imaging, three-dimensional, •• 
imaging arrays. See also one-dimensional 

arrays; three-dimensional imaging; 
two-dimensional arrays 

1.5-D and 1.75-D arrays, 470-472 
A- and B-mode systems, 414-422 

amplitude weighting (apodization), 
451-454 

array field synthesis, 477, 479-481 

B-mode (brightness) gray-scale, 414 

Beamformer equation, 435 

C-mode (constant depth mode) imaging, 
414, 422-423 

compound scanning, 419, 420/ 

design factors, 477,478/ 

development of ultrasound, 425—427 
dynamic focusing, 431, 433^137 

dynamic range issues, 422 
effective aperture, 454-455 

early ultrasound imaging systems, 418/ 
engineering properties and image 

quality, 478/ 

field conjugation method, 479-480 
focusing, 429—135 

grating and side lobes, 437-438 

gray-scale imaging, 415/ 421^422 

historical background, 414-427 

inter-element cross-coupling, 450-451 
linear array of rectangular elements, 

442-447 

linear point source arrays, 438-442 

M-mode (motion) method, 423—127 
obliquity factor, 447—148 

planar point source arrays, 442 
properties of, 427—460 

pseudoinverse synthesis method, 481 
pulse excitation field pattern, 440-442 

reception, 431,433-437 

rectilinear volumetric arrays, 476-477 

separate transmit and receive apertures, 
454-456 

sinusoidal excitation, 438-440 
sparse array design, 455-456 

sparse arrays, 448-450 

steering and focusing, 429-437 
transmission, 429-431 

two-dimensional arrays, 470-477 
wave distortion due to dynamic focusing, 

456-460 
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imaging systems. See also biomicroscopy; 

B-mode imaging system; endoluminal 

ultrasound; image speckle; 
intravascular imaging; microscopy 

axial resolution, 511 

B-mode, 492-497 

coded transmission systems, 517-529 

computed tomography (CT), 550, 552-557 

contrast and resolution, 512-515 

endoluminal and intravascular imaging, 
580-593 

image speckle, 497-510 

resolution, contrast, and signal-to-noise 
ratio (SNR), 510-517 

synthetic aperture systems, 530, 532-535 
ultrasound elastography, 557, 560-571 

ultrasound microscopy and 
biomicroscopy, 571-580 

imaging theory, B-mode imaging system, 
494,496-497 

immobile rigid sphere, scattering, 272-276 

impedance definitions 
acoustic, 42 

characteristic acoustic, 42 
concept, 41 

specific acoustic, 41-42 

impulse function, defining equation, 150 
impulse response 

annular ring, 176, 177/ 
attenuation effects, 207-210 

calculating, of arbitrary-shaped 

transducer, 182-183 
Green’s function, 102 

infinite strip, 184-185 

line element, 183-184 
medium with frequency-dependent 

attenuation, 209/ 

on-axis, of piston transducer, 112-115 

Rayleigh integral, 110-112 
rectangular transducer, 185-189 

Redwood transducer model, 390-392 

ring function method, 164-166 

impulse response function, angular 

spectrum, 126-128 
impulse response method for 

calculating velocity, plane transducer, 

150/ 152/ 
comparing continuous wave (CW) on- 

axis pressure response, 152/ 
experimental and theoretical results, 

152-155 

head waves, measurement of, 155/ 

piston transducer, 151-152 

infinite impulse response (HR) filter, 
clutter rejection, 710 

infinite strip, impulse response, 184-185 

inhomogeneous region, scattering 
approximate solutions, 287-290 
Greens function approach, 286 

integral solution, 285ff 

wave equation for scattering, 283-285, 
instantaneous intensity, definition, 44 
integral and function relations, 760-762 
integral methods 

Born approximation, 287-290, 296-297 

boundary conditions, 147-148 

equations for inhomogeneity, 283-290 
Green’s function, 287-288 
inhomogeneous region, 283-285 

integral scattering equation, 285-287 
on-axis CW normalized pressure 

amplitudes, 148/ 

pressure distribution on- and off-axis, 
148,149/ 

rigid baffle boundary condition, 143, 
145-146 

scattering approximations, 287-290 

integral theorem, Kirchhoff, 104-105 
intensity, instantaneous or time averaged 

definitions, 44-45 
reflection coefficient, definition, 54 

response to sinusoidal transducer, 
118-120 

transmission coefficient, definition, 

54-55 
intensity distribution, transducer 

axial and lateral planes, 172 

concave transducer, 170-171 
inter-element cross-coupling, imaging 

arrays, 450-451 

intravascular, 583-586 
historical background, 464-466 

systems for, 467// 

intravascular imaging 

echocardiography 2-D array intracardiac, 
586/ 

development of, 580-581 

effective receive aperture for full 

transmit array and two receive 
elements, 590/ 

effective receive aperture response for 

annular array, 590/ 
examples of coronary, 584/ 585/ 

flow measurement, 591-593 

forward-viewing, 588/ 
forward-viewing transducers, 586-591 
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intravascular imaging (cont.) 

measuring blood flow, 592/ 
point spread function for annular ring, 

591/ 
side- and forward-imaging intravascular 

catheter, 589/ 
side-viewing transducers, 581-583 
synthetic aperture design, 583/ 

terminology, 580 
three-dimensional imaging, 583-586 

intrinsic spectral broadening 
Doppler signal, 639-645 
convolution theorem. 639 

intromission incident angle, 54 

inverse piezoelectric effect, 330, 331/ 
inviscid medium, nonlinear propagation 

exact 1-D wave equation, 230-233 
exact equation for adiabatic gas, 231-232 
first integral of exact wave equation, 

232-233 
harmonic content, 242-243 

isentropic conditions, propagation process 
under, 10, 22 

isothermal compressibility definition, 9 
isotropic media 

axial modulus, 13-14 

compressibility and bulk modulus: 
liquids and gases, 8-13 

liquids and gases, 8-13 

Poisson’s ratio, 13 
propagation in, 39-40, 36-39 

properties, 4n, 8-15 
shear modulus, 14 
solids, 13-14 

temperature effects, 14-15 
Young’s modulus, 13 

jugular vein and carotid vessels, color flow 
images, 695/ 

Kasai frequency estimation, 704f, 700-706 

Khokhlov-Zabolotskaya-Kuznetsov 
(KZK) equation 

application, 253-257 

diffraction, absorption, and nonlinearity, 
250, 252 

fractional step marching scheme, 255/ 

pressure distributions, 255, 256/ 257/ 
258/ 

kidney, power flow image, 722/ 

kinetic energy, wave propagation, 43 
Kirchhoff boundary conditions, 103, 

147-148 

Kirchhoff’s integral theorem 
bounded region with no internal sources, 

104-105 
relating potential at observation point, 

103/ 
KLM model. See also transducer models 

acoustic matching, 386-388 
acoustic transducer, 378/ 

air-backed transducer with A/4 matching 

layer, 379/ 
application, 377-390 

calculating the acoustic output, 375/ 
calculating the received response, 376/ 

effect of backing, 388, 390 
effect of electrical matching on air- 

backed, 385/ 

electrical matching, 382-386 
electrical matching networks, 383/ 

input impedance and transmission power 
loss of air-backed, 386, 387/ 

input impedance vs. frequency using 
simplified model, 371/ 

loaded input impedance, 381 
motional acoustic impedance, 380 

power transfer, 384/ 381-388 

quarter-wave matched and air-backed, 
379-380 

radiation resistance, 378 

three-layer arrangement, 387-388, 389 
basic transducer model, 367-369 

transmission power loss, 384-385 
transmit and receive response models, 

374-377 

triple matching air-backed layer, 389t 
unloaded input impedance, 380-381 

Kramers-Kronig relationships, attenuation 
effects, 79, 206-207 

Lagrangian coordinate system 

description, 16—18, 228-229 

exact propagation equation, 231-232 
integral of exact wave equation, 

232-233 

momentum 1-D equation, 230-231 

speed variation, 235-236 

wave propagation speed, 233-234, 235f 
Lamb waves, 8, 9/ 

Lame coefficients, 37 

Langevin, Paul, modern ultrasonics 
development, 4 

Langevin radiation pressure, 46-47 

lateral modes, composite transducers, 
354-356 
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lateral resolution 

definition, 173 

concave transducer, 173 

Gaussian apodization, 193-195 
lead-based ceramics (PZT, PZN-PT, 

PbNb206), 334-335,346r 

leaky Rayleigh wave, 40 
limited diffraction beams. See 

diffractionless and limited diffraction 

beams 
linear phased array 

apodization effect on far-field response, 
452/ 

formation of grating lobes and effect of 

beam steering, 440/ 

increasing the frame rate, 475, 476/ 
inter-element cross-coupling, 450-451 

near- and far-field response, 441/ 
one-dimensional array, 461/, 462 

pulse excitation, 440-442, 443/ 
sinusoidal excitation, 438^140 

liquids 
coefficient of nonlinearity, parameter of 

nonlinearity, 236-237 

compressibility and bulk modulus, 8-13 

properties, 1 If, 237/ 

liver 
B-mode images of, showing coded 

excitation effects, 525, 527/ 

A-mode signal through portal vein, 657/ 

longitudinal speed 
biological media, 35-36, 76/ 
composite piezoceramics, 352, 353/ 

dispersion, 29/ 
liquid, solid and gas media, 11/ 
water, versus temperature, 12/ 

Loomis, Alfred Lee, modern ultrasonics 

development, 4 
loudspeaker, electrostatic (Quad ESL), 

401 n 

Mach number, acoustic, shock wave 

formation, 246 
magnetostrictive effect, transducer model. 

See also transducer models 

circuit model, 365, 366/, 367 

matching, 57-59, 88-89, 379, 386-388 

matrix computation methods 
calculating acoustic transmission 

response, 375/ 
calculating receive response, 376/ 

transmission matrix, 371, 372-374 

transmit/receive response, 374-377 

matrix methods for scattering analysis 
scattering by red blood cell, 293-295 

Waterman's transition (T) matrix, 

290-293 
maxima and minima, on-axis response 

piston transducer, 120-121 

maximum velocity estimation errors, 

Doppler system, 645-646 

mechanical coefficients, dimensions, 341/ 
mechanical index (MI) 

contrast agent response vs. M/, 537/ 

definition of, 516 
synthetic aperture systems to reduce 

problems, 535 
mechanical scanning, 3-D imaging, 

467^168 
mechanisms for transduction, 329-330 

microbubble characteristics 

encapsulation, 536 
lifetimes, 542, 543/ 
perfusion measurement and imaging, 

544-545, 546/ 

resonant frequency and scattering cross- 

section, 538/ 
microscopy. See also biomicroscopy 

backscatter scanning microscope, 576/ 

development of, 571-573 
lateral resolution. 573 
axial resolution and attenuation, 575/ 

scanning microscopy, 573-574 
M-mode recording 

cardiac imaging, 425/ 

development of, 423^125 
monopole term, scattering, 279, 280/ 

motional acoustic impedance, KLM 
transducer model, 380 

motorized scanning systems, three- 
dimensional imaging, 467-468 

moving scatterers, Doppler equation 

derivation, 614-618 

multigate pulsed wave methods 
deconvolution correction for, 692-693 

MAVIS-C system, 730 
velocity profile estimation, 692/ 693/ 

694/ 
system design, 691-692 

volume flow estimation, 728, 729/ 730/ 

multilayer transducer 

Barker code structures, 357-360 
piezoelectric ceramics and polymers, 356, 

357 
multiple burst velocity estimation methods, 

661 
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multipulse imaging methods 

contrast media imaging, 545-548 
power modulation, 547-548 
pulse inversion, 545, 547/ 

narrowband velocity estimation methods, 
661 

Navier-Stokes equation 
derivation, 20-21 
linearized, 21-23 

Neumann and Dirichlet 

boundary conditions, 106-107 

for calculating scattering, 292-293 
specifying Green’s function, 106 

noise 

factor and figure for a transducer, 
397-400 

limiting spatial resolution, 675-676 

properties of transducers, 398; 
radiation efficiency, 398, 399/ 

non-Gaussian statistics, speckle analysis, 
502-503 

noninvasive 

cardiac output measurement, 727, 733 

transit-time, fluid flow measurement, 
609 

volume flow measurement, 728 
nonlinear imaging. See tissue harmonic 

imaging 

nonlinear wave propagation 

acoustic particles moving for incident 
plane wave, 229/ 

attenuation, 252-253 

Burgers’ equations, 248-250, 251/ 

coefficient and parameter of nonlinearity 
for liquids and gases, 236-237 

density in terms of displacement, 230 

Earnshaw’s derivation and solution, 232, 
238-239, 245 

effects of nonlinearity, diffraction, and 
attenuation, 247-253 

Eulerian coordinate system, 228-230 
evolution equation, 248-250 

exact 1-D wave equation for inviscid 
medium, 230-233 

first integral of exact wave equation, 
232-233 

frequency-domain method, 257, 259-260 
harmonic content, 242-244 

Khokhlov-Zabolotskaya-Kuznetsov 
(KZK) equation, 250, 252 

Lagrangian coordinate system, 228-229 

numerical methods and results, 253-264 

nonlinearity parameter for liquids and 
gases, 236-237, 2371 

particle velocity, 240-241 

plane shock waves, 245-246 
pressure distribution, 241-242 

propagation speed variation, 233-237 

reduced equations, 238-239 
shock parameter, 246-247 

shock wave formulation, 244-247 

sinusoidal excitation, 240-242 
speed variation, 235-236 

time-domain method, 260, 262-264 

using KZK equation, 253-257 

wave propagation, theoretical basis, 
227-237 

obliquity factor 

imaging arrays, 109, 447-448 

pressure release surface theory, 180, 
448/ 

on-axis response. See piston transducer 

one-dimensional arrays. See also imaging 
arrays 

aperture selection, 463—464 
convex array, 461/, 462 

curvilinear phased array, 461/ 462 

effect of aperture and focal point on 
depth of field, 464/ 

effect of apodization on depth of field 
for elevation lens, 462/ 

linear phased array, 461/ 462 

phased linear array, 461/ 462 

three-dimensional imaging using, 
467-470 

one-dimensional transducer models. See 

transducer models 

operator splitting method, nonlinear 
propagation 

transmit profiles for a phased array 550, 
552/ 

method, 254, 255/ 

osteoporosis assessment by ultrasound, 
76-79 

packing dimension, scattering, 320 

packing factor, distributions of scatterers, 
319-320 

palpation, abnormality detection method, 
557 

parabolic inlet velocity profile, Doppler 
signal, 633, 634/ 
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parameter of nonlinearity 

liquids and gases, 236-237 
representative values of, 2371 

particle, defining an acoustic, 5-6 

particle velocity, nonlinear propagation 
harmonic content, 243, 244/ 

propagation speed variation, 235/ 

sinusoidal excitation, 240-241 
waveforms, 241/ 

particle velocity phasor, 32 

perfusion measurement and imaging 
with contrast media, 544-545 

periodic array 

point source arrays, 428/ 

aperiodic and random, 427 
permittivity matrix, 340 

matrix for piezoceramics, 345 

values for ceramics and polymers, 346, 
348-349 

phase-delay methods for estimating 

velocity, 611-614 

phase dispersion, derivative of phase, 126 
phased linear array, one-dimensional array, 

461/ 462 
phase-domain technique, autocorrelation 

methods, 700-701 

phase-quadrature demodulation 
analog and digital schemes, 671/ 

extracting Doppler signal, 620, 622/ 

pulsed wave system using, 670-674 
range-gated signals from moving 

scatterer, 673/ 
two-dimensional autocorrelation, 716 

phase shift, velocity estimation, 661, 

688-691 

phase speed, wave, 24-25 
phonons, energy quantization, 5 

physical nature, acoustic wave motion, 

4-8 
piezoelectric ceramics 

constitutive relations, 344-345 

development, 334 
early phased array construction, 451/ 

elastic stiffness matrix, 344 
fabrication of composites, 350-352 

head wave generation, 154-155 

multilayer transducers, 356, 357/ 

permittivity matrix, 345 

properties, 345-347 

stress matrix, 344—345 

typical values, 346t 
piezoelectric coefficients, dimensions, 3411 

piezoelectric coupling factor 

composite ceramics for, 352, 354/ 
definition of, 342 

physical basis for calculating, 343/ 

values for ceramics and polymers, 346f, 
348r 

piezoelectric effect 

direct and inverse, 330-336 

ferroelectrics, 333-334 

high-frequency materials, 335-336 
historical aspects, 332-335 
piezoelectric ceramics, 334 

polymer materials, 347-349 
relaxor-based piezoelectrics, 334-335 

single crystal piezoelectrics, 332-334 
piezoelectric equations 

constitutive relations, 339-342 
dimensions of mechanical and 

piezoelectric coefficients, 3411 

displacement current, 339 
electrical and mechanical variables, 336 

electric field and electric displacement, 
338-339 

mechanical stress and strain relation, 

336-338 
normal stress components, 338 

permittivity matrix, 340 
piezoelectric coupling factor, 342-344 

piezoelectric stress matrix, 340 
shear stress components, 338 
stress-strain matrix, 340 

piston transducer 
angular spectrum method, 135-139, 

139-143 
convolution of signal at two on-axis 

locations, 121/ 
Fourier transform, 2-D computation, 

139-143 
Fraunhofer and Fresnel approximations, 

157-163 
geometry for calculating response, 146/ 

impulse response method on- and off- 
axis, 112-115,151-152 

intensity, on-axis, 118-120 
limiting conditions, on-axis, 117 

maxima and minima, on-axis response, 

120-121 

normalized on-axis peak pressure 

magnitude and energy, 117/ 

obliquity factor, 447, 448/ 
on-axis waveforms for pulse excitation, 

114/116/ 
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piston transducer (cont.) 

perfect baffle surrounding, 113/ 
pressure and velocity response, 117-118 

spatial spectrum, 136-137 
visualizing the response, 115/ 

plane waves 
equation for in an inviscid fluid, 29-31 

equations for reflection and transmission 

coefficients, 56/ 
frequency-domain solution of Burgers’ 

equation, 251/ 

shock wave formation, 245-246 
spherical and cylindrical representations 

of, 269-270 
wavefront, 30/ 

Plan Position Indicators (PPI), wartime 
development, 417 

point scatterers, random distributions, 
307-308 

point source arrays 

linear, 438^142b 
periodic arrays, 428/ 
planar, 442 

point spread function (PSF). See also 

Green's function 
64-element annular ring, 591/ 

B-mode imaging system, 494, 496-497 
spatial angular spectrum, 126-128 

point distributions, scattering, 312, 314 
Poisson’s ratio 

coupling between axial and lateral 
strains, 564 

definition, 13 

liquid, solid and gas media, 11/ 

relation to Lame constants, 37 

versus propagation speed ratios, 38-39 
poling, piezoelectric ceramics, 334 
polymer materials 

PVDF, permittivity and loss tangent, 
348/ 

piezoelectric polymers, 347-349 

piezoelectric transducers, 336 
porcine blood, attenuation vs hematocrit, 

77/ 

position sensing, 3-D imaging, 469^170 

post-processing statistics, speckle analysis, 
503-504 

potential energy, wave propagation, 43^44 
power, reflection and transmission 

coefficients, 56/ 
power flow imaging 

enhanced flow imaging, 720-722 

nondirectional, of kidney, 722/ 

power modulation, harmonic extraction 

method, 547-548 

power spectrum 

characteristics of Doppler signal and, 
629-633 

Doppler, axisymmetric flow in circular 

tube, 625/ 
methods for volume flow estimation, 

731-733 
power transfer efficiency 

acoustic matching, 386-388 

definition of, to both acoustic ports, 
382-384 

effect of backing layer acoustic 
impedance, 388, 390 

effect of electrical matching on air- 

backed transducer, 384, 385/ 
electrical matching, 382-386 

KLM transducer model, 381-388 
power loss or gain, 384« 

transmission power loss, 384-385 

triple matching layer air-backed 
transducer, 389 

pressure field 

angular spectrum, 138-139,140/ 

on- and off-axis, 148, 149/ 

rectangular array elements, 444, 446, 447/ 
nonlinear excitation, 241-242 

pressure-release boundary, ideal, 57 
pressure release surface, boundary 

conditions, 147-148 

pressure release surface, obliquity factor, 
448/ 

probability distribution function (PDF), 

speckle analysis, 501-502 
probe design, CW Doppler, 620, 621/ 

projection-slice theorem, tomography, 555, 
556/ 

propagation function, angular spectrum, 
125 

protection circuits 

high-frequency, 396-397 

low-frequency, 394-395 

pseudoinverse method, field synthesis, 481 
pulsatile blood flow 

estimated flow waveforms and flow 
velocity profiles, 629/ 

velocity profile equation, 628 

pulsed doppler radar, definition, 653 
pulsed wave velocity methods 

artifact in, 654, 656, 667-668 

autocorrelation methods, 700-706, 
710-717 
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axial resolution, SNR, 674-676 

B-rnode imaging with pulse velocity 

measurements, 656 

coded excitation, 679-682 
color-encoded flow images, 699, 698/ 

critical velocities, 662-664 
demodulation, 670-674 

Doppler artifact in, 654, 656, 667-668 

historical background, 656-657 

introduction to, 652-657 
minimum velocity, 663-664 

multigate methods, 691-693 

phase-quadrature demodulation, 670-674 
pulsed “Doppler” systems, definitions, 

654 

pulse-echo waveforms for plane wave 
incident on moving scatterer, 668/ 

range-velocity limitation, 662-663 

sample volume shape, 676-677 

simplified theory, 664-682 
sonoelastography, 565-568 

terminology, 619 
velocity estimation methods, 661-662 

velocity estimation using time-shift 
cross-correlation, 682-688 

velocity vector estimation, 736-743 
volume flow estimation, 727-736 

pulse-echo response 
beam profile in elevation direction for 

1-D and 1.5-D arrays, 473/ 

comparing conventional and pulse 
compression systems, 519/ 

continuum model, 297-298, 298-301 
coordinate system for calculating, 299/ 

geometry for determining transmit- 

receive response, 302/ 

Green’s function, 299 
output voltage, 300-301, 302 

point scatterer, 302/ 
simplified representation, 298/ 

single particle model, 301-303 
triple-layer air-backed transducer, 389/ 

ultrasound system, 297-303 
pulse-echo waveform from portal vein, 

657 
pulse excitation, point-source linear arrays, 

440-442 

pulse inversion 
contrast flow imaging, 725-727 

Doppler, 726 
idealized, linear and nonlinear scatterers, 

727/ 
principles, 545-548 

pulse response, far field of linear point 

source array, 443/ 

pulse velocity measurements, combining 
B-mode imaging with, 656 

pulse wave system, frequency spectra, 568, 

569/ 

quadratic nonlinearity, reduced equation, 

239 
quarter-wave matched transducer, KLM 

model, 379-380 

radial pressure profiles, angular spectrum 

method, 142/ 
radiant energy, transduction mechanism, 

330 
radiation efficiency spectrum, transducer, 

398, 399/ 
radiation force for elastography, 561 

radiation pressure 
acoustic wave, 45-46 

ideal absorbing plane, 48-49 
ideal reflecting plane, 47^48 
Langevin and Rayleigh, 47 

normal incidence, 47^19 
radiation resistance, KLM transducer 

model, 378 
radiation response, transmit and receive 

apertures, 454-455 
random array 

element choice, 427 
radiation pattern of, 449-450 

range-gate duration, optimal 674-676 

range side lobes, self-noise, 521 
range-velocity limitation, pulsed flow 

systems, 662-663 
Rayleigh resolution criterion, 173, 573 

Rayleigh distance, defined, 163 
Rayleigh distribution, speckle analysis, 

502/ 
Rayleigh formula, group speed, 26 

Rayleigh integral 
angular spectrum, equivalence, 

128-129 
boundary conditions, 147-148 
convolution form, 110-111 

derivation, 107-109 
relation of angular spectrum method to, 

128-129 
Rayleigh-Plesset equation 537-538 

Rayleigh radiation pressure, 46^17 
Rayleigh resolution, concave transducer, 

173 
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Rayleigh-Sommerfeld diffraction 

equations 

boundary conditions, 106r 

bounded region with no internal sources, 

103-107 

diffraction equations, 107-110 

Dirichlet condition, 105-106 

Helmholtz’s formula, 103 

integral theorem of Kirchhoff, 104-105 

Kirchhoff’s integral theorem, 103/ 

method for determining velocity 

potential, 99/ 

Neumann condition, 106 

Rayleigh waves 

acoustic wave propagation, 8 

particle displacements for, 9/ 

propagation in bounded solid isotropic 

medium, 39-40 

Rayleigh wavelength, 40/ 

receive beamformer, B-mode imaging 

system, 493/ 

receive sensitivity, effect on image quality, 

478t 

reception 

aperture, separate, 454-456 

digital beamforming receiver system, 

435/ 

electrostatic transducer, 403/ 

steering and focusing, 431, 433-437 

synthetic aperture systems, 532-535 

time-domain beamformer, 436/ 

rectangular transducer element 

aperture function, 442, 444, 446 

far-held pressure, 446 

Fraunhofer approximation, 186-187 

Fresnel approximation, 187-189 

impulse response, 185-186 

linear array of, 442-447 

periodic array of identical, 444/ 

rectified diffusion, bubble theory, 537 

rectilinear, two-dimensional array, A16-A11 

red blood cell scattering. See also scattering 

autocorrelation function, 318-319 

backscattered signal components using 

voxel approach, 318/ 

backscattering by blood, 312-324 

backscattering coefficient vs. hematocrit, 

321/ 

backscattering cross-section vs. 

frequency for biconcave RBC, 295/ 

biconcave disk model, 294/ 

calculating backscattering coefficient, 

317/ 318 

comparison of backscattering with 

measurements, 321-324 

crystallographic contribution, 317 

fluctuation scattering, 317 

hybrid method for scattering, 315-321 

optical images, 313/ 

packing factor, 319-320 

scattering by, 293-295 

total backscattered pressure waveform, 

317 

voxel method for calculating 

backscattering, 315/ 

reduced wave equation, 1-D, 31 

approximate form, 239 

exact form, 238-239 

Redwood model. See also transducer 

models 

determining voltage impulse response, 

391/ 

impulse response, 390-392 

one-dimensional transducer model, 367 

reflection and refraction 

boundary conditions and Snell’s law, 

52-53 

compressional waves in fluid media, 

51-59 

critical and intromission angles, 53-54 

equations for plane wave reflection and 

transmission coefficients, 56f 

reflection and transmission coefficients, 

54-56 

rigid and pressure-release boundaries, 57 

transmission through layer for normal 

incidence, 57-59 

undisturbed held from circular source, 

50/ 

wave-mode conversion, 59-62 

reflection acoustic microscopy, 573 

reflection tomography, principles, 557, 558/ 

regression hlters, clutter hlter, 710 

relaxation mechanisms 

absorption, 79 

thermal relaxation, 86 

relaxor-based piezoelectrics, development, 

334-335 

resolution 

acoustic microscopy, 575t 

axial, of imaging system, 511 

contrast and, of imaging systems, 

512-515 

retarded time, 102, 239, 248 

retrospective hltering technique, 534« 

rigid baffle. See piston transducer. 
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rigid boundary, compressional waves in 
fluid, 57 

rigid spherical scatterer 

expansion coefficients, 273 

free rigid sphere, 276-277 

geometry for calculating pressure field, 
272/ 

immobile sphere, 272-276 

Legendre’s and Bessel’s equations, 
272-273 

polar graphs, 275/, 276/ 

scattering and differential scattering 
cross-sections, 274 

ring function method, impulse response 
using, 164-166 

safety limitations 

mechanical index (MI), 516 

signal-to-noise ratio, 515-517 
thermal index (TI), 516 

sample volume 

pulsed wave shape, 1-D and 2-D models, 
674-679, 678/ 679/ 

shape for CW Doppler probes, 620-621 

scanning acoustic microscope, 573-574 
scanning methods for 3-D imaging, 468r 

scattered field, definition, 50/ 50-51 

scattering. See also red blood cell 
scattering 

autocorrelation method, 706-708 

background,268-269 
backscattering by blood, 312-324 

backscattering coefficient, 308-309 

Born approximation, 287-290 
boundary value method, 271-283 

compressible cylindrical scatterer, 

281-283 
compressible spherical scatterer, 

277-280 
continuum model for simple pulse-echo 

system, 298-301 
contributions to attenuation coefficient, 

73t 
cross-sections, definitions, 270-271 

by distributions, 306-324 

effects of frequency dependent 

attenuation and, 80-81 

effects on incident plane wave, 72 

free rigid sphere, 276-277 
Gaussian modulated incident pulse, 83/ 

immobile sphere, 272-276 

integral equation methods, 283-290 
integral scattering equation, 285-287 

matrix methods, 290-295 

one-dimensional, 303-306 
pulse-echo response system, 297-303 

random distribution of scatterers, 
309-312 

random distributions of point scatterers, 
307-308 

red blood cell (RBC), 293-295 

redirected ultrasound wave energy, 
69-70 

reflection and refraction, 49, 50/ 

rigid spherical scatterer, 272-277 
single particle model for simple pulse- 

echo system. 301-303 

spherical and cylindrical representations 
of plane wave, 269-270 

time-domain scattering equations, 
295-297 

Waterman’s transition matrix, 290-293 

wave equation for inhomogeneous 
region, 283-285 

scattering equation, integral, 285-287 
second-order speckle statistics, 504-506 
self-noise, range side lobes, 521 

shear modulus 
coefficient of rigidity, 37 
definition, 14 

hard and soft tissues, 570/ 

shear wave propagation. See also 

ultrasound elastography 
absorption, fluids and tissue, 86-87 

basic concept, 6-7 

elastic medium, 97 
speed, lit, 87t 
tissue, in, 568-571 

shock wave formation 
acoustical saturation, 247 

description, 244-245 

formation, 246-247 
geometry of concave composite 

transducer, 262/ 
plane shock waves, 245-246 

shock parameter, 246-247 
time-domain velocity waveform, 247/ 

side lobes 
Dolph-Chebyshev time domain 

response for two values of, level 

response, 453/ 
effect of lower, in clinical images, 550, 

553/ 
effects of interference by narrowband 

excitation, 453 
imaging arrays, 437-438 
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side-view imaging 
forward-viewing intravascular catheter, 

588/, 589/ 
measuring blood flow, 592/ 

side-viewing transducers, endoluminal and 
intravascular imaging, 581-583 

signal processing, autocorrelation method, 

704-706 
signal-to-noise ratio (SNR) 

definition, 515 
imaging systems, 515-517 
pulsed methods, 674-676 

safety issues, 515-517 
synthetic aperture systems, 535 

time-bandwidth product, 515 

transducer, 354, 397^100 
silicon nitride membranes, electrostatic 

transducers with, 403/ 404^105 

simulation models, CW Doppler signal, 
636-637 

skin, biomicroscopy of, 578, 580 

small-signal approximations, wave 
propagation, 21-24 

Snell’s law, in acoustics, 52-53 
soft tissues. See also tissues 

relaxation mechanisms, 76f, 79 
shear wave propagation in, 39, 568-561 

sonoelastography of, 560 
solids, Young’s modulus, Poisson’s ratio, 

and shear modulus, 13-14 
Sommerfeld’s exact analysis of diffraction, 

66-68 

sonar harmonic imaging, 549/ 
sonoelastography 

nomenclature, 560 

estimation methods, 565-568 
spark scheme, 3-D position sensing, 469 
sparse periodic array 

array design, 455^156 
description, 427, 429 
imaging, 448^)50 

periodic array of 512 elements, 449/ 

radiation pattern of random arrays, 
449-450 

vernier method, 456, 457/ 458/ 

specific acoustic impedance, definition, 
41—42 

speckle. See also image speckle 
analysis, 500-506 

compounding methods, 507-508 

correlation coefficient, 508-510 

granular background, 497^498 
statistics of, 500-504 

reduction techniques, 506-510 

second-order statistics, 504-506 
speckle tracking, measuring 2-D flow 

velocity vector, 562/ 

spectral broadening 

causes of Doppler, 6381 

choice of signal sample window, 644-645 
Doppler spectrum convolution theorem, 

639 
effects of deviations from plane-wave 

conditions on Doppler signal and 

spectrum, 644/ 

extrinsic, 645 

intrinsic, 639-645 
scatterer moving with constant velocity 

through continuous wave field, 
641-642 

sketches, 640/ 
spectral analysis method, 644-645 

terminology, 637-638 
waveform and spectrum, 641-642, 642/ 

643/ 
spectral velocity display, terminology, 

631,661 
spectral flow 

display, carotid artery, 696/ 

velocity estimation, 661-662 
speed and velocity, terminology, 6n 

speed of sound 

changes caused by nonlinear 
propagation, 235-236 

in biological media, 36/ 

in water as a function of temperature, 
12/ 

osteoporosis assessment, 78/ 77-79 
spherical waves 

Bessel’s equation for, 272-273 

compressible spherical scatterer, 
277-280 

scattered field, 269-270 

wave quantities, 34f 

statistical properties, Doppler signal, 
633-636 

steering and focusing 

delays, 432/ 

dynamic focusing, 431, 433-437 

imaging arrays, 429-437 
reception, 431, 433^437 

transmission, 429-431 
Stoneley wave, 40 

stress/strain relations, matrix form, 339-340 

structural relaxation, ultrasound energy, 79 

subharmonic imaging, 543-544 
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superluminal and subluminal propagation 
diffractionless and limited diffraction 

beams, 201-202 
waveforms, 202, 203/ 

superposition principle, for predicting field, 
178,179/ 

swept gain, time-gain compensation, 417 
symbols, list of, 766-771 

synthesis. See array field synthesis 

synthetic aperture design 

approach using transmission and 
reception, 581 

B-mode image, 530, 532 

dynamic focusing, 534-535 
example of, scheme, 532/ 

low and high-resolution images, 533 
implication, 530 

retrospective filtering technique, 534n 

signal-to-noise ratio (SNR), 535 
sketch of, intravascular imaging catheter, 

583/ 
transmission and reception, 532-534 

transmit, receive, effective apertures for 

an array, 534/ 

target tracking, two-dimensional methods, 

717-718 
temperature 

attenuation factor for water, 74/ 

effects for isotropic media, 14-15 

speed of sound as function of, 12/ 
thermal conduction, absorption coefficient, 

85-86 
thermal index (TI), definition, 516 

thermal relaxation, an absorption 

mechanism, 86 
three-dimensional imaging. See also 

imaging arrays 
B-mode images diagnosing tumor, 464, 

465/ 
Diasonograph, 420/ 465 
freehand systems, 468-469 

historical background, 464-466 

mechanized scanning, 467-468 
motorized scanning systems, 467/ 

position sensing, 469^170 

spark scheme, 469 
spatial compounding of two B-mode 

images, 469/ 
summary of 3-D scanning methods, 

468r 
use of computers, 466 
using one-dimensional arrays, 467^170 

time-averaged intensity, harmonic wave, 

44-45 
time, terminology, “slow” and “fast”, 660 

time-delay estimation, cross-correlation, 

682-684 
time-domain methods, velocity estimation, 

661 

time-domain velocity waveform, shock 
wave formation, 247/ 

time-gain compensation (TGC), 417 
time-motion recording. See M-mode 

recording 
time-shift cross-correlation 

approximate method. 687-688 

effects of decorrelation, 684-687 
velocity estimation using, 682-688 

tissue harmonic imaging. See also contrast 
media imaging 

background,535-536 
CW lateral and elevation response of a 

phased array, 551/ 
nonlinearity, 548-550 
side lobe reduction, 550, 553/ 
transmit profiles for propagation in a 

liver-like medium, 552/ 

tissue velocity imaging 
color-encoded images of the heart, 724/ 
approaches for, 722-723 

tissue perfusion, definition, 728 
tissues. See also soft tissues 

attenuation of, 74-76 

backscattering and attenuation 

properties of soft, 577/ 
propagation of low-frequency shear 

waves in tissue-like medium, 571/ 
shear and bulk moduli of hard and soft, 

570/ 
shear wave absorption, 86-87 
shear wave propagation in, 568-571 

viscoelastic media: shear, longitudinal, 
and coupling waves propagation, 560/7 

tissue scattering, contribution to 

attenuation, 72-73 
tomography. See also computed 

tomography (CT), ultrasound 

total cross-section, definition, 270 

transducer. See also concave and convex 
transducers; Gaussian apodization; 

piston transducer 

capacitive, 401-405 

composite, 354-356 

conical, 180,181/ 
coupling factor, 343/ 
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transducer (cont.) 
cross-coupling between elements, 450 

forward-viewing, 586-591 
gain, 169 

impulse response, 110-112,148,150, 
182-183 

multilayer, 356-360 
noise, 397-400 
properties, 3981 

protection circuits, 393-397 

side-viewing, 581-583 
transduction methods, 329-330 

transducer models. See also KLM model 

accounting for presence of matching 
layers, 373/ 

acoustic impedance, 364 
analysis, 361-365 

approximate 1-D circuit model of lightly 

loaded transducer, 370/ 
characteristic acoustic impedance, 364 
exact models, 365-369 

input impedance vs. frequency using 
simplified model, 371/ 

KLM model and applications, 367-369, 
377-390 

Mason model, 365, 366/, 367 

matching, 57-59, 88-89, 379, 386-388 
matrix computation methods, 371-377 

models of transmission and reception 
circuits, 374/ 

one-dimensional, 365-371 

Redwood model, 367, 390-392 
sign conventions, 363/ 

transmission matrix, 371, 372-374 
transmission response using KLM 

model, 375/ 

transmit/receive response, 374-377 
Van Dyke, 369-371 

transfer function 

angular spectrum, relation to spatial 
impulse response, 125-126 

of the attenuation, 207-210 

pulse-echo response, 302-303 
transform relation, 756-759 

transient transducer response 

differential phase delay, 392-393 

impulse response, 390-392 
Redwood model, 367, 390-392 

transit-time flow measurement 

phase-shift methods, 611-614 
theory, 613-614 

transducer schemes for flow estimation, 
614/ 

transmission 

apertures, 454-456 
electrostatic transducer, 403/ 

steering and focusing, 429-431 

synthetic aperture systems, 532-535 

transmission coefficient, equations for 

plane wave, 56r 
transmission line model. See KLM model; 

Redwood model 

transmission tomography. See also 

computed tomography (CT), 

ultrasound 

projection-slice theorem, 555, 556/ 
Radon transform, 554-555 

ultrasound computed tomography, 
553-556 

transmit beamformer, B-mode imaging 
system, 493/ 

transmitted pulse, frequency shift, 

attenuation and scattering, 80-83, 653 

transmit waveform, minimum velocity to 
reproduce, 664 

transverse wave, See shear wave 

propagation 

transverse speed. See shear wave 
propagation 

Tukey window, linear chirp spectrum, 523, 
524/ 

two-dimensional arrays. See also imaging 
arrays 

1.5-D and 1.75-D arrays, 470-472 
2-D arrays, 472, 474 

increasing frame rate, 474-475 

method for increasing line density or 
frame rate, 475/ 

nomenclature, 470f 

pulse-echo beam profile and resolution 

in elevation direction for 1-D and 1.5- 
D arrays, 473/ 

rectilinear volumetric arrays, 476^177 
scanning 3-D rectilinear volume by 

means of 2-D phased linear array, 
476/ 

simultaneous transmission of two beams 
using phased array, 476/ 

two-dimensional estimation methods 
2-D Fourier transform, 714/ 

autocorrelation methods, 715-717 
color flow system, 710, 711/ 

frequency-dependent effects, 713, 715 
target tracking techniques, 717-718 

velocity estimation techniques, 710-712, 
714/718 
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ultrasound elastography 

correlation methods, 562-565 
development of, 557, 560 

frequency spectra from pulse wave 
system, 569/ 

localized radiation force, shear waves, 
561 

measuring displacement field, 561-562 
shear waves (low frequency) 

propagation in tissue-like media, 571/ 

pulsed velocity estimation methods, 
565-568 

pulsed wave velocity estimation schemes, 
567/ 

shear and bulk moduli of hard and soft 
tissue, 570/ 

shear wave propagation in tissue, 

568- 571 

propagation in elastic media, 97. 
569- 570 

ultrasound speed, dispersion of, in 
biological media, 291 

ultrasound transduction, mechanisms, 

329-330 

vascular disease 
continuous-wave Doppler systems, 

618-619 
flow imaging for diagnosis, 694 

vector algebra, formulae, 763-765 

velocities, critical 
minimum velocity, 663-664 
minimum velocity to reproduce transmit 

waveform, 664 
pulsed methods, 662-664 
range-velocity limitation, 662-663 

velocity estimation 
approximate method for cross¬ 

correlation calculation, 687-688 

change in scatterer location vs. classical 

Doppler effect, 654, 655/ 
comparison of computed correlation 

coefficient, 687/ 
cross-correlation method for estimating 

time-delay, 684/ 
effects of decorrelation, 684-687 
maximum, errors of Doppler system, 

645-646 
phase shift and frequency, 688-691 

pulsed methods, 661-662 

scatterer velocity, 682 

terminology, 619 
time-delay estimation, 682-684 

time-shift cross-correlation, 682-688 

two-dimensional methods, 710-718 
zero-crossing method, 661 

velocity potential. See also Rayleigh 
integral 

angular spectrum of, relation to velocity, 
123-125 

definition, 23 

longitudinal plane-wave, 60 
method determining, 99/ 

particle velocity, 97-98 
Rayleigh-Sommerfeld diffraction 

equations, 108 
reflection and transmission coefficients, 

561 

velocity profile 
continuous-wave Doppler spectrum. 

623-633 
steady flow spectra, 624-627 

velocity vector estimation 

color flow image of bypass graft model, 
741/ 

distribution using pulsed-wave 
ultrasound system, 737/ 

femoral bifurcation, 742/ 743 

geometry for 2-D velocity 
reconstruction, 738/ 

geometry for flow velocity 
reconstruction, 740/ 

reconstruction algebra, 739-743 

use of color flow imaging system for 2-D 
vector reconstruction, 742-743 

velocity reconstruction techniques, 

737-739 
vernier method, sparse array design, 456, 

457/ 
virtual finger, elastography, 557 

viscosity, absolute, of liquid, solid and gas 

media, 111 

viscosity, bulk, 20, 86, 213-215 

viscosity, shear, 20, 86, 213-215 

viscosity stress tensor, Navier-Stokes 

equation, 20 
viscous loss, attenuation effects, 213-215 

volume flow estimation 
attenuation-compensated method, 734/ 

C-mode Doppler method, 730-731 

compensation methods, 733-736 

C-span system for estimating volume 

flow rate, 728, 729/ 
local mean velocity methods, 729-731 
method accounting for 3-D vessel/beam 

geometry, 730, 731/ 
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volume flow estimation (cont.) 

multigate pulsed system, 730/ 
multigate system for estimating volume 

flow rate, 728, 729/ 
noninvasive method for measuring, 733 

power spectrum methods, 731-733 

volume flow rate, 728-729 
voxel method. See red blood cell 

scattering; scattering 

water 
characteristic impedance, 42/ 
speed of sound as function of 

temperature, 12/ 

temperature dependence of attenuation, 

74/ 
wave distortion, dynamic focusing, 456-457, 

459/ 460 
wave equation 

homogeneous, 29 

inhomogeneous, 283-285 
reduced, 31 

wave-mode conversion 

incident longitudinal wave, 59/ 
phenomenon, 59-62 
plane incident onto water-bone 

boundary, 61/ 
reflection and transmission velocity 

potential amplitude ratios, 60 
wave propagation in fluids 

continuity equation, 18-19 
equation of state, 19-20 
equations, 15-24 

Euler’s equation of motion, 16-18 

Navier-Stokes equation, 20-21 

small-signal approximations, 21-24 

wave propagation speed 
coefficient of nonlinearity, 236-237 

definition for an isentropic process, lOn, 

233 

Eulerian, 234, 236 
ideal gases for isothermal and adiabatic 

conditions, 235/ 

Lagrangian, 233-234 
parameter of nonlinearity, 236-237 

speed variation, 235-236 

variation vs. distance, 235/ 
water, as function of temperature, 12/ 

wave velocity potential, reflection and 
transmission, amplitude ratios, 60 

Wood, Robert Williams, modern ultrasonics 

development, 4 

X-waves 

diffractionless and limited diffraction 
beams, 202, 204—205 

simulations, 205/ 
velocity potential, 204/ 

Young’s modulus 
definition, 13 

extensional wave propagation, 41 
Lame constants, 37 

liquid, solid and gas media, 11/ 

propagation speed ratios, 38-39 

zero-crossing method for velocity 
estimation, 661 
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