Signal Processing for Neuroscientists,
A Companion Volume

Ael?" = A[cos(wr) +j sin(wt)]=A cos(wt) + jA sin(wt)

S11=abs(Sxx)."2; im

S12=abs(Sxy)."2;
S13=abs(5xz)."2;

R IA Av=21v

P(a, b, f, t,)= acos(2nft,) + bsin(2xft,)

dy
=RCE +
O RTR

i r\%ﬂ\u\”\ﬂ\%

v = f@) + L (—a)f (@) + (= @) +, (- @) ..

g W“o"'al)"*'%y W k(?)

y(t) = I J‘hz(Tp":z) X1 -7)x(1-1,) dr dr, y(t) — H2 [xl(t)+x2 (t)]

- .
-

; .,
v
y b

hy = ko + ko, + koo, = ko + kg
=k +k =k
h, =k,

5

Signal Processing
for Neuroscientists,

A Companion Volume

Advanced Topics, Nonlinear Techniques
and Multi-Channel Analysis

Wim van Drongelen

¢ BN

ek AMSTERDAM ¢« BOSTON * HEIDELBERG * LONDON * NEW YORK * OXFORD
ELSEVIER

PARIS * SAN DIEGO * SAN FRANCISCO ¢ SINGAPORE * SYDNEY * TOKYO

Elsevier
32 Jamestown Road London NW1 7BY
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2010
Copyright © 2010 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about
the Publisher’s permissions policies and our arrangement with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/
permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-384915-1

For information on all Elsevier publications
visit our website at elsevierdirect.com

This book has been manufactured using Print On Demand technology. Each copy is produced to order
and is limited to black ink. The online version of this book will show color figures where appropriate.

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID g0 Foundation

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions
http://www.elsevier.com/permissions

Preface

This text is based on a course I teach at the University of Chicago for students
in Computational Neuroscience. It is a continuation of the previously published
text Signal Processing for Neuroscientists: An Introduction to the Analysis of
Physiological Signals and includes some of the more advanced topics of linear and
nonlinear systems analysis and multichannel analysis. In the following, it is assumed
that the reader is familiar with the basic concepts that are covered in the introductory
text and, to help the student, multiple references to the basics are included.

The popularity of signal processing in neuroscience is increasing, and with the
current availability and development of computer hardware and software it may be
anticipated that the current growth will continue. Because electrode fabrication has
improved and measurement equipment is getting less expensive, electrophysiologi-
cal measurements with large numbers of channels are now very common. In addi-
tion, neuroscience has entered the age of light, and fluorescence measurements are
fully integrated into the researcher’s toolkit. Because each image in a movie con-
tains multiple pixels, these measurements are multichannel by nature. Furthermore,
the availability of both generic and specialized software packages for data analysis
has altered the neuroscientist’s attitude toward some of the more complex analysis
techniques. Interestingly, the increased accessibility of hardware and software may
lead to a rediscovery of analysis procedures that were initially described decades
ago. At the time when these procedures were developed, only few researchers had
access to the required instrumentation, but now most scientists can access both the
necessary equipment and modern computer hardware and software to perform com-
plex experiments and analyses.

The considerations given above have provided a strong motivation for the devel-
opment of this text, where we discuss several advanced techniques, rediscover
methods to describe nonlinear systems, and examine the analysis of multichannel
recordings. The first chapter describes two very specialized algorithms: Lomb’s
algorithm to analyze unevenly sampled data sets and the Hilbert transform to detect
instantaneous phase and amplitude of a signal. The remainder of the text can be
divided into two main components: (I) modeling systems (Chapter 2) and the anal-
ysis of nonlinear systems with the Volterra and Wiener series (Chapters 3—5) and
(II) the analysis of multichannel measurements using a statistical approach
(Chapter 6) and examination of causal relationships (Chapter 7). Throughout this
text, we adopt an informal approach to the development of algorithms and we
include practical examples implemented in MATLAB. (All the MATLAB scripts
used in this text can be obtained via http://www.elsevierdirect.com/companions/
9780123849151)

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

viii Preface

It is a pleasure to acknowledge those who have assisted (directly and indirectly) in
the preparation of this text: Drs. V.L. Towle, P.S. Ulinski, D. Margoliash, H.C. Lee,
M.H. Kohrman, P. Adret, and N. Hatsopoulos. I also thank the teaching assistants for
their help in the course and in the development of the material in this text: thanks,
Matt Green, Peter Kruskal, Chris Rishel, and Jared Ostmeyer. There is a strong cou-
pling between my teaching efforts and research interests. Therefore, I am indebted to
the Dr. Ralph and Marian Falk Medical Research Trust for supporting my research
and to the graduate and undergraduate students in my laboratory: Jen Dwyer, Marc
Benayoun, Amber Martell, Mukta Vaidya, and Valeriya Talovikova. They provided
useful feedback, tested some of the algorithms, and collected several example data
sets. Special thanks to the group of students in the 2010 winter class who helped me
with reviewing this material: Matt Best, Kevin Brown, Jonathan Jui, Matt Kearney,
Lane Mclntosh, Jillian McKee, Leo Olmedo, Alex Rajan, Alex Sadovsky, Honi
Sanders, Valeriya Talovikova, Kelsey Tupper, and Richard Williams. Their multiple
suggestions and critical review helped to significantly improve the text and some of
the figures. At Elsevier I want to thank Lisa Tickner, Clare Caruana, Lisa Jones, Mani
Prabakaran, and Johannes Menzel for their help and advice. Last but not least, thanks
to my wife Ingrid for everything and supporting the multiple vacation days used for
writing.

1 Lomb’s Algorithm and the
Hilbert Transform

1.1 Introduction

This first chapter describes two of the more advanced techniques in signal proces-
sing: Lomb’s algorithm and the Hilbert transform. Throughout this chapter (and the
remainder of this text) we assume that you have a basic understanding of signal
processing procedures; for those needing to refresh these skills, we include multiple
references to van Drongelen (2007).

In the 1970s, the astrophysicist Lomb developed an algorithm for spectral analy-
sis to deal with signals consisting of unevenly sampled data. You might comment
that in astrophysics considering uneven sampling is highly relevant (you cannot
observe the stars on a cloudy day), but in neuroscience data are always evenly sam-
pled. Although this is true, one can consider the action potential (or its extracellular
recorded equivalent, the spike) or neuronal burst as events that represent or sample
an underlying continuous process. Since these events occur unevenly, the sampling
of the underlying process is also uneven. In this context we will explore how to
obtain spectral information from unevenly distributed events.

The second part of this chapter introduces the Hilbert transform that allows one
to compute the instantaneous phase and amplitude of a signal. The fact that one
can determine these two metrics in an instantaneous fashion is unique because usu-
ally this type of parameter can only be associated with an interval of the signal. For
example, in spectral analysis the spectrum is computed for an epoch and the spec-
tral resolution is determined by epoch length. Being able to determine parameters
such as the phase instantaneously is especially useful if one wants to determine
relationships between multiple signals generated within a neuronal network.

1.2 Unevenly Sampled Data

In most measurements we have evenly sampled data—for instance, the interval Az
between the sample points of the time series is constant, pixels in a picture have uni-
form interdistance, and so forth. Usually this is the case, but there are instances
when uneven sampling cannot be avoided. Spike trains (chapter 14, van Drongelen,

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00001-2
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00001-2

2 Signal Processing for Neuroscientists, A Companion Volume

2007) or time series representing heart rate (van Drongelen et al., 2009) are two
such examples; in these cases one may consider the spike or the heartbeat to repre-
sent events that sample an underlying process that is invisible to the experimenter
(Fig. 1.1A).

The heart rate signal is usually determined by measuring the intervals between
peaks in the QRS complexes. The inverse value of the interval between pairs of
subsequent QRS complexes can be considered a measure of the instantaneous rate
(Fig. 1.1B). This rate value can be positioned in a time series at the instant of either
the first or second QRS complex of the pair and, because the heartbeats do occur at
slightly irregular intervals, the time series is sampled unevenly. This example for
the heartbeat could be repeated, in a similar fashion, for determining the firing rate
associated with a spike train.

When a signal is unevenly sampled, many algorithms that are based on a fixed
sample interval (such as the direct Fourier transform [DFT] or fast Fourier transform
[FFT]) cannot be applied. In principle there are several solutions to this problem:

(1) An evenly sampled time series can be constructed from the unevenly sampled one by
using interpolation. In this approach the original signal is resampled at evenly spaced
intervals. The interpolation technique (e.g., linear, cubic, spline) may vary with the
application. In MATLAB resampling may be accomplished with the interpl command
or any of the other related functions. After resampling the time series one can use stan-
dard Fourier analysis methods. The disadvantage is that the interpolation algorithm may
introduce frequency components that are not related to the underlying process.

(2) The measurements can be represented as the number of events in a binned trace; now
our time series is a sequence of numbers, with one number for each bin. Since the bins
are equally spaced, the standard DFT/FFT can be applied. In case of low-frequency
activity, the bins must be relatively wide to avoid an overrepresentation of empty bins.

(&)
__—Event
o ° o o e o ° ° o o
3510 (B)
N [
an) N e
:245 N JLN - ’/ N e "
§ Ne- ¢ e \(& ~
1.5
0 1 2 3 4

Time (s)

Figure 1.1 The QRS complexes in the ECG or extracellularly recorded spike trains can be
considered as a series of events such as shown in (A). The rate of events can be depicted as
the inverse of the interval between the events (B); here the inverse of the interval between
each pair of events is plotted at the instant of the second event of the pair. The signal in (B)
is unevenly sampled because the rate measure is available only at the occurrence of the
events; the dashed line is a linear interpolation between these measures.

Lomb’s Algorithm and the Hilbert Transform 3

The disadvantage of this is that wide bins are associated with a low sample rate and thus
a low Nyquist frequency, which limits the bandwidth of the spectral analysis.

(3) The most elegant solution is to use Lomb’s algorithm for estimating the spectrum. This
algorithm is specially designed to deal with unevenly sampled time series directly with-
out the assumptions demanded by interpolation and resampling techniques (Lomb, 1976;
Press et al., 1992; Scargle, 1982; van Drongelen et al., 2009). The background and appli-
cation of this algorithm will be further described in Sections 1.2.1 and 1.2.2.

1.2.1 Lomb’s Algorithm

The idea of Lomb’s algorithm is similar to the development of the Fourier series,
namely, to represent a signal by a sum of sinusoidal waves (see chapter 5 in van
Drongelen, 2007). Lomb’s procedure is to fit a demeaned time series x that may be
sampled unevenly to a weighted pair of cosine and sine waves, where the cosine is
weighted by coefficient a and the sine by coefficient b. The fitting procedure is per-
formed over N samples of x(n) obtained at times 7, and repeated for each frequency f.

| P(a,b.f,1,) = a cos2nft,) + b sin(nfi,) | (1.1)

Coefficients a and b are unknown and must be obtained from the fitting procedure.

For example, we can fit P to signal x by minimizing the squared difference between
N-1

them over all samples: that is, minimize &= Y [P — X(n)]*. We repeat this
n=0

minimization for each frequency f. To accomplish this, we follow the same proce-

dure for developing the Fourier series (chapter 5 in van Drongelen, 2007) and set

the partial derivative for each coefficient to zero to find the minimum of the error,

that is:

0e?/6a=0 (1.2a)
and

oe?Job =0 (1.2b)
For convenience, in the following we use a shorthand notation in addition to the full

notation. In the shorthand notation: C = cos(27ft,), S = sin(27ft,), and X = x(n).
For the condition in Equation (1.2a) we get:

oP—x(n)] _
oa -

0e?/0a =" 2[P — x(n)] > " 2(aC +bS—X)C

=z

-1

2 | a cos(2nft,) + b sin(27ft,) — x(n)| cosnft,) =0
N’

P 0[P — x(n)]/0a

3
Il
o

4 Signal Processing for Neuroscientists, A Companion Volume

This and a similar expression obtained from the condition in Equation (1.2b) results
in the following two equations:

ZXC=aZC2+bZCS

N—1 N-1 N-1 (1.3a)
ZX(n)cos(ZWﬁ,l) =a Zcosz(watn) +b ZCOS(27rft,,)sin(27rﬁ,,)
n=0 n=0 n=0
and
Y XS=a) CS+by S
(1.3b)

N—1 N-1 N-1
ZX(n)sin(27rftn) =a Zcos(wat,,)sin(%rft,,) +b Zsin2(27rftn)
n=0 n=0 n=0

Thus far the procedure is similar to the standard Fourier analysis described in chapter 5
in van Drongelen (2007). The special feature in Lomb’s algorithm is that for each
frequency f, the sample times t, are now shifted by an amount 7 (Fig. 1.2). Thus,
in Equations (1.3a) and (1.3b), #, becomes f,—7. The critical step is that for each
frequency f, we select an optimal time shift 7 so that the cosine—sine cross-terms
(>_ CS) disappear, that is:

N—1
S cs= 3" cos@af(t, — T)sinnf(t, — 7)) =0 (14)
n=0

Using the trigonometric identity cos(A)sin(B) = %[sin(A — B) — sin(A + B)], this can
be simplified into:

N—1 N—1
1 sin(0) — sin(4nf(t, — 7))| =0— sin(4nf(t, — 7)) =0
2 ;T g T ; K T

To separate the expressions for #, and 7, we use the trigonometric relationship
sin(A — B) = sin(A)cos(B) — cos(A)sin(B) to get the following expression:

(A) Unevenly sampled signal Figure 1.2 The Lomb algorithm
° ° fits sinusoidal signals to time
series that may be unevenly
sampled, as in the example in
(A). The fit procedure (B) is
Shifted sinewave Sine optimized by shifting the
oTe sinusoidal signals by an amount 7.

o
° ° ° °

(B) Fit data to sinewave

Time —

Lomb’s Algorithm and the Hilbert Transform 5

N-1 N-1
Zsin(47rft,,)cos(47rf7') - Zcos(47rﬁ,,)sin(47rf7')
n=0 n=0
N-1 N-1
= cos(4nfT) Zsin(47rftn) — sin(4nfT) Zcos(47rftn) =0
n=0 n=0
This can be further simplified into:
N-1 N-1
sin(4nf7)/cos(dnfT) = tan(4dnfT) = Z sin(47ft,) / Z cos(4mft,)
n=0 n=0

Hence, condition (1.4) is satisfied if:

T=tan"

[N—1 N—1 1
> “sin(4nft,) / > cos(4nft,) / 4rf (1.5)
L n=0 n=0 i

The value of variable 7 as a function of frequency f can be found with Equation
(1.5), and by applying the appropriate shift 7, — (#,—7), the cross-terms in
Equations (1.3a) and (1.3b) become zero. Now we can determine the a and b co-
efficients for each frequency from the simplified expressions obtained from
Equations (1.3a) and (1.3b) without the cross-terms:

> xC=a)

N—1 N—1
> X(mcosQaf(t, —) =ay_cos’2nf(t,— 1))
n=0 n=0

(1.6a)
N—1 N—1
—>la=Y"XC/> C*= x(n)cosQnf(t, — 7)) / > cos*@nf(t, — 7))
n=0 n=0
and
> xs=b) 8
N—1 N—1
Zx(n)sin(Zﬂ'f(tn —7)=b Zsinz(Zﬂ'f(tn - 7))
n=0 n=0 (1'6b)

—|b= ZXS/ Z §? = %x(n)sin(%rf(tn - 7)) /]ilsinz(zwf(tn -7)
n=0 n=0

6 Signal Processing for Neuroscientists, A Companion Volume

Now we can compute the sum of P?(a,b,f,t,)—that is, the sum of squares of the
sinusoidal signal in Equation (1.1) for all #,—in order to obtain an expression that
is proportional with the power spectrum S of x(n) as a function of f:

cross-terms

N—1 A
S(f.a,b)=> Pa,b.fit)= > (aC+bSY =Y a*C*+b>S* + 2abCS
n=0

N-1
2 2 2 2
= g 7y - + y —7))+ -
2 a” cos”(2 f(t, — 7)) + b sin“(27f (¢,)) + cross germs

(1.7)

Since we shift by 7, all cross-terms vanish and by substitution of the expressions
for the a and b coefficients in Equation (1.7) we get:

(Cxe) o, (Zx)
S()= ~=—45> C+=—23"S
(<) (>9)

N-1 :
[Zx(n)cos(%rf(tn - T))]
n=0

N—1
= > cos*@nf(ty, — 7))
n=0

N-1 2
[Zcosz(%rf(t,, - T))]

n=0

Rt

This can be further simplified into:

(ZXC)2 X (ZXS>2
PILSEED D

N—1
le(n)cos(Zﬂf(tn - 7))
n=0

= +

N—1 N—1
> cos*@nf(t, — 7)) > sin’@af(t, — 7))
n=0

n=0

=z

=

-1

1 2
x(n)sin(27f (¢, — T))]
sin?(27f (1, — 7))

Il
=}

Il
o

N—1 2 4
> sin®Qaf (1, — T))]
n=0

| —

S(f) =
2

N—1 2
ZX(n)sin(wa(;n - 7)) (1.8)
n=0

Lomb’s Algorithm and the Hilbert Transform 7

The expression for the power spectrum in Equation (1.8) is sometimes divided by 2
(to make it equal to the standard power spectrum based on the Fourier transform;
see Appendix 1.1), or by 207 (¢>—variance of x) for the determination of the statis-
tical significance of spectral peaks. (Some of the background for this normalization
is described in Appendix 1.1; for more details, see Scargle, 1982.) By applying the
normalization we finally get:

N-1 z N-1 2
> “x(n)cos2nf (1, — T))] lzx(n)sin(zwf(tn - 7))

_ 1 n=0 n=0
S(f) = 207 N1

N—1
> cos*@f(t, — 7)) > sin®af(t, — 7))
n=0 n=0

(1.9)

From the above derivation, we can see that Lomb’s procedure allows (but does
not require) unevenly sampled data. Note that in Equations (1.7) and (1.8) we did not
compute power as the square of the cosine and sine coefficients, a and b, as we
would do in the standard Fourier transform; this is because in Lomb’s approach the
sinusoidal signals are not required to have a complete period within the epoch deter-
mined by the samples x(2). Because we do not have this requirement, the frequency f
is essentially a continuous variable and the spectral estimate we obtain by this
approach is therefore not limited by frequency resolution (in the DFT/FFT, the fre-
quency resolution is determined by the total epoch of the sampled data) and range
(in the DFT/FFT, the maximum frequency is determined by the Nyquist frequency).
However, to avoid misinterpretation, it is common practice to limit the bandwidth of
the Lomb spectrum to less than or equal to half the average sample rate. Similarly,
the commonly employed frequency resolution is the inverse of the signal’s epoch.

1.2.2 A MATLAB Example

To test Lomb’s algorithm we apply it to a signal that consists of two sinusoidal sig-
nals (50 and 130 Hz) plus a random noise component (this is the same example used
in fig. 7.2A in van Drongelen, 2007). In this example (implemented in MATLAB
script Prl_l.m), we sample the signal with randomly distributed intervals (2000
points) and specify a frequency scale (f in the script) up to 500 Hz. Subsequently we
use Equations (1.5), (1.8), and (1.9) to compute 7 (tau in the script) and the unscaled
and scaled versions of power spectrum S(f) (Pxx in the script) of input x(n) (x in
the script). This script is available on http://www.elsevierdirect.com/companions/
9780123849151.
The following script (Prl_1.m) uses the Lomb algorithm to compute the spectrum
from an unevenly sampled signal. The output of the script is a plot of the input (an
unevenly sampled time domain) signal and its associated Lomb spectrum.

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

8 Signal Processing for Neuroscientists, A Companion Volume

% Prl_1.m

% Application of Lomb Spectrum

clear;

t=rand(2000,1); t=sort(t); % An array of 2000 random sample intervals
f=[1:500]; % The desired frequency scale

% frequencies same as pr7_l.m in van Drongelen (2007)

f1=50;

2=130;

% data plus noise as in pr7_1.m in van Drongelen (2007)
x=sin(2*pi*f1*t)+sin(2*pi*f2*t);

x=x+randn(length(t),1);

var=(std(x))"2; % The signal’s variance

% Main Loop
for i=1:length(f)
h1=4*pi*{(i)*t;
Y%Equation (1.5)
tau=atan2(sum(sin(h1)), sum(cos(h1)))/(4*pi*f(i));
h2=2*pi*f(i)*(t-tau);
9%Equation (1.8)
Pxx(1)=(sum(x.*cos(h2)).A2)/sum(cos(h2).2)+. ..
(sum(x.*sin(h2)).A2)/sum(sin(h2).2);
end;
% Normalize; Equation (1.9)
Pxx=Pxx/(2*var);
% Plot the Results
figure;
subplot(2,1,1), plot(t,x,*.—’)
title(‘Irregularly Sampled Signal (USE ZOOM TO INSPECT UNEVEN
SAMPLING)’)
xlabel(‘Time (s)’);ylabel(‘Amplitude’)
subplot(2,1,2),plot(f,Pxx);
title(‘Lomb Spectrum’)
xlabel(‘Frequency (Hz)’);ylabel(‘Normalized Power’)

1.3 The Hilbert Transform

One of the current frontiers in neuroscience is marked by our lack of understanding
of neuronal network function. A first step in unraveling network activities is to
record from multiple neurons and/or networks simultaneously. A question that
often arises in this context is which signals lead or lag; the underlying thought here
is that the signals that lead cause the signals that lag. Although this approach is not
foolproof, since one can only make reasonable inferences about causality if all

Lomb’s Algorithm and the Hilbert Transform 9

connections between and activities of the neuronal elements are established, it is a
first step in analyzing network function. Multiple techniques to measure lead and
lag can be used. The simplest ones are cross-correlation and coherence (for an
overview of these techniques, see chapter 8 in van Drongelen, 2007). A rather
direct method to examine lead and lag is to determine the phase of simultaneously
recorded signals. If the phase difference between two signals is not too big, one
considers signal 1 to lead signal 2 if the phase of signal 1 (¢;) is less than the phase
of signal 2 (¢,): ¢ < ¢,. Of course this procedure should be considered as a heu-
ristic approach to describe a causal sequence between the components in the net-
work activity since there is no guarantee that a phase difference reflects a causal
relationship between neural element 1 (generating signal 1) and neural element 2
(generating signal 2). In this example one could easily imagine alternatives where
neural elements 1 and 2 are both connected to a common source causing both sig-
nals, or where element 2 is connected to element 1 via a significant number of
relays; in both alternatives the condition ¢, < ¢, might be satisfied without a direct
causal relationship from element 1 to element 2. A frequently used technique to
compute a signal’s phase is the Hilbert transform, which will be described in the
remainder of this chapter. An alternative approach to study causality in multichan-
nel data is discussed in Chapter 7.

The Hilbert transform is a useful tool to determine the amplitude and instanta-
neous phase of a signal. We will first define the transform before demonstrating
the underlying mathematics. An easy way of introducing the application of the
Hilbert transform is by considering Euler’s equation multiplied with a constant A:

Aelwt = Afcos(wt) + j sin(wt)] = A cos(wt) + jA sin(w?) (1.10)

In this example we consider the first term in Equation (1.10), f(¢) = A cos(wt), as
the signal under investigation. This signal is ideal to demonstrate the Hilbert trans-
form application because in this example we can see that the amplitude of f(¢) is A,
and its instantaneous phase ¢ is wt. The terminology for the Hilbert transform is as
follows: the imaginary component, the second term, in Equation (1.10)
f(t) = A sin(wr) is defined as the Hilbert transform of f(r) (we will discuss further
details in Sections 1.3.1 and 1.3.2 below), and the sum of both the signal and its
Hilbert transform multiplied by j generates a complex signal:

fu(t) = A e = A cos(wr) + j A sin(wt) = f(7) + j f(7)

in which f,(¢) is defined as the analytic signal.
To summarize, the real part of the analytic signal is the signal under investiga-

tion f(r) and its imaginary component is the Hilbert transform f(r) of the signal.
The analysis procedure is summarized in Fig. 1.3. As can be seen in Fig. 1.3A
and B, we can use the analytic signal A e’ to determine amplitude A and instanta-
neous phase wt of any point, such as the one indicated by *. The amplitude is:

A = \/real component? + imaginary component?

10 Signal Processing for Neuroscientists, A Companion Volume

(A) Analytic signal (B) Time domain
f(t) = Acos(wt)

f(H)=Ae” = Acos(wi) + Asin(wr) + <-4

A}

-

-
-
“ Amplitude —

-

Hilbert transform

% Imaginary axis

«—

X
~.
-

L A\ N\
“ YAV

(1) = Asin(wi)

Real axis

Instantaneous phase = w?

(©) OS2 O =) ATd (@-0p AT (@-0,)

l -
e
A ey r
I I I Ajm o (wiH+w,) l jsgn(w)
—w, 0 w, W—>r v\ < 0
s ~ o—>
Fourier transform of the x] i
analytic signal —Ajm o (0 —wy)
—w, o,

Frequency domain

Figure 1.3 The signal amplitude A and instantaneous phase wt of point * of the cosine
function (B, f(z), blue) can be determined with the so-called analytic signal (A). The analytic
signal consists of a real part equal to the signal under investigation (the cosine) and an
imaginary component (the sine). The imaginary component (red) is defined as the Hilbert
transform £(z) of the signal f(r). The frequency domain equivalents of the cosine wave, the
sine wave, the Hilbert transform procedure, and the analytic signal are shown in (C). See
text for further explanation.

and the phase is:

_, |imaginary component

¢ =tan

real component

Again, in this example we did not need the analytic signal to determine phase and
amplitude for our simple cosine signal, but our finding may be generalized to other
signals where such a determination is not trivial.

1.3.1 The Hilbert Transform in the Frequency Domain

As can be seen in the earlier example (depicted in Fig. 1.3), the Hilbert transform
can be considered as a phase shift operation on f(¢) to generate f(). In our example
the signal cos(wr) is shifted by —7/2 rad (or —90°) to generate its Hilbert trans-
form cos(wt —7/2)=sin(wf). We may generalize this property and define a

Lomb’s Algorithm and the Hilbert Transform 11

(A) _
f (t) Hilbert Transformer f (t)
Phase Shift by -rt/2 rad
(B) -2 © 2
< <
E‘ 2 = 1
Bl PO I
£ E
Real Axis e Real Axis
/2 - =
R /2) =—j | - %7 =b-ja

Figure 1.4 (A) The Hilbert transform can be represented as the operation of an LTI system
(the Hilbert transformer). Input f(7) is transformed into f(¢) by shifting it by —7/2 rad
(—90°). (B) The Hilbert transform operation in the frequency domain can be represented as
a multiplication with e “i("/2 = —j (orange arrow). (C) Example of the Hilbert transform in
the frequency domain—that is, multiplication of a complex number z = a + jb with —j. The
result is Z = b — ja. As can be seen, the result is a —90° rotation. Note in this panel that 90°
angles are indicated by L and that the angles indicated by * and * add up to 90°.

Hilbert transformer as a phase-shifting (linear time invariant, LTI) system that gen-
erates the Hilbert transform of its input (Fig. 1.4A). The generalization of this prop-
erty associated with the cosine is not too far of a stretch if you recall that, with the
real Fourier series, any periodic signal can be written as the sum of sinusoidal sig-
nals (the cosine and sine waves in equation (5.1) in van Drongelen, 2007) and that
our above results can be applied to each of these sinusoidal components.

To further define the shifting property of the Hilbert transformer (see Fig.
1.4A), we begin to explore this operation in the frequency domain, because here
the procedure of shifting the phase of a signal by —n/2 rad is relatively easy
to define as a multiplication by e ¥/? = —j (Fig. 1.4B). If this is not obvious
to you, consider the effect of this multiplication for any complex number
z=e¢l? (representing phase ¢) that can also be written as the sum of its real and
imaginary parts z=a +jb. Multiplication by —j gives its Hilbert transform
Z= —jla+jb)=>b—ja, indeed corresponding to a —90° rotation of z (see
Fig. 1.4C). Although the multiplication with —j is correct for the positive frequen-
cies, a —90° shift for the negative frequencies in the Fourier transform (due to the
negative values of w) corresponds to multiplication with ¢/™? = j. Therefore, the
operation of the Hilbert transform in the frequency domain can be summarized as:

| multiplication by — jsgn(w) | (1.11)

12 Signal Processing for Neuroscientists, A Companion Volume

Here we use the so-called signum function sgn (Appendix 1.2, Fig. A2.1)
defined as:

-1 forw<0
sgn(w)¢ 0 forw=0 (1.12)
1 forw>0

Let us go back to our phase-shifting system depicted in Fig. 1.4A and define its
unit impulse response as A(f) and its associated frequency response as H(w). Within
this approach, the Hilbert transform is the convolution of input f{(f) with A(f). Using
our knowledge about convolution (if you need to review this, see section 8.3.2 in
van Drongelen, 2007), we can also represent the Hilbert transform in the frequency
domain as the product of F(w)—the Fourier transform of f(f)—and H(w). This is
very convenient because we just determined above that the Hilbert transform in the
frequency domain corresponds to a multiplication with —jsgn(w). To summarize,
we now have the following three Fourier transform pairs:

System’s input <> Fourier transform: f(t) < F(w)
System’s unit impulse response < Fourier transform: A(t) < H(w)
Hilbert transform <> Fourier transform: f(t) ® h(t) = F(w)H(w)

(1.13)

Using these relationships and Equation (1.11), we may state that the Fourier trans-
form of the unit impulse response (i.e., the frequency response) of the Hilbert trans-
former is:

|H(w) = —jsgn(w)| (1.14)

We can use the expression we found for H(w) to examine the above example of
Euler’s equation

Analytical signal

A = Acos(wot) +j Asin(wot)
——— ————

Signal Hilbert transform

in the frequency domain. The Fourier transform of the cosine term (using equation
(6.13) in van Drongelen, 2007) is:

An[o(w + wp) + 6w — wp)] (1.15)

Now, according to Equation (1.13), the Fourier transform of the cosine’s Hilbert
transform is the product of the Fourier transform of the input signal (the cosine)
and the frequency response of the Hilbert transformer H(w), that is:

{An[8(w + wp) + 8w — wo)] } { —j sen(w) } (1.16)
AT[6(w + wo)(—j sgn(w)) + 6(w — wo)(—j sgn(w))] ’

Lomb’s Algorithm and the Hilbert Transform 13

Because 6(w + wy) is only nonzero for w = —wy and é(w — wy) is only nonzero for
w = wyp, we may rewrite the —j sgn(w) factors in Equation (1.16) and we get:

AT[b(w + wo)(— jsgn(—wp)) + 6(w — wo)(—j sgn(wo))]

Now we use the definition of sgn, sgn(—wp)= —1 and sgn(wy) =1 (Equation
(1.12)), and simplify the expression to:

AT[b(w + wo)(j) + 8(w — wo)(—] = Ajaé(w + wo) — b(w — wo)] (1.17)

As expected, Equation (1.17) is the Fourier transform of A sin(wr) (see equation
(6.14) in van Drongelen, 2007), which is indeed the Hilbert transform f(t) of
f(t) = A cos(wt).

Combining the above results, we can find the Fourier transform of the analytic
signal f,(f) = A cos(wt) + jA sin(wr) = f(1) + jf(¢). If we define the following pairs:

Ja() = Fo(w)
() < F(w)
() = Fw)

the above expressions can be combined in the following Fourier transform pair:
L) =£(t) + jf(1) = Fa(w) = F(w) + jF(w)

In the above equation we substitute the expressions for F(w) from Equation (1.15)
and F(w) from Equation (1.17) and get:

Fo(w) = F(w) +jF(w)

Fourier transform of analytical signal
= A7[6(w + wp) + 8w — wp)] +] {Ajw[&(w + wp) —6(w — wo)]}

Fourier transform of signal Fourier transform of Hilbert transform

With a bit of algebra we obtain:

| Fu(w) = F(w) + jF(w) = 2mA8(w — wo) | (1.18)

This interesting finding shows that the Fourier transform of the analytic signal has
zero energy at negative frequencies and only a peak at + wy. The peak’s amplitude
at + wy is double the size of the corresponding peak in F(w) (Fig. 1.3C). This find-
ing may be generalized as: “The Fourier transform of the analytic signal F,(w) has

14 Signal Processing for Neuroscientists, A Companion Volume

no energy at negative frequencies —wy, it only has energy at positive frequencies
+wy and its amplitude is double the amplitude at + wy in F(w).”

1.3.2 The Hilbert Transform in the Time Domain

From the frequency response presented in Equation (1.14) and the relationship
between convolution in the time and frequency domains (section 8.3.2, van
Drongelen, 2007), we know that the unit impulse response /(f) of the Hilbert trans-
former (Fig. 1.4A) is the inverse Fourier transform of —jsgn(w). You can find
details of sgn(#) and its Fourier transform in Appendix 1.2; using the signum’s
Fourier transform, we can apply the duality property (section 6.2.1, van Drongelen,
2007) to determine the inverse Fourier transform for —jsgn(w). For convenience
we restate the duality property as:

if f(#) < F(w), then F(t) < 27f(—w) (1.19a)

Applying this to our signum function (see also Appendix 1.2), we can define the
inverse Fourier transform of sgn(w):

2 2
sgn(t) < —, therefore — <27 sgn(—w) (1.19b)
Jw i —

—sgn(w)

Note that we can substitute —sgn(w) = sgn(—w) because the signum function
(Fig. A2.1) has odd symmetry (defined in Appendix 5.2 in van Drongelen, 2007).
Using the result from applying the duality property in Equation (1.19b), we can
determine the inverse Fourier transform for the frequency response of the Hilbert
transformer H(w) = —jsgn(w) and find the corresponding unit impulse response
h(t). Because 27 and j are both constants, we can multiply both sides with j and
divide by 27; this generates the following Fourier transform pair:

o) = = H(je) = ~jsgn(e) (1.20)

In Equation (1.14) we found that the frequency response of the Hilbert transformer
is —jsgn(w). Because we know that multiplication in the frequency domain is
equivalent to convolution in the time domain (chapter 8 in van Drongelen, 2007),
we can use the result in Equation (1.20) to define the Hilbert transform f(t) of sig-
nal f(¢) in both the time and frequency domains. We define the following Fourier
transform pairs:

the input: f(#) < F(w)
the Hilbert transform of the input: f(f)< F(w)
the unit impulse response of the Hilbert transformer: h(r) < H(w)

Lomb’s Algorithm and the Hilbert Transform 15

Using the above pairs and Equation (1.20), the Hilbert transform and its frequency
domain equivalent are:

o0

fO=f0O)® h(r) = 1 J Et) dr < F(w) = F(w)H(w) (1.21)
~—— 71'_Oot T

There is, however, a problem with our finding for the Hilbert transform expression
in Equation (1.21), which is that there is a pole for f(¢)/(t — 7) within the integration
limits at # = 7. The solution to this problem is to define the Hilbert transform as:

@)= %CPV J

— 00

@

P (1.22)

in which CPV indicates the Cauchy principal value of the integral. The CPV is a
mathematical tool to evaluate integrals that include poles within the integration
limits. An example of such an application is given in Appendix 1.3. For those inter-
ested in the CPV procedure, we refer to a general mathematics text such as Boas
(1966).

1.3.3 Examples

The Hilbert transform is available in MATLAB via the hilbert command. Note
that this command produces the analytic signal f(r) +jf(r) and not the Hilbert
transform itself; the Hilbert transform is the imaginary component of the output.

You can evaluate the example from Equation (1.10) by computing the Hilbert
transform for the cosine and plot the amplitude and phase. Type the following in
the MATLAB command window:

step=0.00001; % step size=1/sample rate
t=0:step:1; % timebase

x=cos(2*pi*4*t); % 4 Hz signal

xa=hilbert(x); % compute the analytic signal
Amplitude=abs(xa); % amplitude of the signal
Phase=atan2(imag(xa),real(xa)); % instantaneous phase

Ohmega=diff(Phase)/(2*pi*step); = % instantaneous frequency in Hz
figure;plot(t,x, ‘k’);hold;

plot(t,Amplitude, ‘r’);

plot(t,Phase,‘g’);

plot(t(1:length(t)—1),Ohmega, ‘m.”)

axis([0 1 -5 5])

16 Signal Processing for Neuroscientists, A Companion Volume

You will obtain a graph of a 4-Hz cosine function with an indication of its amplitude
(a constant) in red, its instantaneous phase in green (note that we use the atan2
MATLAB command in the above example because we want to obtain phase angles
between —7 and +), and the frequency as the derivative of the phase in magenta.

You can now check both frequency characteristics we discussed by computing
the Fourier transforms and plotting these in the same graph.

X=fft(x); % Fourier transform of the signal
XA=fft(xa); % Fourier transform of the analytic signal
figure;plot(abs(X), k’);hold;plot(abs(XA))

If you use the zoom function of the graph to study the peaks in the plot you will
see that the peaks for the positive frequencies (far-left part of the graph) show a
difference of a factor two between the Fourier transform of the analytic signal and
the Fourier transform of the signal. The negative component (in the discrete version
of the Fourier transform this is the far-right part of the graph) shows only a peak in
the Fourier transform of the signal. Both observations are as expected from the the-
oretical considerations in Section 1.3.1.

Another property to look at is the phase shift between the signal and its Hilbert
transform. This can be accomplished by typing the following lines:

figure; hold;

plot(t,imag(xa),‘r’); % the imaginary part of the analytic signal=
% the Hilbert transform

plot(t,x,‘k.”) % the signal

plot(t,real(xa),‘y’) % real part of the analytic signal=signal

Now you will get a figure with the signal (4-Hz cosine wave) in both black (thick
line) and yellow (thin line); the Hilbert transform (the 4-Hz sine wave) is plotted
in red.

Finally we will apply these techniques to an example in which we have two neu-
ral signals, one signal generated by a single neuron and one signal generated by the
network in which the neuron is embedded. Our question here is how the phases of
these two signals relate. First, the raw extracellular trace is rectified and sent
through a low-pass filter with a 50-ms time constant (this technique of using the
analytic signal to find the instantaneous phase usually works better with signals
composed of a small band of frequencies and, in our case, we are only interested in
the low-frequency behavior; see Pikovsky et al., 2001, for more details). For the
cellular activity, we create a raster plot of the spike times and send it through the
same low-pass filter. We now have two signals representing the low-pass-filtered
spiking behavior of the cell and network (see Fig. 1.5Aiii). We can use the Hilbert

Lomb’s Algorithm and the Hilbert Transform 17

(A) Pre-processing of the signal

(i) Raw data (iii) Low-pass filtered
(ii) Spike raster
Cell activity . | | | | |
20 mv
Network

5s

activity ' |

(B) Using the Hilbert transform

(iii) Histogram of phase

i) Instantaneous phase ii) Ph diffe
(i) pl (if) Phase difference differences

I Wﬂ/\‘ mwm vy
S ™ %

Tlme

Phase

Figure 1.5 (A) Processing of a cellular and network activity (i) into a low-frequency index

of spiking activity (iii) (see text for details). (B) The low-pass-filtered signals of (A) were
transformed using the analytic signal technique to find the instantaneous phase over time (i).
The relationship between the two signals was investigated by finding the difference between the
phases over time (ii) and plotting these phase differences in a histogram (iii). In this example we
observe that the overall effect is that the network activity leads and the cell activity lags—that is,
the histogram (iii) of network activity phase minus cell activity phase is predominantly positive.

(From A. Martell, unpublished results, with permission.)

transform technique to find the instantaneous phase of each signal (Fig. 1.5Bi). For
our case, we are interested in how the phases of the cellular and network signals
are related. To find this relationship, we calculate the difference between the two
instantaneous phase signals at each point in time and then use this information to
generate a histogram (see Fig. 1.5Bii—iii). This method has been used to compare
how the phases of cellular and network signals are related for different types of cel-
lular behavior (Martell et al., 2008).

Appendix 1.1

In the case of the standard power spectrum we have S =XX/N (equation (7.1)
in van Drongelen, 2007). The normalization by 1/N ensures that Parseval’s conser-
vation of energy theorem is satisfied (this theorem states that the sum of squares
in the time domain and the sum of all elements in the power spectrum are equal; see
Table 7.1 and Appendix 7.1 in van Drongelen, 2007). In the case of Lomb’s algo-
rithm we compute the sum of squares for each frequency by using the expression in

18 Signal Processing for Neuroscientists, A Companion Volume

5 600 Power spectrum
g 400 based on
= Lomb’s algorithm Power spet i
200 ower S
Fourier transform:
0 200 400 600 800 1000
Index# of Array

Figure A1.1 Spectral analysis of a 1-s epoch of a 50-Hz signal sampled at 1000 Hz. The
graph depicts the superimposed results from a standard power spectrum (red) based on the
Fourier transform and the power spectrum obtained with Lomb’s algorithm (dark blue). Note
that the total energy in both cases is identical. This figure can be created with Prl_2.m.

Equation (1.8), which is based on Equation (1.7). Our expectation is therefore that
Lomb’s spectrum will also satisfy Parseval’s theorem. However, there is a slight dif-
ference. In the standard Fourier transform the positive and negative frequencies
each contain half the energy. Basically, this is due to the fact that the Fourier trans-
form is based on the complex Fourier series, which includes negative frequencies.
In contrast, if we compute the Lomb spectrum only up to the Nyquist frequency, we
have all energy in the positive frequencies, and therefore its values are twice as large
as compared to the standard power spectrum. An example for a single frequency is
shown in Figure A1l.1. This figure is based on a standard power spectrum and Lomb
spectrum computed for the same input, a sine wave of 50 Hz. Thus, if we want the
Lomb spectrum to have the same amplitudes as the standard power spectrum, we
need to divide by two. Furthermore, if we want to normalize by the total power, we
can divide by the variance 0. This normalization by 207 is exactly the normalization
commonly applied for Lomb’s spectrum (see Equation (1.9) and Prl_1.m).

Appendix 1.2

This appendix describes the signum function sgn(¢), its derivative, and Fourier
transform. The signum function is 1 for positive r and —1 for negative ¢
(Fig. A2.1). Similar to the derivative of the unit step function U(¢) (section 2.2.2,
fig. 2.4A in van Drongelen, 2007), the derivative of this function is only nonzero at
t = 0. The only difference is that for sgn(r) the function increases by 2 units (from
—1 to 1) instead of 1 unit (from O to 1) in U(#). Since the derivative of the unit step
is 6(¢), the derivative of the signum function would be twice as large, that is:

@ =26(1) (A1.2.1)

The Fourier transform of the derivative of a function is equal to the Fourier trans-
form of that function multiplied with jw. This property is similar to the relationship

of the Laplace transform of a derivative of a function and the Laplace transform of
the function itself (see section 9.3, equation (9.3) in van Drongelen, 2007). If we

Lomb’s Algorithm and the Hilbert Transform 19

Figure A2.1 The signum function
sgn(?) +1 and its derivative, the unit impulse
-1 function with an amplitude of two.

now use this property and define the Fourier transform of sgn(¢) as S(w), we can
apply the Fourier transform to both sides of Equation (A1.2.1):

jwS(w) =2 (A1.2.2)

Recall that the Fourier transform of the unit impulse is 1 (see section 6.2.1, equa-
tion (6.9) in van Drongelen, 2007). Therefore, the Fourier transform pair for the
signum function is:

sgn(t) < S(w) = 3 (A1.2.3)
jw

Appendix 1.3

In Equation (1.22) we use the Cauchy principal value, CPV. This technique is used
to approach integration of a function that includes a pole within the integration lim-
its. We will not go into the mathematical details (for more on this subject please
see a mathematics textbook such as Boas, 1966), but we will give an example to

d
show the principle. For example, consider the integral | (1/x)dx. The function 1/x
—d

in this integral has a pole (is unbounded) at x = 0. The Cauchy principal value tech-
nique approximates the integral as the sum of two separate integral:

[Lo~ [t

[

1
x

O e, O

where ¢ is a small positive value approaching zero. In this case the two integrals

d
cancel and approach [(1/x)dx. Our final result can be summarized as:
—d
01 TN
cPv [L= tim J_ v [=
X e—-0 X X
—d - €

Here the Cauchy principal value is indicated by CPV; in other texts you may also
find PV or P.

2 Modeling

2.1 Introduction

Signal analysis is frequently used to characterize systems. In van Drongelen
(2007), chapter 8, we described linear systems and associated techniques that allow
us determine system characteristics. In the last chapter of van Drongelen (2007)
(section 17.3) we showed how these linear methods, such as cross-correlation, fail
to characterize signals with a nonlinear component. To address this shortcoming,
we used metrics such as correlation dimension, the Lyapunov exponent, or
Kolmogorov entropy to characterize nonlinear signal properties.

The goal of this chapter is to introduce basics for modeling systems, with an
emphasis on techniques used to characterize nonlinear systems and their signals. In
this context, this chapter will also provide an introduction to the application of the
Volterra series, which forms the basis for the identification of dynamical nonlinear
systems, and which we will go over in more detail in Chapter 3. The systems that
we will introduce in this chapter are considered higher-order systems, since they
include operators beyond the (linear) first-order one. Useful references on the char-
acterization of nonlinear systems are the seminal text by Marmarelis and
Marmarelis (1978) and the reprint edition of a text from the 1980s by Schetzen
(2006). For more recent overviews, see Westwick and Kearney (2003) and
Marmarelis (2004).

2.2 Different Types of Models

Before going into mathematical detail, it is useful to summarize some of the types
of models that one may encounter in neuroscience. Attenuators and amplifiers are
both examples of linear systems, since output is simply the product of input and a
constant (e.g., y = 3x). Alternatively, expressions that characterize nonlinear sys-
tems include higher-order terms: these systems, as we will see in Chapters 3—5, do
not obey the scaling and superposition rules of linear models (to review these rules
see section 8.3.1.1 in van Drongelen, 2007). Examples of nonlinear higher-order
systems are y = x% (second-order system) and y=5+x + 3x3 (third-order system).
At this point it is important to note that an expression such as y = a + bx + cx’ can
still be considered linear, but with respect to its parameters a, b, and c. This is a

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00002-4
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00002-4

22 Signal Processing for Neuroscientists, A Companion Volume

property that we will use when developing the regression procedure in
Section 2.4.1.

All of the examples earlier are static models (systems without memory), mean-
ing that their output depends only on present input. In neuroscience we usually
must deal with dynamical models, in which output depends on present and past
input (but not on future input); these systems are also called causal. Static models
are represented by algebraic equations (such as the ones in the previous paragraph),
whereas dynamical systems are modeled by differential equations (for continuous
time models) or difference equations (for discrete time models). General examples
of linear dynamical systems with input x and output y are:

'y d"y(r)

An e + o+ Agy(f
ar I g1 oy(1)
d"x(z) d™ x(r)
=B, + By —— 4 4+ Bx(
drm L gm ox(t)

for continuous time systems and:

Any(k - l’l) +An*1y(k —n+ l) + - +A0)’(k)
= Bux(k —m) + By, 1x(k —m+ 1) + --- + Box(k)

for discrete time systems (for details see chapter 8 in van Drongelen, 2007). If one
of the terms in a differential or difference equation is of a higher order, we have a
nonlinear dynamical system. For example, y — 4(dy/dt)2 = 2x represents a second-
order dynamical system.

Time invariance is a critical condition for the development of the convolution
formalism (see section 8.3.1.1 in van Drongelen, 2007). This property allows us to
state that a system’s response to identical stimuli at different points in time is
always the same (provided that the system is in the same state, of course). Just as
we have linear time invariant systems, we also have nonlinear time invariant sys-
tems (usually abbreviated as LTI or NLTI systems).

Models of real systems can be generated according to two major methodological
approaches. One might follow a deductive path and start from (physical) assump-
tions about the system, generating a hypothetical model to create predictions that
can be empirically tested. These empirical measurements can be used to establish
the parameters of the hypothetical model, and therefore this type of representation
is often called a parametric model. An alternative to this procedure, the inductive
path, is followed if one starts from the measurements of a system’s input and out-
put. This data-driven method uses measurements, rather than assumptions about the
system, to mathematically relate input and output. Here, we can consider the sys-
tem as a black box, modeled by a mathematical relationship that transforms input
into output. This type of model is often referred to as nonparametric (note, how-
ever, that nonparametric does not refer to the absence of parameters; in many cases,

Modeling 23

these models will have more parameters than parametric models). The method of
induction is appropriate when dealing with complex systems that resist a reduction
to a simpler parametric model. It can also be a starting point in which a system is
first characterized as a black box and in subsequent steps parts with physical mean-
ing replace pieces of the black box. In this combined approach, parts of the model
may still be part of the black box, whereas other parts may be associated with a
physical interpretation. In this case, the distinction between parametric and non-
parametric models may become a bit fuzzy.

2.3 Examples of Parametric and Nonparametric Models

A parametric model usually has relatively few parameters. A simple example of a
parametric model of a dynamical LTI system is the ordinary differential equation
(ODE) for a filter. For example, x = RC(dy/d¢) + y describes input x and output y of
a simple RC circuit (Fig. 2.1A). The only parameters in this case are the values of
the resistor R and the capacitor C in the equation. Subsequently, the value for these
parameters can be determined experimentally from observing the system’s
behavior.

Note: See van Drongelen (2007) for further details about determining these
parameters from measurements: in section 11.2.1 it is shown how RC can be
obtained from the filter’s unit step response (equation (11.8)), and in section
12.3, RC is determined from the —3 dB point of the filter’s frequency charac-
teristic (equation (12.5)).

A very famous parametric model in neuroscience is the Hodgkin and Huxley
(1952) formalism using four variables to describe the action potential generated in
the squid’s giant axon: the membrane potential V and three other variables m, A,
and n describe the membrane potential-dependent characteristics of sodium and
potassium conductivity. In the following it is assumed you are somewhat familiar
with the Hodgkin and Huxley model; if you need to review the details, chapter 2 in
Izhikevich (2007) provides an excellent overview.

Initially in the 1950s, the formalism was entirely hypothetical, and it was not
until after the molecular basis for Na* and K* ion channels was elucidated that a
physical interpretation of large parts of the model could be made. The gating vari-
able m characterizes the depolarization process caused by increased conductance of
sodium ions (causing an influx of positively charged sodium ions) that occurs dur-
ing the action potential generation. The variables 4 and n are recovery variables
that represent the inactivation of sodium ion conductance (reduced Na™ influx) and
the activation of potassium conductance (causing an outward flux of positively
charged potassium ions).

24 Signal Processing for Neuroscientists, A Companion Volume

Input Output
(A) & r[‘?:—"j
—» ” —>
d
Time — x:RCd—y+y Time —
t
Parametric model
B)
Time — X
Nonparametric model
(C) IS E =) (D)
a(V)
9 m ——I-m
: Bm(V) :
Open Closed

Figure 2.1 (A) Example of a parametric model of a dynamical linear system (a low-pass
filter) and its input and output (x and y respectively). (B) The black box, nonparametric
equivalent of the same system is the white curve representing the (sampled) unit impulse
response (UIR). Both models permit us to predict the output resulting from an arbitrary input
such as the unit step function. The parametric model has two parameters (R and C) with
physical meaning. The nonparametric model consists of many parameters (the samples
making up the UIR) without a direct physical meaning. (C) Hodgkin and Huxley’s electronic
equivalent circuit for the biomembrane. The model consists of the membrane capacitance
(C) and three parallel ion channels: one for sodium, one for potassium, and a leakage
channel. According to Kirchhoff’s first law the sum of all currents at the node (arrow) must
be zero. (D) Model for gating variable m in the Hodgkin and Huxley formalism.

Hodgkin and Huxley’s model relates all these variables in an equivalent circuit
of the excitable biomembrane (Fig. 2.1C) by setting the sum of all membrane cur-
rents equal to zero according to Kirchhoff’s first law (see appendix 1.1 in van
Drongelen, 2007). By applying this law to the node indicated with the arrow in the
membrane model in Fig. 2.1C we obtain:

dv _+_V—EN.4l V —Ex

c— + + I. =0 2.1
dr Rya Rx \L/ ()
Vo —— — Leak
Capacitive Sodium Potassium
current
current current current
=lIc =INa =Ix

In this expression we have several parameters: membrane capacitance C; the resis-
tance values for sodium and potassium ions, Ry, and Ry, respectively; Ey, and Ex

Modeling 25

are the equilibrium potentials for sodium and potassium ions computed with the
Nernst equation (appendix 1.1 in van Drongelen, 2007); and I is a constant leak-
age current attributed to Cl™ ions. The sodium and potassium currents are deter-
mined with Ohm’s law (appendix 1.1 in van Drongelen, 2007): each ion species
experiences a potential drop equal to the difference between the membrane poten-
tial V and its equilibrium potential (e.g., for sodium: V — En,), and this potential
drop divided by the resistance is the ion current (e.g., for sodium the current is
(V — Ena)/Rna)- In addition to Equation (2.1), Hodgkin and Huxley (1952)
described the dynamics for Ry, and Rg with the nonlinear relationships
gNa = 1/Rna = gnam®h and gg = 1/Rg = ggn®, where gn, and gk are the maximum
conductivity values for sodium and potassium. Furthermore, the gating variable m
is modeled by a reversible process between the open (m) and closed (1—m) states
(Fig. 2.1D), which can be represented by the following ODE:

dm

o = WA =m) =B, (V)m 22

The rate parameters «,, and 3,, that govern this process depend on the membrane
potential V in a nonlinear fashion. The two other gating variables 4 and n follow
the same formalism with membrane potential-dependent rate constants «y, 3,
and (3,. Hodgkin and Huxley determined these nonlinear relationships between the
rate parameters and membrane potential from voltage clamp experiments.

Over time, other ion channels were introduced into the model using the same
formalism as for the sodium and potassium channels. Since the development of
computer technology, the Hodgkin and Huxley formalism has been widely used in
simulations of neural systems ranging from very detailed models of single neurons
(e.g., De Schutter and Bower, 1994a, b) to large-scale networks of neocortex (e.g.,
Traub et al., 2005; van Drongelen et al., 2006).

Although Hodgkin and Huxley’s model only contains four variables (V, m, h, n),
it is still too complex to approach analytically. Several authors solved this problem
by reducing the 4D model to a 2D one; the Fitzhugh—Nagumo model (Fitzhugh,
1961) is an example of such a reduction. In these models, the gating variable m of
the Hodgkin and Huxley model is removed by considering sodium activation to be
instantaneous; subsequently, /# and n are combined into a single recovery variable w.
Fitzhugh used the following pair of coupled differential equations:

1% d
5 =V@=V)(V-1-w+I and —V:=bV—cw 2.3)

in which a, b, and ¢ are parameters; [is a term representing injected current. The
equations are coupled because w occurs in the expression for dV/df and V in the
expression for dw/ds. The remaining two variables in these models are the mem-
brane potential V and a single recovery variable w, generating a 2D model that is
amenable to mathematical analysis (for an excellent discussion of simplified ver-
sions of the Hodgkin and Huxley model, see Izhikevich, 2007).

26 Signal Processing for Neuroscientists, A Companion Volume

Nonparametric models describe a system’s input—output relationship, usually
by using a large number of parameters, and these parameters do not necessarily
have a physical interpretation. Generally speaking, a nonparametric model is gener-
ated from a procedure in which we relate a system’s input x(#) and output y(7). Just
as we can relate two variables with a function, we can link two time series with an
operator. An example of such a nonparametric model would be the characteriza-
tion of an LTI dynamical system with its (sampled) unit impulse response (UIR)
(Fig. 2.1B). The operator in this case would be convolution, since convolution of
the input time series x(#) with the system’s UIR A(f) generates the system’s output
time series y(f): y(¢) = h(f) @ x(¢) (see section 8.3.1.1 in van Drongelen, 2007).
Although one might point out that such a nonparametric description does not neces-
sarily provide direct insight into the system’s components or the mechanisms
underlying the system’s operation, the curve of the UIR permits us to predict the
system’s response to any input, such as the unit step function (Fig. 2.1B).

2.4 Polynomials

For static systems, both linear and nonlinear, one can use algebraic expressions to
describe their input—output characteristic, and polynomials are often used for this
purpose. Polynomials are sums of monomials, which are expressions that consist of
a constant multiplied by one or more variables; the exponent of the variable is its
degree. For example, z(f) = ax(t)*y(r)? is a monomial with a constant (parameter) a
and a degree of 4 for x and 3 for y. We can see that this expression represents a static
process because at any time ¢, output z depends only on the present values of inputs
x and y. It is important to note that although the relationship between z and x, y is
nonlinear, the expression can be considered a linear function of the parameter a.

2.4.1 Describing Discrete Time Data Sets

Applying the above to the characterization of nonlinear systems, we could describe
the relationship between input x(¢) and output y(¢) of a static nonlinearity (a nonlin-
ear system without memory) with a polynomial such as the following power series:

¥(t) = ag + a1x(r) + agx(t)2 + agx(t)3 + .-+ a,-x(t)i + .= i a,-x(t)i 2.4)
i=0

In principle, power series are infinite; however, in our applications they will always
consist of a finite number of monomials. The fact that Equation (2.4) is linear with
respect to its parameters a; can be used to fit the series by using a technique
called least squares minimization. Using this approach of fitting polynomials to
recorded data sets is often called regression analysis. This procedure works as fol-
lows. Suppose we have two sets of N measurements: a system’s input x,, and asso-
ciated output y,. If we model our system as a second-order static system, we can

Modeling 27

truncate the expression in Equation (2.4) above the second power and estimate the

output y as ag + ayx, + azxﬁ. Subsequently we can define the error of our estimate
2

e” as:

N
&= Z[Yn — (ap + arx, + apx*)] (2.5)
n=1

By following the same approach we used to find the coefficients in Lomb’s algo-
rithm (Section 1.2.1), we can find the minimum associated with the best choice for
parameters aq, a;, and a, by setting the partial derivatives of > (with respect to
these three parameters ag, a;, and a,) equal to zero:

He2 N 2 6[y,, —(ap +aix, + azxi)]
R n:lz [)’n —(ap +a1x, + azx,,)] a; =0 (2.6a)
fori=0,1,2

and we get what are called the normal equations:

oe? N)
67: —25 Dn —ag — aix, —axx,]=0
a0 n=1
N N N
2 _
—ay N +€l1§ x,,+a25 X, = E Vn
N n=1 n=1 n=1
> 1
n=1
N
0e?
— 2 —
- —ZE b —ao — aix, —asx,]x, =0
ai n=1
N N N N
2 3_
—>ao§ x,,+a1§ xn-l-azg X, = E ViuXn
n=1 n=1 n=1 n=1
N
0e?
_ 21.2 _
- —25 n —ap — a1x, — asxx,x, =0
a)

n=1
N N N N
—>a02 xlzl+a1§ x;:-l—azg xi= E ynxi (2.6b)
n=1 n=1 n=1 n=1

Note that in Equation (2.6b) all summation (3) expressions are numbers that can
be computed from the observations; therefore, there are three linear equations with
three unknown parameters ag, a;, and a, to compute (this should be no problem
provided, of course, that the set of equations can be solved). Note that if we had
truncated Equation (2.4) at a;, the normal equations that we would have obtained
would have been the well-known equations for linear regression.

28 Signal Processing for Neuroscientists, A Companion Volume

It is a bit tedious to solve the three equations in (2.6b); therefore, one might prefer
to solve the coefficients by using the matrix notation XA = Y for the three equations:

N N N
2
NoD o Dy > v
ap
n=1 n=1 n=1
N N N N
2 3 —_
E Xp E X, E X, a | = g VX (2.6¢)
n=1 n=1 n=1 n=1
N N N a N
2 3 4 2 2
PEAD DD D I DI
L n=1 n=1 n=1 A L n=1 i
—_——
X Y

The coefficients can be found by solving (Equation (2.6¢)): that is, A=X"'Y. In
MATLAB we can use the \ operator to obtain this result: A =X\Y. An example
(Pr2_1.m) for approximating an exponential function y =e* is available on http://
www.elsevierdirect.com/companions/9780123849151.

2.4.2 Describing Analytic Functions

The previous example works with discrete time data such as a set of digitized
recordings of a system’s input and output. In other applications, one might deal with
a parametric model and consequently have access to analytic functions that describe
some nonlinear system under investigation (recall that an analytic function is
smooth and differentiable and that this is not the same as the analytic signal we
introduced for the Hilbert transform in Chapter 1). In this case, the so-called
Maclaurin or Taylor series approaches, which will be explained in Sections 2.4.2.1
and 2.4.2.2, may be applied to convert the function into a power series. Such a power
series approach can also be helpful for creating a linear approximation of a nonlinear
function in the neighborhood of a point of interest. Because linear relationships are
easier to analyze than nonlinear ones, this technique of linearization of nonlinear
functions can help us understand the behavior of complex nonlinear processes.

Like the polynomials discussed in the previous section, the Maclaurin and Taylor
series describe static systems. To describe dynamical systems, we can use the
Volterra series, which is discussed in detail in Chapter 3. In Section 2.5, we will
show that the Taylor series can be considered the static version of a Volterra series.

2.4.2.1 Maclaurin Series

A famous power series describing a function about the origin is the Maclaurin
series. Let us consider an example with the exponential function and use the power
series approach in Equation (2.4) to represent this function:

"
fy=e'=ay+attap +af + - +tat + =Y af (2.7)
i=0

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

Modeling 29

The task at hand is to determine the values of the coefficients a; for function e’. We
can use the following approach to perform this task. First we determine the deriva-
tives of f.

f=e =ay+ait+at* +ar + - +ait' + -

—d];(tt) =e' =a; + 2axt +3azt* + -+ +igt T+ -
d>f(t ,

i;g):e’ =2a, + (2 X3)azt+ - + ([X (i —1))ait™ %+ --- (2.8)
(e :

SO o= 2% 3y + oo 4+ (X (= 1) X (i = 2t + -

dr

The second step is to consider f{f) = ¢’ about the origin. As we approach the origin
(i.e., t becomes 0), Equation (2.8) simplifies to:

fO)y=e’=1=[ap+ait+at*+ast> + - +ait' + -] _g=ao

df (o ,
—j;(t)=e0=l=[a1+2a2t+3a3t2+-~~+ia[t’_1+~~-],=0=a1

d*f(0) o i

i =e¥=1=[2ay +(2XB)ast + - + (X (—1)a;t' 2+ -], =2a, (2.9)
a*f(0 ,
c{tg):e°:1=[(2><3)a3+~~+(i><(i—1)><(i—2))ait’*3+~~],:o

=(2X3)a;z

With the results obtained in Equation (2.9), we can see that for the function, the
values for the coefficients q; are:

oot (2.10)

Combining this result in Equation (2.10) with Equation (2.7), we have found the
well-known power series expansion of the exponential function:

1 1 1 1, “1 .
—ef = _ P B+ i = _4
f(t)—e—1+1!t+2!l +3!t + +i!t+ E,Oi!l (2.11)

30 Signal Processing for Neuroscientists, A Companion Volume

©
In the last expression Y (1/i!) #, we use the definition 0! = 1. Note that by using
i=0
this approach, we include only values of r—there are no previous or future values
(t=7) included in the power series; therefore, this approach is static (or memory-
less). An example of this approximation is implemented in MATLAB script Pr2_1.m
(http://www.elsevierdirect.com/companions/9780123849151).
In the above example we used the exponential exp(r) for f(r); if we consider the
development of Equation (2.4) for any function that can be differentiated, we get:

FO) =[ap +ait + axt* + azt> + - + a;t' + -],y = ap— ag =f(0)

%(t()) =[a +2axt +3az* + - +iad ™ + -] g =a1 > a1 =£'(0)
5 1
d f(O) =[2a, + (2 X 3)azt+ - + ([X (i—1))a;t’ >+ -+-]— =2a, — a> _f ;0)
3
df(o) =[2X3)az + - + (X A=) X ((=2))ait' > + -]
:(2 X3)Cl3 —a3z= (j;io?,))
(2.12)

Here the notation f'(0), f”(0), f""(0), ... are not functions but represent the numbers
computed as the value of the 1st, 2nd, 3rd, ... derivatives of f at t = 0. From this more
general notation we obtain the expression for the so-called Maclaurin series of f(¢):

1 / 1 /! 1 /1
@O =1O) + 1 0+ 52 /0 + 58 () + - @.13)

2.4.2.2 Taylor Series

In the above example, we developed the power series for a function about the ori-
gin. The development of the Taylor series follows a similar approach but now
about any point «. For a power series of power N this becomes:

f®=ay+a(t—a)+ az(t—a)z + ag(t—a)3 + .+ ai(t—a)i +

= iai(t—a)i
i=0

(2.14)

We will now use a similar approach for the development of this series about « as
we used in the Maclaurin series about the origin—except in this case we set f = «

http://www.elsevierdirect.com/companions/9780123849151

Modeling 31

(instead of r=0) so that all terms in Equation (2.14) with (r—«)’ vanish. By fol-
lowing this procedure we get:

fla) =[ap+ai(t—a)+ ax(t—a)* + as(t—a)’ + - +a(t—a) + ---],_

=Q

=ap—ap=f(a)

? =la1 +2ar(t—) +3as(t—a)’ + -+ +ia(t—a) '+]
, Ta-a =f(@)
df(za) =[2ay + (2 X3)az(t—a) + - + ([X (= D)ait—a) >+ -],_,
i (2.15)
=2a, —>a2=f ;oz)
3
di(f do[@x3)as XD X - 2)al—a)
=2 X3az—az= {2;0;))

Similar to the notation used in the previous section, the notation f'(a), f"(c),
f"(a), ... does not refer to functions, but represents the numbers computed as the
value of the 1st, 2nd, 3rd, ... derivatives of f at t = . Substituting the findings in
Equation (2.15) into Equation (2.14) we obtain the Taylor series about = «:

FO=F(@)+ 1=) (@) + 3 (=0 (@) + =)@+ | (2.16)

Comparing Equations (2.13) and (2.16), we can establish that the Maclaurin series is
the same as a Taylor series computed about the origin (i.e., « = 0). This approach can
be extended to higher-dimensional systems with multiple inputs; see Appendix 2.1
for examples of the 2D case. It must be noted that in many texts the distinction
between Maclaurin and Taylor series is not always made and it is not uncommon to
use the term Taylor series for both, a habit we will adopt in the following.

The number of terms in a Taylor series may be infinite. However, if we evaluate
a system close to an equilibrium at the origin or «, the value of ¢ or (f—«) is a
small number « 1; therefore, one can ignore higher-order terms in the power series
" or (—a)" because they become increasingly smaller. Thus, in general we can
approximate any function close to « with a linear expression obtained from a
Taylor series in which higher-order terms are ignored f(¢) ~ f(«) + (t — a)f'(«v); or,
in the case where we evaluate the expression about the origin, we obtain the
approximation f(¢) ~ f(0) + #(0). This technique of linearizing a nonlinear func-
tion plays an important role in the analysis of nonlinear systems. A system’s

32 Signal Processing for Neuroscientists, A Companion Volume

behavior in a restricted part of its domain can be understood and approximated by
a linear version of its characteristic. Sometimes, with the more complex systems, a
piecewise approximation with linear functions is the best option for their analysis.
For example, if we wanted to evaluate sin(f) around the origin, we can apply
Equation (2.13) and find the series:

2 3

t t
sin(¢) = sin(0) +fcos(0) — —sin(0) — —cos(0) + ---

For small values of ¢ (around 0) we may ignore all higher-order terms and we find
that sin(r) &~ . In general, such an approach may be useful if one studies a system
close to an equilibrium. For example, if one examines a neuron’s subthreshold
behavior, one must describe the membrane potential close to the resting potential; in
this case it makes sense to linearize the nonlinear equations that govern the cell’s
electrical activity around resting potential. An example of this approach, where the
nonlinear Hodgkin and Huxley equations are linearized, can be found in Chapter 10
in Koch (1999).

When fitting a truncated power series to an analytic function, one could truncate
the Taylor series at the desired order. However, due to the error introduced by trunca-
tion, one may actually obtain a better fit by using a linear regression approach. An
example is if one wants to approximate e’ with a second-order power function over a
limited interval. The truncated Taylor series (see Equation (2.11)) is 1 + 7 4+ 0.5¢>, but
with a regression approach over the interval [—1,1] one obtains a better fit with
0.9963 + 1.1037¢ + 0.5368¢%. This can be seen by running MATLAB script Pr2_1
(available on http://www.elsevierdirect.com/companions/9780123849151) where the
original exponential function (red), the Taylor series (blue), and the regression result
(black) are superimposed. The regression approach for obtaining a power series
approximation is also a valid solution if the Taylor series cannot be applied, as in the
case of a function that is nonanalytic, such as y = |x| (no [unique] derivative at x = 0).

2.5 Nonlinear Systems with Memory

In the above examples, the output y(¢) of the nonlinear systems could be described
with a polynomial of x(f) because there was a direct relationship between x and y;
that is, in these examples there was no memory in the system. However, nonlinear
systems with memory do exist, and for these systems we must describe how the
output y(#) depends on both the present and the past input: x(r—7) with 7=0.

In the following chapter, we will consider the details of the so-called Volterra
series for the characterization of dynamical nonlinear systems (nonlinear systems
that do have a memory). Here we will demonstrate the similarities between the
Volterra and Taylor series. With the Taylor series we can link output value y = f(x)
to input value x in the following manner:

Y= (@) + 11—) (@) + 53 (=0 (0) + =0} @)+ (@17)

http://www.elsevierdirect.com/companions/9780123849151

Modeling 33

In the example below, we will approximate a nonlinearity with a series truncated at
the second order:

y(t) = ag + arx(t) + a»x()? (2.18)

Before we introduce the Volterra series, we generalize the procedure in which
we relate two values x and y into a slightly altered procedure in which we relate a pair
of time series x(¢) and y(f). Just as we can relate two values x and y with a function f:

y=f(x) (2.19a)
we can link two time series x(#) and y(#) with an operator F:

y(t) = F{x(t)} (2.19b)

Note: In some texts on Volterra series F will be called a functional. Because
F connects two functions x(¢) and y(¢), it is better to use the term “operator”
because strictly speaking, a functional maps a function onto a value, whereas
an operator maps one function to another function.

A Volterra series can perform such an operation:

Yo = ho + J hy(T1)x(t — 71)dT
~—~ |

Oth order term —

Ist order term

0 o
J Jhz(Tl,Tz)x(l_Tl)x(l_Tg)dTl dry + ---
— 00—

J’_

2nd order term

+ h(T1, 72, o, T)X(E—T)X(t—72) - - x(t—7,)d7) d72---dT,, (2.20)

g8

Do not be intimidated by this first appearance of the expression for the Volterra
series. In the following text and Chapter 3 we will discuss and explain the different
components of this representation. At this point it is worthwhile to mention that the
Volterra series is essentially the convolution integral extended to nonlinear sys-
tems. We could simplify the notation in Equation (2.20) with the commonly used
symbol for convolution ® (chapter 8 in van Drongelen, 2007), and we get:

nth order term

y=hyth Qx+hQxQ@x+ - +h,Qx® --- Qx
~————

n copies of x

34 Signal Processing for Neuroscientists, A Companion Volume

In the Volterra series (Equation 2.20), input function x(f) determines the output
function y(f). The expression is analogous to the Taylor series except that the dif-
ferentials of the Taylor series are replaced by integrals. The symbols kg, h;, h,, and
h, represent the so-called Volterra kernels. The term “kernel” is uniquely defined
for this type of series and should not be confused with the use of this term in com-
puter science or other areas in mathematics. Note that the first-order component

| hi(71)x(r = 71)d7, in the Volterra series is the convolution integral (see section

8.0§.1.1 in van Drongelen, 2007) and the higher-order components in Equation
(2.20) are convolution-like integrals. Thus for a linear system, kernel %, is the UIR.
Representations that utilize Volterra series are usually nonparametric—that is, one
can predict system output when the input is known, but one cannot necessarily
intuit the system’s components or underlying mechanisms. In the following we will
examine examples of the relationship between Volterra and Taylor series. See also
Chapter 3 for further details on the Volterra series.

Despite the similarities between the Taylor series in Equation (2.17) and the
Volterra series in Equation (2.20) discussed above, it may not be immediately obvi-
ous that they are related. Therefore, we will discuss the similarities for a simple
dynamical nonlinear system, which we will subsequently transform into a static
nonlinear one. Let us consider a dynamical second-order system that consists of
a cascade of a dynamical linear component and a static nonlinear module
(Fig. 2.2A). Such a cascade approach with the dynamics in the linear component
combined with static nonlinearities is frequently applied in dynamical nonlinear
system analysis. In this example, we have the linear component’s UIR A(¢) and the
static second-order nonlinear component ag + a;y + a»y* (Equation (2.18)). From
Fig. 2.2A we can establish that the output y of the linear module can be obtained
from the convolution of the input x and the linear module’s UIR h:

¥t) = J H(r)(t — T)dr (2.21)

Figure 2.2 (A) Diagram of a
second-order dynamical nonlinear
system consisting of a cascade of a

(A) Second-order dynamical nonlinear system

x()— W) ——— a,+a,y+a,y’ —»z(t)

0 dynamical LTI system and a
Dynamical LTI Second-order static second-order static nonlinearity.
system nonlinearity (B) A similar system for which the
dynamical linear component is
(B) Second-order static nonlinear system replaced by a static one.

x(t)—» 8(?) W a,+a,y+ azy2 — (1)

Static LTI Second-order static
system nonlinearity

Modeling 35

The cascade’s final output z can be obtained from the static nonlinearity character-
istic by substituting the output of the linear component (Equation (2.21)) into the
input of the static nonlinearity (Equation (2.18)):

() = ag + ay] h(r)x(t — T)dT + @y T h(r)x(t—T)dr 2 (2.22)
This can be rewritten as:
2t)=ap +a T h(T)x(t — T)dT
+ay T h(r)x(t — 1)dT)] h(T2)x(t — T2)dT> (2.23)

h(T)h(2)x(t — 71)x(t — T2)d7| d73

o0
— 00—

This expression can be rearranged in the form of the Volterra series shown in
Equation (2.20):

g8

Ist order term

Oth order term

z(t) = ao J arh(t) x(t —7)dr
ho — 0 hl(T)
2nd order term
o0 o0
J J arh(T1)h(12) x(t — 71)x(t — Tp)d7y d7p (2.24)
—_—————
0 —®© ha(71,72)

Equation (2.24) shows that the system in Fig. 2.2A can be characterized by a
Volterra series for a second-order system with Volterra kernels kg, A, and h,.

To demonstrate that the Taylor series is the static equivalent of the Volterra
series, we show the equivalence of Equation (2.24) to the power series in Equation
(2.18). To accomplish this, we consider the case where our dynamical component
in the cascade becomes static; the linear component is now replaced by the static
function y(f) = x(¢). In other words, the linear module’s UIR is the unit impulse &

36 Signal Processing for Neuroscientists, A Companion Volume

itself, indicating that for this linear component output equals input (Fig. 2.2B).
Therefore, we can substitute 6(r) for A(¢) in Equation (2.24):

2(t)=ag +a J 6(r)x(t — T)dr

x(1)

S(T)O(T2)x(t — T1)x(t — T2)dT dT2 (2.25)

—8

o0
+ ap J
-

8

x(O)x(t) = x()?
=ay + ax(t) + azx(t)2
Thus, in the static case, we can use the Volterra series to recover

2(t) = ag + a1 x(r) + a»x(t)*, which is the original expression of the power series in
Equation (2.18).

Note: The integrals in Equation (2.25) are evaluated using the property of the
0
unit impulse § (see section 2.2.2 in van Drongelen, 2007): [x(1)5(7)dr =
o0 —
x(0) and accordingly [x(z — 7)8(1)dT = x(2). ”
— o0

Appendix 2.1

Taylor Series for a 2D Function

We can extend the Taylor series in Equation (2.16) to a function f(7,0) of two
variables 7 and o. In the case where we can subdivide the function into two sepa-
rate ones (e.g., f(1,0)=f(1)+f(o) or f(r,0)=f(7)f(0)), we can compute the
Taylor series for each function f(7) and f(o) and add or multiply the individual
series to obtain the expression for f(7,0). Such an approach would work if, for
example, f(7,0) = e7sin(0).

Alternatively, one can approach the development of a 2D Taylor series more
generally, and consider f about point «, (.

f(7,0) = ag + ai(r — @) + agi (o — B) + axn(r—a)* + ai (1 — a)(o — B)
+an(o—B) + az(r—a)’ + axn(r—a)’ (o — B)

+ap(r — a)(o—PB) + a(o—P) +asn(r—a)* + -
(A2.1.1)

Modeling 37

Using a similar approach as the one for the single-variable Taylor series, we set T
and o to a and (and find f(«, 5) = ago. To find the other coefficients we use par-
tial differentiation of f at point «, 3:

FoB) _ A Ffes)
P 105 o o1 52 20,
A2.1.2
Pred) _ Pfed) (212
ot 0o e do? ”

This technique can be used to obtain the full power series of f. In most applications
we are interested in the linear approximation of the 2D series:

f(r,0) = flo, f) +

5) a >
ﬂg; P (T—a)+ f(aaa A (c—=p) (A2.1.3a)

The higher-order nonlinear terms are often not considered because we assume that
we only look at f closely around point «, [3; therefore, 7—«a and o—f are very
small numbers, and higher powers of these small contributions are even smaller. In
other words, when f is in the neighborhood of point «, 3, the function can be
approximated with the linear terms in Equation (A2.13a). In many cases, especially
in physics literature, you may encounter an alternative notation for the linear
approximation of a nonlinear system. The small fluctuations T7—« and o— (3 around
«, [are indicated as perturbations 67 and o, and the notation for f(a,f3),

(of (a, B))or, and (9f (v, B3))f0c is changed to [f], 5, [0f/OT], 5, and [Of/00], 4 :

of of
i + | =L
or o7 oo

a0 a3

fr o)~ [fl.s+ oo (A2.1.3b)

Again, recall that in this notation [f], 5, [0f/0T], 3, and [0 f/0c], 5 represent the
coefficients in the equation. They are numbers and not functions, since these repre-
sent the function and its derivatives when evaluated at point o, 3. An example of
an application that linearizes the nonlinear Hodgkin and Huxley equations can be
found in Chapter 10 of Koch (1999).

3 Volterra Series

3.1 Introduction

Most physiological systems cannot be modeled successfully as linear systems. At
best, a linear model can be considered an approximation of physiological activity
in cases where the output of a physiological system behaves (almost) linearly over
a limited range of the input. In the following, we extend the convolution integral
that describes the behavior of linear devices to the convolution-like Volterra series,
which can be used to represent nonlinear systems. Because the expressions for
higher-order nonlinear terms require significant computational resources and
become very complex to deal with, we will demonstrate the general principles for
second-order systems. See Schetzen (2006) if you are interested in details of higher-
order systems.

In a linear time invariant (LTT) system, the convolution integral links output y(7)
and input x(#) by means of its weighting function A(#) (Fig. 3.1) (Chapter 8 in van
Drongelen, 2007):

() = h(t) @ x(t) = J h(7) x(t — 7)dr 3.1

Here ® symbolizes the convolution operation and the system’s weighting func-
tion A(f) is its unit impulse response (UIR). This role of h(f) can be verified by
using a unit impulse 6(f) as the input. In this case we obtain (using the sifting
property):

J h(T)o(t — 7)dT = h(t) 3.2)

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00003-6
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00003-6

40 Signal Processing for Neuroscientists, A Companion Volume

Note: In the following we will use the sifting property of the unit impulse
repeatedly (for a discussion, see section 2.2.2 in van Drongelen, 2007). The sift-
ing property is defined as:

x(t) = J x(T)o(T — tydr = J x(1)8(t — 7)dT

The unit impulse ¢ has properties of a function with even symmetry; there-
fore, the evaluation of the integral above is the same for §(+ — 7) and 6(7 — 7).
You can also see that this must be the case since the outcome is 6(0) for t =7
in both cases, 6(t — 7) and 6(7 — ¢).

Such an LTI system shows superposition and scaling properties. For instance, if we
introduce a scaled delta function Cé(f) (C—constant) at the input, we get a scaled
UIR function Ch(¢) at the output:

J hT)C6(t —T)dT =C J h(7)6(t — 7)dT = Ch(t) (3.3)
— o0 — o0
(A) LTI .
xm» YO =hH®x(0)= [hx)x(t-1)dr
(B) NLTI .
) @) b v = [[h@oxe-1)x0-1) dr,dr,
(€) NLTI

x(1) ‘_I_ > y(t)= Ih/(‘[l)x(l‘—‘[]) d'L’,

+ J.hz(r,,rz)x(tfr,)x(zfrz) drdr+7 ...

(@, Ty, .., T,)

—g f s

+

[] M@ et 2 =T)2~ 7,)...x(1 =T, de, d...dr,

8

Figure 3.1 Example of LTI and NLTI systems. (A) A linear system. (B) A second-order
system and (C) a combined nth order system. The output of the first-order components is
determined by the convolution integral, and the output of higher-order components is
obtained from convolution-like integrals. The output of the nth order system is represented
by a Volterra series consisting of the sum of the individual components, each determined by
a convolution-like expression.

Volterra Series 41

Now consider a system that is governed by an equation that is convolution-like:

) = T

Unlike the convolution in Equation (3.1), this system works on two copies of input
x(t) instead of only one. As we discussed in Section 2.5, such a system is an exam-
ple of a so-called second-order Volterra system. Note that the double integral in
Equation (3.4) is identical to the last term in the expression in Equation (2.24). If
we determine the UIR for the system in Equation (3.4), we get:

]’12(’7'1, Tz)x(l‘ — Tl)x(l — Tz)dTl drs (34)

g —8

I’lz(l, I) = [J hz(’]’], Tz)(S(l — 7'1)6([— T2)d’7’1 dr, (35)

Here we applied the sifting property twice: once for each of the delays 7; and 7,.
The result h,(t,f) is the diagonal of kernel #,.

Note: You can see that in a second-order Volterra system, the UIR #,(z,f) does
not fully characterize the system (unlike the situation in an LTI system).
Instead it only characterizes the 2D function h,(7,7,) along the diagonal
T1 =Ty in the 71,7, plane. As we will see in Section 3.3 we need sets of
paired impulses to fully characterize h,.

The system in Equation (3.4) is nonlinear because scaling does not hold. For exam-
ple, the response to a scaled delta function C4() at the input is:

]C

— 0

hz(T],Tz)C(S(Z‘ - Tl)Cé(l - T2)d7’1 dr, =

(3.6)
C2

b%séhg

j ha(r1,2)8(— T8 — T2)dry dry = Coho(t, 1)

By comparing Equations (3.5) and (3.6) we can see that in this system the UIR
ho(1,) scales with C? instead of C. As we will show in Section 3.2.1, superposition
does not hold for this system either, but showing that scaling does not hold is suffi-
cient to negate linearity of the system. In the remainder of this chapter we will con-
tinue our introduction of Section 2.5 by studying the properties of the Volterra
series and applying it for the characterization of higher-order systems.

42 Signal Processing for Neuroscientists, A Companion Volume

3.2 \Volterra Series

The mathematician Vito Volterra used series of convolution-like expressions to
define the input—output relationship of NLTI systems:

Ist order term

V() = jhmnna—Tomq

2nd order term

+

|

o0
J ho(1y, T2)x(t — 71)x(t — 7p)d7T dT5 + -

8

+ J h (11,72, . o T)x(t — T)x(t — 72). . Xx(t — 7p)d7y d73 ... dTy,
-0

8

|
d—s

nth order term

(3.7)

The output y(#) of an nth order system depends on multiple copies of the input and
is the sum of the Ist, 2nd, ..., nth order convolution-like expressions. The func-
tions hy, h, ..., h, are called the 1Ist, 2nd, ..., nth order Volterra kernels. In some
texts, a zero-order kernel (hg) representing a DC term, or offset, is added to
Equation (3.7). Just as in an LTI system, y(¢) is the UIR if the input x(¢) is a unit
impulse 0(f). In higher-order systems, the contribution of the nth order Volterra
kernel to the UIR is a so-called diagonal slice through the kernel, that is, a section
through the kernel with all delays 7y, 75, ..., 7, equal. An example for a second-
order system (n = 2) is shown in Equation (3.5).

Note: We can refer to h; as the UIR only if we deal with a first-order Volterra
system without a DC term—that is, a (linear) system where /; is the only
term of y(¢). In all other cases, the UIR is determined by the contributions of
all of the system’s Volterra kernels and not just by #;.

If we represent the 1Ist, 2nd, ..., nth order convolution-like terms in Equation
(3.7) as Hy, H,, ..., H, we get an alternative, simplified notation:
y(t) = Hy[x()] + Ha[x(8)] + -+ + H,[x(1)] (3.8)

Equation (3.8) can be generalized for an nth order system:

N
W)=Y H[x()] (3.92)

n=1

Volterra Series 43

In some cases a DC term Hy[x(¢)] = ho (with hy being a constant) is added. This
allows one to further generalize Equation (3.8) for the NLTI system to:

N
Y6)=" " H,[x(1)] (3.9b)
n=0

Just as with any series, we should consider the convergence of the Volterra
series. In our case, we approach this by optimistically assuming that any system we
consider will be associated with a converging series. We can afford this optimism
because we will apply the Volterra series only to known, relatively low-order sys-
tems and because we would immediately notice if the output predicted by the

Volterra series would poorly match the measured output of the system it represents.
Recall that we can consider the Volterra series’ approximation of output as a

Taylor series with the addition of memory (Section 2.5). The Taylor series links
output with instantaneous input (no memory, Equation (2.16)), whereas the
Volterra series includes a memory component in the convolution-like integrals.
These integrals show that the output at time ¢ depends not only on current input sig-
nal x(f), but on multiple copies of the delayed input, represented by
x(t —71), x(t —73),...,x(t — 1,) in the integrals in Equation (3.7).

3.2.1 (Combined Input to a Second-Order Volterra System

In general, the input—output relationship of a second-order Volterra system without
lower-order components can be specified by Equation (3.4). We also demonstrated
above that a second-order Volterra system does not scale as an LTI system (com-
pare Equations (3.3) and (3.6)). We can next show that the superposition property
of an LTI system does not hold in the second-order Volterra system either. To
accomplish this, we will determine the system’s response to the sum of two inputs
x(t) = x1(t) + x2(¢) relative to its responses to x;(t) and x;(¢) individually. The
response to the combined inputs is:

0

y@®) = ho(T1, T2)x(t — T)x(t — T2)dT A7)

ha (71, m2)[xi (2 — 71) +x2(— 7)][x1 (2 — 72) + x2(2 — 72)]d7y AT

I
il

o0

— o0 —w
(3.10)
In Equation (3.10) we have the following four terms:
o0 o0
Hy[x ()] = J J ho(T1, T2)x1(t — T1)x1(t — T2)dT) AT (3.11a)
— 00 — o0

44 Signal Processing for Neuroscientists, A Companion Volume

ol (5] = J Jhz(Tl,Tz)xz(l—Tl)xz(l—Tz)dTl ar, (3.11b)

o0

Hy[x1 (1), x2(1)] =

—

ho(T1, T2)x1(t — T1)x2(t — T2)d71 dT2

|
8

Cross-terms

Hy[x,(1), x1(1)] =

ho(T1, T2)x1(t — T2)x2(t — 71)d71 dT2

| |
8‘88h8
%8

I
8

(3.11¢)

Note that Equations (3.11a) and (3.11b) represent the expressions for the system’s
response when its input would be x; and x,, respectively. The two cross-terms in
expression (3.11c) are determined by both x; and x, and can be considered equal
because the second-order kernel is symmetric—that is, h(7y,72) = h(12, T1).

Note: The symmetry of h(7y,73,...,7,) : Recall that the kernel & of a linear
system is obtained from the system’s response to a unit impulse. As we will
see in the following section, & can be determined in higher-order systems
from the responses to multiple unit impulses. Since kernel / can be obtained
from responses to combinations of unit impulses, the symmetry assumption
makes sense. This is the case because there is no reason to assume that a sys-
tem would be able to distinguish (i.e., react differently) between unit impulse
1 followed by unit impulse 2 as compared to unit impulse 2 followed by unit
impulse 1 (the unit impulses are indistinguishable because they are identical).
For a formal explanation see chapter 3 in Schetzen (2006). If you have pro-
blems following this reasoning, you may come back to it after studying the
concrete example in Pr3_1.m and Section 3.3.

Based on the symmetry, we can rewrite the second equation in (3.11c) as:

o0 [}
J J hao(72, T1)x1(t = T2)x2(t — T1)dT2 ATy (3.11d)
— o0 —

If we now interchange the dummy variables 7, and 7, this becomes:

o 00

J J ho(T1, T2)x1(t — T)x2(t — T2)d7Ty AT (3.11e)

—o0 —o0

Volterra Series 45

This result indicates that the two expressions in (3.11c) are equal, so we may
combine the cross-terms into:

ZHQ[X](I),XQ(I)] =2 J J hz(’T] , Tz)xl(t — T[)Xz(t — Tz)dT] dT2 (31 lf)

By combining Equations (3.10), (3.11a), (3.11b), and (3.11f), we get the following
expression for the output y(¢) for the sum of the inputs x;(f) + x(¢) :

¥(t) = Ha[x(8)] = Ha[x1(t) + x2(t)] = Ha[x1 ()] + Ha[xa(1)] + 2Ha[x1 (1), x2(1)]
(3.12)

The cross-terms 2H;[x;(¢), x;(¢)] in Equation (3.11f) represent the deviation of
the second-order Volterra system’s response from the response to x;(z) + x(¢)
if superposition were to hold, that is, in the second-order Volterra system the total
response y(f) to x;(¢) + x(¢) is not equal to the sum (superposition) of the responses
to x1(¢) and x,(¢) individually: H,[x;(#)] + Ha[x2(1)].

3.3 A Second-Order Volterra System

As we discussed in Chapter 2, we can create a dynamical nonlinear system by
combining a dynamical linear system (L) and a static nonlinear (N) one (Figs. 2.2
and 3.2A); the type of system that emerges from this combination is often indicated
as an LN cascade. In the example in Fig. 3.2A, the dynamical linear system is a
simple low-pass filter consisting of a resistor (R) and capacitor (C)
(hge = 1/(RC)e™"/R€). If you need to refresh your basic knowledge about RC fil-
ters, see chapters 10 and 11 in van Drongelen (2007). The static nonlinear compo-
nent in Fig. 3.2A relates an input to the square of the output, that is, output y(¢) is
the square of its input f(¢) : y(t) = f(z)>. From this relationship, the static nonlinear
component is considered a squarer. Following the procedure described in
Section 2.5, we can establish that this cascade is a second-order Volterra system
with a second-order kernel:

1 1 1* _
ho(T1,72) = hre(T1)hre(T2) = (Re T‘/RC> (R_Ce Z/RC> = (R) e (m*m)/RC
(3.13)

46 Signal Processing for Neuroscientists, A Companion Volume

(A)
H,
X(0) =P e =2 =P 9O = (1 — y(0)
£
(B)
0

‘.,.
x(0) H, m J—l

P W)= H, [(0]~ H, [x, ()]

/ =2H, [x,(0), x,(0]
¢ — H (0 = Hy [(0 + x,(0]

%, (1) +x,(1)

©
x(t) =P —» 0
=H,[x()]+ H,[x(1)]
—by(z) fay
5 £
(D)
x,(7)

\U).]
xz(’)
x, (1) /xz(t)v] J

G — 0-HkoFH ko) Hko]
- 0]= 28, [@0),x0)]
— > H+H, 50=H[xO+x0O]
x(0)+x,(0) H, [(0 +x,0)]

Figure 3.2 (A) Nonlinear system consisting of a cascade of a linear filter (a dynamical system)
and a squarer (a static system). (B) Procedure to compute H, following Equation (3.12). This
procedure is one of the approaches used to determine kernel 4, in Pr3_1.m. (C) A general
second-order Volterra system with a first-order (H;) and second-order (H,) operator. (D) The
same procedure as in (B) applied to the second-order system with a first-order component. This
procedure is followed in script Pr3_2.m.

Volterra Series 47

The following MATLAB code (the first part of Pr3_l.m available on http://
www.elsevierdirect.com/companions/9780123849151) will create an image of the
2D Volterra kernel (Fig. 3.3) based on the known structure of the nonlinear cas-
cade (Equation (3.13)).

% Linear component is a low-pass RC circuit
% we use R=10k and C=3.3uF

R=10e3;

C=3.3e-6;

RC=R*C;

% Timing parameters

sample_rate=1000;

dt=1/sample_rate;

time=0.1;

A=RC/dt;

T=100; % The setting for timing and the length of correlation
% calculations for both Volterra and Wiener kernels

% Step 1. The analog continuous time approach using the square of

% the unit impulse response of the filter: h(t)=(1/RC)*exp(-t/RC)

% to compare with discrete time approach (in the following Steps) we assume

% the discrete time steps (dt) and interval (time)

=1
for taul=0:dt:time;
i=1;
rl1(j)=(1/RC)*exp(-taul/RC); % lst-order response in the cascade
for tau2=0:dt:time
y(i,))=((I/RC)*exp(-taul/RC))*((1/RC)*exp(-tau2/RC));
% Output y is h2 (=2nd order Volterra kernel)
% which is the square of the filter response
i=i+1;
end;
=i+l
end;
% plot the surface of h2
y=y*dt"2; % scale for the sample value dt

figure; surf(y);

axis([0 T O T min(min(y)) max(max(y))])

view(100,50)

title(‘2nd order Volterra kernel (h2) of an LN cascade’)
xlabel(‘taul’);ylabel(‘tau2’);zlabel(*h2’);

Now we validate our (nonparametric) approach with the Volterra series by using a
parametric model, the Wiener cascade, depicted in Fig. 3.2A. So far we assumed that the
internal structure of the second-order system is known. In this example we study the LN

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

48 Signal Processing for Neuroscientists, A Companion Volume

Figure 3.3 Example of a second-
order Volterra kernel h;(71, 72)
determined by Equation (3.13) in
MATLAB script Pr3_1.m.

cascade system in Fig. 3.2A but we pretend to know only that it is a second-order
Volterra system and that we do not know that it is a cascade or what its components are.
Now we can use Equation (3.12) and the procedure described in Steps 1—6 below to find
the second-order kernel /. Finally we will compare this result with the one we can obtain
analytically (Equation (3.13)), which is shown in Fig. 3.3.

(1) Using the approach in the example in Section 3.2.1, we use a pair of unit impulses
occurring at times 77 (6(t — Ty)) and T, (6(t — T»)) as inputs x;(f) and x,(¢), respectively.

(2) We determine the system’s response to each of the inputs individually: the response to
x1(f) =6(t — Ty) is Hp[6(t — Ty)] and the response to x,(f) = 6(t — T,) is Hy[6(t — T5)])
(Fig. 3.2B).

(3) We determine the response to the sum of both impulses x,(f) + x,(f) =8(t — Ty) + 6
(t — T), which is y(r) = Hy[6(t — T}) + 6(t — T»)] and according to Equation (3.12):

¥(t) = Ho[6(t — T1)] + Ho[6(t — T)] + 2Ha[6(t — Th), (¢ — T2)].
(4) From the responses obtained in Steps 2 and 3 above, we can solve for H;:

y(t) — Ho[6(t — T1)] — Ha[6(t — T)]

Hy[6(t — T)),6(t — Tr)] = (3.14)

2
(5) We use Equation (3.11f) (divided by two) and substitute 6(zr — T;) for x;(¢) and 6(t — T5)
for x,(1):
o0 0
Hy[6(1 = Th),0(t — T2)] = J J hao(71,72)0(t = T1 — 71)0(t = T2 — T2)d71 72
— 00 — 0

Using the sifting property twice, the double integral evaluates to:
[e¢] 0
J J hy(T1,72)0(t = T\ — 71)0(t = Tr — To)dry dro = ho(t — Ty, — Tp) (3.15)
—0o0 — 0

This is the second-order Volterra kernel we are looking for.

Volterra Series

T Figure 3.4 The 7; — 7, plane and the section represented
by =711+ T —Ts.

7, =rl+T1—T2

(6) To relate Equations (3.14) and (3.15) to the definition of the second-order kernel
ho(11,72), we set 7y =t — Ty and 7, =t — T,. By using the common variable #, we can
relate the delays by: 7y + Ty =7, + T, >7, =7, + T; —T>. In the 7; — 7, plane, this

represents a line at 45° with an intercept at 7; — T>.

Therefore, the response obtained in Equation (3.15) is a slice of the second-order
kernel along the line 75 =7, + T} — T>.

Following this procedure, we can obtain the second-order kernel by repeatedly
probing the system with pairs of unit impulses at different times 7', and 75. By varying
the timing of the impulses, we can determine %, in both dimensions 7, and 7, that is,
we fill in the plane in Fig. 3.4.

3.3.1 Discrete Time Implementation

Now we are ready to implement the procedure described in Steps 1—6 above for the
cascade in Fig. 3.2A. A diagram of this procedure is shown in Fig. 3.2B. Because in
this example we know the parameters of the LN cascade, we can compare the result
we obtain following Steps 1—6 with the earlier analytically derived result based on
our knowledge of the system (depicted in Fig. 3.3).

Recall that for the discrete time solution in the MATLAB file below it is assumed
that the sample interval dr is much smaller than the time constant of the filter, that is,
RC/dt » 1 (see section 11.2.2 in van Drongelen, 2007). If this assumption is violated
too much, the approximation of the differential equation by the difference equation
will be compromised.

Equation (3.14) can be used to determine the second-order kernel of the system.
The following MATLAB code (the second part in Pr3_1.m available on http://www.
elsevierdirect.com/companions/9780123849151) will create an image of the 2D ker-
nel shown in Fig. 3.5.

i=1; j=0;
delayl=1;

for delay2=delay1:1:length(x);
=i+
x1=zeros(1,100);x1(delayl)=1; % unit impulse train with delay 1
x2=zeros(1,100);x2(delay2)=1; % unit impulse train with delay 2

% The summed input xs, containing two unit impulses

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

50

Signal Processing for Neuroscientists, A Companion Volume

if (delayl==delay?2);
xs=zeros(1,100);xs(delay1)=2; % delays are equal
else
xs=zeros(1,100);xs(delay1)=1;xs(delay2)=1;
% sum of two unit impulses if delays
% are NOT equal
end;

% Compute the system outputs to individual and combined unit impulses
y1_previous=0;
y2_previous=0;
ys_previous=0;

for n=1:length(x);
% response to delayl
y1(n)=(A*yl_previous+x1(n))/(A+1); % the linear component
y1_previous=y1(n);
z1(n)=y1(n)"2; % the squarer
% response to delay2
y2(n)=(A*y2_previous+x2(n))/(A+1); % the linear component
y2_previous=y2(n);

z2(n)=y2(n)"2; % the squarer
% response to the sum of both delays
ys(n)=(A*ys_previous+xs(n))/(A+1); % the linear component
ys_previous=ys(n);
zs(n)=ys(n)"2; % the squarer
end;

h=(zs-z1-z2)/2; % A slice of the kernel h2

% in the taul-tau2 plane this is a line
% at 45 degrees with intersection
% delay1-delay2
taul=delay2:1:length(x);
tau2=taul+(delayl-delay2);
h=h(delay2:length(h));

plot3(taul,tau2,h);
end;

axis([0 T 0 T])

view(100,50)

% Only half is shown because kernel h2 is symmetric
title(‘half of 2nd order Volterra kernel (h2) of an LN cascade’)
xlabel(‘taul’);ylabel(‘tau2’);zlabel(‘h2’);

grid on

Volterra Series 51

3.4 General Second-Order System

The example of the cascade in Fig. 3.2A has a second-order operator only.
Generally a second-order system consists of both a first- and second-order operator
(assuming again that there is no H, component). Following the notation in
Equation (3.9a) with N =2 we get:

y(1) = Hi[x(1)] + Ha[x(1)] (3.16)

An example of such a system where the H, operator (representing an LN cascade)
is extended with a first-order component H; is shown in Fig. 3.2C.

3.4.1 Determining the Second-Order Kernel

For determining %, in a system such as that described by Equation (3.16), we can
still use the procedure discussed in Steps 1—6 (Section 3.3) and depicted in
Fig. 3.2D. The method still works because superposition holds for the contribution
of the first-order operator—that is, for input x(r) = x;(f) + x,(¢), the contribution of
the first-order operator is simply the sum of the contributions for x;(f) and x,(7)
separately:

Figure 3.5 By following the procedures in the first and second parts in script Pr3_1.m we
can compare the second-order Volterra kernels obtained from the parametric LN cascade
model (Fig. 3.3, based on Equation (3.13)) and the one obtained using the nonparametric
approach in which we determined /, by the procedure outlined in Steps 1—6 (Section 3.3)
and represented in Fig. 3.2B. The result of the latter procedure (obtained in the second part
of Pr3_1) is shown here. As can be seen by comparing this result with the earlier one in
Fig. 3.3, both approaches agree. Because of the symmetry in /,, only half of the kernel is
depicted.

52 Signal Processing for Neuroscientists, A Companion Volume

o0

J h(T)x(t — 7)dr = J h(D)[x1(t — 1) + x2(¢ — 7)]dT

- - (3.17a)
= J hy(7)xi(t — 7)dT + J hy(T)xp(t — 7)dT

or in a more compact notation:
Hi[x(1)] = Hi[x1(2) + x2(t)] = Hi[x1(1)] + Ha[x2(1)] (3.17b)

If we apply the same procedure (as shown in Fig. 3.2B) to a system that obeys
y(t) = Hi[x(1)] + Ha2[x(?)] (e.g., the system in Fig. 3.2C), the contribution of the first-
order kernel will cancel because of the superposition property (Equations (3.17a) and
(3.17b)). Just as in the previous example, the output will be 2H;[x(¢), x,(¢)], allowing
us to find the second-order kernel by dividing the output of the procedure by 2 (see
Equation (3.14)). In program Pr3_2.m (available on http://www.elsevierdirect.com/
companions/9780123849151), the procedure depicted in Fig. 3.2D is followed for the
second-order system shown in Fig. 3.2C.

3.4.2 Determining the First-Order Kernel

After we determined the system’s second-order kernel, we can also find its first-order
kernel via the system’s UIR. The UIR of the system in Fig. 3.2C will consist of a
first- and second-order component (Fig. 3.6). Therefore, if we determine the system’s
UIR and subtract its second-order component, we have the first-order Volterra kernel
hi. The second-order component of the system’s UIR is the slice through A, for
T1 = 73 (i.e., the diagonal of the second-order kernel). This approach is now feasible,
since we determined 4, in the previous procedure. To summarize, we find /, by:

1200 Figure 3.6 An example of a UIR (red
3 dots, upper curve) of a second-order
g 1000 system such as in Fig. 3.2C. The
=y response consists of a first-order
g 800 component (black triangles, lower

i

“\?Y'*, curve) and a second-order part (green
6001 ‘% triangles, middle curve). This result

% was obtained with MATLAB

\ script Pr3_2.m, albeit with different
parameters than the version available
on http://www.elsevierdirect.com/
companions/9780123849151.

400

200 k@

00 10 20 30 40 5

Time

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

Volterra Series 53

h]ZUIR—hz(Tl,Tz) fOfT]ZTQ (318)

3.5 System Tests for Internal Structure

Nonlinear systems are usually complex, and to facilitate their characterization, one
may attempt to simplify their structure by presenting it as a cascade of basic mod-
ules. As we discussed in this chapter and in Section 2.5, we often represent dynam-
ical nonlinear systems with cascades of dynamical linear systems and static
nonlinearities. In neuroscience, such cascades are frequently used to model neurons
and their networks. For example, the integrate-and-fire neuronal model (e.g.,
Izhikevich, 2007) combines a linear low-pass filter (RC circuit) to mimic sub-
threshold integration of the biological membrane combined with a static nonlinear-
ity that generates an action potential when the membrane potential exceeds a
threshold. Models for neuronal networks also frequently use the cascade approach.
For example, in a model to explain the EEG’s alpha rhythm, Lopes da Silva et al.
(1974) model synaptic function in the thalamo-cortical network with linear filters
and a static nonlinearity to model action potential generation (see their fig. 7).
Examples of systems that are frequently used to represent nonlinear systems are
depicted in Fig. 3.7; in this section we will discuss how these basic configurations
may be recognized by examination of their Volterra kernels.

3.5.1 The LN Cascade

The LN cascade (linear system followed by a nonlinear system, Fig. 3.7A), also
called a Wiener system (not to be confused with the Wiener series we will discuss
in Chapter 4), was also used in Section 2.5 when we demonstrated that the system’s
input—output relationship fits the Volterra series representation (Equation (2.24)).
This result is repeated here:

z(t)=ap + arh(T)x(t — 7)dr + J J arh(T)h(12)x(t — 71)x(t — 72)d7| d7)

:h()+

[y PR

hy(T)x(t — 7)dT + J J ho(T1, T2)x(t — 71)x(t — T2)d7) d73

(3.19)

From Equation (3.19) we can see that the second-order Volterra kernel &, is related
to the first-order kernel k. The first-order kernel is proportional with the UIR of
the Wiener system’s linear component: h;(7) = ayh(7), while the second-order ker-
nel is given by hy(7y,72) = axh(71)h(3). If we keep one of the variables 7, or 7,
constant, we obtain a section (slice) through the second-order kernel, which is also
proportional with the linear component’s UIR /4. Let us keep 7, constant so that
h(7,) is a constant value b; we then obtain the expression for a slice through the
second-order kernel parallel to the 7, axis: hy(71) = bayh(r). It is straightforward

54 Signal Processing for Neuroscientists, A Companion Volume

(A) LN cascade / Wiener system

X(t) —> h(t) W a,t+ay+ azyz —}Z(l)
Dynamical LTI 2nd order static
system nonlinearity

(B) NL cascade / Hammerstein system

x()—> a, +a,y+a,y’ y(_t)> h(ty —» (1)

2nd order static Dynamical LTI
nonlinearity system

(C) LNL cascade / Wiener—hammerstein system

2
x(n—» 2@ W aytay+a,y W k(t) —» V(1)
Dynamical LTI 2nd order static Dynamical LTI
system nonlinearity system

Figure 3.7 Frequently used cascade models to analyze nonlinear dynamical systems. (A)
Cascade of a dynamical linear system followed by a static nonlinearity. (B) A similar
cascade, but compared with (A) the order has changed: first the static nonlinearity followed
by the linear component. (C) A static nonlinearity sandwiched in between two dynamical
linear systems.

to show that the ratio between the first-order kernel and a slice (parallel to the
71 axis) of the second-order kernel is the constant a;/ba,. It is important to note
here that this constant may be negative or positive; this should be taken into
account when looking for proportionality. A similar result can be obtained for a
slice parallel to the 7, axis when we hold 7 constant. It should be noted that this
condition must be satisfied for a Wiener system but there are other configurations
that may show the same property. Therefore, strictly speaking, the condition of pro-
portionality of first-order kernels and second-order slices can be used only to
exclude the Wiener structure of a nonlinear system. Optimistically, one might say
that if the condition is satisfied for a particular nonlinear system, we may use the
Wiener structure to model the system.

3.5.2 The NL Cascade

The cascade shown in Fig. 3.7B, also called a Hammerstein system, is a cascade of
a nonlinear static component followed by a linear dynamic one. The output y of the
first (nonlinear) component becomes the input of the linear dynamical system. The
output from this final dynamical component is then the system’s output z:

Volterra Series 55

(1) = J h(T)y(t — 7)dT = J h(7)[ag + ayx(t — 7) + axx(t — T)z]dT (3.20)

If we separate the three terms in Equation (3.20), we can identify the three Volterra
kernels hg, hy, and h,.

0
First term: J h(T)ag dT (3.21a)
— 0
—_———
ho
Second term: J h()ay x(t —7)dr (3.21b)
(m)
— 0 hy (7

[}
Third term: J h(T)axx(t — 7)* dr
— 00

o0 o0
- J Jh(71)025(ﬂ—72) x(t = Tt — T2)dr dr)

T T®© ha(71,72)
(3.21c)

To obtain the Volterra formalism, we rewrote the single integral expression in
Equation (3.21c) as a double integral by separating the product x(t — 7)* into
x(t — 71)x(t — 73). To make sure this product is only nonzero for 7; = 7, we added
the 6(7; — 72) function. The diagonal slice in the 71 — 7, plane of the Hammerstein’s
second-order kernel (4(7)ay) is proportional to the UIR of the cascade’s linear com-
ponent (i(7)). It can be seen in Equation (3.21b) that the first-order Volterra kernel
(h(T)a;) is also proportional to the linear component’s impulse response.
Consequently, the diagonal slice of the second-order kernel is proportional with the
first-order kernel. Both characteristics discussed above (nonzero second-order kernel
along the diagonal and its proportionality with the first-order kernel) may be used to
test an unknown nonlinear system for an underlying Hammerstein structure.

3.5.3 The LNL Cascade

A combination of both the cascades discussed above is shown in Fig. 3.7C. Such a
system is an LNL cascade, also called a Wiener—Hammerstein model. We obtain
the output z(#) of the static nonlinearity inside the cascade by following the same
procedure we used to determine the Wiener system’s output (see Equations (2.24)
and (3.19)):

56 Signal Processing for Neuroscientists, A Companion Volume

2(t) =ap+ alygf) + ary(t)’

0 [e¢]
—atar [srn-—nara | [srgrante - mwte - rain dr
— o0 — 00 — 0
(3.22)
The LNL cascade’s final output v is then the convolution of the expression above
[e¢]
with the UIR k of the second linear system v(t) = [k(M\)z(t — A)dA (we use A

— 0

here for the delay). Using Equation (3.22) for z(r — \) gives:

o0

v(t) = ap J k(N)dA +a; J J k(N)g(T)x(t —7— X)drdA...

o (3.23)
+a J J J k(Ng(T)g(T)x(t — 71 — Nx(t — 72 — N)dr dmo dA

To simplify, the first-order part of this expression can be rewritten using
w=A+T1:

a J J k(AN g(w—Nx(t —w)dwd\= J a J k(N g(w—NdA| x(t—w)dw

— 00 — o0 — o0
hi(w)
(3.24a)
Similarly, using v = A+ 71 and w = A + 75, the second-order part becomes:
o0 o0 e}
a J J k(N)g(v — Ng(w — Nx(t — v)x(t — w)dv dw dA

— 00 —Oo0 —a0
o w© [0 (324b)
J J J k(N)g(v — Ng(w — NdA| x(t — v)x(t — w)dv dw

—00 —00 L — o0

ha(v,w)

We can see that the second-order kernel is the integral expression in between the
brackets: a; f_m o k(Ng(v = Ng(w — AN)dA. From this expression we can obtain the
so-called second-order marginal kernel K3' (the sum of all kernel slices over one of
the variables). If we integrate this expression with respect to one of its variables,
say v, we get:

Volterra Series 57

K)' =a, J J k(N)g(v— A)g(w — N)dA dv (3.252)

Now we make a change of timing variables again, £ = v — A, d¢ = dv, and rear-
range the integral operation:

a J J KONg(v— Ng(w— NdAdu =as j KO J ¢(©OdE| gw—NdA
—0 — — 0 L — w0 ,
—wA_| | Kgw=Ndr| (3:25b)
I -

1T

In the first step, we regrouped the integral operations and defined the outcome of
the integral with respect to d§ as a number A. Subsequently we separated the
expression into two parts. Part I is equal to A and Part II is proportional with the
expression for the first-order kernel; this relationship can be seen by comparing
Part II with the expression for /; in Equation (3.24a): a; fio , k(Mg(w — A)dA. This
latter term is simply Part II scaled by a;. Of course, we would have obtained a sim-
ilar outcome had we integrated the second-order kernel with respect to w. This rea-
soning leads us to conclude that in an LNL sandwich, the marginal kernel K3 (the
summation [integral] of all slices of the second-order kernel h, parallel to one of
the axes) is proportional with the first-order kernel /;. We can use the above pro-
portionality between the marginal second-order kernel and the first-order one to
test for a potential underlying sandwich structure of an unknown system. Because
other types of cascade may show a similar property, this will allow us to exclude
an LNL sandwich structure or to make it likely that we are dealing with one.

3.6 Sinusoidal Signals

When we use a sinusoidal signal as the input to a linear system, we get a sinusoidal
signal at its output. At the output, the amplitude of the sinusoidal signal may be
amplified/attenuated and the waveform may have a changed phase, but the frequen-
cies of the input and output of an LTI system are identical. We can use this property
to completely characterize an LTI system, such as the RC filter, with a set
of sinusoidal inputs (see section 10.3 in van Drongelen, 2007). Since the frequency
at the output does not change relative to the input frequency, we can describe
the LTI system by depicting change of amplitude and phase for each frequency with
a Bode plot or an Nyquist plot (see section 12.3, fig. 12.4 in van Drongelen, 2007).
As you may have guessed, this simple relationship between input and output fre-
quency is not valid for nonlinear systems. Let us investigate the response of the
second-order nonlinear system introduced in Equation (3.5) by feeding it a cosine

58 Signal Processing for Neuroscientists, A Companion Volume

with amplitude A and angular frequency wy. Further, let us use Euler’s relationship
(e™? = cos ¢=j sin ¢) to express the input in terms of two complex exponentials:

A A _.
x(t) = A cos wot = Eejw"’ + Ee_w"’ (3.26)

e —
x1(1) x2(1)

Note that the two components of input x (x; and x,) are complex conjugates. Now
we can treat this input as we did in Section 3.2.1 and repeat the result from
Equation (3.10) for the system’s output y:

ha(T1,m2)[x1 (¢ — 71) + x2(t — 7)][x1 (£ — 72) + x2(2 — 72)]d 7| d72

|

¥ = J
7 (3.27)

In short notation we can write:
(@) = Ha[x(()] + Ha[x2(0)] + Ha[x1(2), x2(0)] + Ha[x2(2), x1(2)] (3.28)

The only difference between Equation (3.28) and the Equation (3.12)
obtained in Section 3.2.1 is that we did not use the symmetry property
Hj[x1(1), x2(t)] = Ha[x2(), x1(¢)]. Let us then evaluate each of the four terms in
Equation (3.28). The first term is:

Ho[xi(1)] =]C

0
_AJ

2
— 0

Combining both exponential expressions we get:

ho(T1, T2)x1(t — T1)x1(t — 72)d71 d72

.og, —3

(3.29)
]’lz(T] , Tz)eij(t -7 ej”"(' —72) dT1 d7'2

f—s

AN T A\?
<§> 2ot J J hg(T],Tz)eijon' e w2 dridr, = <§> el2wot (—jwo, —jwo)
e}

v
(3.30a)

Here we use the variable ¥ to symbolize the double integral, a complex function of wy.

Note: Comparing the function ¥ above (symbolizing the double integral) with
equation (6.4) in van Drongelen (2007), it can be seen that the expression is

Volterra Series 59

the 2D Fourier transform of the second-order kernel.

Similarly, substituting the exponential expression for x,, the second term Hj[x,(?)]
in Equation (3.28) becomes:

A\2 T A\2
(E) e J2wnt J J ho(T1, T2)e 0™ 072 d7y dry = (5) e 20" (jug, jwo)

—00 —o0

(3.30b)

Note that both Equations (3.30a) and (3.30b) include an exponent in which
the frequency is doubled (2w instead of wy).
The third term in Equation (3.28) is:

Halxi (1), x2(0)] jjmvmﬁMrwmm—nanz
EREY

(3.31)

o0 o0

A))

5 J J hy(1q, Tz)ej“’(’(tfﬂ) e =) 47 dr,
o0 — o

Combining the exponentials in the expression above, we get:

o0

o0
2
() JJM@JWVWWWMJU=€>MﬂmWM (3.320)

-

Using the same approach the fourth term becomes:

AT , A A\ 2
(E) J J hZ(TlaTZ)eJWOTI e JwoT2 dTl d7'2 = <§> WGQ}Q, _jw()) (332b)

Substituting the results for all four terms obtained in (3.30a), (3.30b), (3.32a), and
(3.32b) into Equation (3.28) we now have:

r 2 2
. A .
oy =[5 & ¥(—jwo, —jwo) + > e 320! W(juwy, jwo)
LN) (3.33)

SN

L. A . .
YU (—jwo, jwo) + 2 Y(jwo, —jwo)

| >

It can be seen that the first two terms and the second two terms (grouped by brack-
ets) are the complex conjugates of each other. Therefore, we may conclude that the
expression in Equation (3.33) is real since the sum of two complex conjugates is

60 Signal Processing for Neuroscientists, A Companion Volume

real (the sum of imaginary numbers a + jb and a — jb is 2a). Consequently we get
the following result:

2 2
201=2(5) Re@0n, i) +2(5) ReW(-fonjon) 634

in which Re(...) denotes the real component. Using Euler’s relationship again, we
can see that the output contains a sinusoid:

2 2
y(it)=2 (%) Re[(cos 2wyt + j sin 2wot)P(—jwo, —jwo)] +2 (%) Re[¥(—jwo,jwo)]

(3.35)

The output contains a constant (the second term in Equation (3.35)) and a sinusoid
with a frequency 2wy (the first term).

The expression in Equation (3.35) is an important result for the analysis of
higher-order systems: a certain frequency at the system’s input may result in
a higher-frequency component at the output. When we digitize the output of a
higher-order system as the result of some input signal, it is important to esti-
mate the highest frequency at the output to avoid aliasing (Section 2.2.2 in van
Drongelen, 2007). With a linear system, this problem does not occur; the highest
frequency of the input is the highest frequency possible at the output. But with non-
linear systems, the maximum output frequency may be a multiple (as shown above,
in a second-order system it is a factor of two, and in an nth order system it is a fac-
tor of n) of the input’s highest frequency value. A practical approach here is to first
sample the system’s output at a much higher sample rate than would be used rou-
tinely (one to a few orders of magnitude higher) and then compute a power spec-
trum to estimate the highest frequency component. The outcome of this
preliminary experiment can be used to establish an appropriate sample rate.

4 Wiener Series

4.1 Introduction

Determining the Volterra kernels of an unknown system faces several practical pro-
blems: (1) the order of the system underlying the signal being investigated is usu-
ally unknown, and (2) the contributions of the individual components (of different
order) of the Volterra series are not independent. The first problem is generally an
issue if one wants to characterize a system with any type of series approximation,
and the second problem can sometimes be resolved by the use of a series with
orthogonal components. An example of the latter procedure is the development of
the Fourier series; by having orthogonal terms, there are no dependencies between
terms and one can determine the coefficients a; and b; of the Fourier series sequen-
tially (Chapter 5, van Drongelen, 2007). To address the dependence between com-
ponents in a series approximation for nonlinear systems, Norbert Wiener
developed an approach where each component in his Volterra-like series is
orthogonal to all lower-order ones. Although within the Wiener series approach
one cannot predetermine the order of the system being studied either (problem (1)
above), the orthogonality between the terms in the series allows one to determine
the Wiener kernels sequentially. Subsequently one can determine their contribution
to the signal, and stop the kernel-estimation process at the order where the signal is
sufficiently approximated. For practical reasons most studies limit their kernel esti-
mates at either the second order or (less often) at the third order. The third- and
higher-order kernels require significant computation and they are difficult to
depict.

In this chapter we will first discuss the main differences between the Wiener
and Volterra series, after which we will derive the expressions for the zero-, first-,
and second-order Wiener kernels, and then finally we will discuss practical methods
for determining Wiener kernels for simulated and recorded time series. Applications
of these methods will be presented in the form of MATLAB scripts. The last part
of this chapter and Fig. 4.6 summarize the mathematical procedures we use to deter-
mine the Wiener series. For an extended background on this topic, see Marmarelis
and Marmarelis (1978) and the reprint of Schetzen’s book (Schetzen, 2006), and for
recent engineering-oriented overviews see Westwick and Kearney (2003) and
Marmarelis (2004).

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00004-8
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00004-8

62 Signal Processing for Neuroscientists, A Companion Volume

4.2 Wiener Kernels

Similar to the Volterra series, the Wiener series characterizes the output z of a
nonlinear system as the sum of a set of operators G, dependent on kernels &, and
input x:

N
)= Gulkn: x(1)]
n=0

This equation is similar to the ones for the Volterra series (Equations (3.9a) and
(3.9b)), but although there are many similarities between Volterra and Wiener
series, there are also a few crucial differences that allow Wiener operators to be
mutually independent. For clarity we first summarize the three major differences
between the Volterra and Wiener series and then explain further details in the
remainder of this chapter (e.g., the exact relationship between Volterra and Wiener
kernels is discussed in Section 4.5).

The first major difference is that although a Volterra series usually does not
include a zero-order term (see Equation (3.9)), we may define such a term as a
constant:

Ho[x(1)] = ho (4.1a)

In contrast, the Wiener series always includes a zero-order term. This term is
defined as the average output (the DC component) equal to k:

Golko; x(1)] = ko (4.1b)

In this equation, kg is the zero-order Wiener kernel. We use k, for the Wiener ker-
nels to distinguish them from the Volterra kernels #,,.

The second major difference is that while individual Volterra operators are
homogeneous (see, e.g., Equation (3.6) for a second-order one) (i.e.,
H,[cx(t)] = ¢"H,[x(1)]), the Wiener operators are nonhomogeneous—for example,
the first-order Wiener operator has a first-order and a derived zero-order
component:

Gilki; x(0)] = gilky, koqy; x(1)] = Ki[x(1)] + Koy [x(1)]

o0

= J ki(T1)x(t — T1)d71 + ko)

—o0

(4.2)

The subscript 0(1) in Koy and ko(;y indicates that these are zero-order members of
a first-order nonhomogeneous operator. Specifically, k; is the first-order Wiener
kernel and ko(y) is the so-called derived Wiener kernel from operator G;. In general,
the Wiener kernels of the type k,(,,, with n <m are called derived Wiener kernels

Wiener Series 63

because, as we will see below, they must be derived from Wiener kernel k,,. The
notation with the capital G indicates that the operator includes both the kernel and
input, while the lower-case notation g differs by explicitly also indicating all of the
derived kernels.

The second-order Wiener operator is:

Galky; x(1)] = 2[k2,\k1(2), koy; x(1)] = Ka[x(1)] + Ki2)[x(1)] + Kogz)[x(1)]

= J J ko(T1, To)x(t — T)x(t — T2)dT1dT2
o0 oo (4.3)

0

+ J kioy(T)x(t — T1)dT1 + ko)

—o0

The subscripts 0(2) and 1(2) indicate that these are zero- and first-order members
(derived Wiener kernels) of the second-order nonhomogeneous operator G, respec-
tively. Kernel k; is the second-order Wiener kernel, while k() and ko) are derived
Wiener kernels from operator G,. As we will demonstrate below, the rationale for
using nonhomogeneous operators relates to their orthogonality.

The third and final major difference is that in the case of a Wiener series we use
a special input signal, usually in the form of zero mean Gaussian white noise
(GWN) (alternative input signals are discussed in Section 4.7 and Chapter 5).
Selection of a special input is critical because it allows us to create a series in
which the operators are orthogonal (uncorrelated) to the lower-order opera-
tors. As we will see in Section 4.3, this property contributes to creating indepen-
dence between the operators in the series, which will allow us to determine the
Wiener kernels sequentially without having to worry about dependency issues.

The first-order Wiener operator is defined so that it is orthogonal to the zero-
order Volterra operator:

E{Ho[x(1)]g1[k1, kocr): x(1)]} = (Hol[x()]g1[k1, koc1y; x(£)]) =0 (4.4a)

In the expression after the equal sign, (...) indicates the time average.

Note: (x(1)) represents the time average of a signal x(#) over a time interval 7.
T

This is an alternative notation for the integral notation: (1/7) [x(¢)dz.
0

Equation (4.4a) indicates that we assumed ergodicity so that we may use a time
average <H0[x(t)]g1[k1, ko(l);x(t)]> to determine the Expectation E{...} of the prod-
uct of Hy and g;. If you need to review the concepts of Expectation and time
averages, see section 3.2 and appendix 3.1 in van Drongelen (2007). Details about
time averages for GWN are reviewed in Appendix 4.1.

64 Signal Processing for Neuroscientists, A Companion Volume

Similarly, the second-order Wiener operator is defined as orthogonal to zero-
and first-order Volterra operators:

(Ho[x(D)]g2lk2, k1(2), ko2); x(1)]) = 0 (4.4b)
(Hi[x(D)]g2lk2, k1(2), koy; x(0)]) =0 (4.4¢)

To characterize any nonlinear system of order N, this approach is generalized for
all Wiener operators; that is, for zero mean GWN input, operator G,[k,;x(t)] =
&ulkns kn—1(nys - - - » ko@my; X(1)] is defined such that it is orthogonal to anmy Volterra
operator of a lower order:

(Hulx()]gnlkn, kn—1(n)> - - - » koy; X()]) =0 form <n (4.4d)

In the following sections we will achieve orthogonality between the G operators and
lower-order Volterra operators by using the so-called Gram—Schmidt technique (for
details of this technique, see, e.g., Arfken and Weber, 2005). By defining the Wiener
kernels according to this technique, we can determine the kernels of nonlinear sys-
tems from lower to higher order without knowledge of the system’s components.
This procedure is similar to approximating a function or signal with a Fourier series
(van Drongelen, 2007, Chapter 5) or a polynomial (Section 2.4). For each kernel
(for each order) we can determine its contribution to the output and we can continue
to add higher-order terms until we are satisfied with our approximation of the system
at hand. The procedure for determining the Wiener kernels as sketched above and
their independence to lower-order kernels is summarized in Fig. 4.1. In the follow-
ing sections we derive the expressions for the first- and second-order Wiener ker-
nels. If you are interested in higher-order components, see Schetzen (2006).

Measured
output signal

Vollerra series = HO L [-]1 L [-]2 L 000 i Comparison

»
- ' —> > Estimated
3 e output signal

Nonlinear system

Input signal

Determine terms
sequentially

Figure 4.1 Representation of a nonlinear system by Volterra and Wiener series. In contrast
to the Volterra operators H,, the operators G, in the Wiener series are independent from
lower-order operators (stippled arrows). This allows one to determine the Wiener operators
and their kernels sequentially and compute their contribution to the estimated output. The
comparison with the measured output signal can be used to determine at what order the
output is sufficiently approximated.

Wiener Series 65

4.2.1 Derivation of the First-Order Wiener Operator

In the previous section we already identified the zero-order kernel as the signal’s
DC component in Equation (4.1b). Now we can use orthogonality defined in
Equation (4.4) to derive the Wiener kernels k; and k,. Starting with the first-order
kernel, we substitute Equations (4.1a) and (4.2) in Equation (4.4a) and find that the
following condition must be satisfied:

‘ (Ho[x(D)]g1[k1,koc1y; x(1)]) =0— \
<ho Jkl(Tl)x(f—Tl)d71+k0(1) >=ho Jkl(T1)<X(t—71)>dT1+ko<1) =0
(4.5)

Note that in the expression after the equal sign we took all constants (%o, k;(71),
koc1y) out of the time average operation, such that only the (time-dependent) input
time series x remains within the time average brackets (. ..). Now you will see how
convenient it is to have zero mean GWN as input. Because input x is zero mean
GWN, the time average (x(r — 7)) is zero. Therefore the integral in Equation (4.5)
evaluates to zero and (since hg is generally not zero) we find that the orthogonality
condition in Equation (4.5) is satisfied when:

ko) =0 (4.6)

Combining this result with Equation (4.2), we find that the first-order Wiener oper-
ator is:

Gk x(0)] = g1 [k x(0)] = J k(D —)y @.7)

Note that for a first-order system (without a DC component) k, is the UIR (van
Drongelen, 2007, Chapter 8). Further, if the input x is zero mean GWN, the output
of the first-order (linear) operator G; will also be zero mean GWN. Because
(x(t —T1)) =0, the Expectation or the time average of G; is zero: that is,
E{G} = (G) = 0. Therefore G is indeed orthogonal to any constant, such as zero-
order operators Gy and Hy.

4.2.2 Derivation of the Second-Order Wiener Operator

We can obtain the expression for the second-order operator g, using a procedure
similar to the one we developed for the first-order one. Here we must deal sepa-
rately with the independence between the second-order Wiener operator and the
two lower-order Volterra operators Hy and H;, respectively.

66 Signal Processing for Neuroscientists, A Companion Volume

4.2.2.1 Orthogonality Between H, and g,
Using Equations (4.1a), (4.3), and (4.4b) we get:

(Holx()]g2[k2, k12, koc2y; x(2)])

= <ho J J ko(71, T2)x(t — 71)x(t — T2)d7 d7

o0
+ J ki) (Tx(t — 7)d7 + koa)] > =0

o0

J J ko (71, 2)(x(t — T1)x(t — 72))dT d7y

J kl(z)(T1)<x(t — T])>d7‘1 + ko(z)‘| =0 (48)

As we did in Equation (4.5), we took the constants out of the time average (...) such
that only the time series x remains within it. Because the input is zero mean GWN with
variance o7, the average (x(r — 7)) =0 and the averaged product of both copies of
input x is the autocorrelation R,, (see van Drongelen, 2007, section 8.4.1):

(x(t —1)x(t = 72)) = Rop(12 — 71) = 025(72 —T1).

Again we can see how convenient the zero mean GWN input is: the time aver-
age (x(t — 7)) vanishes and time average (x(t — 71)x(¢t — 7)) can be simplified to
the expression for the autocorrelation. (See also Appendix 4.1 for further details
on averages of products of Gaussian variables.) Therefore Equation (4.8) becomes:

|
—0o0

ko(T1,T2) (x(t — T1)x(t — 72)) d7y d7y + hoko)

g g8

- Ru(m2 —71)
o0
= 02hy J ko (71, 72)0(T2 — T1)dT1 dT2 + hoko2)

The double integral on the right-hand side can be evaluated by using the sifting
property while evaluating the integral for one of the time constants; here we inte-
grate with respect to 7, and get:

o0 o0
2ho J ko (71, 71)dT1 + hoko) = 0—| ko) = — 0> J ko(Ty,71)dT) (4.9)

Wiener Series 67

In this expression we can see that k() is indeed a derived Wiener kernel because it
is directly derived from Wiener kernel k.

4.2.2.2 Orthogonality Between H; and g,

Subsequently we substitute expression for the first-order Volterra operator (see
Equation (3.7)) and Equation (4.3) for the second-order Wiener operator in the
orthogonality condition in Equation (4.4c¢):

(Hi[x(0)]g2lk2, k12, koys x(2)])

(I

hl(v)x(t - U)d'U J J k2(7'1, Tz)x(t — Tl)x([- T2)d7‘1 dr,

> (4.10)

The above expression contains three terms. We will first show that the first and
third terms always evaluate to zero if the input is zero mean GWN.
The first term:

(

o]
+ J ki) (T)x(t — 71)dT1 + kog)

hy(V)x(t —v)dv J J ko(71,m2)x(t — 71)x(t — T2)d7; AT >
T Te (4.11a)
h(V)ky (11, 72){x(t — V)x(t — 71)x(t — 75))dvdT; dTp =0

g8
§——8

evaluates to zero because of our choice of zero mean GWN as input and the odd
product (x(r — v)x(t — 71)x(t — 73)) =0 (Appendix 4.1)—again taking advantage
of our choice of GWN as the input.

The third term in Equation (4.10):

J hi(U)(x(t — v))dv | ko) =0 (4.11b)

also evaluates to zero because (x(t —v)) = 0.
The second term in Equation (4.10) is:

< J hy(V)x(t — v)dv J kioy(T1)x(t — 71)d7y >
T T (4.11¢)

- J J I @)k x(— (= 7)) dv dry

68 Signal Processing for Neuroscientists, A Companion Volume

This second term is the only one that contains an even product of x(¢) and can be fur-
ther evaluated using (again) the autocorrelation R,, for the zero mean GWN with
variance o2; that is, (x(f — V)x(t — 71)) = Ru(T1 — v) = 028(T, — v). This gives us:

0’2 J J]’l](U)k](z)(T])(S(T] - U)d’U dT] = O'2 h[(T])kl(z)(Tl)dTl

|
g —38

In the above we evaluate the integral with respect to v by using the sifting property.
Because the first and third terms already evaluate to zero, the second term must be
zero in order to satisfy the orthogonality condition in Equation (4.4c). We accom-
plish this by setting:

k1(2) =0 (412)
Substituting the results we obtained from the orthogonality conditions (in

Equations (4.9) and (4.12)) into Equation (4.3), we find the second-order Wiener
operator Gy:

Galka; x(1)] = galka, ki(2), ko2); X(2)]

I
L5
d—3

ka(T1, T2)x(t — T1)x(t — T2)dTy dTo — 07 J ka(Ty,71)dT) (4.13)

ko2)

Note that just as the Expectation for G, is zero, the expected output of G, is also
Zero:

o0

J ka(T1, T2)x(t — T)x(t — T2)d7 AT — J ko (71, 71)dT)

o0

E
(4.14)

8 \

j;
-1

8 >

ko (71, T2)E{x(t — T)x(t — m2)}d7y d7y — 07 J ko(71, T1)dTy
— 0

As for the time average of an even product of Gaussian variables, once again
the Expectation is the autocorrelation: E{x(t —7))x(t — 72)} = 026(t1 — 7).
Substituting this into Equation (4.14) gives:

o0 o0 o]
J J ka(T1,72)0%8(T) — T2)dTy dT2 — 0° J ko (71, 71)dTy
oo e (4.15)

=02 J ka(r1,7)d7 — 0% | ka(71,71)dT) =
— o0

g

Wiener Series 69

Here we evaluated the term with the double integral using the sifting property.
Because the Expectation is zero, G, (just as Gy) is orthogonal to any constant inclu-
ding Gy. Even without knowledge about our derivation above, using the same
approach, it is straightforward to show that operator G, is also designed to be orthog-
onal to G;. This orthogonality can be evaluated via the Expectation of the product
E{Gy, G»}, which contains odd products of the random input variable x(¢). The odd
products evaluate to zero (Appendix 4.1), causing the Expectation to vanish.

In the above we showed that the first-order Wiener operator is orthogonal to the
zero-order one, and that the second-order operator is orthogonal to the first- and
zero-order ones. We will not elaborate on this here, but in general the Wiener
operators are constructed in a way that they are orthogonal to all lower-order ones.
Higher-order Wiener kernels will not be derived here, but the derivation follows a
similar procedure as described for the zero- to second-order kernels above. Details
for these derivations can be found in Schetzen (2006).

4.3 Determination of the Zero-, First- and Second-Order
Wiener Kernels

Now that we know how the expressions for the terms in the Wiener series are
developed, it is time to examine how we might determine the terms from measured
and simulated data sets. Recall also that we can determine the kernels sequentially
because of the orthogonality property. The best-known method to establish Wiener
kernels from measurements is the cross-correlation method first described by Lee
and Schetzen (1965). If we deal with a nonlinear system of order N, and we present
a zero mean GWN x at its input, we obtain output z as the sum of the Wiener
operators G,,:

N
A=Y Gulkn: x(1)] (4.16)
n=0

4.3.1 Determination of the Zero-Order Wiener Kernel

As we extend our results for the first- and second-order operators to all higher-order
ones, we find that the Expectation of all Wiener operators G,,, except the zero-order
operator Gy, is zero (see the last paragraph in Sections 4.2.1 and 4.2.2.2). Therefore,
assuming an ergodic process (allowing the use of time averages for estimating
Expectations), we find that the average of output signal z is:

N
(@0) = > (Gulkn x(1)]) = Golko; X(1)] = ko (4.17)
n=0

Thus the zero-order Wiener kernel is obtained from the mean output (i.e., the out-
put’s DC component).

70 Signal Processing for Neuroscientists, A Companion Volume

4.3.2 Determination of the First-Order Wiener Kernel

Here we show that we can get the first-order Wiener kernel of a system from the
cross-correlation between its input x and output z:

(2(D)x(t — v1)) = (Golko; x(D)]x(t — v1)) + (Giky; x(1)x(t — v1))

+ (Galko; x(D)]x(t — v1)) +
(4.13)

N
= Z (Gl x(0)]x(t — v1))
n=0

Recall that Wiener kernels are defined to be orthogonal to lower-order Volterra ker-

nels. This property may be generalized to all lower-order Volterra kernels. Since the

delay operator x(¢ — v;) can be presented as a first-order Volterra operator (Appendix

4.2), all Wiener operators G, with n=2 are orthogonal to x(f — v;) according to

Equation (4.4d). Let us check this property by examining the outcome for

(z(t)x(t — v1)) by determining the outcome for the individual operators Gy, Gi, Go, . . .
Using Equation (4.1b) for n =0:

(Golko; x(D)]x(t — v1)) = ko (x(t —v1)) =0 (4.19a)
0

Using Equation (4.7) forn =1:

(Gl 2Otz = v1)) = J k(1) (et — 7)x(t — o)) dry
L ot —v) (4.19b)
= 0'2 J k](T])(S(T] - ’Ul)dTl = O'zkl(l)l)

For the second-order kernel we already know that (G[k;x(¢)]x(t — vy)) is zero
because x(t — vy) can be considered a lower-order Volterra operator (Appendix 4.2).
However, let us check the outcome of the cross-correlation anyway.

Using Equation (4.13) for n =2:

(Galka; x(£)]x(t — v1))

ko (71, 12) (x(t — 7))x(t — T2)x(t — vy)) d7y d7s

Il
[P—
s

0

J k2(71,71)<x(l_1)1) dri =0 (4.]90)
-0 0

Wiener Series 71

The above integrals evaluate to zero because they contain time average of odd pro-
ducts of the GWN input x. We now state (without further checking) that the remain-
ing averaged products ({(G,[k,; x(¢)]x(t — v1)), n=3) are zero by using the property
of Equation (4.4d). From the three expressions in Equations (4.19a) and (4.19¢) we
conclude that only the term for n =1 is nonzero; therefore, we can determine the
first-order Wiener kernel by combining Equations (4.18) and (4.19b):

(= 1)) = 07K (1) = k() = 5 G = v1) 420)

Thus the first-order Wiener kernel can be found by the cross-correlation between
input x and output z weighted by the variance of the input.

4.3.3 Determination of the Second-Order Wiener Kernel

Using an analogous procedure for the higher-order Wiener kernels, we can find the
second-order kernel by using a (second-order) cross-correlation between output z
and now two copies of input x:

(z(Ox(t — v1)x(t — v2))

= (Golko; x(t)x(t — v1)x(t — v2)) + (Giky; x()Pe(t — v1)x(t — v2))
N

+(Galkas x(O]e(t — v)x(t =) + - =D (Gulkns X(O](t — v1)x(t — 12))
n=0

4.21)

Because x(t —vy)x(t —v,) can be presented as a second-order Volterra operator
(Appendix 4.2), all Wiener operators G, with n=3 are orthogonal to
x(t — vy)x(t — vp) according to Equation (4.4d).

Using Equation (4.1b) for n = 0:

(Golko; x()x(t — vi)x(t — v2)) = ko (x(t — v)x(t — v2)) = koo 8(v) — v2)

o28(v) — v7)

(4.22a)
Using Equation (4.7) forn =1:

(Gilky;x(0)x(t — v)x(t —v2)) = J ki(71) (x(t — 71)x(t —v)x(t —v3)) d71 =0
-0 0
(4.22b)

72 Signal Processing for Neuroscientists, A Companion Volume

Using Equation (4.13) for n = 2:

(Galko; x(1)]x(t — v1)x(t — v2))

o0
—0o0

ko (1, T2) (x(t — T1)x(t — T2)x(t — v)x(t —v2)) dry d7y
A

I

o0
_ J ka1 m1) (e — (e — va) dr
-0 o28(v) — v7) (422C)

Using Wick’s theorem (a theorem that relates higher-order moments to lower-order
ones; Appendix 4.1), the average indicated by A in Equation (4.22c) (fourth-order
correlation) can be written as:

A= (x(t — T)x(t — To)x(t — v)x(t — v2))

= (0 = 7)x(t = 72)) (x(t = v)x(t — v2))

028(t1 — 72) 28(vy —)

+ (x(t — m)x(t —vy)) (6t — T)x(t — v2))

o28(T1 —vy) 028(12 — v2)

+ (x(t = T)x(t —v2)) (x(t — T2)x(t — V1))

026(T1 —v2) a26(my —v1)

This allows us to separate Part I of the expression in Equation (4.22c¢) into the fol-
lowing three terms:

o0 o0 o0

M o* [[k(r,m2)8(T1 = 12)6(v1 —v2)dry dTo = 0* [ko(T1,71)8(v1 — v2)dTy
—00 —o0 —0o0
o0 o0

Q) ot [[ka(r1,72)8(T1 —v1)6(T2 — v2)d7T ATy = 0tka (v, 12)
—00 —00
o0 o0

3) ot | [k(r1,72)8(T1 — v2)8(12 — v1)dT) AT = 0*ka(v2, v1) = 0tka (1, v2)
—00 —00

The three integrals above are evaluated using the sifting property. Furthermore, by
using the same symmetry property of the Volterra kernels (Section 3.2.1), we have
concluded that k, is symmetrical and that the terms in 2 and 3 above are identical.

Wiener Series 73

Combining the results for 1—3 in Part I and the integral term Part II in Equation
(4.22¢) we get:

(Galkas x(Dx(t — v1)x(2 — v2))

~
=20 (v1,v2) + ot J ko (71, T1)6(v) — v2)dTy
—o0

1T

0
- o2 J ko(71,71) <x(t — vy)x(t — U2)> dry (4.224d)
0 028(vy — vy)
The integral terms in the expression above cancel so that the final result becomes:
(Galka; X(O)x(t = v)x(t = v2)) = 20 ka(v1, v2) (4.22¢)

According to Equation (4.4d) all Wiener operators for n>2 are defined so that
their contributions will be zero. This allows us to combine Equations (4.21) with
(4.22a), (4.22b), and (4.22e):

(zZ(Hx(t — vy)x(t — vp)) = koozé(vl —) + 2U4k2(U1, ;) (4.23)

Now we decide to ignore the case when v; = v, and assume that v; # v, so that
6(v1 — 1) = 0. In this case the first term on the right-hand side of Equation (4.23)
evaluates to zero. Therefore, for the off-diagonal part (v; # v,) of the second-order
Wiener kernel we have:

ko(vi,v2) = ZTL‘ (z(Dx(t —v)x(t —vp)) for vy # vy (4.24)

The second-order Wiener kernel is the second-order cross-correlation between out-
put and input weighted by 20*. Our trick to ignore the diagonally located terms
may seem a bit strange but in practical applications, the limitation imposed by
V1 # v, does not present a problem because we can compute k, for delays that
are arbitrarily close to v; = v;.

4.4 Implementation of the Cross-Correlation Method

In this section we present a practical application for finding Wiener kernels associ-
ated with a given nonlinear system (Fig. 4.2). MATLAB implementations of this
approach are in Pr4_1.m and Pr4_2.m. In principle we can use Equations (4.17),
(4.20), and (4.24) to determine the Wiener kernels. However, since our input of
random noise is necessarily finite, the subsequent kernels may not be exactly
orthogonal. To mitigate the effects of this problem, it is common practice to

74

Signal Processing for Neuroscientists, A Companion Volume

Zero mean
Gaussian nkx‘ise

IWWWWW

MlbXW‘

—

Convolution

Nonlinear ZZW
system
BERL kO Zero-order Step2 ¥
Average —» Wiener kernel
mean (zZzw) -1
v0=zzw-k0
REzs First-order
CI‘OSST L Wiener
correlation kernel
I_y Step 4 y] Step5 Y

> Step 6

L 2D cross-
» correlation

2" order
Wiener:
k2 p ernel

Figure 4.2 Lee—Schetzen cross-correlation method for obtaining the zero-, first-, second-
order Wiener kernels of a nonlinear system. Zero mean GWN is used as the input (xw) of
a nonlinear system. The average of the output (zzw) is used to estimate the zero-order
kernel kO. The residue vO (= zzw-kO) is then cross-correlated with the input to estimate
the first-order kernel k1. Subsequently, the contribution yl of the first-order kernel is
determined by convolving it with the input. Finally, the residue vl (= v0-yl) is correlated
with two copies of the input (2D cross-correlation) for the estimation of k2.

determine the kernels from low to higher orders sequentially while at each step
subtracting the contribution of the lower-order kernels from the output (—1, +
operations in Fig. 4.2). For example, before computing &, it is common practice to
subtract k, (the DC component) from the output to obtain a zero-order residue vy.
This residue vy (=z — ko), instead of the output z, is then cross-correlated with the
input to obtain the first-order kernel k; (recall Equation (4.20)):

fa01) = & olo)x(t — 1)

(4.25)

To estimate the first-order kernel’s contribution (y;) to the output, the first-order
kernel k; is convolved with the input x: y; = x & k;. This first-order contribution y,
is then subtracted from the zero-order residue v, to obtain the first-order residue v;.

Wiener Series 75

The residue v; (=z — ko — y;1) is now cross-correlated with two copies of the input
to estimate the second-order kernel k»:

ky(vy,1v) = ZL (vi(Ox(t — v)x(t — vyp)) (4.26)

o4

Note that as in Equation (4.24), the above expression is valid only for off-diagonal
values with This procedure is followed in the MATLAB programs and is
depicted in Fig. 4.2. The input is variable xw ; the output is zzw . The zero- and first-
order residues are vO and vl , respectively. The Wiener kernels are kO, k1, and k2.

An example of a MATLAB implementation can be found in Prd4_Il.m
and Prd4_2.m. A snippet of the latter is shown here.

90 %0 Yo o To Yo Yo To To Yo Yo Fo Fo Yo Yo Fo Fo Yo Yo Vo To Yo Yo Yo Fo Fo Yo Yo Fo Fo Yo Yo To Yo Yo Yo Yo Yo
9o %0 %0 %o %0 %o %0 %0 %0 % %0 % % Estimation of the Wiener kernel estimation using
90 %0 Fo %0 To Yo Yo To To Yo Jo T Y0 %o % % the Lee, Schetzen cross-correlation method
Yo %0 Yo o %o Yo Yo Yo To Yo Yo Yo To Yo Yo Fo To Yo Yo Yo To Yo Yo Yo To Yo Yo Yo To Yo Yo Yo To Yo Yo Yo Yo Yo
% First create a set of input output using random noise

xw=randn(10000,1); % create array with Gaussian white noise
XW=XW-mean(xw);

N=length(xw);

st=std(xw);

figure;subplot(2,1,1),plot(xcorr(xw), k’);

title(‘Autocorrelation of the Input Shows a Random Noise Characteristic’);
subplot(2,1,2);hist(xw);

title(‘Amplitude Distribution of the Input —> Gaussian’);

yw_previous1=0;
yw_previous2=0;
for n=1:length(xw);
ywhl(n)=(A1*yw_previousl+xw(n))/(Al1+1); % the 1st order operator
yw_previousl=ywhl(n);
ywh2(n)=(A2*yw_previous2+xw(n))/(A2+1); % the linear component of
% the 2nd order operator
yw_previous2=ywh2(n);
zzw(n)=ywh1(n)+ywh2(n)"2; % 1st order component+the squarer
end;

figure; hold;

plot(xw, ‘k’);plot(zzw, ‘t’)

title(‘Input (black) and Output (red) of a Wiener System”)
xlabel(‘Time (ms)’);ylabel(‘Amplitude’)

76

Signal Processing for Neuroscientists, A Companion Volume

%% % % %% The Lee Schetzen Cross-correlation Method
%
% Step 1 (Fig. 4.1): Determine 0-order Wiener kernel
%
kO=mean(zzw)

yO=ones(1,length(xw))*kO0;

% Step 2 (Fig. 4.1): Subtract kO from the response to find residue % vO0
%
v0=zzw-KkO;

% Step 3 (Fig. 4.1): Estimate k1 by first-order
% cross-correlation of vO and input

%

for i=0:T-1
temp=0;
for n=i+1:N
temp=temp+v0O(n)*xw(n-i);
end;
k1(+1)=temp/(N*st"2);
end;

figure; plot(k1);
title(‘first-order Wiener kernel’)

% Step 4 (Fig. 4.1): Compute the output of the first-order
% Wiener kernel using convolution
%

for n=1:N;
temp=0;
for i=0:min([n-1 T-1]);
temp=temp-+k1(i+1)*xw(n-i);
end;
y1(n)=temp;
end;

% Step 5 (Fig. 4.1): Compute the first-order residue
%
vl=v0-yl;

% Step 6 (Fig. 4.1): Estimate k2 by second-order cross-correlation
% of vl with the input

%

for i=0:T-1
for j=0:i
temp=0;
for n=i+1:N

Wiener Series 77

temp=temp+v1(n)*xw(n-i)*xw(n-j);
end;
k2(@i+1,j+1)=temp/(2*N*st"4);
k2G+1,i+1) = k2(i+1,j+1);
end;
end;

figure; surf(k2(1:T,1:T));
title(‘second-order Wiener Kernel’);
view(100,50);

The MATLAB script Pr4_2.m computes the Wiener kernels for a combined sys-
tem such as the cascade discussed in the previous chapter (Fig. 3.2C). In this exam-
ple we use low-pass filters for the linear components and a squarer for the
nonlinear one (Fig. 4.3).

In the example in Fig. 4.3, the Lee—Schetzen method is used to determine the
Wiener kernels (Fig. 4.3C). Here the kernels are used to predict the output by
convolving the input with the kernels and adding up the contributions from each
kernel (Fig. 4.3D). It can be seen that the predicted and recorded output match very
well; this can be further confirmed when we compute the % variance that is
accounted for (VAF) as:

VAF = (1-(std(zzw-est)*2)/(std(zzw)"2))*100

Here zzw and est are the measured and estimated output, respectively, and std is
the MATLAB command to compute the standard deviation.

4.5 Relation between Wiener and Volterra Kernels

To summarize the preceding sections, a principal problem with the Volterra series
is the dependence between the convolution-like terms (operators) in the series. This
dependence prevents us from determining each term separately; this problem is
resolved by Wiener’s approach. To achieve the independence between terms,
Wiener modified the individual terms in the series (Wiener operators are nonhomo-
geneous) and adapted the input (zero mean GWN). Volterra operators H, have
Volterra kernels (hg, hy, hs, . ..), whereas Wiener operators G, have Wiener kernels
(ko, k1, ka, . ..) as well as derived Wiener kernels (ko1), ko), K1¢2), - - -)-

Both Wiener and Volterra kernels are equivalent in the sense that the Wiener ker-
nels can be determined from the Volterra kernels and vice versa. In our examples
above we considered the zero- to the second-order kernels; let us assume that we are

78 Signal Processing for Neuroscientists, A Companion Volume

Second-order system

A) Input Low-pass filter
(A) Inp RC-35ms ~ynil (B) Output
W s 7ZW W
1V]
Low-pass filter IE

RC=50ms —> Squarer
wh2

k0= 0.035

First-order kernel

(Zcm—m'dcr kernel H
VAF=98.4%

=
o

Amplitude (V)
-
S

:
H
0.1 i

(C) Wiener 0
kernels 0 10 20 30 est WWM

Time (ms)

Second-order kernel

(D) Predicted
output

e
1
2
S o

5)

Amplitude (V)
-
S
S =

Time

e f

0

; 2
30
10 20 o
Time (ms) h

Figure 4.3 Wiener kernels of a second-order system similar to the one depicted in

Fig. 3.2C; the example is computed with Pr4_2.m. (A) The input signal xw is GWN. (B)
The output signal is zzw . (C) zero-, first- and second-order Wiener kernels computed by the
MATLARB script using the procedure depicted in Fig. 4.2. (D) The predicted output est on
the basis of the Wiener kernels approximates the measured output well: the variance
accounted for VAF is 98.4%.

looking into a second-order system so that these are the only kernels available (all
higher-order kernels are zero). In this case we have the following kernel components:
ko, koc1) koc2), k1, k1(2), and k,. In this example the Volterra kernels hy—h, are:

/’l() = k() + k()(]) + k()(z) = k() + ko(z)
h1 = kl + k1(2) = k1 (427)
]’lz = k2

The above equations for hy—h, simplify because ko, and k) are zero (see
Equations (4.6) and (4.12)). So in a second-order system the relationship between
the Wiener and Volterra kernels is fairly straightforward. Had we looked into a
higher-order system, for example in a third-order system, we would add k3, to A
in Equation (4.27). The expressions for sy and h, remain unaltered because the
other derived third-order kernels ko) and ky(3, are zero (Schetzen, 2006). Again,

Wiener Series 79

the rationale for this redistribution of kernel components is to create independence
between the operators in the series (the condition in Equation (4.4d)). For example,
by moving the term ko, from the zero-order expression (h) to the second-order
Wiener operator, we satisfy the independence between the second-order Wiener
operator and H, (Equation (4.8)). Considering the relationships in Equation (4.27),
it is unsurprising that a comparison between our findings for the Wiener kernels k;
and k,, obtained with Pr4_2.m (depicted in Fig 4.3C), and the Volterra kernels 4,
and h,, found in Pr3_2.m from the previous chapter, reveals a close resemblance.

From this chapter we can deduce that to obtain the Volterra kernels, we must
know the system’s order as well as all the Wiener kernels. In an experimental situa-
tion one usually does not know the system’s order; at best one could estimate the
order by establishing the number of Wiener kernels required to (sufficiently)
approximate the system’s output signal. In most experimental studies the Wiener
kernels (up to the second or third order) and their contributions to the system’s out-
put are determined without any further attempt to identify the Volterra kernels.

4.6 Analyzing Spiking Neurons Stimulated with Noise

When studying intracellular or extracellular recordings of a spiking neuron while
stimulating it with noise, one might (of course) use the raw output trace (including
the action potentials) and relate this to the input as we have done previously
(Fig. 4.2). However, instead of using the neuron’s raw output signal, we can use
alternative methods to represent the action potential activity. In the following discus-
sion we assume that timing is the only relevant information associated with a neuro-
nal spiking event. Methods that consider only spike timing can be applied to both
intracellular and extracellular recordings of single cells. When dealing with high
levels of spike activity it is common to represent the cell’s output as the instanta-
neous spike rate (defined as (interspike interval) ') plotted vs. time; this procedure is
shown in Fig. 1.1. Another frequently used technique is to bin the spike train and
plot the number of spikes per bin against the time-stamp of the bin. However, if spike
rates are low, both of these methods are impractical because we obtain time series
that are either extremely unevenly sampled or too sparsely populated with values
other than zeros and ones. In general, if one is interested only in the spike train, it
seems reasonable to present the output time series of N spikes occurring at times #; as
a series of delta functions, thereby ignoring small subthreshold fluctuations of the
neuronal response or noise in the recordings (chapter 14 in van Drongelen, 2007).

With a little bit of work, the Schetzen correlation method can be adapted to ana-
lyze spiking neurons stimulated by GWN. An example for the auditory system was
described by Recio-Spinoso et al. (2005). In this study, the auditory system is stim-
ulated by auditory noise and the authors represent the neuron’s output y (a spike
train of N spikes) as a series of Diracs at times #;:

N
W)= 8t —1;) (4.28)

i=1

80 Signal Processing for Neuroscientists, A Companion Volume

Following our result in Equation (4.17), the zero-order Wiener kernel is the time
average of the system’s output:

N
ko = (y(t)) = <Z ot — fi)> (4.292)

i=1

The time average (...) can be written as an integral over the interval [0,7], divided
T

by epoch length T (that is (1/T) [---):
0

1T N | N T
TJZ 8(t — 1;)de = ?Zjé(t — 1;)dt (4.29b)
pi=1 i=ly

Here we interchanged the integration and summation operation. The timing #; for each

spike i is between 0 and 7, so consequently the Dirac 6(t — ¢;) is located within the
T

[0,7) integration interval and the integral [(7 — #;)dr evaluates to 1 (see Section 2.2.2
0

in van Drongelen, 2007). Therefore, the expression in Equation (4.29) simply counts
the number N of action potentials divided by the time epoch 7. Thus the zero-order
Wiener kernel evaluates to N/T, which is the neuron’s mean firing rate Ny:

ko =

Nl =

= No (4.30)

The first-order Wiener kernel is given by Equation (4.20):
1
ki(m) = —5 (Ox(t = 71) (4.31)

If we rewrite the time average (...) as an integral and substitute the output z in
Equation (4.20) with the spike time series y (given in Equation (4.28)), we get:

Time average

A N
k(1) = % % <Zé(t—t,~)> x(t—71) dr
0

i=1 .
input

output

T N
(Z 8(t — ti)x(r — m) dr (4.32)
o \i=1

1
o2 |T

Wiener Series 81

In the above we included input x in the summation. Now we again interchange the
summation and integration operations:

2T i=1
No

1=

N
ki(t1)=— [1 Zjé(t—ti)x(t—ﬁ)dt ‘| = ——N NZx(t, T1) (4.33)
//

x(t; = T1) Ritm)

Here we evaluated the integral using the sifting property and multiplied the
expression by N/N to allow substitution of Ry(7;), the reverse-correlation func-
tion (see section 14.5 in van Drongelen, 2007). The reverse-correlation function
is also known as the revcor, which can be determined by averaging the stimulus
time course that precedes each spike (spike-triggered average). If we think of
the zero-order kernel as the time average (mean firing rate) of the system’s out-
put, we can conceptualize the first-order Wiener kernel as the average stimulus
value some time 7; before spike i occurs (i.e., x(#; — 71)). Simplifying notation,
we finally get:

k() = 2 Ri(1) (4.34)

The second-order Wiener kernel, on the other hand, represents the mean of
the product of two copies of the input x (at two times 7, and 7,) before the occur-
rence of a spike. The second-order Wiener kernel as given by Equation (4.24)
becomes:

Falr1,72) = 5 OOt = 7t =) (439)
In Recio-Spinoso et al. (2005), the above equation is corrected by subtracting
the zero-order kernel ky from the output. This makes sense for the following
reasons. As discussed above, subtracting the contribution of lower-order kernels
from the output is common practice (Fig. 4.2). In Equation (4.32) we did not
correct the output for the first-order kernel estimate because theoretically its
contribution should be independent from the zero-order one (ko) is zero,
Equation (4.6)). However, we do correct for the DC (constant) term in the sec-
ond-order estimate because a nonzero zero-order component ko, does exist (see
Equation (4.9)). We will not correct y for the first-order contribution to k;
because theoretically k) is zero (Equation (4.12)). Therefore, y in Equation

82 Signal Processing for Neuroscientists, A Companion Volume

(4.35) can simply be corrected for the zero-order contribution N, by using the
output y minus the zero-order kernel:

N
WD) —ko =D 8(t—1) = No (4.36)

i=1

By doing this we get:

o(r1,m2) = 1<l26<z—n) No

i=1

x(t — 7)x(t — 7'2)> (4.37a)
Writing the time average in the integral notation, we get:

T
- L J lz 8t —1;)— No] x(t — 71)x(t — 75)dt (4.37Db)

204 —

We can write the expression as two separate integral terms:

1 N t
— JZ 8(t — ti)x(t — 71)x(r — 72)dr — JNox(t — r)x(t — 72)dt
0

204
i=1

(4.37¢)

By changing the integration and summation order in the first term and applying the
sifting property for the Dirac, we get the following expression for the first term:

11 51— (s — RN o B
AT ZJ (t = 1))x(t — T1)x(t — 72)ds —F?;x(h T)x(t; — 72)

x(t; — TO)x(t; — 72)

(4.38a)

As we did with the first-order kernel earlier, we can multiply by N/N to simplify
notation by using the expression for the second-order reverse correlation

Ry(71,72) = (1/N) Z x(t; — T1)x(t; — 72). Finally, the first term in Equation (4.37c)

simplifies to:
11 1y

204 T
NU

Zx(t, TR T2) = A R,) (4.38)

Ry(71,72)

Wiener Series 83

The second term in Equation (4.37c¢) is:

T
11
= ZT‘A?J _N()x(t - Tl)x(l — Tz)dl
0 T
_ M1 _ M
== Ffjx(t—ﬁ)x(t—n)dt == Fqb(h —71) (4.39)
0
A2 —T1)

T
The expression (1/7T) [x(t — 71)x(t — 7,)dt is the autocorrelation ¢(7, — 71) of the
0

input noise. Note that unlike the variable #; (representing the spike times) in the
expression for the reverse correlation R,, the time variable ¢ is continuous in ¢.
Combining the results for the first and second terms we finally get:

ol) = 5 5 (Ralr1,72) = 9472 = 71)] (4.400)

The above approach was used by Recio-Spinoso et al. (2005) to determine the first-
and second-order Wiener kernels of different types of auditory nerve fibers. An
example of the second-order kernel for a so-called low-characteristic frequency
nerve fiber is shown in Fig. 4.4. If the input is zero mean GWN, we have
&(ty — 1) = 0?6(12 — 71). Then, because we decided to ignore values where
T1 =T, as we did in Equation (4.24), we get:

N,
ka(71,72) = 2—004132(71,72) for 71 # (4.40b)

Time (ms)

Time (ms)
Amplitude (spikes/s.(s.v)‘z)

Time (ms)

Figure 4.4 Example of a second-order kernel of an auditory low-characteristic frequency
nerve fiber. (A) A 2D color-coded presentation of k,. (B) The corresponding 3D plot of k,.
(Panel A color in electronic version.) (From Recio-Spinoso et al., 2005)

84 Signal Processing for Neuroscientists, A Companion Volume

4.7 Nonwhite Gaussian Input

Zero mean GWN was selected as input signal for the determination of the Wiener
series. In real applications, however, this is not feasible because the bandwidth of
the noise is limited. In some cases, the bandwidth of the noise at the input may be
wide enough relative to the bandwidth that is relevant for the system under investi-
gation that we may consider the noise as white. However, there are situations
where such an assumption is not valid. In these cases the input noise is band-
limited (colored). The effect of using colored noise as input will be analyzed and
discussed in the following paragraphs.

Recall that in Equation (4.40a) we left the noise autocorrelation term (7, — 71)
in the expression. In Equation (4.40b), under the condition that the input is zero
mean GWN, we ignored the correlation term because o2§(7, — 7;) evaluates to
zero for 7 # 7,. In general, when we consider systems, the noise presented at the
input may be zero mean and Gaussian, but nonwhite (Gaussian colored noise
[GCN]). The term “white” indicates that all frequencies are equally present in the
noise signal, while in colored noise not all frequencies are equally present (i.e., we
are dealing with filtered white noise). The filter effect has a direct consequence on
the autocorrelation of the noise input (Fig. 4.5A and B). However, both colored
and white noise may be Gaussian, a property that is related to their amplitude dis-
tribution (Fig. 4.5C and D).

In the following we assume that we have determined the zero-order kernel as
the mean output and that we deal only with demeaned signals for input and out-
put. Under this assumption, the cross-correlation ¢, between GCN input x
and output z can be developed similar to the procedure shown in Equations
(4.18)—(4.20):

N

(V1) = (Ot = 1)) = > (Gulks X(O}K(t = V1)
"0 (4.41)

= J k(1) (x(t — Tox(t —v))dri = | ki(T1)@(T1 — v1)dTy

J—

The above shows that the cross-correlation ¢, is the convolution of the first-order
kernel k; with the input autocorrelation ¢, ,:

¢xz = kl ® ¢xx (44221)

Therefore k; can be obtained from the associated deconvolution. In the frequency
domain convolution and deconvolution can be simplified to multiplication and divi-
sion, respectively (section 8.3.2 in van Drongelen, 2007). The equivalent of
Equation (4.42a) in the frequency domain therefore is:

(I)xz = Kl (Pxx _)Kl = (I)xz/q)xx (442]3)

Wiener Series 85

Autocorrelation Figure 4.5 Autocorrelations

(A and B) and amplitude

= '1(A) GWN 11(B) GCN distributions (C and D) of

fg_’ 08 038 sampled Gaussian noise

ERY 06 signals. The cases for GWN

g 0.4 04 are depicted in (A) and (C).

0 s The same properties for

25; 0 loeogs il o w,,m?TTﬂ TTTT%MW colored (filtered) noise are
shown in (B) and (D).

-20 ~10 0 10 20 20 10 0 10 20
Lag (ms) Lag (ms)

Amplitude distribution
(D) GCN

1200f 1200

800

800

400 400

Frequency of occurrence

0
-4 2 4 -4 2 0 2 4

Amplitude Amplitude

Here ®x, ®xx, and K; are the Fourier transforms of ¢xz, ¢xx, and ki, respectively.
Now recall that the cross- and autocorrelation in the frequency domain can also be
expressed as products (section 8.4.2 in van Drongelen, 2007) X'Z and XX (where
X and Z are the Fourier transforms of x and z, respectively, and * indicates the
complex conjugate). Substituting these expressions for cross- and autocorrelation
we get:

K =X'Z/X'X (4.42¢)

In real applications we can use this expression to determine K; by averaging @y,
X *Z) and Pyy (X *X) for each frequency f over a number of epochs:

Ki(f) = (X(F) Z(F) /(X () X(F)) (4.42d)

Here the angle brackets (...) indicate the average procedure in the frequency
domain. Note the similarities and differences between this expression and the one
for coherence (section 8.5 in van Drongelen, 2007). The inverse Fourier transform
of K; in Equation (4.42d) gives k; for a nonlinear system with GCN input. A simi-
lar development for the second-order kernel gives us:

(X)) X(R)" Z(f; ff2)>
2X(H) X)X (B) X(5))

K>(fi.f2) = (4.43)

and taking the inverse Fourier transform of the above expression then gives k.

86 Signal Processing for Neuroscientists, A Companion Volume

4.8 Summary

As we demonstrated in this chapter, the determination of the Wiener kernels can be
obtained from input—output correlation. These scenarios for GWN input are
depicted in Fig. 4.6, both for the case with continuous output (Fig. 4.6A and B)
and for spike train outputs (Fig. 4.6C—F).

Panels (A) and (B) in Fig. 4.6 show first- and second-order correlation proce-
dures: the multiplication of z(f)x(r — 1) and z(#)x(t — 71)x(t — 72), respectively.
Because the cross-correlations are determined by the integration of these products,
one may envision moving the multiplications over the signal while summing

Input: GWN output: Continuous Figure 4.6 Summary diagrams of the characterization
of a system with GWN input. Diagrams of the cross-
correlation procedures for systems with a continuous
output (A, B) or spike train output (C—F). (A), (C),
and (E) show the first-order case and (B), (D), and (F)
represent the second-order procedure. (C) and (E)
© ” depict two alternative visualizations for obtaining the
/W - first-order cross-correlation for systems with spiking
Ef(t—f,) output. In (C), the input is shifted by amount 7,
X whereas in (E), x(r — 7) at time ¢ = 1; is directly
determined without shifting x (represented by the left-
pointing arrow). For the spike output case, this
procedure in (E) can be followed (as an alternative to
the standard procedure in C) since the cross-
correlation product is zero when there is no spike at
: time #;. The analogous alternatives for determining the
? X second-order correlation is shown in (D) and (F). See
text for further explanation.

2nd order

1st order
=
=X
&
4
N

z(t) |
5 z
o
& x(t-1,)
"g X
N X
x(t-1,)
Input: GWN output: Spikes
ti
(E)
+
ke z
3 — —
7
= 7
x(t,—71) 22
ti
. ()
b z
o e I apes e
L] i
g
IS

Wiener Series 87

(integrating) the resulting products. The delays 7,7, 72 can be visualized by shift-
ing input x relative to output z (Fig. 4.6A and B).

If the system’s output z is a spike train, as shown in (C) and (D), the correlations
required to compute the kernels are identical: that is, the input can be shifted rela-
tive to the output to obtain x(¢r — 7), x(t — 71), and x(t — 7;). However, this proce-
dure can also be depicted as reverse correlations of each spike at time ¢;, as shown
in (E) and (F). Instead of shifting the input as we have just depicted, the reverse-
correlation procedure is shown here with left-pointing arrows. Note that this is just
another way of representing the shifts 7, 7, 75, and that it is not essentially differ-
ent from the visualization in (C) and (D). However, the fact that we only consider
the products z(#)x(t — 7) and z(t)x(t — 71)x(t — 72) at ¢; is essentially different from
the case when we have a system with continuous output (as depicted in (A) and
(B)) and is caused by the fact that we model the spike train with a series of Diracs.
In between the spikes (i.e., in between the unit-impulse functions), the output z(¢) is
considered zero and the products z(#)x(t — 7) and z(t)x(zt — 71)x(t — 72) vanish.

From the examples in this and the previous chapter, it may be clear that comput-
ing the kernels in the series can be a demanding task computationally. Recently,
Franz and Scholkopf (2006) described an alternative method to estimate Volterra
and Wiener series. Details of their approach are beyond the scope of this text, but
the essence is to consider discrete systems only (which is not really a limitation if
one wants to compute the series). In this case, the Volterra or Wiener series opera-
tors can be replaced by functions for which the parameters (the kernel parameters)
can be estimated with regression techniques (see Section 2.4.1 for an example of a
regression procedure). This approach is computationally more efficient than the
Lee and Schetzen (1965) cross-correlation method (described here in Sections 4.3
and 4.4) and makes the estimation of high-order kernels feasible. An example of an
application of this method to EEG is described in Barbero et al. (2009).

Appendix 4.1

Averages of Gaussian Random Variables

In this appendix we discuss averages of GWN variables because their properties
are important for the development of the Wiener series approach (especially in
demonstrating that the operators are orthogonal to lower-order operators). Because
it is beyond the scope of this text to provide a detailed proof of all properties pre-
sented here, for further background see appendix A of Schetzen (2006). The rela-
tionship between higher- and lower-order moments, which we will discuss below,
is also known as Wick’s theorem (see, e.g., Zinn-Justin, 2002).

Let us consider ergodic and zero mean GWN represented by variable x: that is,
the expected value of x can be replaced by its time average, which is zero (zero
mean):

Ex(t—7)}=x(t—71))=0 (A4.1.1)

88 Signal Processing for Neuroscientists, A Companion Volume

The product (x(z — 71)x(t — 7)) is equal to the autocorrelation and also to the auto-
covariance (because the noise is zero mean):

(x(t — 11)x(t — 13)) = 025(7'1 —77) (A4.1.2)

Because this may not be immediately apparent, let us define +— 7, =T and
Ty — 71 =7. We can now rewrite the autocorrelation in Equation (A4.1.2) as
((T)x(T —7)). In the case where 7=0 (7,=7;), we get the expression
(X(T)x(T)) = (x(T)*) = E{x(T)*}. For GWN with zero mean, this is the definition of
the variance o of signal x (see section 3.2 in van Drongelen, 2007, on statistical
moments). Again, since we are dealing with GWN (which gives us a random signal
x), two different samples of x are uncorrelated; that is, for 7 # 0 (72 # 71), x(T) is
not correlated with x(T — 7). This means that:

(x(T)x(T — 7)) =E{x(T)x(T — 1)} =0 fort # 0.

Combining the above findings for 7, =71 and 7, # 7; we can use the expression
in Equation (A4.1.2) with the Dirac delta function. Let us look into an example in
which we scale the correlation coefficient between *£1. A scatter plot showing cor-
relation for a GWN signal is shown in Fig. A4.1.1. The plot of the signal against
itself with zero lag (7 =0) is depicted in Fig. A4.1.1A and obviously all points lie
on the y = x line, corresponding to a correlation coefficient of one. An example for
a delay of 7=1 is shown in Fig. A4.1.1B; here the points are distributed in all
directions corresponding to the absence of correlation (correlation coefficient of
zero). This behavior is confirmed in a plot of the autocorrelation of GWN: we have
a correlation coefficient of one for a lag 7 of zero and a correlation coefficient of
zero otherwise (see also Fig. 4.5A).

The findings from the paragraph above can be generalized to evaluate higher-
order products between GWN signals (Schetzen, 2006). All averages of odd pro-
ducts evaluate to zero (e.g., (x(t — 71)x(t — 72)x(t — 73)) = 0), while it can be shown

3
(A) .

-3 -2 -1 0 1 2 3

Figure A4.1.1 Correlation for y(z), a digitized GWN signal of 1000 points. (A) A plot of
y(#) vs. y(1). (B) A plot of y(¢ + 1) vs. y(2).

Wiener Series 89

that higher-order even products are equal to the sum of all distinct pair-wise pro-
ducts. For example:

(x(t = 7)x(t — To)x(t — 73)x(t — 74)) = (x(t — 7)x(t — T2)) (x(t — 73)x(t — 74))

+ (x(t — 71)x(t — 73)) (x(t — To)x(t — 74)) + (x(t — T)x(t — 74)) (x(t — T2)x(t — 73))
(A4.13)

If you are interested in the formal proof of the above generalizations for the odd
and even products, please see Appendix A in Schetzen (2006).

Appendix 4.2

Delay System as Volterra Operator

We used a specific delay operator earlier for creating the Hilbert transform in
Chapter 1. Here we will comment on delay operators in general. Creation of a
delay v in x(¢) is an operation by which we obtain x(¢r — vy); this operation can be
considered a 1D, first-order Volterra operator (Fig. A4.2.1A). Higher-dimensional
(2D and 3D) delay systems can be represented by second- and third-order Volterra
systems (Fig. A4.2.1B and C), etc. The 1D operator D, can be characterized by the
notation:

D [x(1)] = x(t — v1) (A4.2.1)

Because this is a first-order system, this operation can be represented by a
convolution:

0
Dy[(0)] = x(t — vy) = J h(r)x(e =)dr (442.2)
-0
(A) ©
Adjustable
x(t) x(t _Ul)
delay U, Adjustable
/ delay ¢
1D delay system L
(B) j
Adjustabl
x(1) de{;}s’ f;Jze —x(t =) x(1 —v,) X(1 —v;)
A Adjustable
() i delay U N iR N| Adjustable
\J Adjustable /9< Mi=v)x(t=v,) | delay vy
delay U,
3D delay system

2D delay system

Figure A4.2.1 Examples of delay systems as Volterra operators.

90 Signal Processing for Neuroscientists, A Companion Volume

From Equation (A4.2.2) we may conclude that the weighting function (the UIR) of
the 1D system is (1) = 8(7 — vy), thus resulting in:

x(t—wvy) = J O(t —vx(t — 7)dr (A4.2.3)

Similarly, the delay operators for 2D operator D, and 3D operator D3 can be
defined as D;[x(f)] = x(t — v1)x(t — v2) and Ds[x(t)] = x(t — v)x(t — v2)x(t — v3),
respectively. In Fig. A4.2.1B and C we can see that each of the delays in the
higher-dimensional system is a first-order operator. In the second-order (2D) sys-
tem the UIRs are 6(7 — v;) and (7 — v,); in the third-order delay system, the UIRs
are 6(7 —vy), 8(T — v,), and 8(7 — v3). Similar to Equation (A4.2.3), these opera-
tions can be represented with the convolution-like integrals of the Volterra series
(see Equation (3.4)); for example, in the 2D case:

x(t_Ul)x(t_Ul):J J O(r1 —v)o(Ta —wv2) x(t—T)x(t — T2)d7y dT2

2nd order Volterra kernel hy(vy,v2)

(A4.2.4)
where the second-order Volterra kernel is:
ha(vi,v2) = 6(T1 — v1)d(T2 — v2) (A4.2.5)
In the 3D case the third-order Volterra kernel for a delay system is:
ha(v1,v2,v3) = 6(11 — v1)d(T2 — v2)8(T3 — v3) (A4.2.6)

Similarly, we can extend this approach to an n-dimensional delay operator:

hy(v1, 02, ..., 0,) = 8(T1 —01)0(T2 — V2)...0(T, — V) (A4.2.7)

5 Poisson—Wiener Series

5.1 Introduction

In the previous chapter we considered systems with continuous input signals. One
such continuous input is Gaussian white noise (GWN), which allows us to create a
series with orthogonal terms that can be estimated sequentially with the
Lee—Schetzen cross-correlation method (also shown in the previous chapter). This
approach can be adapted when the system’s natural input consists of impulse trains
such as a spike train. Identifying a system with an impulse train as input will be the
topic of this chapter. We will elaborate on the approach that was described by
Krausz (1975) and briefly summarized in Marmarelis (2004).] Our task at hand is
to develop a Wiener series-like approach that describes the input—output relation-
ship of a nonlinear system when an impulse train is at its input. To create random-
ness at the input, we use an impulse sequence that follows a Poisson process (see
Section 14.2 in van Drongelen, 2007).

5.2 Systems with Impulse Train Input

The approach is to create a set of operators that are orthogonal to all lower-order
Volterra operators, which is analogous to the development of the Wiener series
with a GWN input. We will call these operators “Poisson—Wiener operators” to
distinguish our current development of operators (using impulses as input) from
that of Chapter 4 (using GWN as input). For each order n, we will symbolize these
Poisson—Wiener operators as P,. Similar to the Wiener series, we define the output
z of a nonlinear system as the sum of a set of these operators, each depending on
kernel p,, and impulse train input x. For a system of order N we have:

N
)= Pulpa:x(t)]
n=0

This equation for the Poisson—Wiener series is similar to the ones for the Volterra
and Wiener series, but as we will see there are important differences.

As we described in the previous chapter, the approach of the Wiener series
works so well because of the specific characteristics of the GWN input signal:
(x(t —711)) =0, (x(t — 71)x(t — 7)) = 0>6(T5 — T1), etc. (see Appendix 4.1). When

" If you compare the following with Krausz’ original work, please note that the derivation in Krausz
(1975) contains minor scaling errors (as was also noted by Marmarelis, 2004).

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00005-X
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00005-X

92 Signal Processing for Neuroscientists, A Companion Volume

P”:JX‘ J’j Do T)X (=T)X =T,)x(t -1,)dT, dry.d,

+ :[Jj Py @ 15T 20T,)X =T)Xt =7,)x(t —1,) dt, dv,..dT, + py,
Input —— Nonlinear system — Output -

| Poisson—Wiener
x(1) - £ + P TN
0
o

(RY=(:00) (H, R)=0 (H, P.)
Operator properties & (H, P)

&
P)=0
(=) x(—7,)) =md &, ~%a)) (B)=0

t=1,)x(t—7,) x(t —7,)) = m3 (¥, ~7,)8

H,y B)=0
=0

it properties (x(1-t,)=0

Lee-Schetzen cross—correlation method

P, +— (z()x(t—7))..x(t-7,))

Figure 5.1 Diagram of the procedures used here to develop the Poisson—Wiener series,
the properties of its operators, and the method to determine the kernels. Just as for the
Wiener series, the input signal’s properties play a crucial role in the development of

the Poisson—Wiener approach.

the system’s input changes to a series of impulses, these relationships no longer
hold and we can no longer apply the equations we derived previously. To resolve
this, we must start from scratch and first determine expressions for the averaged
products (x(t — 71)), (x(t — 71)x(t — 73)), ... for the Poisson process. Subsequently
we must use these new results to redo the Gram—Schmidt procedure for the deriva-
tion of our series’ orthogonal terms, as was done in Section 4.2. Finally we must
redevelop Lee—Schetzen’s cross-correlation method in a similar fashion as the pro-
cedure described in Section 4.3.

A schematic overview of the procedures we develop in this chapter is depicted
in Fig. 5.1. Similar to the properties of Wiener series, the output z of a nonlinear
system can be described by a (Poisson—Wiener) series in which:

(1) Operators P, are heterogeneous (top-right in Fig. 5.1)

(2) Each operator is orthogonal to all lower-order Volterra operators

(3) Except for Py, the Expectation (or time average) of all operators will vanish

(4) Except for pg, the kernels can be determined from the cross-correlation of input and
output (see also the Lee—Schetzen method introduced in Chapter 4).

In each of the above properties, it is important to know the Expectation or time
average for the input and its cross products (see Input properties in Fig. 5.1).
Therefore we will first determine these time averages associated with the input in
Section 5.2.1 before we derive the Poisson—Wiener kernels in Section 5.2.2 and
adapt Lee—Schetzen’s cross-correlation method for determining the kernels from
recorded data in Section 5.3.

5.2.1 Product Averages for the Poisson Impulse Train

Let us use signal y, a train of Diracs with amplitude A that follows a Poisson
process with rate p (Fig. 5.2A). The first moment or mean p of impulse train X can
be established by a time average over a sufficiently long interval 7. In such

Poisson—Wiener Series 93

(A) (D) Nonlinear system with impulse input
A -
S S,

(&) ke _l § \ o
/&
S b)

Figure 5.2 Impulse train inputs following a Poisson process can be used to identify
nonlinear systems. A standard impulse train x with amplitude A is shown in (A). A
demeaned version of this time series x is depicted in (B). The signal in (C) is the same
demeaned series x but is now presented as a series of weighted unit impulses (each
impulse is represented by a vertical line). The procedure depicted in (D) shows the steps
we use to identify a nonlinear system with such a train of impulses. First we pretend
that the input is demeaned by part of the system (subsystem S;) by subtracting pA, the
mean of . This demeaned series x is then used as input to subsystem S,. We actually
determine the operators P, and kernels for S, instead of the whole system S; + S5, but if
we can characterize S, we have characterized the whole system, since S; is a simple
subtraction. (E) depicts the output z of the system to the impulse input.

N=pT
an interval we expect to find N = pT impulses in the input signal y= >
i=1
T N=pT
A8(t — ;). The time average of the input signal is (x) =(1/T) [> Aé(r —t,)dr.
0 i=1

Assuming we can interchange summation and integration we get:

pn={x)=

N

i=1

———
=1

N:pTT A
Jé(t —tydt = TpT = pA (5.1a)
0

The integral in Equation (5.1a) evaluates to one if the delta function is located
within the interval T (i.e., 0=t =T). We could have done the computation of
the mean in a simpler way because we know how many impulses we expect in
epoch T and the amplitude of each impulse. The number of impulses (each with
amplitude A) during this interval is p7, resulting in the following expression for
the first moment:

1
— pTA = pA 5.1b
T i p. (5.1b)

T
1
=) = —J pT AS(r) di =
0 I II

94 Signal Processing for Neuroscientists, A Companion Volume

Part I in the equation above is the number of expected impulses over interval 7 and
Part II is the amplitude for each impulse. Unlike the first moment for the GWN sig-
nal we used in the previous chapter, this result is not zero. The following step is
therefore critical for the rest of our approach: because the nonzero result for the
first moment would complicate matters, we create a new signal x, which is the
demeaned version of x (Fig. 5.2B):

x(1) = x(1) — pA (5.1¢)

We can check that this generates a zero first moment for time series x(f):

| T rn=pr 1 N=pT % T
(x)= ?HZA(SQ—;,) pA|dt= T JA(S(t—t,)dt —JpA dr
oL =t =1y 0 (5.1d)
A
1 1

(pAT — [pAf])) = ?(pAT — pAT)=0

Here we interchanged the integration and summation operations. Subsequently, we
evaluate the integral with the delta function and find that it is equal to the constant
A if the delta function falls within epoch T. Alternatively, we can also approach the
estimation of (x) a bit differently. As you can see in Fig. 5.2C, we can consider the
demeaned signal as a series of Diracs (a sampled version of the signal) with ampli-
tude A — Ap for each spike, and amplitude — Ap in between the spikes. Over inter-
val T the number of spike occurrences is again pT and the number of nonspike
occurrences is (1 — p)T.

T
1
;j [T (A— Ap)é(t) + (1= T (—Ap)b(e) Jdr
—— ——
(7)_ 111 v (516)
= %J[pAT 0*AT — pAT + p*AT] 8(r)dt =0
0 0

Parts I and III above are the expected number of spiking and nonspiking events,
respectively, and Parts II and IV are their respective amplitudes. We will use the
approach in Equation (5.1e) to compute the higher-order products in the following.
The bottom line is that by using the impulse series x as input, we have (just as for
GWN) zero for the first moment m;:

m = (x) =0 (5.1f)

Poisson—Wiener Series 95

The next expression we must evaluate is the cross-correlation (x(t — 71)x(t — 72)).
To start, we can look into the second moment (x*) of the impulse train in Fig. 5.2C.
As shown above in Equation (5.1e), the number of events N is the event probability
p times the interval T, and the nonevent probability equals (1 — p)T (Parts I and III,
respectively). For the second-order moment, we will square the associated amplitudes
(Parts II and IV):

~ — —_—— ——
I I I v

T
)= 1T @-apren + (1 pr (- anrso Ja (522
0

Note that by squaring the amplitudes we weight the unit impulse function 6(¢), but
we do not need to square the delta function itself. It is relatively simple to see why
this is not required. Imagine the input as the series of Dirac deltas weighted with
different amplitudes shown in Fig. 5.2C. The sum of all amplitudes x divided by
the epoch length T is the first moment, the sum of all x* divided by T is the second
moment, the sum of all x> divided by T is the third moment, and so on (see Section
3.2 in van Drongelen, 2007). To sample the amplitudes of x, xz, x3, ... we only
have to weight a single Dirac with the desired amplitude (if you need to review the
properties of the Dirac 4, see section 2.2.2 in van Drongelen, 2007). Simplifying
Equation (5.2a), we get:

T

1

= TJ[pAzT —2p2AT + p* AT + p* AT — p*A*T) §(r)de
(

pA2T — p2 AT

T
1 1
= JTpAz(l — p)d(r)dt = T [TpA*(1 - p)]
0
Finally, the expression for the second moment m, becomes:

my = (x*) = pA*(1 = p) (5.2b)

The next step is to determine the second-order cross-correlation using a time
average of the product x(f — 7)x(t — 72) :

T
(x(t — T)x(t — 72)) = ?J [pT (A —Ap)*8(t — 71)8(t — 72)
0 \1’/ 1l (5.3a)
+ (1= p)T (—Ap)°8(t — 71)8(t — 72) 1dt
111 v

[y

96 Signal Processing for Neuroscientists, A Companion Volume

Parts [-IV are similar to the ones in Equation (5.2a). The product of I and II, the
first term in the integral in Equation (5.3a), evaluates to:

1
T [pT(A —Ap)*|8(r1 — T2)
and the product of IIT and IV, the second term in Equation (5.3a), becomes:

[0 = A% 8y)

Combining the two terms above, we get the result for the second-order cross-
correlation:

| (et — T)x(t = 72)) = pA>(1 = p)é(T1 — T2) = myb(11 — 72) | (5.3b)

This result is not unexpected since Equation (5.3b) becomes the expression we
derived for the second moment m, (Equation (5.2b)) when we have the case
71 =7,. Just as was the case for GWN, this expression will evaluate to zero
otherwise.

For computing the third moment m;, we can use the same approach as in
Equation (5.2a):

T)~

T
o) = J[pT (A—Ap)8(t) + (1—p)T (—Ap)8(t) 1dt (5.4a)
0 1 11 1T v

If you do the algebra, you will find that this results in:

ms = (x’) = pA’(1 = p)(1 = 2p) (5.4b)

The third-order cross-correlation is:

(x(t — 7))t — T2)x(t — 73))
T

_ %JLPT/(A — Ap)38(t — T)8(t — T2)8(t — 73) (5.5a)
0 1 1

+ (L= p)T (= Ap)*8(t = T1)6(t — 72)8(t — 73) 1dt
m v

Poisson—Wiener Series 97

in which Parts I-IV can be evaluated similarly to the ones in Equation (5.3a).
Accordingly, the result becomes:

(x(t — T)x(t — To)x(t — 73)) = pA>(1 = p)(1 = 2p)8(11 — T2)8(T| — T3)

Combined with Equation (5.4b), we get:

[(x(t — 7)x(t — 72)x(t — 73)) = m3b(T1 — 12)8(11 — 73) | (5.5b)

for the third-order cross-correlation. As you can see, due to the presence of two
Diracs, the third-order product is only nonzero for 7, = 7, = 73.

In the above cases, things are relatively simple because we set the first moment
to zero by demeaning the input impulse train. This approach ensures that any prod-
uct that contains E{x} or (x) (the Expectation or time average of x) vanishes (see
Appendix 5.1). Appendix 5.1 explains that for the fourth moment m,, we have to
deal with additional terms that include E{x?}. If you are mainly interested in how we
will next make Poisson—Wiener operators orthogonal, you can accept the results for
my and the fourth-order product below and skip the appendix. The expression for my
is obtained in the same manner as the lower-order moments above.

my = (x*) = pA*[p(1 — p)* + (1 — p)(1 —2p)’] (5.6a)

The time averaged fourth-order cross-correlation critically depends on the
values of the delays 71 — 74 in a piece-wise manner (see Appendix 5.1, Equation
(A5.1.5)):

(x(t — T)x(t — To)x(t — T3)X(t — T4))

TI=Ty=T3="T4 :mgd(T1 — 12)0(T1 = 73)0(T1 — T4)
Ti=Trand T3 =T4 m%é(ﬁ —T72)0(T3 — T4) (5.6b)
Ti=713and T, =T4 m%é(ﬂ —13)0(T2 — T4)

71=7'4and72=73 :m§6(71—7'4)6(7'2—73)

0 otherwise

5.2.2 Orthogonal Terms of the Poisson—Wiener Series

In this section we use the same procedure (Gram—Schmidt orthogonalization, see
Arfken and Weber, 2005) as in Chapter 4 to derive the orthogonal series that can
characterize a nonlinear system given our impulse input. As depicted in Fig. 5.2D,
the Poisson—Wiener series represents an output signal z consisting of the sum of
operators P,

2(t) = Po[po; x(1)] + Pi[p1; x(1)] + Pa[p2; x()] + -+ + Pu[pu; x(1)] (5.7a)

98 Signal Processing for Neuroscientists, A Companion Volume

in which the heterogeneous operator P,, is defined as:

Pn[pag;xg)] .

= J J J Pu(T1,72, oy T)x(t — T)X(t — 7). . x(t — 7,,)d7 dT3. . ATy,

— 0 —
N e’
nXx

o 0 0

+ J J J Prn—1)(T1,T2, s Ty)Xt = TO)X(t = T2).. X(t =T, 1)d71 dTo. . AT, 4

-0 =0 —®w
—_————
(n—1)X

(5.7b)

Here we have Poisson—Wiener kernel p,, and derived Poisson—Wiener kernels p,, —
@i=1, 2, ..., n). In Sections 5.2.2.1—-5.2.2.3, we will derive the expressions for the
Poisson—Wiener operators in a similar fashion we did for the Wiener series in
Chapter 4.

5.2.2.1 The Zero-Order Poisson—Wiener Operator

Similar to the zero-order Wiener operator, we define the zero-order
Poisson—Wiener operator Py as the output’s DC component p:

Po[po; x(t)] = po (5.8)

In this equation, we use p, to symbolize the zero-order Poisson—Wiener kernel to
distinguish it from the zero-order Volterra and Wiener kernels hy and ko,
respectively.

5.2.2.2 The First-Order Poisson—Wiener Operator

Now we use the orthogonality between Poisson—Wiener operators and lower-order
Volterra operators to derive the expression for the first-order Poisson—Wiener
kernel p,. Similar to Equation (4.5), we have:

Poisson—Wiener Series 99

o0

(Holx(@)]P1[p1; x(@)]) = <h0 J pi(T)x(t — T1)dT1 + poqy > =0

—0o0

P (5.9)

=hy p1(7'1)<x(t - 7'1)>d7'] +[70(1) =0

§—8

(Py)

The subscript 0(1) indicates that pg(;, is a derived kernel: a zero-order member of
the first-order operator P;. Note that we took all constants out of the time average
operation, and only the (time dependent) input time series x remains within the
time average brackets (...). Since input x is a demeaned impulse train following a
Poisson process, we know that (x(r — 7)) =0 (see Equation (5.1f)). Consequently
the integral evaluates to zero, and we therefore conclude that the orthogonality
requirement demands that:

(5.10)

Substituting this result in the general expression for our first-order

©
Poisson—Wiener operator Py[p;; x(t)] = J" pi1(T1)x(t — T1)d71 + poq), we obtain:

— 0

Pi[p1;x(1)] = Jpl(Tl)x(t_Tl)dTl (5.11)

Note that this result is very similar to the first-order Wiener operator (Equation
(4.7)). Furthermore, we see that E{P} = (P;) =0: that is, the Expectation or time

o0
average of Py, (j p1(71)x(t — 71)d7), evaluates to zero because (x(t —71)) = 0.
— o0

You can also see in Fig. 5.2D that this kernel is not the first-order kernel
for our system but for the subsystem indicated by S, (the whole system is
S1+ 8,). Because we know that the other part, subsystem S, is a simple subtrac-
tion (—pA), we have effectively characterized the first-order component of the sys-
tem under investigation.

5.2.2.3 The Second-Order Poisson—Wiener Operator

To establish the expression for the second-order operator we follow the same proce-
dure as for the Wiener kernels: we demand both orthogonality between the second-
order Poisson—Wiener operator and a zero-order Volterra operator plus orthogonality
between the second-order operator and a first-order Volterra operator.

100 Signal Processing for Neuroscientists, A Companion Volume

First, for orthogonality between Hy and P,: using the orthogonality condition
we get:

(Ho[x(D)]P2[p2; x(1)]) =0

That is:

© 0
:< ho J JPZ(Tl,TZ)X(t_Tl)x(t_TZ)dTId7'2+ Jpl(z)(ﬂ)x(f—ﬁ)dﬁ +poe) >=0
— o0

Hy —00 — 0

Py

— o0

l J J D271, T2)(x(t— T)x(t—72))d7 1 dT2

=0 (5.12)

J P1)(T1)(x(t—71))dT1 +po)
— 0

Similar to the composition of the Wiener operator G,, the components pg) and p;
(2 are derived zero-order and first-order members of operator P,. As we did in
Equation (5.9), we took all constants out of the time average (...) and only kept the
time series x within it. Again, because the input is a zero mean impulse train fol-
lowing a Poisson process, the term with the single integral in the expression above
is zero (since (x(t — 7)) =0, Equation (5.1f)). The term with the double integral is
dictated by the averaged product of both inputs (x(# — 71)x(¢ — 73)), which is given
by Equation (5.3b). Therefore the above expression becomes:

[oe] o0
ho J J p2(71, 72){x(t — T)x(t — 72))dTy A2 + hopoga)
— 00 — 0
o0 o0
=myhy J J P71, 72)8(T — T2)dT) AT + hopo) =0
-0 —w

This equation can be evaluated by using the sifting property for one of the time
constants; here we integrate with respect to 7, and get:

mahy J p2(71,71)dT1 + hopo) =0—|po) = — Mo J pa(r,T)dr | (5.13)
— 0 — o0

As you can see, the kernel py,) is derived from p,.

Poisson—Wiener Series 101

To further express our second-order Poisson—Wiener operator, we will next
demand orthogonality between second-order operator P, and first-order Volterra
operator H,. Similar to Equation (4.10), we have:

(H1[x(1)]P2[p2; x(1)]) = 0,
which can be written as:
J hy(U)x(t— v)dv} X

< o W 0 =0
J J AT, To)x(t — T)x(t — T2)dT dTy + J Pi)(T)x(t—71)dT| + po)
— 00 — 0 — 0

(5.14)

Equation (5.14) contains three terms that we will consider separately.
The first term is:

<_

hi(V)x(t — v)dv J J pa(T1, T2)x(t — 71)x(t — T2)d7) AT >

In the Wiener series development, for systems with GWN input, the odd product
(x(t — v)x(t — 71)x(t — 72)) = 0. Here, however, the odd product is given by
Equation (5.5b). This gives:

hi(V)pa(T1,72) <x(t —vx(t — 7)x(t — 7'2)> dvdry dr;p

m36(v —11)6(v — 72)

ghgg
\ -
8 38

o o0 0

ms J J J hi(V)pa(T1, T2)8(v — T1)8(v — T2)dv d7y dT>
T (5.15a)
- J hi(v)p2(v, v)dv

— 0

The second term in Equation (5.14) is:

< J h(v)x(t — v)dv

- J jhl(v)pw(m)<x<r—v)x<r—f.)> dv dr,

myé(v—T1)

o0

J pi(T)x(t — 71)d7 >

— 0

102 Signal Processing for Neuroscientists, A Companion Volume

Using the expression for the second-order correlation in Equation (5.3b) we can
simplify to:

o0 o0 o0
m J J hi(V)p1e)(T1)d(v — T1)dv dT| = my J hi(V)p12)(v)dv (5.15b)

Note that we used the sifting property of the Dirac to simplify the double integral.
Finally, the third term in Equation (5.14) is:

il

hi(v)x(t — v)dv p0(2)> = J h(V){x(t — v))dv| pop) =0 (5.15¢)

This evaluates to zero because (x(t — v)) = 0 (Equation (5.1f)).

Substituting the results from Equations (5.15a), (5.15b), and (5.15c) into
Equation (5.14), we have:

o0 o0
m3 J hi(V)p2 (v, v)dv + my J hi(V)p1)(v)dv =0
— o0 — o0

From this we may conclude that the derived first-order member of the second-order
operator is:

m
Piay(W) = — — pa(v,v) (5.16)
ny

Again, you can see that the derived kernel p,(, is indeed derived because it fully
depends on p,. Using the results in Equations (5.13) and (5.16), we get the expres-
sions for the second-order Poisson—Wiener operator in terms of the second-order
Poisson—Wiener kernel p,:

o0 o0
Pz[pz;x(l‘)] = J J pz(Tl, Tz)x(l‘ — T]))C(t — Tz)dTl d’7'2
- T (5.17)
_ nmﬁ J pa(7, T)x(t — 7)dT — my J pa(T, 7)dT '
2 — o0 — o0
+ jp”g)x(t—‘r)dr *roe)

Poisson—Wiener Series 103

Note that the above result for the second-order Poisson—Wiener operator differs
from the second-order Wiener operator (Equation (4.13)) (here p;() is nonzero).
This difference is due to the fact that the cross-correlation results for a demeaned
train of impulses following a Poisson process are different from a GWN signal (see
Section 5.2.1 and compare Appendices 4.1 and 5.1). Using the expressions for
(x(t —71)) and (x(t —7)x(t —73)), it is straightforward to show that
E{P;} = (P>) =0.

5.3 Determination of the Zero-, First- and Second-Order
Poisson—Wiener Kernels

In this section we will compute the Poisson—Wiener kernels using the same cross-
correlation method first described for the Wiener kernels (Lee and Schetzen, 1965).
If we deal with a nonlinear system of order N, and we present a demeaned impulse
train x following a Poisson process at its input, we obtain output z as the sum of
the Poisson—Wiener operators (Fig. 5.2D):

N
)= Pulpusx(0)] (5.18)
n=0

In the following example we will describe how to determine the zero-, first- and
second-order Poisson—Wiener kernels.

5.3.1 Determination of the Zero-Order Poisson—Wiener Kernel

Similar to the Wiener operators, the Expectation of all Poisson—Wiener operators
P,, except the zero-order operator Py, is zero. Therefore, assuming an ergodic pro-
cess (time averages are allowed for estimating the Expectations), we find the aver-
age of output signal z:

N
(2(0) = (Pulpa; x(1)]) = Polpo; x(1)] = po (5.19)

n=0

Thus the zero-order Poisson—Wiener kernel is equal to the mean output (z(7)).

5.3.2 Determination of the First-Order Poisson—Wiener Kernel

Similar to the procedure for the Wiener kernels depicted in Fig. 4.2, the first-order
Poisson—Wiener kernel of a system can be obtained from the cross-correlation
between its input and output:

104 Signal Processing for Neuroscientists, A Companion Volume

(2(D)x(t — v1)) = (Polpo; x(D)x(t — v1)) + (P1[p1; x(O)]x(t — v1))

+ (Pa[pa; x(O)]x(t — vy)) + -+
N

= (Pu[pn; x()]x(t — v1))
n=0

(5.20)

Recall that Poisson—Wiener kernels are defined to be orthogonal to lower-order
Volterra kernels, and recall that the delay operator x(r — v;) can be presented as a
first-order Volterra operator (see Appendix 4.2). Therefore, all Poisson—Wiener
operators P, with n =2 are orthogonal to x(f — v), and we only have to deal with
operators of order n =0 and 1.

Forn=0:
{(Polpo; x()x(t — v1)) = po (x(t —v1)) =0 (5.21a)
0
Forn=1:

(Pilpi; x(Ox(t —v1)) = | pi(m1) (x(t — 70)x(t — v1)) d7y

0 myd(t1 —vy)

my J pi(11)6(11 —vy)dT = mypi(vy) (5.21b)

]

Here we used Equation (5.3b) to simplify <x(t — 7)x(t — v1)> and then used the
sifting property of the Dirac to evaluate the above integral. From the results in
Equation (5.21b), we conclude that the only nonzero part in Equation (5.20) is the
term for n = 1; therefore, the first-order Poisson—Wiener kernel becomes:

1
(2(Ox(t — v1)) = mopy (vy) —» | P1(V1) = —_ (2(O)x(t = vp) (5.22a)

Therefore, the first-order Poisson—Wiener kernel is the cross-correlation between
input and output weighted by the second moment m;, of the input.

We can use the properties of the Dirac to rewrite the cross-correlation expres-
sion, because the input is an impulse train. If we substitute the expression for the
input in Equation (5.22a) with a sum of Diracs and present the time average (...)

T
with an integral notation (1/7) [---, we get:
0

input: x(f —vy)

N=pT

pien =200 lA S 81— o)~ pA | dr
5 =1

Time average

Poisson—Wiener Series 105

Assuming we may interchange the integration and summation and separating the
terms for the impulse train (the Diracs) and the DC correction (pA), this evaluates
into two integral terms:

A 1N pA 1 ft
pwn =21 Jz(t)5(t— f—odr — ——jz(t)dr
ny T = nmoy T
0 0
——
Z2(t; +vy) (2)

When using the sifting property it can be seen that the first term is a scaled average
of z(#; + v1) and may be rewritten as:

A pT 14

PA 1%
ZP N o) = ey = £
m T T 2 2t +vy) m (V1) m «(v1)

Cu(vy)

Note that we used the first moment 1 = pA of the original train of impulses x here
(Equation (5.1a)). Combining the above we get:

pi(vr) = mﬁz[czxm) ~ (2)] (5.22b)

N=pT
The average (1/pT) > z(#; + vy) is the cross-correlation C,,(v1) between the input
i=1

impulse train x and the system’s output z. Unlike the reverse correlation we dis-
cussed in section 14.5 in van Drongelen (2007) and applied in Section 4.6,
we deal with the forward-correlation here (see Fig. 5.5E). In the examples in
Chapter 4, we used reversed correlation because the impulse train was the output
caused by the input and we had to go back in time to reflect this causality. In this
case the role is reversed: the impulse train is the input causing the output.

5.3.3 Determination of the Second-Order Poisson—Wiener Kernel

Using a procedure analogous to that developed for the Wiener kernel in
Section 4.3.3, we find the second-order Poisson—Wiener kernel by using a second-
order cross-correlation between output and input:

(z()x(r — v)x(t — v2)) = (Polpo; x(D]x(t — vi)x(t — v2))
+(P1[p1; x(D)]x(t — v1)x(t — v2))
+ (Pa[p2; x(D]x(r — v)x(t — v3)) + -+ (5.23)

N

= (Ppu[pn; x(@)]x(t — v1)x(t — v2))

n=0

106 Signal Processing for Neuroscientists, A Companion Volume

Since x(# —v;)x(t —v;) can be presented as a second-order Volterra operator (see
Appendix 4.2), all Poisson—Wiener operators P, with n=3 are orthogonal to
x(t — v1)x(t — v;) (because all Poisson—Wiener operators are orthogonal to lower-
order Volterra operators). Furthermore, since we use a Poisson process as input, we
will not allow impulses to coincide. Therefore, we neglect all results for equal delays
v] = v, in the evaluation of Equation (5.23). Taking into account the considerations
above, we now analyze the second-order cross-correlation for n =0, 1, 2, and v; # v;.
Forn=0:

(Polpo; x(O]x(t — v)x(t — v2)) = po (x(t — v)x(t — v2)) = maped(vy — V1)

my6(vy —v2)

(5.24a)

We can neglect this term because, due to the Dirac, it evaluates to zero for

U1 75 V.
Forn=1:

p1(71) (x(t = T7)x(t — v)x(t — v)) d7y

m36(T1 —v1)o(T1 — v2)

(Pilp1; x(@)x(t — v)x(t — v2)) =

8

=m3p1(v1)é(v) — v2) (5.24b)

Due to the Dirac, this expression also evaluates to zero for v; # v, and can there-
fore be ignored.

For n =2, we compute (P>[py;x(t)]x(t — v1)x(t — v,)) using Equation (5.17) and
we get:

P71, 72) (x(t = T)x(t — T2)x(t — v)x(t — v2)) dTy dT2
Equation (5.6b)

Tw

| .

I

o0
ms3
- J p2(11,71) (x(t — 71)x(t — v)x(t — vp)) d7y
2
- m38(t1 — v1)8(T1 — 1)

I

P21, T1) (x(t — v x(t — vy)) dTy (5.24¢)

myd(vy — v2)

— my

[R—

Poisson—Wiener Series 107

Term I in Equation (5.24c) is the most complex one and potentially consists of
four terms (Equation (5.6b)). Given that we have four delays 7, 72, v, v2 and
taking into account the condition v; # v, there are only two combinations that
remain to be considered: 7y =wv; and 7, = v, and 7| = v, and 7, = v;. The first
term can now be rewritten as:

J J P71, m2) (x(t — T)x(t — T2)x(t — v)x(t — vp)) dryd7y

m%ﬁ(ﬂ —v1)d(T2 —v2) + ;11%5(‘r1 —02)d(T2 —)

J J P71, T3 8(T1 — v1)8(T2 — v2) + MyE(T1 — v2)6(T2 — v1)]dTy dTo

=m; J J 271, 72)6(T1 — v1)6(2 — v2)dTy AT

p2(vi,02)

2

+ ny pg(Tl, ’7'2)5(7’1 - ’U2)5(’7’2 - ’Ul)dTl dT2

|
d—s

p2(v2,01)

The double integral above can be evaluated by sifting for 7; and 7,. Because we
assume that the kernel is symmetric around its diagonal, we can use
pa2(v1, v2) = pa(v;,v1), and the above evaluates to:

2m%p2(v1 ,12) (5.244d)

Term II in Equation (5.24¢) can be written as:

3

my

2
m
P11, T1)m3(T) —v1)0(T) —vr)dT = — ipZ(UlaUI)é(Ul —)

d—3

(5.24e)

Due to the delta function 6(v; — v7), this part can be neglected since it is zero for

(%] 75 Uy,
Term III in Equation (5.24¢) evaluates to:

o0 o0
—ny J pa(T1, T)MR8(v) — vy)dT = — m) J P21, T1)é(v) — vy)dT
— o0 — o0

(5.24f)

108 Signal Processing for Neuroscientists, A Companion Volume

This term can also be ignored because it equals zero for v; # v;.

To summarize Equation (5.24), the only nonzero term for v; # v, is the result in
Equation (5.24d). Substituting this result into Equation (5.23), we get an expression

for our second-order Poisson—Wiener kernel p»:

(z(t)x(t — U])x(l‘ —) = Zm%pz(vl ,Up) >

pa(v1,v2) = Z(f)x(f v)x(t —v2)) forvp # va

2m2

(5.25a)

Using the fact that the input x is a train of impulses, we can employ the same treat-

ment as for Equation (5.22a) and rewrite Equation (5.25a) as:

Ist copy of the input: x(f — vy)

N=pT

T
p2(vi,v2) = Jz(t) lA Z ot —t;—vy)— pA

X

2nd copy of the input: x(— v;)

N=pT

A 8t —1—)~ pA|dt
j=1

This expression generates four terms:

A2 1 T [N=pT N=pT
> ZTJZ(t)[Zé(t v])] lZm vz)]dt

pA21 [K 12
DT o t ot —t; —wvy)dt = ith:
II: Zm%TJ ()Z (o1 = 5 Cavn), wi
1
Co(v) = — Z(t; + vy) and p = pA
T 4
pA2 N=pT 2
II: m 2TJZ(I)Z5(I—5 Uy)dt = —— Coi(v2), with:
2
1 pT
Cou(v2) = o7 Z(tj + v2) and p = pA
=1
R 1
IV: —=|z20dt= ——
o 7 [ear= 22)

0

Poisson—Wiener Series 109

Terms II-IV were evaluated in a similar fashion as in the first-order case in
Equation (5.22). After changing the order of the integration and summations, term
I above evaluates to:

T
N=pT N=pT
AZ 1 4 p

S feme - vost g - e
0

— =
2my T i=1 j=1
2t +v)ét — 1+ vp —v2)
A2 p2T2 1 N=pTN=pT qu
= —— 2(t; +v)o(t; —t; + v —vy) = = TCo(v1,12)
2m% T p2T2 = ; i i J Zm% X

Con(v1,02)

In the above expression we substituted p for pA (Equation (5.1a)); this is the first
moment of the original impulse train x. Combining the results from the four terms
I-IV above, we have:

2
Pa(V1,02) = T (TCou(01,02) = [Car01) + Cav2) = (D) forvi v (5.250)
2

The second-order correlation C,.(vi,v2) is the average of (1/p*T?)
N=pT N=pT

>> > z(t; + vy) under the condition set by the Dirac 6(z; — ¢t + v; — v;). This
=1 j=1

condition is equivalent to sampling the values of output signal z when
t; —tj +v; — vy = 0. This indicates that:

(1) The delay between the copies of the input is A =wv, — v; =t; — t;, which means that the
delays under consideration for creating the averages are equal to the differences A
between spike times 7, t;.

(2) There is a relationship between the individual delays given by v, =t —t; + vy, which
represents a line in the vy, v, plane at 45° and with an intercept at t; — ;.

This conditional average is therefore a slice through p,(vy,v;) defined by this line.
The delays we consider are strictly given by #; —; and the input to the averaging
procedure is z(#; + v;). A representation of C,, is shown in Fig. 5.5F. To keep
Fig. 5.5F compatible with the symbols in the other panels in this figure, the delay
vy is replaced by 7 in the diagram.

5.4 Implementation of the Cross-Correlation Method

Because there is no standard command in MATLAB to create a series of ran-
domly occurring impulses following a Poisson process, we include an example
function Poisson.m to create such an impulse train (for details see Appendix
5.2). In MATLAB script Pr5_1.m, we use this function to create the input (in

110 Signal Processing for Neuroscientists, A Companion Volume

Figure 5.3 Example of input (pulses,
. lower line (black)) and output (dashed line
(red)) traces. The (green) line, following
the output closely, is the output
contribution from the Poisson—Wiener
kernels. The vertical scale is in arbitrary
units (AU). The VAF by the model output
in this example was 97.6%. All traces
were generated by Pr5_1.m.

L 1]

this example, impulses with amplitude of 2 units) to a nonlinear system consisting
of a first-order component (a low-pass filter) and a second-order component (a
low-pass filter amplifier with 5X amplification plus a squarer), similar to the sys-
tem in Fig. 3.2C. Typical traces for input and output are shown in Fig. 5.3. By
following the same steps depicted in Fig. 4.2 for the Wiener kernels, but now
using Equations (5.19), (5.22b), and (5.25b), we find the Poisson—Wiener kernels
for the system. Note that the cross-correlations are impulse-triggered averages in
this case.

The following MATLAB code is part of script Pr5_1.m and shows the compu-
tation of the first-order cross-correlation and first-order kernel pl according to
Equation (5.22b) (Step 3 of the Lee—Schetzen method depicted in Fig. 4.2).

% Step 3. Create the first order average (see Fig. 4.2)

%
Czx=zeros(T,1);
for i=1:length(time)-10 % to avoid problems by ignoring last

% 10 impulses
Czx=Czx+vO0(time(i):time(i)+T-1);
end;
% Now we scale Czx by the # of spikes (i.e. length(time) — 10, which is the
% # of trials in the average. Using Equation (5.22b):
pl=(ul/m2)*((Czx/(length(time)-10))-mean(v0)); % Note that all scaling
% parameters
% ul, m2, and mean(v0)
% are at the ms - scale !
figure;
plot(pl)
title(‘first order Poisson-Wiener kernel’)
xlabel(‘Time (1 ms)’)
ylabel(‘Amplitude’)

Poisson—Wiener Series 111

The percentage of variance accounted for (VAF, see Section 4.4 for its defini-
tion) by the output from the Poisson—Wiener kernels in this example is typically in
the high 90 s. This VAF number is fairly optimistic because, as can be seen in the
output trace in Fig. 5.3, a large number of points with a good match between output
(dashed red line) and predicted output (green line) are zero or close to zero; the
predicted output we mainly care about is (of course) the activity caused by the
input (impulses) and not the rest state.

5.5 Spiking Output

In Chapter 4, we considered continuous input to nonlinear systems with both contin-
uous and spiking output. So far in this chapter, we have analyzed nonlinear systems
with spike train input and continuous output. The possible cases one might encoun-
ter in neuroscience are summarized in Fig. 5.4. As you can see, the only case
remaining for our discussion is a nonlinear system with both spike input and output
(Fig. 5.4D). We can compute the Poisson—Wiener kernels by using the previously
found expressions (Equations (5.19), (5.22b), and (5.25b)). In this case, kernel pq
can be determined by the time average of the spike output. Just as in Equation (4.30)
po evaluates to the mean firing rate of the output. In Equations (5.22b) and (5.25b)

Stimulus Response
Presynaptic Presynaptic
(A) current potential
injection
! Analog ~Analog

e

Presynaptic Spike train
(B) current

injection Analog —~Discrete

Incoming Presynaptic
spike potential
© train
Discrete +~ Analog
Incoming Outgoing
(D) spike Spike
train Train

Discrete -+ Discrete

[y

Figure 5.4 Types of signals one may encounter for a system’s input and output in
neuroscience. In this example a synapse is used to symbolize the four different possibilities
(A—D). The incoming signal may be a GWN signal (analog—presynaptic current injection) or
a train of impulses following a Poisson process (discrete—incoming spike train). The output
can be a postsynaptic potential (analog) or a spike train (discrete). (Fig. 11.1 from Marmarelis
and Marmarelis (1978). With kind permission of Springer Science and Business Media.)

112 Signal Processing for Neuroscientists, A Companion Volume

Input: GWN output: continuous Input: GWN output: spikes
t!
(A ©)
5 2 | |
k= z z
> ix(t-1) <+ <« <+
= X ~
% 2 x(6,~1) *
(B) "
5 /% (D) | |
k<] z I !
5 E)(X(Z*Tx) : 41‘ %
= el ;
Ay 7 X / ; ’ X
T2 x(t-1,) x(t,-7,)
x(t, —75,)
Input: Impulses output: continuous Input: Impulses output: Spikes
(1, +7) 2(t, +1)
X
5 (E) : G) *l L |
5 z %
t, X ‘
(H) | |
5 z
S
=2F X
=
(o}
X X

Figure 5.5 Summary of the procedures for determining first- and second-order
cross-correlation for the different scenarios depicted in Fig. 5.4. In all panels, x (green) is the
input and z (red) is the output. The panels for GWN input (A—D) are identical to Fig. 4.6A,
B, E, F. Panels E—H show the procedures for impulses as input. See text for further
explanation.

we can see that computing first- and second-order kernels require first- and second-
order cross-correlations C,, and C., (in this case spike-triggered averages). The
procedures for obtaining these cross-correlations are depicted in Fig. 5.5G and H.
The first-order cross-correlation is a spike-triggered average; we use the input spikes
as the trigger (Fig. 5.5G). The second-order cross-correlation is triggered by coincid-
ing spikes of two copies from the input, one of which is shifted by amount A
(Fig. 5.5H). The procedures for obtaining these cross-correlation functions are very
similar to the ones discussed for a system with a spike input and continuous output,
as you can see by comparing panels E with G and F with H in Fig. 5.5.

5.6 Summary

The procedures for determining the first- and second-order cross-correlations for
the four scenarios in Fig. 5.4 are summarized in Fig. 5.5. The part of this

Poisson—Wiener Series 113

figure for GWN input is identical to the overview in Fig. 4.6. The panels for
spike input show the procedures discussed in this chapter. In practice, the cross-
correlations required for computation of the Poisson—Wiener kernels can all be
obtained from spike-triggered averages (Fig. 5.5E—H). As such it is very similar
to the procedure we followed for nonlinear systems with GWN input and spike
output in Chapter 4 (Fig. 5.5C and D). The difference is that here we use the
input spikes, instead of the output spike train, to trigger the average; hence, we
determine forward cross-correlation instead of reversed correlation. This reflects
that the systems are considered causal (output is caused by input). Thus, a sys-
tem’s output shows reversed correlation with the input (Fig. 5.5C and D) and its
input is forward-correlated with its output (Fig. 5.5E—H). The procedures fol-
lowed to obtain the cross-correlations for systems with both continuous input
and output are depicted in Fig. 5.5A and B. Here the correlation products are
not spike-triggered and the delays of the copies of the input are determined for
each sample of the output z(r) (Chapter 4).

Appendix 5.1

Expectation and Time Averages of Variables Following a Poisson Process

The results for time averages of GWN are well known and were briefly summarized
in Appendix 4.1. For the application of impulse trains we use a different input signal,
the Poisson process (see section 14.2 in van Drongelen, 2007). Products of variables
following a Poisson process are important for determining the Poisson—Wiener
kernels when impulse trains are used as input to a nonlinear system. A similar deri-
vation was described by Krausz (1975) in his appendix AZ Assuming that x(7)
follows a Poisson process, we can define the first moment as the Expectation of

x: E{x}. Because the signal is ergodic, we may replace this with a time average
T

(x) =(1/T) [x(t)dt (see section 3.2 in van Drongelen, 2007, if you need to review
0

ergodicity and time averages). To simplify things further down the road, we start
from a demeaned impulse train so that (see Equation (5.1)):

E{x}=(x)=0 (AS5.1.1)

The Expectation of the second-order product, or cross-correlation, of variable
x is E{x(t — 71)x(t — 72)} (for cross-correlation, see section 8.4 in van Drongelen,
2007). Note that the expression we use here is slightly different from Equation
(8.13) in van Drongelen (2007): we substituted r — 7, and ¢t — 7, for #; and 1,
respectively. Because x follows a Poisson process, the factors x(r —7;) and

2 Please note that the derivation by Krausz contains minor errors for the moments 2, and ms, leading to
differences in the scaling of several of the derived expressions.

114 Signal Processing for Neuroscientists, A Companion Volume

x(t — 1) are independent if 7 % 7,; in this case we may replace the Expectation
with two separate ones—that is:

E{x(t — m)x(t — 12)} = E{x(t — 7)}E{x(t — 1)} =0 for 7| # 1

The above product evaluates to zero, because the first moment of our impulse train
is zero. The expression E{x(t — 71)x(t — 73)} is only nonzero if 7 = 75, and (again)
because x is ergodic we may apply a time average (x(t— 71)x(t —72)). In
Section 5.2.1 you can see that the final result for the Expectation/time average of
the second-order product becomes:

|E{X([—T1)x(t — 7))} = (x(t — T))x(t — 72)) = mab(11 — 72) | (A5.1.2)

The Expectation of the third-order product E{x(r — 71)x(t — 72)x(t — 73)}
equals zero by independence if 7 # T, # T3, since in this case we can rewrite the
expression as:

E{x(t — m)x(t = m2)x(t — 73)} = E{x(t — T)}E{x(t — T2}E{x(t — 73)} = 0
for 7y # Ty # T3

If only one pair of 7’s is equal (i.e., 71 =72 # T3 Or T| # T, = T3), we can make
the substitutions 71 =7, or 7, =73 and then separate the Expectation into two
factors:

E{x(t — 7)x(t — m2)x(t — 73)} = E{x(t — 7)x(t — 71)x(t — 73)}
=E{x(t— Tl)zx(t —T73)} forri =1, #1713
= E{x(t — 1)’} E{x(t — 73)} =0

and,

E{x(t — 70)x(t — T2)x(t — 73)} = E{x(t — 72)*}E{x(t — 1)} =0 for | # 7 = 73
In all of the above cases, the expressions evaluate to zero because Efx} =0,
and the only instance where the Expectation of the third-order product is nonzero

is for 71 =7, =73. In this case (due to ergodicity), it may be replaced by
(x(t — 71)x(t — T2)x(t — 73)) (see Equation (5.5b)). The final nonzero result is:

E{x(t — m)x(t — mo)x(t — 73)} = (x(t — 7)x(t — T2)x(t — 73))
= Wl3(5(7'] - 7'2)(5(7'1 - 7'3)

(A5.1.3)

Poisson—Wiener Series 115

The Expectation of the fourth-order product E{x(t — 7)x(t — 72)x(t — 73)
x(t — 74)} is zero by independence if:

I. 7'1757'2#7'3?57'4
and nonzero if all delays are equal:
II. T1 =T2=T3=T4

Using the time average approach we use in Section 5.2, we find the following for
the fourth moment:

my = (x*) =

~NI—

T
J[pm — Ap)*8(0) + (1 = p)T(— Ap)*8(0)ds
0

This can be written as:
my = (x*) = pA*(1 = 4p + 6p” = 3p") = pA*[p(1 — p)* + (1 = p)(1 = 2p)’]

Including the condition 71 = 7 = 73 = 74, we find that the averaged product is:

| (et = T0)x(r — To)x(t — 73)x(t — 74)) = mad(11 — 12)6(T1 — 73)6(T1 — T4) |
(A5.1.4)

in which the ¢ functions represent the condition that all delays must be equal for a
nonzero result. Three alternatives with three equal delays are:

II1. T]#T2:T3:T4
IV. 1i=my #13=74
V. ’7'1=T2:7'375T4

In all three cases III—-V, the Expectation of the fourth-order product evaluates to
zero. For instance in case V we have:

E{x(t — T)x(t — To)x(t — 73)x(t — 74)} = E{x(t — 71)*x(t — 74)}
= Elx(t — 1)’} E{x(t —74)} =0

ms 0

forTi =Ty =73 # T4
Finally, we have three cases in which delays are equal in pairs:

VI. T = T2 and T3 = T4
VII T1 = T3 and T) = T4
VIII. 71=74 and 7,=73

116

Signal Processing for Neuroscientists, A Companion Volume

These cases evaluate to a nonzero value. For instance, in case VI we get:

E{x(t — T)x(t — mo)x(t — T3)x(t — T4)} = E{x(t — 71)°x(t — 73)7}

= E{(x(t — m1)%} Elx(t — 737} = m>

my

fOI'T] =72and7'3=7'4

If we represent the conditions 71 = 7, and 73 = 74, with Dirac delta functions, we

get the final result for case VI:

m38(t1 — 12)8(13 — T4)

To summarize the results for the Expectation of the fourth-order product:

leTzaHdT3:T4
7'1=’7'221I1d7'3=7'4
71=T3and7'2=74
7'1:7'42111(17'2:7'3
0

E{x(t — 70)x(t — m2)x(t — 73)x(t — T4)}

tmad(T1 — 12)0(T1 — 73)0(T1 — T4)
:m36(T1 — 12)8(T3 — T4)

cm38(Ty — 73)8(T2 — T4)

:m36(T1 — 14)8(T2 — 73)

otherwise

(A5.1.5)

In Section 5.3.3 we have to evaluate a case where we know that one pair of
delays cannot be equal. Note that in such a case we have to combine from
alternatives VI—VIII. For example if 7, # 73, we have two possibilities for pair

forming:

(a) 71 =7, and 73 = 74 in which pair 7, 7, is independent from pair 73, 74
(b) 7, =73 and 7, = 74 in which pair 7}, 73 is independent from pair 7, 74.

Now we can write the Expectation for 7, # 73 as the sum of (a) and (b):

E{x(t — m)x(t — m2)x(t — 73)xX(t — T4)} 7,27,

= E{x(t = 71)°x(t — 73)°

case a

}+ E{x(t — 71)2x(t — 7m2)%)

case b

= E{x(t — 7)) Efx(t —m3)%)

+ E{x(t — 71)*} E{x(t —)%}

my my my my

= m38(T1 — 72)8(3 — T4) + mA8(T) — 73)8(T2 — T4)

(A5.1.6)

Poisson—Wiener Series 117

Appendix 5.2

Creating Impulse Trains Following a Poisson Process

For the generation of a series of random numbers following a Gaussian or a uni-
form distribution, we use MATLAB commands randn and rand, respectively. A
standard MATLAB command for generating a series of intervals according to a
Poisson process does not exist. Therefore, we will apply a Monte Carlo technique
to create such an impulse train according to a Poisson process. Our target is to fol-
low a Poisson process characterized by probability density function (PDF) pe™#*
(see Chapter 14 in van Drongelen, 2007). This works as follows. First we generate
pairs of independent random numbers x,y with the MATLAB rand command.
Because the rand command generates numbers between 0 and 1, x is multiplied
with the maximal epoch value we want to consider, in order to rescale it between 0
and the maximum interval. Second, for each trial we compute p = pe™**, which is
the probability p for interval x to occur according to the Poisson process. So far we
will generate intervals x where all intervals have an equal probability because the
MATLAB rand command is uniformly distributed. The second random number y
associated with the randomly generated interval will also be evenly distributed
between 0 and 1. We now only include pairs x,y in our series if y <<p and discard
all others (Fig. A5.2.1); by following this procedure, the accepted intervals x obey
the Poisson process because the probability that they are retained is proportional
with pe™ 7, which is the desired probability. This procedure can, of course, be used
for other distributions as well; it is known as the accept—reject algorithm.

0.03
> Rejected pairs
= 0.02
2
e
& PDF Poissori process
0.01
0 | s
| 200 400 600 800 1000
Accepted pairs Interval (#bins)

Figure AS5.2.1 The Poisson process PDF can be used to create series of intervals obeying a
Poisson process. Pairs of random uniformly distributed numbers x,y are generated: x is
scaled between 0 and the maximum epoch length (1000 in this example) and y between 0
and 1. Each pair is then plotted in the X—Y plane. If y < pe™”* the point is accepted (green);
otherwise it is rejected (red). If sufficient numbers are evaluated, the result is that epochs are
retained according to the PDF describing the Poisson process.

118

Signal Processing for Neuroscientists, A Companion Volume

The following MATLAB snippet of the function Poisson.m shows an imple-
mentation of the procedure to generate a series of intervals following a Poisson
process. This function is applied in pr5_I1.m . Note that this routine also avoids
intervals that are smaller than one bin because we do not allow for superimposed

impulses.

i=1;

end;

while (i <len)

x=rand;y=rand;
x=x*epoch;
p=rate*exp(-rate*x);

if (y <p);
ifx>1;
series(i)=x;
i=i+1;

end;

end;

% two random numbers scaled 0-1

% the interval x is scaled 0-epoch

% the probability associated with the interval
% using the second random number using the
% Poisson process PDF

% Is the probability below the random # ?

% Avoid intervals that are too small (< 1 bin)
% else the interval is included

6 Decomposition of
Multichannel Data

6.1 Introduction

In the previous chapters we mainly focused on the analysis of single-input/single-
output systems, single-channel data, or single images. Even when we worked with
images, we worked with one row or column of pixels at a time. At most, we con-
sidered pairs of signals when we determined cross-correlation or coherence, or
when we looked into input—output relationships. Although these techniques form a
basis for analysis in neuroscience research, current studies usually collect multiple
channels and/or movies of neural activity.

Examples of commonly encountered multichannel data sets are electroencepha-
lograms (EEG), electrocorticograms (ECoG), recordings with multi-electrode
arrays, a sequence of functional magnetic resonance images (fMRI), or movies
made from neural tissue with voltage-sensitive or calcium indicator dyes. In these
examples we deal not just with two or three simultaneously recorded signals, but
with potentially overwhelming numbers of channels consisting of both spatial and
temporal components. In the ECoG, each channel is at a certain location recording
signals evolving over time; in both an fMRI sequence and a movie, the neural sig-
nals are represented by the intensity of each pixel as a function of time. Suppose
we digitized an fMRI set with 128 samples in time where each image is 128 X 128
pixels, we would now have a huge data set consisting of 1283 = 2,097,152 points.
Say we sample ECoG at a rate of 400 samples per channel per second and we
record 128 channels for 60 s, resulting in a 1-min data set of 128 X400 X 60 =
3,072,000 data points. Examples of a small part of a 128-channel ECoG recording
and a 21-channel EEG are shown in Fig. 6.1.

Typical goals for multichannel data processing are data reduction, decomposi-
tion, or investigation of the causal structure within the data. In the case of data
reduction, we attempt to find the signal and noise components, and in the case of
decomposition, our goal is to find the basic signal components that are mixed into
the multichannel data set. Of course, both of these approaches are related. Suppose
we have a measurement of brain activity during a task, and the activity associated
with the task is signal while the remaining activity can be considered noise. If we
can decompose our measured brain activity into these basic components, we have
effectively used decomposition as a tool for data reduction.

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00006-1
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00006-1

120 Signal Processing for Neuroscientists, A Companion Volume

rGis A ~
A e Vs 0 -
RPGIT ¥ Rntmnctnpyrnasairmetl i) N
kPG
RbGi2
RPGi4
RPG46. M My
RPGAS Aa >
RPGS1 = :
RPGS -
v AAAANANIA
it v V AN
RPGoD
RPGe2 = - S
RPGo4 n -
T S i A 000 1100 104
v
5 R
i JVW,}" YR WA
RATS
Ry %Y
o rRTTT o eyt 1 A 1T
RST2 11k AL L
RI
RS Ay
R AN
kST
RST8

(B)
. * *
) A e
I
"
"
"
"
"
"
F10 NN
i A —

v
v AN
B —— e e N AN N — A\ S A e

500 ms

Figure 6.1 (A) Part of an intracranial 128-channel recording from a patient with epilepsy.
Only a limited number of channels are shown: 15 channels of a right parietal grid (RPG), 7
channels from a right anterior temporal strip (RAT), and 7 from a right superior temporal strip
(RST). The activity associated with a seizure onset starts with rapid oscillations in channel
RST1 and eventually results in a spread of oscillatory activity in almost all channels. (B) A
21-channel scalp EEG recording from a different patient with epilepsy. The large-amplitude
waveforms in this recording are epileptic spikes. The interval in between the asterisks
(highlighted in yellow) is used for further analysis in Fig. 6.15.

Although we will discuss multichannel analysis of data sets with large numbers
of signals, we will introduce examples with strongly reduced data sets of two or
three channels. The idea is to illustrate principles that are valid in high-dimensional
data space with 2D or 3D examples. Throughout this chapter, we will demonstrate
principles rather than formally prove them. First, we will show the general princi-
ple of mixing and unmixing of signals (Section 6.2), and then we will go into the
details of specific strategies: principal component analysis (PCA; Section 6.3) and
independent component analysis (ICA; Section 6.4). If you are interested in proofs,
see texts on this topic (e.g., Bell and Sejnowski, 1995; Stone, 2004), on linear
algebra (e.g., Jordan and Smith, 1997; Lay, 1997), and on information theory (e.g.,
Cover and Thomas, 1991; Shannon and Weaver, 1949).

6.2 Mixing and Unmixing of Signals

The underlying model of decomposition is that the signals of interest are mixtures
of sources. For instance, our ear detects sounds from different sources

Decomposition of Multichannel Data 121

Recorded signals Sensors Mixing Sources Source signals

—

Amplitude

Time —»

Mixing _ v
equation =4 X

Unmixin _
MEX = 4T Y

equation

Figure 6.2 A mix of signals originating from three sources X (X;—X3) is recorded by three
sensors Y (Y;—Y3). The signal from source to sensor is attenuated with distance. The amount
of attenuation is symbolized by the width of the arrows (there are only three widths in this
example: 0.8, 0.6, or 0.2). The mixing process can be represented by the matrix multiplication
Y =AX, in which A is the mixing matrix. The unmixing process can be represented by

X =A""Y, in which the unmixing matrix A~ is the inverse of A.

simultaneously, such as someone talking to us, the noise of a fan, and music from a
radio. Another example is an EEG electrode that picks up electrical activity from
several parts of the brain. In other words, a set of measured signals Y, consists of
channels that are mixtures from a number of sources X,,. For now we assume that
the number of sources is equal to or smaller than the number of signals we record.
In this case the problem of mixing and unmixing can be defined mathematically.
Let us consider a concrete example where we have three sources X;—X3 and three
sensors Y1—Y3 (Fig. 6.2). The sensors pick up the signal from each source, but the
signal is attenuated when traveling from source to sensor and the attenuation is pro-
portional with distance. The level of attenuation in Fig. 6.2 is indicated by the
width of the arrows: the signal from the source closest to the sensor attenuates
least, only by a factor of 0.8. The signals from the other sources attenuate more,
depending on distance, by a factor of 0.6 or a factor of 0.2 respectively. If we look
at sensor Y; we can see that it will pick up 0.8 X the signal from source X; plus

122 Signal Processing for Neuroscientists, A Companion Volume

0.6 X the signal from source X, plus 0.2 X the signal from source X3. Similar rules
can be found for the other sensors Y, and Y3. The measurements at the three sensors
in Fig. 6.2 can be represented by a linear system of three equations:

Y1 = OSX] + O6X2 + OZX}
Y2 = O6X] + 08X2 + 06X3
Y3 = 0.2X1 + 06X2 + 08X3

Because this system has three equations with three unknowns X;—X3 (note that
Y,—Y; are known because they are measured), we can solve the system of equa-
tions above for the source signals X;—X3. We can put the equations in matrix form:

Y =AX (6.1a)
in which,
Y: X 0.8 0.6 02
Y=1Y,|, X=|X, |, and the mixing matrix A= | 0.6 0.8 0.6
Y; X3 02 0.6 0.8

represents the attenuation coefficients for the setup in Fig. 6.2. The fact that
A(ij) = A@,i) (i.e., the mixing matrix A is symmetric) is due to the symmetric setup
of the example in Fig. 6.2; this is not necessarily the case for a generic mixing
matrix. Now suppose that we have recorded a time series of four samples from the
three sensors and we want to know the signals from the individual sources.
Because we know that ¥ = AX we can compute X by X =A~'Y, where A~' is the
inverse of A (here we assume that the inverse of A exists). If we take an example
where the sources emit the following signals at times #;—#, (indicated as source sig-
nals in the right panel in Fig. 6.2):

151 15 13 s
X : 24.1667 1.6667 33.3333 17.5000
X, : —32.5000 0.0000 —55.0000 —22.5000
X3 20.8333 3.3333 41.6667 17.5000

Our sensors will pick up:

0.8 06 02 24.1667 1.6667 33.3333 17.5000
Y=AX=106 08 0.6 —32.5000 0.0000 —55.0000 —22.5000
02 06 038 20.8333 3.3333 41.6667 17.5000

40 20 20 40
=(10 30 1.0 30
20 30 70 4.0

Decomposition of Multichannel Data 123

So our measurement (indicated as recorded signals in the left panel in Fig. 6.2)
will be:

Hh th 13 14
Yi: 4 2 2 4
Y»: 1 3 1 3
Y;: 2 3 7 4

Because we know mixing matrix A, we compute its inverse (if you want to check
this example in MATLAB, the inverse of a matrix can be obtained with the inv
command) so that we can estimate the source activity X from the measurements:

A

X=A"ly (6.1b)
That is:

24.1667 1.6667 33.3333 17.5000
—32.5000 —0.0000 —55.0000 —22.5000 [=
20.8333 3.3333 41.6667 17.5000

X
5.8333 —7.5000 4.1667 40 20 2.0 4.0
—7.5000 12.5000 —7.5000 1.0 30 1.0 3.0
4.1667 —7.5000 5.8333 20 3.0 7.0 40
At Y

As you can see, our estimate X for X is perfect (except for any precision errors due to
computation). Although this example clarifies the mixing and unmixing process, it is
not very helpful in practical applications (even if we ignore the effects of noise that
would be present in any real recording) because the mixing matrix is unknown and/or
the number of sources outnumbers the number of sensors. In the remainder of this
chapter we will focus on what one can do if the mixing matrix is unknown. In this
case, we want to separate the sources while we are “blind” with respect to the mixing
process; therefore, these procedures are called blind source separation (BSS). We
will specifically focus on two of these techniques: PCA and ICA.

6.3 Principal Component Analysis

In this section we introduce the concept of decomposing multichannel data into its
principal components. With PCA of a multidimensional measurement, one can find
the directions of maximal and minimal variance in the multidimensional measure-
ment space. We will see that these directions are orthogonal, indicating that the

124 Signal Processing for Neuroscientists, A Companion Volume

components extracted with PCA are uncorrelated. We will introduce the technique
by analyzing a concrete 3D example of four measurements S;—S,, each observation
S, having three values or signals sy, s,, and s; (one for each of the three dimensions):

4 2 2 4
Si=|1| S=1[3] s3=|1| S=13 (6.22)
2 3 7 4

The mean vector of these four observations, M, contains the mean for each of the
three signals m;, m,, and mj:

| (14T 2] (21 4 m] [3
M=2{8$1 48483+ 8ay =30 |13+ |11+ 3| o= |m | =2 (6.2b)
2| 3] |7] |4 my| |4

A 3D plot of the observations and their mean is shown in Fig. 6.3A. If we now
demean our four observations—that is, we subtract M from S; to S, (as we gener-
ally do with our signals before processing them)—and we group the demeaned
observation in matrix B, we have:

4-3 2-3 2-3 4-3 1 -1 -1 1
B=|1-2 3-2 1-2 3-2|=|-1 1 -1 1 (6.3)
2-4 3-4 7-4 4—4 -2 -1 30

In statistics, a data set from multichannel observations such as the concatenated
matrix §= [Sl Sy 83 54} or matrix B is called multivariate data. A scatter
plot of the demeaned observations is shown in Fig. 6.3B. Note that the new mean
value is now at the origin, and so we have in effect translated the axes of our coor-
dinate system. From B, we can compute the covariance matrix C. Since we have
three variables (s, s», s3) in each observation, the covariance matrix is 3 X 3. If
we have N observations, each entry in the matrix can be computed by

N
Ci,))=1/(N—1) > (s; — my),(s; — m;),. In this example, C is a 3 X 3 matrix, i
n=1

and j range from 1 to 3, and N is the number of observations, in this example
N =4 (since we have observations S;—S,4). In matrix notation this notation can be
simplified to:

1 | boobmbd —} _} :f
=— BBT=_1| -1 1 -1 1
N-1 3 -1 -1 3
-2 -1 30 L1 o
(6.4)
1.33 0 —1.33

= 0 1.33 —-0.67
—-133 —0.67 4.67

Decomposition of Multichannel Data 125

(A) Raw data and original axes (B) Raw data and translated axes (C) Raw data and translated + rotated

axes
8 S 5 5

<3 Mean value B. 1%

+ 3 .3
First component axis

4 RN Origin\
5. B -z ; 20y

™ A
Origin
8 5 | . =l B . = s
2 0 2 4 6 0 -5 0 50 =3 0 50

Figure 6.3 (A) A 3D plot of four observation vectors S;—S, (Equation (6.2a)) and their mean
value M (Equation (6.2b)). (B) The same points, now indicated as B;—B,4 because they are
plotted against axes that are translated so that the mean M becomes the new origin. (C) Finally
we plot the same points (now indicated as V;—V,) against axes that are also rotated to reflect
the directions of the three principal components. The first principal component is indicated by
the double arrow (red). This illustration was made with MATLAB script Pr6_1.m (available on
http://www .elsevierdirect.com/companions/9780123849151); the numerical values can be found
in Table 6.1.

The superscript “T” indicates the transpose of matrix B (in the transpose rows and
columns are interchanged such that B(i,j)) — B(j,i)). Each value in the diagonal of C
represents the variance of the by, b,, and b3 values of observation vectors B,,. So the
sum of the diagonal elements, the trace of C written as tr(C), is the total variance.
Each off-diagonal element is a covariance value—for example, C(2,3) is the covari-
ance between the b, and b3 coordinates. Of course, C(3,2) is the same value because
it is the covariance between the b; and b, coordinates. Therefore a covariance matrix
is always a symmetric matrix (see the example in Equation (6.4)). A more formal
way to establish symmetry for covariance matrices is to show that interchanging the
rows and columns (transposition) of covariance matrix C results in the same matrix:
that is, C = CT. From Equation (6.4) we can establish that C is proportional with
BBT (by a factor of 1/(N — 1)) and the transposing operation on C can be represented
by (BB™)" = BT'BT (recall that the multiplication order of matrices switches when
taking their transpose). Because the transpose of a transposed matrix is the original
matrix again, we may simplify this outcome BTTBT = BBT, which shows that
(BB™)" = BB"—that is, the transpose of BB" is BB" again.

If C(i,j) for i is zero, there is no covariance or correlation between b; and b;. It
may be clear that analysis of multivariate data is simpler when all signals are uncor-
related—that is, a covariance matrix that is diagonal, which means that all off-diag-
onal elements are zero. This is exactly the goal of the decomposition with PCA.

Note: Correlation (p,,) between two variables x and y is a normalized version of
the covariance (Cov(x,y)) between x and y—that is, p,, = Cov(x, y)/ o o,— with
standard deviations o, and o, for x and y, respectively. The effect of this normal-
ization is that the correlation coefficient py, is scaled between — 1 and 1.

http://www.elsevierdirect.com/companions/9780123849151

126 Signal Processing for Neuroscientists, A Companion Volume

6.3.1 Finding Principal Components

To summarize the above, the strategy of PCA is to manipulate our demeaned obser-
vations B, (b, by, b3), for which correlations between b; and b; may exist into
transformed data V,, (vy, v,, v3), such that all correlations between v; and v; vanish.
Again, mathematically this means that the covariance matrix C of B may contain
nonzero off-diagonal elements (see, e.g., Equation (6.4)), but the covariance matrix
> of V must be a diagonal matrix (all off-diagonal elements are zero). Let us con-
tinue with our example and use the PCA approach to find the components. We first
introduce and apply the method; later we justify the procedure in the context of the
above strategy.

Continuing the numerical example above, we will show that the 3 X 3 covari-
ance matrix C in Equation (6.4) can be diagonalized by applying a linear transfor-
mation. To accomplish this, we first define a 3 X 3 matrix of orthogonal column
vectors U=[U; U, Us]anda3 X 3 diagonal matrix ¥ with diagonal entries
A1—As, and group our demeaned observations B,, in matrix B (Equation (6.3)). We
can compute:

CU=[CU, CU, CUs] (6.5a)
and
A 0 O
UZ:[U1 Uz U3] 0)\2 0 :[)\IU])\zUz)\3U3] (65b)
0 0 N\

Note that ¥ is a diagonal matrix. Now let us assume that our covariance matrix C
is diagonalizable such that:

C=UxU! and =U'CU (6.5¢)

(note that we also assumed that U is invertible). If we right-multiply the first
expression in Equation (6.5c) by U we get:

CU=UX (6.5d)

This result indicates that if C is diagonalizable, then the expressions in Equations
(6.5a) and (6.5b) must be equal. If we equate the individual columns in the matri-
ces in Equation (6.5d), we get:

CU] :)\1U1, CU2:)\2U2, and CU3:/\3U3 (656)
The result in Equation (6.5¢) shows that A\;—\; and U;—U; must be the eigenva-

lues and corresponding eigenvectors of the covariance matrix C. See Appendix 6.1
if you need to review the concept of eigenvalues and eigenvectors; if you need

Decomposition of Multichannel Data 127

more than a quick review, see a text on linear algebra such as the first part of
Jordan and Smith (1997) or Lay (1997).

Because C is a symmetric matrix, its eigenvectors are orthogonal vectors. We
can show this property of symmetric matrices by considering a simple 2D case
where we have two distinct eigenvalues (\; and)\,) with two corresponding eigen-
vectors (U; and U,). To show that these vectors are orthogonal, we show that their
scalar product equals zero.

Note: Recall that the inner product (also called scalar product or dot product)
of two vectors @ and p’is given by ab cos ¢, where a and b are the lengths of
the vectors and ¢ is the angle between them. If the vectors are orthogonal, ¢
equals 90° and the outcome of the dot product is zero.

We can show that the dot product U;-U, =0 by computing the following
expression:

MU-Uy = (\U)'Us = (CUY)'U> = UL CT U, (6.6a)

Here we changed the vector dot product notation into vector notation
U, U, =U,"U, (note the presence of the dot in the far-left expression), and we
used the definition of the eigenvalue/eigenvector of C: \\U; = CU; (Appendix
6.1). We know that C is a covariance matrix that must be symmetric; therefore,
C = C". Using this property for symmetric matrices, we get:

ULCT U, = UT(CUy) = U{ (MUn) = MU Uy = MUy Uy (6.6b)

Note the dot in the last expression. Combining Equations (6.6a) and (6.6b), we
may conclude that for the symmetric covariance matrix:

>\1U1'U2:>\2U1'U2—>()\1_)\2)U1‘U2:O (660)

Because we deal with two distinct eigenvalues, we know that (A; — A) # 0 and
therefore the scalar product U, - U, = 0, indicating that the angle between the two
eigenvectors of a symmetric matrix must be 90°. Thus the two vectors are orthogo-
nal (perpendicular):

U LU, (6.6d)

So if we need an orthogonal matrix, we can use the orthogonal eigenvectors of the
covariance matrix to create the matrix U to transform the observed demeaned data.
Let us apply the results from the above paragraphs to our numerical example
(Equations (6.2)—(6.4)). First we must find a 3 X 3 matrix of orthogonal eigenvectors
vectors U = [U 1 U, Us] to transform the demeaned data—that is, B=UV.

128 Signal Processing for Neuroscientists, A Companion Volume

Matrix V contains the transformed vectors V;—V,. This means that for each demeaned
observation B,, we want to identify an orthogonal change of variable V,, such that:

by V1
Bn:UV,,—> b2 :[U1 U2 U3] %) (67)
b3 V3

n n

Recall that in the above U;—Uj; are column vectors so that U is a 3 X 3 matrix
u;j, that is, by =u; X vy +up Xvy +u3 Xvz, etc. Assuming again that U is
invertible, we can write the relationship in Equation (6.7) as V, = U~ !B,. Since
U is an orthogonal matrix, its inverse is equal to its transpose (see a linear alge-
bra text such as Lay, 1997, if you need to review this), so we may write
U 'B,=U"B,. Recalling how we computed the covariance matrix C from B and
its transpose (Equation (6.4)), we can now find the covariance matrix ¥ for V:

1 1
X = N—1 wi= N—1 (UTB)(UTB)T since V=U'B
1
= UTBBTU Since (UTB)T _ BTU
t (6.82)
1
=U" —BB" U=U'CU

———
C: Equation (6.4)
So the orthogonal matrix U can relate C to X:
»=U'cu=U"'cU (6.8b)

In the above we used again U~! = UT to obtain a result for ¥ that is the same as the
second expression in Equation (6.5¢). Thus the covariance matrix for transformed
observations V,, is the diagonal matrix Y. Because the off-diagonal elements (the
covariance values) of X are zero, vy, v,, and v3 of the transformed observations are
uncorrelated. The diagonal elements of 3, eigenvalues \;— A3, are the variance values
for the transformed observations v;—v;. Convention for PCA is that the eigenvalues
and associated eigenvectors are sorted from high to low eigenvalues (variance).

6.3.2 A MATLAB Example

If we compute the eigenvalues and eigenvectors for covariance matrix C, we can
transform our demeaned observations depicted in Fig. 6.3B. In MATLAB this can
be easily accomplished with the eig command—that is, [UU,SIGMA] = eig(C).
In our example, we obtain three eigenvectors that form a rotated set of axes relative
to the translated axes in Fig. 6.3B. This is because the eigenvectors are orthogonal
(i.e., perpendicular) (Equation (6.6d)). If we arrange the eigenvectors according to

Decomposition of Multichannel Data 129

the magnitude of their associated eigenvalues (variance), we get the first, second,
and third principal components (note then that the first principal component is
along the direction of greatest variance). In Fig. 6.3C the first component is indi-
cated by a double arrow (red) and the remaining two components by lines (black);
in this example it is easy to see that the first component is in the direction of maxi-
mal variance. The covariance matrix C and its eigenvectors and eigenvalues
(grouped in ¥ and sorted for the eigenvalues in descending order) are:

1.3333 0 —1.3333

C= 0 1.3333 —0.6667
—1.3333 —0.6667 4.6667

(See also Equation (6.4))

—0.3192 0.4472 0.8355

U= —0.1596 —0.8944 04178
0.9342 0 0.3568
and
5.2361 0 0
Y= 0 1.3333 0
0 0 0.7639

Note: If you do this example in MATLAB, the eig command sorts the eigen-
values from low to high. This is in ascending order, which is contrary to con-
vention for PCA. Therefore, the order of the diagonal entries in SIGMA and
> and the order of the associated eigenvectors (columns) in UU and U are
reversed.

Suppose we want to find the coordinates of our observations §;—S; on the
translated-and-rotated set of axes (Fig. 6.3C)—in other words, the projections of
the observations on the eigenvectors. Let us look into our numerical example how
this can be accomplished by computing the projection of the first observation on
the first principal component. First, we take point B, (corresponding to a demeaned
version of the first observation S; in Equation (6.2a) and depicted in Fig. 6.3B),
which is the first column of B in Equation (6.3):

130 Signal Processing for Neuroscientists, A Companion Volume

Now let us take the first eigenvector, which is the first column of matrix U:

—0.3192
U =] —0.159
0.9342

The projection of the first point (black in Fig. 6.3) on this eigenvector can be deter-
mined by the scalar product of the two vectors:

-0.3192
B, Uy =BlU =[1 -1 -2]| —0.1596 | = —2.0279
0.9342

The above can easily be checked in MATLAB after running the example program Pr6_1.
m (available on http://www.elsevierdirect.com/companions/9780123849151). Use B(:,1)
and U(;,1) for B; and U, respectively; the scalar product can be computed with B
(:,1)’*U(,1) (note the * for transposing B(:,1)). The outcome is — 2.0279, the projection
of the first point on the first eigenvector. The projection of the first point on the second
and third eigenvectors will be scalar products B; - U, and B, - U3 (note the dots). For the
second point B, (red in Fig. 6.3) we can repeat the procedure: B, U, B, U,, and
B, - Us. The same, of course, is true for the third (blue, Fig. 6.3) and the fourth (green,
Fig. 6.3) points. We can compute all the scalar products V at once with the matrix multi-
plication BTU. This will generate the coordinates of all four points on the three eigenvec-
tors. The results for our numerical example are summarized in Table 6.1.

Table 6.1 Principal Component Analysis: Numerical Example

S = [S1 S> S3 S4l Original observations
S1 4.0000 2.0000 2.0000 4.0000 Fig. 6.3A
Ko 1.0000 3.0000 1.0000 3.0000
53 2.0000 3.0000 7.0000 4.0000
= [By B, B3 B,4] Demeaned observations
by 1.0000 —1.0000 —1.0000 1.0000 Fig. 6.3B
b, —1.0000 1.0000 —1.0000 1.0000
b3 —2.0000 —1.0000 3.0000 0
= [Vi V, V3 V4l Projections on eigenvectors
Vi -2.0279 —0.7746 3.2812 —0.4787 Fig. 6.3C
12 1.3416 —1.3416 0.4472 —0.4472
V3 —0.2959 —0.7746 —0.1829 1.2533

Summary of PCA on four observations S;—S4. These data points are plotted in Fig. 6.3A. First the data are demeaned
in B;—B, so that a new set of axes with its origin in the point of gravity of all points is obtained (Fig. 6.3B). Finally
the axes are rotated using the PCA (Fig. 6.3C). Note that the first component axis (double arrow, red in Fig. 6.3C)
indicates the direction of largest variance, easily appreciated when looking at the position of the first (V;, black) and
third (V3, blue) points in Fig. 6.3C. For clarity, these extreme values for the first component v, are indicated in bold in
the table (v, in vectors V; and V3).

http://www.elsevierdirect.com/companions/9780123849151

Decomposition of Multichannel Data 131

Note: In some texts the projection on the first eigenvector (row v; in
Table 6.1) is indicated as the first principal component, the projections v, on
the second eigenvector is then the second principal component, etc. To sum-
marize, depending on the text, the principal components can be the eigenvec-
tors U;—Uj; or the projections of the observations on these vectors v{—v3, and
in some texts the term “principal component” is used for both.

The variance in each direction (i.e., for each component v, v,, and v3) is easily
calculated in MATLAB after running the program Pr6_l.m with the std com-
mand: std(V").~2. The outcome of this calculation is 5.2361, 1.3333, 0.7639; as
expected, these values correspond to the eigenvalues in . Because the origin of
the axes in Fig. 6.3C is the same as in panel B, the mean of the components v;—v;
remains zero (mean(V’)). Further we can test for zero covariance—that is, testing
that the off-diagonal entries of the covariance matrix (1/3)*V*V’ are indeed zero.
The result is:

5.2361 0.0000 —0.0000
0.0000 1.3333 0.0000
—0.0000 0.0000 0.7639

The outcome is as expected: the diagonal elements are again the variances for
vi—v3 and all covariance values are zero.

6.3.3 Singular Value Decomposition

A common technique to compute the eigenvalues and eigenvectors of the covari-
ance matrix directly from the demeaned observations is singular value decomposi-
tion. This technique is based on the fact that any rectangular matrix, such as the
demeaned observation matrix B, can be decomposed as:

B=UOWT (6.9)

Note that this expression looks similar to the first expression in Equation (6.5¢). In
Equation (6.9) U and W are orthogonal matrices, and © is a matrix that includes a
matrix Y for which the diagonal entries are the so-called singular values o4, 0,, 03,
..., 0,. In our numerical example above where B is a 3 X 4 matrix (Equation (6.3)),
U is a 3 X 3 matrix of eigenvectors, W is a 4 X 4 matrix of eigenvectors, and © is
the same size as B, a 3 X 4 matrix in which the first 3 X 3 diagonal entries are the
singular values o;—o3. In this example:

132 Signal Processing for Neuroscientists, A Companion Volume

1 -1 -1 1 —0.3192 0.4472 0.8355
B=| -1 1 -1 1 U= | —0.1596 —0.8944 0.4178
-2 -1 30 0.9342 —0.0000 0.3568
3.9634 0 0 0
0= 0 2.0000 0 0
0 0 1.5139 0
—0.5117 0.6708 —0.1954 0.5000
W= —0.1954 —0.6708 —0.5117 0.5000

0.8279 0.2236 —0.1208 0.5000
—0.1208 —0.2236 0.8279 0.5000

While the eigenvectors (columns of U) we find here correspond with those found
for the covariance matrix above, you may be surprised that the singular values in ©
do not correspond with those in ¥ above. This is because (unlike the eigenvalues
A1—As of the covariance matrix C) the singular values o; are the standard devia-
tions and not the variance. Furthermore, the singular values are based on BBT while
the eigenvalues); are based on the normalized version: BBT divided by (N — 1). So
if we compute ©O" and divide by N — 1 =3, we get the same values as the diago-
nal entries in X:

Tooer [52361 0 0
»= % - % - o 1333 o0
0 0 07639

This result is identical to the values we obtained for covariance matrix > we
obtained earlier. If we use Equation (6.9) to compute BB :

BBT = (UowhH(vewnH! = wewhHweTuT)=ve w'w oTuT
1

=yee’ uT=ux'U" (6.10)
=

In the above we used W'T = W. Since W is orthogonal, WT = W~!, so we may
state that WTW = I, where I is the identity matrix. Finally, because ©’s only non-
zero entries are on the diagonal, we may state: ©0T =(N — 1)X = X", Recalling
that BBT divided by (N — 1) is the covariance matrix C, the outcome of Equation
(6.10) is (with the exception of the normalization 1/(N — 1), reflected by the use of
> instead of X)) the same as the left expression in Equation (6.5¢). Restating this
here for convenience: C = U ¥ U™! (recall that UT = U™! because U is an orthog-
onal matrix).

We can use standard MATLAB functions to compute the eigenvalues and eigenvec-
tors from the covariance matrix using the eig command, or directly from the demeaned

Decomposition of Multichannel Data 133

observations using singular value decomposition with the svd command. A part
of Pr6_l.m (available on http://www.elsevierdirect.com/companions/9780123849151)
shows the use of these commands.

% Two Methods to Perform PCA using MATLAB standard functions eig and svd
% 1. Eigenvalues and Eigenvectors (eig) of Covariance Matrix C

% [=(1/(N-1)*B*B']

[ei_vectorsl,ei_values1]=eig(C)

[‘'NOTE that the eigenvalues above are sorted in ASCENDING order’]

% 2. Singular Value Decomposition (svd) of DEMEANED Observation Matrix B
[ei_vectors2,singular_values,vv]=svd(B)

[‘'NOTE that the eigenvalues above are sorted in DESCENDING order’]

% IMPORTANT NOTE

% singular_values is the sqrt of the eigenvalues of the non-normalized

% covariance B*B’ [i.e. sqrt(eig(B*B"))]

As a final note, you can see that the PCA would do a bad job distinguishing source
signals from a mixture, since PCA separates components based purely on variance. In
our computations above, our S matrix was the same as the measured signals Y in the
example of Fig. 6.2 in Section 6.2. However, the temporal sequences in the decom-
posed results in V (Table 6.1) do not even come close to unmixing the source signals
X in that example. In the following section we will see how PCA can be used with
more success as a tool to separate signal(s) from noise.

6.3.4 Using PCA as a Filter

The PCA technique detects uncorrelated components with decreasing variance. One
application that uses this property is to remove noisy components from mixtures of sig-
nals. The reasoning for this application is that signal components should display high
variance, while the added noise components have smaller variance. Of course, the truth
of this assumption depends on the type of signal and may not always be valid.

In the MATLAB script Pr6_2.m (available on http://www.elsevierdirect.com/
companions/9780123849151) we explore this technique by purposely corrupting an image
(Lena) with random noise to examine how well we can clean up the mess using PCA.
Subsequently we use singular value decomposition to define the principal components.
The program displays a series of 30 figures each with four panels: the original image, its
noisy contaminated version, the image reflecting the nth principal component, and the
image reflecting the sum of components 1 to n. It can be seen that the PCA cannot retrieve
the original image, but it certainly can improve the noisy contaminated version. At some
point (around component 10—15 in this example) the higher components do not seem to
further improve image quality in the sum of the components 1 to n. This is due to the fact
that the higher components indeed contain more of the noisy aspect of the corrupted image,
thus decreasing corrupted image quality when added to the sum of components.

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

134 Signal Processing for Neuroscientists, A Companion Volume

6.4 Independent Component Analysis

In the previous section we introduced PCA, a technique to decompose multichan-
nel data into uncorrelated components. If we use PCA to decompose x and y into
variables a and b, we have shown that the covariance between decomposed vari-
ables a and b is zero and the covariance matrix of these transformed observations
is entirely determined by variance. ICA moves beyond the constraint of decorrela-
tion and looks for components that are statistically independent. When two signals
a and b are statistically independent, they are each drawn from an independent
probability density function (pdf), and the joint pdf of [a b] is simply the product
of the individual pdfs:

Ppa([ab]) = pa(@)ps(b) (6.11)

The joint and individual pdfs are symbolized by p., p., and p,, respectively.
Suppose we have two processes a and b, with probability distributions
Da = [O.] 02 02 04 0.1] and p, = [0.1 0.3 0.3 0.2 0.1]; then, if they
are independent, we may use Equation (6.11) to compute the joint probability p,,
(Fig. 6.4). Note that the probability functions in Fig. 6.4 all add up to 1

O pa=1, 30 pp=1,and 3;_, Ef: | P, = 1). Statistical independence
between a and b means that all the moments and central moments (moments about
the mean) of the distributions for a and b must also be independent:

E{a’b1} = E{a’)E{b") (6.12a)

Here E{...} denotes the Expectation (see section 3.2 in van Drongelen, 2007, if
you need to refresh your knowledge about Expectation). If a and b are demeaned,
the first central moment (exponents p =1 and ¢ =1 in Equation (6.12a)) of the

0.5 —
P. t

0.5F

05F

0.5F —

0SS
D — T T T T T a
03l i PP 010 020 020 040 0.10
0.10 | 0.01 003 0.03 0.02 0.01
030 | 0.02 006 0.06 0.04 002
02f 1 030 | 0.02 006 006 0.04 0.02
. 020 | 0.04 012 0.2 0.08 0.04
0.10 | 0.01 003 0.03 0.02 0.01

0.1

>wh

Figure 6.4 An example of a 2D joint probability density function p,; (in the green panel) and
its marginal distributions p, and p,. The graphs show the individual, marginal distributions of
a (top graph) and b (left graph). In the 3D graph on the right, the joint probability is plotted on
the vertical axis against the variables a and b.

Decomposition of Multichannel Data 135

joint pdf E{a b} is the covariance. If a and b are uncorrelated (as in the decom-
posed result from PCA), we have:

Elab} = E{a} E{b} =0 (6.12b)
0 0

You can see that demanding that a and b are uncorrelated (Equation (6.12b)) is not
as strong a condition as asking for statistical independence of a and b (Equation
(6.12a)). There is an exception when PCA does generate statistically independent
components: this is the case when the extracted signals are normally distributed.
Normally distributed signals are determined by their first two moments; once these
are known, all higher-order moments are determined. To summarize: two signals
that are statistically independent are also uncorrelated, but uncorrelated sig-
nals are not statistically independent except when the signals are normally
distributed.

In real cases, signal mixtures tend to be normally distributed due to the central limit
theorem. To put it informally, the central limit theorem states that the sum or a mix-
ture (=weighted sum) of multiple variables tends to be normally distributed even
when individual components are not drawn from a normal distribution. An example of
this theorem at work is shown in Fig. 6.5. In this example we study a mixture of vari-
ables that are each uniformly distributed (Fig. 6.5A). Interestingly, the mixture of only
five such variables already shows a tendency toward a normal distribution (Fig. 6.5B).
This shows that the practical application of PCA for extracting statistically indepen-
dent components will be fairly limited because (unlike signal mixtures) it is less likely
that individual signal components are normally distributed. Because ICA demands sta-
tistical independence of the individual components, ICA is much better at extracting
components that are not normally distributed. To visualize the difference in compo-
nent distributions, we can look at the distribution of observations from a uniform dis-
tribution (Fig. 6.5A), where we observe that the points are scattered more or less
evenly over a line in the 1D case (Fig. 6.5C) or a plane in the 2D case (Fig. 6.5E). On
the other hand, normally distributed (Gaussian) mixtures are concentrated around the
mean value of the distribution (Fig. 6.5B, D, and F).

6.4.1 Entropy of Sources and Mixtures

Recall that the entropy S(X) of a random variable X (see van Drongelen, 2007,
chapter 14, section 14.3) depends on the probability distribution of X. It can be
defined as the sum (in the case of a discrete variable) or the integral (in case of a
continuous variable) of the product p(x)log, 1/(p(x)) = —p(x)log,p(x) over all x:

SX) == px)log, p(x) (6.13)

All x

In this case we defined S for a discrete variable and we use log,, a base 2 loga-
rithm, so that S is in units of bits.

136 Signal Processing for Neuroscientists, A Companion Volume

Uniform distribution Gaussian distribution
T6000 T 15,000
(A) (B)
2 2
S S
= = 10,000
B 2
Q Q
B 2
o s}

5000

0 0.2 0.4 0.6 0.8 1

X —> X —>
(C) 1D Uniform (D) 1D Gaussian
0 02 04 06 0.8] 1 0 1 2 3 4.5
X —> X —>
Higher Entropy Lower

(F) 2D Gaussian

o8
0.6f*

0.4+

0.2 F2]

Figure 6.5 (A) Histogram of a variable x' that is uniformly distributed between 0 and 1.

(B) The sum of only five of these uniformly distributed variables x> tends to be almost normally
distributed. (A) and (B) were made with script Pr6_3.m (available on http://www.elsevierdirect.
com/companions/9780123849151). A series of one-dimensional observations from uniform oh
and (almost) Gaussian (x°) distributions are shown in (C) and (D), respectively. The scatter plots
in (E) and (F) are examples of a series of 2D observations: two variables x! yl for the uniform
case, and two variables x° y° for the Gaussian one. As expected, the uniform distribution results
in a scatter of points throughout the plane, whereas the Gaussian case shows a concentration of
points around a center (the mean). Consequently, the entropy of the uniformly distributed points
is higher than the entropy for the Gaussian distributed observations.

Let us consider a very simple case, a coin toss. If we have the usual situation,
we have probability p =% for both outcomes heads and tails (scenario III,
Fig. 6.6A), and the entropy according to Equation (6.13) is:

1 11 1
=—|= — + —log, | =1 bi
S(X) 210g22 210g2 5 1 bit

This is a reasonable result, because we have an outcome that fits in a single bit: either
heads (1) or tails (0). Now suppose we have a “faulty” (deterministic) coin that always
lands on one side, either heads or tails. In these scenarios (I and V, Fig. 6.6A) we have
p = 0 for one outcome and p = 1 for the other; now the entropy is:

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

Decomposition of Multichannel Data 137

(A) (B) head: p=5 tail: p=5

I II 1T v \Y

=5

4 4

A a

P I:":I R\ Independent

PnP, PoP, PnP, PvP DPr P head: p5_tail: p-5
: : 3 4 .

6 2

Joint entropy:
2.0

Probability
head: -5 tail: p

tail: p=5

e
o

Joint entropy:
1.8

head: p-.5

e
>

Entropy (bits)

Partially dependent

head: p=5 tail: p=5

I
=

0 8

S
o

Joint entropy:
1.0

o

0

head: p-5 tail: p-5

0 02 04 0.6 08 1
Probability 2,

Fully dependent

Figure 6.6 Statistics of a coin toss and entropy. (A) Five scenarios of probability
distributions of heads (p;) and tails (p;). The graph depicts that each scenario is associated
with a specific entropy value. (B) Statistics of coin tosses. The numbers in the tables show the
idealized outcomes for 16 tosses. Two coins are used for each observation and in the upper
diagram the outcomes of each toss is completely independent. In the two lower diagrams,
there (magically) is some dependence between the two tosses in each observation—there is
either a full dependence (bottom diagram; the pair of outcomes in each observation are
identical) or a partial dependence (middle diagram).

S(X) = —[01og,0 + 1 log,1] = 0 bit

Note that we use 0 log,0 = 0. This outcome of zero bit also seems reasonable since
there is no surprise (information) with each outcome: it will always be heads in one
scenario and always tails in the other. If our coin is biased and we get heads or tails
in 75% of the cases (scenarios II and IV in Fig. 6.6A), we have probabilities
p =0.75 and p = 0.25 and the associated entropy is:

1 1 3 3 .
SX)=— ZIOgZZ + ZIOgZZ = 0.81 bit

Thus, for every probability distribution, we find a specific entropy (see the graph in
Fig. 6.6A). We find that the maximum entropy for tossing a coin is when probabil-
ity is equal (%) for heads and tails, which occurs when the probability distribution is
uniform (scenario III, Fig. 6.6A).

Without further proof, we state that the above result may be generalized to any
probability distribution: variables show maximum entropy when they are uniformly
distributed. Thus, in the example in Fig. 6.5, the variable in the left panel with a uni-
form distribution has higher entropy than the variable with a Gaussian distribution.

In panels E and F in Fig. 6.5, we consider a 2D distribution where the observa-
tions are represented by dots in a plane. In this example we have a joint distribution

138 Signal Processing for Neuroscientists, A Companion Volume

similar to the one for variables a and b shown in Fig. 6.4 (where each random vari-
able has five possible outcomes). To compute the entropy associated with such a
joint probability distribution, we follow the same approach as for the 1D case: we
summate — p(x)log,p(x) over the domain of x, which leads us to actually have two
sums:

5 5
S(a7 b) = Z Zpa,bjl()gzpa,-b,-

i=1j=1
The entropy S(a,b) of the joint distribution (the table in Fig. 6.4) is:

—[0.01 10g,0.01 + 0.03 log,0.03 + 0.03 log,0.03 + --- + 0.03 log,0.03
+0.02 10g,0.02 + 0.01 log,0.01] = 4.29 bits

The entropy for the individual variables a and b can be obtained from the marginal
distributions (i.e., the five probabilities corresponding to each outcome, given one
random variable). Using the distribution for a (see marginal distribution [red] in
Fig. 6.4), we find that entropy S(a) is:

—[0.110g,0.1 +0.2102,0.2 + 0.2 10g,0.2 + 0.4 10g,0.4 + 0.1 log,0.1] = 2.12 bits

and for b (marginal distribution [black] in Fig. 6.4) we find that S(b) is:

—[0.110g,0.1 +0.310g,0.3 + 0.3 10g,0.3 + 0.210g,0.2 + 0.1 log,0.1] =2.17 bits

Now we see that S(a) + S(b) =2.12 + 2.17 = 4.29, which is equal to S(a,b). This is
not so surprising because the probability distributions for a and b were independent
such that p,,([ab]) = p.(a)pp(b). If our distribution in Fig. 6.4 had been uniform,
we would have found different values for the entropies. If this were the case, the
five probabilities of p, and p, would be [0.2 0.2 0.2 0.2 0.2] and the joint
distribution would also be uniform, with all 25 probabilities equal to 0.04. The
associated entropies would now be:

S(a, b) = —25 X 0.04 X 10g,(0.04) = 4.64 bits

and
S(a) and S(b) are both — 5 X 0.2 X log,(0.2) = 2.32 bits

In all cases the entropies are higher (because of the uniform distribution), but,
S(a) + S(b) = S(a, b) (6.14a)

still holds.

Decomposition of Multichannel Data 139

If there were dependence between the two distributions of a and b, we would
have found a different result. Let us explore the effect of dependence with an even
simpler example by getting back to our coin toss. Assuming that we toss two coins
16 times, and in one case we have the usual situation where the tosses are indepen-
dent (the idealized outcome is shown in Fig. 6.6B, top diagram). However, in the
other case there is a “magical” full dependence between the two coins: if one coin
lands on heads or tails, the other coin will too (the idealized outcome is shown in
Fig. 6.6B, bottom diagram).

When tossing two coins, we have four alternative outcomes: heads/heads, heads/
tails, tails/heads, and tails/tails. Assuming we have equal probability for heads and
tails, we get in the independent case that the probability for each outcome is
% X% =%. In the fully dependent case, however, the probabilities for heads/tails
and tails/heads are zero because one coin will magically copy the outcome of the
other (we imagine this just for the sake of this example; do not worry about how
you would actually do such a thing). The probabilities for heads/heads and tails/
tails are therefore each % Regardless of independence or dependence, we can first
compute entropies S; and S, for each individual coin toss from the marginal distri-
butions, finding that S; and S, are both:

—2X 0.5 X10g,(0.5) =1 bit

As was the case for S(X) computed earlier in this chapter, it makes sense that
the entropies S; and S, should be equal to 1 bit, since the outcome of each individ-
ual coin toss can fit in 1 bit (0 for heads, 1 for tails).

In the independent case (top diagram in Fig. 6.6B), we find for the joint entropy,
Si2,

—4 % 0.25 X 10g,(0.25) = 2 bits

Here we see that just as in the case for the independent distribution in Fig. 6.4, the
sum of the individual entropies equals the joint entropy:

ST+ 5, ISLQ

We can also see that the result we get for S, is reasonable since the possible joint
outcomes fill four possible states, or 2 bits.

Now we compute the joint entropies for the two other scenarios in Fig. 6.6B. In the
fully dependent case (the bottom diagram in Fig. 6.6B), the joint entropy S| 5 is:

—[2 0.5 X 10g,(0.5) +2 X 0 X log,(0)] = 1 bit

It should be unsurprising that the joint entropy (S;) in this case is identical to the
entropy of an individual coin toss (S} or S,); since there is total dependence, no
additional information is provided by the flipping of a second coin.

140 Signal Processing for Neuroscientists, A Companion Volume

The (idealized) outcomes for a case with partial dependence between the two
coins are shown in the middle diagram in Fig. 6.6B. Note that due to the partial
dependence, in most but not all cases, the outcomes of the first and second coin
toss are identical. This results in a joint entropy of:

—[2X0.125 X 10g,(0.125) + 2 X 0.375 X log,(0.375)| = 1.8 bits

In both cases where there is (full or partial) dependence between the tosses of the
coins, we find that S; + 5, > S, », and the more dependence that exists between the
tosses, the larger the difference between S; + S, and S . Accordingly, we need to
adapt Equation (6.14a) to account for the possibility of dependence between the
two variables by including a term that reflects this dependence. This term is com-
monly indicated by mutual information (MI), which is an indication of the level of
dependence between variables. In other words, MI quantifies the amount of infor-
mation that variable 1 provides about variable 2. In case of the dependence
between coin tosses, the outcome of one coin toss determines the outcome of the
other. In the normal, fair tosses the outcome of one toss does not provide any infor-
mation about the other since they are independent.

To summarize, we find:

Independent Slightly Fully
(bit) dependent (bit) dependent (bit)
Entropy coin 1, §; 1.0 1.0 1.0
Entropy coin 2, S, 1.0 1.0 1.0
Sum, S; + S, 2.0 2.0 2.0
Joint entropy, S » 2.0 1.8 1.0
Difference (S| + S,) — 1, (=MI) 0.0 0.2 1.0

It can be seen in this example that the MI variable is indeed proportional to the
level of dependence. Without further proof, we assume that we may generalize our
findings and state that for any two random processes X and Y, we can compute the
entropy for each of the individual processes S(X) and S(Y) such that their joint
entropy S(X,Y) is the sum of the individual entropy values when X and Y are inde-
pendent (Equation (6.14a)), and otherwise:

S(X, Y) = S(X) + S(Y) — MI(X, Y) (6.14b)

in which MI(X,Y) is the mutual information between X and Y. Note that Equation
(6.14b) holds even when X and Y are independent, since then MI(X,Y) merely
becomes zero. We could define joint entropy S(X,Y) as the total information of the
joint process X,Y. To summarize, it can be concluded from the above that for any
given pair of processes X and Y, maximal independence occurs at maximal
joint entropy (or joint information) S(X,Y) and minimal mutual information

Decomposition of Multichannel Data 141

®)

E
a

IS
T
®

IS
T
1

S}
T
%)

Mixture 2 (green axis) —s,
(=]

Source 2 (red axis) — x,

Transformed X,

4 E 4t 4 1

0
Source 1 (blue axis) — x, Mixture 1 (black axis) —s,

Figure 6.7 (A) Scatter plot of two source signals x; and x,. (B) Scatter plot of two mixtures
s1 and s, that were created from the source signals. The transformed source axes (X, indi-
cated by 1—4 [dark blue], and X,, indicated by 2—3 [red]) are indicated in this mixture plot.

MI(X,Y) of the joint process. This is a basis for the ICA technique: independence
of separated sources is evaluated by joint entropy (joint information) and MI. For
the separation of independent sources, their joint information S(X,Y) must be maxi-
mized (therefore, this ICA technique is also called infomax), which is the same as
minimizing their mutual information MI(X,Y).

6.4.2 Using the Scalar Product to Find Independent Components

After we obtain the criteria for unmixing a mixture of signals (e.g., decorrelation,
statistical independence, maximizing joint entropy), the procedure for separating
components from mixtures in ICA is essentially the same as was outlined for PCA
in Section 6.2: source signals are found from the product of the unmixing matrix
and the recorded signals (Fig. 6.2). The unmixing matrix contains the vectors along
which the components are extracted. The difference between ICA and PCA is
the strategy for finding the directions of the vectors in the unmixing matrix. In
PCA we found directions of maximal variance (Fig. 6.3C) while the compo-
nents were decorrelated. For ICA we demand statistical independence.

To illustrate an ICA-type extraction procedure, let us consider a 2D case: two
sources x; and x, creating two mixtures s; and s,. Scatter plot representations of
the sources and the mixtures are shown in Fig. 6.7; the sources are plotted in panel
A and the resulting mixtures in panel B. Assuming that we know the mixing matrix
A in this example,

_[02 038
A_{OJ 0.4}

we can determine the orientation of the original axes X; and X, from the source
scatter plot (depicted in Fig. 6.7A) in the mixture scatter plot (shown in Fig. 6.7B).

142 Signal Processing for Neuroscientists, A Companion Volume

(A) (B)

Figure 6.8 (A) and (B) show the strategy for unmixing. In (A) we have a 2D case: if we
cancel all components in the direction of axis X, (by using the inner product with vector X3
perpendicular to X,), the remainder must be a component of the X; axis. This approach can
be extended to higher-dimensional cases (B): by canceling components for X, and X3 (by
using the inner product with vector XZ%3 perpendicular to X, and X3), we keep the ones for
X,

The first axis X; =[1 0], so the transformed version of source axis X; in the
scatter plot of the mixtures is:

s o] =[a7 aiffo]=[67% T 6ol =107

~~ |0 0.7 04110 0.7X1 + 04X0 0.7
Mixing ~~~
matrix X

This is the first column of mixing matrix A. Similarly, the transformed second
source axis X, in the mixture plot is the second column of A. The axes X; and X,
from the scatter plot in Fig. 6.7A are also depicted, after transformation with mix-
ing matrix A, in Fig. 6.7B. After this transformation, X; becomes the axis 1—4
(dark blue) and X, becomes axis 2—3 (red).

For the following explanation it helps to look at the plot of the mixtures in
Fig. 6.7B and the orientation of axes and vectors in Fig. 6.8A. First we establish
that we know there are two sources, and that we have two mixtures. If we know
the orientation of axes X; and X,, we can find the contribution of x; to the mixtures
by excluding all contributions of x,. Because the contributions of x, are in the
direction of axis X,, we can use the scalar product of (1) the observation vectors of
the mixture (all points in Fig. 6.7B) and (2) a vector X2L perpendicular to axis X,
(Fig. 6.8A). All components parallel to X,, which we will indicate by X, , will can-
cel since the inner product X3--X,- = 0. Therefore, the only component remaining
in the scalar product of each observation in the mixture plot [s; s,] with X3~ will be
independent of x,, and thus must be from x;.

Note: Summarizing the above approach in a few words, all components inde-
pendent of X,, the axis for source x,, can only be a component of x;.
Furthermore, we found that we can use the inner product to remove x,
components and only keep the ones independent from X,.

Decomposition of Multichannel Data 143

We can use a similar reasoning for mixtures from three or more sources. Let us
consider a three-source and three-mixture case, creating a 3D space (Fig. 6.8B). If
we want to find the components for x;, we need to remove the components for x,
and x3. So if we construct a plane through the axes for x, and x5, we can come up
with le& (Fig. 6.8B). The inner product of observation [s; s, s3] with Xzi,3 (perpen-
dicular to the X,—Xj3 plane) removes all components associated with x, and x3, and
must therefore be the contribution of x;. With a higher number of dimensions (that
is, with more sources and mixtures), we can always construct a hyperplane through
all-but-one selected axis (i.e., the axis of one selected source) and find a vector per-
pendicular to this hyperplane. This vector (analogous to leﬁ in Fig. 6.8B) can then
be used to remove the contributions from all directions embedded in the hyperplane
(analogous to the X,—X3 plane in Fig. 6.8B) so that the remainder must be the con-
tribution from the selected source.

6.4.3 A MATLAB Example

We have now set the stage for an example with two sources and two mixtures. To
extract sources from the mixtures, we will follow the strategy below:

(1) We find that our mixtures are Gaussian-like distributed, but we assume that our source
signals have a uniform distribution (Fig. 6.5).

(2) We use entropy to evaluate independence of the sources (Fig. 6.6).

(3) If we know the axes associated with the sources, we know how to extract a component
from a mixture by using the inner product (Fig. 6.8).

Now we must deal with the fact that we (pretend that we) do not know the trans-
formed axes for the sources in the scatter plot of the mixture (Fig. 6.7B). We will
solve this problem by applying a brute force iterative approach—that is, we system-
atically evaluate a series of angles for source axes X; and X, and for each pair of
angles we use the inner product to compute the associated sources x; and x,. For
every solution of x; and x, (i.e., for each direction associated with axes X; and X5),
we determine the level of independence of x; and x, (while we assume each satis-
fies a uniform distribution). We can do this in multiple ways, but for now we will
evaluate how independent x; and x, are by looking at the level of mutual informa-
tion MI(x;,x;) between x; and x, (Equation (6.14b)). The more independent x; and
x, are estimated to be, the lower their MI. So by following this brute force proce-
dure, we get a series of angles for the axes X; and X, each with an associated value
for MI(x;,x;). Finally we complete our procedure by selecting the angles for axes
X, and X, that correspond to the minimal value of MI(x1, x,).

The brute force iterative procedure is followed in MATLAB script Pr6_4
(available on http://www.elsevierdirect.com/companions/9780123849151). The fol-
lowing is a snippet from this script showing the iteration loops. Each iteration loop
goes through a range of angles: 0—27 rad. For each loop (i.e., for each angle in
the brute force search), the entropy (H) and mutual information (MI) are deter-
mined using function entropy_2D.m (which must be in the same directory). Due
to the large number of loops in the brute force search, running this script may
take ~ 30 min.

http://www.elsevierdirect.com/companions/9780123849151

144 Signal Processing for Neuroscientists, A Companion Volume

%

% rotate the unmixing vector and determine the mutual information of result

%

MI_min=100000000000000; % set minimum of the
% mutual-information to
% large number

phi_min1=0;phi_min2=0; % set the angles for axes X1 and X2
% to zero
ct_phil=0; % initialize counter 1
for phil=0:2*pi/precision:2*pi; % LOOQOP for rotating axis X1
ct_phil=ct_phil+1; % update counter 1
ct_phi2=0; % 1nitialize counter 2
for phi2=0:2*pi/precision:2*pi; % LOQP for rotating axis X2
ct_phi2=ct_phi2+1; % update counter 2
v1=[cos(phil) sin(phil)]; % unit vector along X1 with angle
% phil
icl=v1*S; % unmix mixture S

icl=icl-mean(icl);sigma=std(icl); % demean and determine standard
% deviation

v2=[cos(phi2) sin(phi2)]; % unit vector along X2 with angle
% phi2
1c2=v2*S; % unmix mixture S

ic2=ic2-mean(ic2);sigma=std(ic2); % demean and determine standard
% deviation

% Use 2D entropy estimate function entropy_2D to compute mutual
% information (MI) and entropy (H) as a function of the

% position of axes X1 (counter for phil) and X2 (counter for phi2)
[H(ct_phil,ct_phi2), MI(ct_phil,ct_phi2)]=entropy_2D(icl,ic2);

if Ml(ct_phil,ct_phi2) <MI_min; % TEST: current MI < current
% minimum of MI ?
MI_min=MI(ct_phil,ct_phi2); % if so a new minimum (minimum
% for MI) is found

imin=ct_phil;jmin=ct_phi2; % the indices for the new minimum
% are saved

phi_minl=phil; % and so are the other relevant data

v_minl=vl; % the angles, the vectors &

% components
icl_min=icl;
phi_min2=phi2;
v_min2=v2;
ic2_min=ic2;

Decomposition of Multichannel Data 145

end;
end;
end;

Running the script Pr6_4.m (available on http://www.elsevierdirect.com/companions/
9780123849151; also available in a low-resolution version if you are in a hurry) will show
you the source and mixed signals plus their scatter plots. The scatter plot of the mixture gen-
erated by the script resembles the detail in Fig. 6.9B. The rhomboid shape of the scattered
dots indicates that we are dealing with a mix of uniformly distributed source signals. For a
range of combinations of hypothetical directions for axes X; (indicated by 1—4 in Fig. 6.9)
and X, (indicated by 2—3 in Fig. 6.9), the Ml is computed.

Note: This is a rather computationally intensive procedure associated with our
brute force approach, because we (pretend that) we do not know the directions
for X, and X, and just compute the MI for all directions with a precision of 1°
for each axis, resulting in 3607 combinations. In the low-resolution version of
script Pr6_4 we compute MI every 10° for each axis (36 combinations),
which greatly reduces the run time for the program.

For illustration purposes in Fig. 6.9, we kept the angle for MI associated with
axis X at its minimum and plotted the MI associated with axis X, for each angle
(from 0° to 360°, incremented in steps of 1°) as a single dot and connected the dots
with a line. The minima of the MI and the line connecting them are indicated in
the detailed plot in Fig. 6.9B. It is obvious that the line between these minima (the
double arrow indicated by X; in Fig. 6.9B) is a very good estimate of the vector
perpendicular to axis X, (indicated by 2—3). The script Pr6_4 also has the option
of computing the principal components; the first principal component is also indi-
cated in Fig. 6.9B (indicated as “PCA: axis-1”; light-blue line). It is obvious that
this line is in the direction of maximal variance, but it would not do a good job sep-
arating the sources in this example.

6.4.4 What If Sources Are Not Uniformly Distributed?

For the ICA examples so far, we assumed that the sources were characterized by a
uniform distribution (e.g., Fig. 6.5A, C, and E) and we used entropy estimates to
determine the level of independence (e.g., Fig. 6.6) of the separated candidate
sources. So what should we do if we know that our sources are not uniformly
distributed—take for example a human voice or a chirp—in a recording of a sound
mixture? Such sources usually show a distribution with many values around zero

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

146 Signal Processing for Neuroscientists, A Companion Volume

(A)

\ MI values found by iteration
\

—40 ; : .
H o

—80-60: 40 20 0 20 40 60 80
. Mixture 1 (black axis) — s,

\

Mixture 2 (green axis) — s,
=

Detail
(B) H

Minimum MI value

Minimum MI value

Mixture 2 (green axis) —s,
(=]

MI values found
by iteration

4

=5 0 5
Mixture 1 (black axis) — s;

Figure 6.9 An example of an application of the ICA unmixing procedure; (B) is a detail of
(A). This example shows a mixture where the sources are uniformly distributed. By iteration,
we determine the MI of the candidate sources for each unmixing angle and plot this result
(dots [red] in A and B). The best choice of angle is obtained when MI is minimal (“Minimum
MI value” in B). Since we know, for this example, the orientation of source axis X, (the axis
labeled at its ends by 2—3, red), we can see that our estimate for X2l (dashed, double arrow,
red) running through the minima we found for MI is indeed perpendicular to X,. This
estimate for X5 will therefore perform a good unmixing operation. The axis labeled “PCA:
axis-1” (light blue) in (B) indicates the direction of the eigenvector associated with the
largest eigenvalue (the first principal component). As you can see, the principal component
is not perpendicular to any of our source axes (1—4 or 2—3) and consequently would not
achieve a good unmixing result for our two mixtures. The graph in (B) can be obtained with
MATLARB script Pr6_4.m (available on http://www.elsevierdirect.com/companions/
9780123849151).

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

Decomposition of Multichannel Data 147

(Fig. 6.10). In such a case one could look for another function to maximize or mini-
mize (instead of using entropy or MI). In this example of a peaky distribution
(Fig. 6.10B), one could maximize for peakyness of the distribution (kurtosis, a
measure for how peaky a pdf is, might do the job in such a case). Alternatively,
one could transform the non-uniform distribution into a uniform one and subse-
quently apply the same procedures that are available for separating sources with a
uniform distribution. This approach is depicted in Fig. 6.11. The example in
Fig. 6.11 shows the transformation of a Gaussian distribution into a uniform one.
The function used for the transformation is the cumulative probability density func-
tion (cdf). For a normally distributed variable x with zero mean, the cdf is
%[1 + erf(x/ aﬁ)], in which erf is the error function (available in MATLAB) and
o is the standard deviation of x. This shows that it is plausible that for any pdf, the
cdf is the optimal transformation to obtain a uniform distribution. The cdf will
have the steepest slope where the probability is highest (and where you will there-
fore collect most observations), and this steeper slope will distribute the more
densely packed observations over a wider area (see the area in between the [red]
dotted lines in Fig. 6.11A—C). In contrast, at low probabilities (where fewer obser-
vations occur), the slope of the cdf will be less steep, and consequently the obser-
vations will be distributed over a smaller area. The overall effect of the
transformation is thus to spread out observations more uniformly, exactly what we
want for our purpose. After we transform our unmixed result into a uniform distri-
bution, we can apply exactly the same procedure for separating mixtures (from uni-
formly distributed sources) we followed earlier.

The approach of transforming the source data is demonstrated in Pr6_5.m
(available on http://www.elsevierdirect.com/companions/9780123849151). The fol-
lowing part, with the iteration loops (similar to the ones shown above for script
Pr6_4), shows the transformation from the Gaussian distributed signals icl and
ic2 to the uniformly distributed T_icl and T_ic2.

(A) (B)
6000
[}
Q
5 4000
3 Chirp
2000 /
Gaussian
/ Uniform
0

Amplitude

Figure 6.10 (A) Plot of a chirp (available in MATLAB by load chirp). (B) The
amplitude distribution of the chirp signal compared to Gaussian (red) and uniform (blue)
distributions. Note that the histogram of the chirp signal shows a peaky distribution, which
is typical for many audio signals.

http://www.elsevierdirect.com/companions/9780123849151

148 Signal Processing for Neuroscientists, A Companion Volume

(A) (B)

ol 5
0 0.5 1
Transformed source signal

Histogram transformed source signal

(E) Original source signal
10 10

-10 8 6 4 2 0 2 4 6 8 10
Histogram original source signal

Figure 6.11 A uniform distribution (A) can be obtained from a non-uniform distribution by
a transformation. This example shows a transformation of a histogram of observations drawn
from a Gaussian distribution (C) using the cumulative probability density of the Gaussian
distribution shown in (B). It can be seen that the majority of observations of the Gaussian
distribution are located around zero in between the (red) dotted lines. Following these dotted
lines from (C) to (A), it can be seen that the transformation of the Gaussian data (C) with
the function in (B) distributes these points more evenly (A). Accordingly, if such a
transformation is applied to a 2D scatter plot of a Gaussian variable (E), we get a scatter plot
of uniformly distributed points (D).

%

% rotate the unmixing vector and determine the mutual information of result

%

MI_min=100000000000000; % set minimum of the
% mutual-information
% to large number

phi_min1=0;phi_min2=0; % set the angles for X1 and X2 to
% zero
ct_phil=0; % initialize counter 1
for phil=0:2*pi/precision:2*pi; % LOOQP for X1
ct_phil=ct_phil+1; % update counter 1
ct_phi2=0; % 1initialize counter 2
for phi2=0:2*pi/precision:2*pi; % LOOP for X2
ct_phi2=ct_phi2+1; % update counter 2
v1=[cos(phil) sin(phil)]; % unit vector along X1 with

% angle phil
icl=v1*S; % unmix mixture S

Decomposition of Multichannel Data

149

icl=icl-mean(icl);sigmal=std(icl); % demean and determine standard
% deviation

v2=[cos(phi2) sin(phi2)]; % unit vector along X2 with angle
% phi2
ic2=v2*S; % unmix mixture S

ic2=ic2-mean(ic2);sigma2=std(ic2); % demean and determine standard
% deviation

% TRANSFORMATION to make the estimates uniformly distributed

% Transform icl and ic2 to a uniform distribution using erf to

% transform the demeaned icl and ic2

T_ic1=0.5*(1+erf((icl)/(sigmal*sqrt(2))));

T_ic2=0.5*(1+erf((ic2)/(sigma2*sqrt(2))));

% Use custom estimate function entropy_2D to compute mutual
% information (MI) and entropy (H)
[H(ct_phil,ct_phi2), MI(ct_phil,ct_phi2)]=entropy_2D(T_icl,T _ic2);

% Sum of the variances should max at independence
sum_var(ct_phil,ct_phi2)=std(ic1)"2+std(ic2)"2;

if Ml(ct_phil,ct_phi2) <MI_min; % TEST: current MI < current
% minimum of MI ?
MI_min=MI(ct_phil,ct_phi2); % if so a new minimum (maximum
% for MI) is found

imin=ct_phil;jmin=ct_phi2; % the indices for the new minimum
% are saved

phi_minl=phil; % and so are the other relevant data

v_minl=vl; % the angles, the vectors &
% components

icl_min=icl;

phi_min2=phi2;

v_min2=v2;

ic2_min=ic2;

end;
end;
end;

Because script Pr6_5.m is also computationally demanding, there is a low-resolution
version available as well (both available on http://www.elsevierdirect.com/companions/
9780123849151). Running the script will show you the source signals and the mixtures
with their associated scatter plots. The scatter plot of the mixtures will resemble Fig. 6.12
and will also show the transformed axes X; (dark blue, indicated by 1—4 in Fig. 6.12)
and X, (red, indicated by 2—3 in Fig. 6.12) plus the estimated MI values associated with
each axis (red and dark-blue dots interconnected with lines in Fig. 6.12). The

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

150 Signal Processing for Neuroscientists, A Companion Volume

10

W

Mixture 2 (green axis) — s,
S

-10 =5 0 5 10
Mixture 1 (black axis) — s,

Figure 6.12 The example in this figure is the same as in Fig. 6.9, except now the source
signals are normally distributed. As in the previous examples in Figs. 6.7—6.9, the two
source axes are X; (labeled at its ends by 1—4, dark blue) and X, (labeled 2—3, red). The
dashed, double arrows X li (dark blue) and XZL (red) indicate the directions for minimal MI
found by iteration. The MI values we computed by iteration are indicated by the dots
interconnected by lines: dark blue for X;- and red for X3 . The axis labeled “PCA: axis-1”
(light blue) is the direction of the eigenvector associated with the largest eigenvalue (the first
principal component). The 8-shaped contour (light-blue dots) denotes the variance for each
direction. Further details can be found in the text.

program Pr6_5.m also allows us to compute the principal components (the first compo-
nent, “PCA: axis-1,” is indicated in Fig. 6.12) and the variance associated with each angle
(the 8-shaped contour, light blue in Fig. 6.12). Note again how the first PCA component
is not orthogonal to any of the source axes X; and X5.

The implicit underlying thought of the algorithm in Pr6_5.m is that by trans-
forming the unmixed sources into a uniform distribution, we can follow the same
procedure as earlier without affecting the information content. This assumption
may seem like a bit of a stretch, but if we transform the data using an invertible
function (such as our cumulative probability density function in Fig. 6.11B), we do
not affect the mutual independence of the signals (see Stone, 2004).

An invertible function is defined as a function that creates a unique new data
point for each original data point and (because the function is invertible) this
transformation can also be reversed. This means that if we have several inde-
pendent data sets, they will remain independent after transformation with the
invertible function into the other domain and vice versa.

Decomposition of Multichannel Data 151

6.4.5 Can We Apply Smarter Approaches Than the Brute Force Technique?

In the above brute force approach we looked into a 2D case. We determined the source
axes X; and X, with a precision of 1°; this corresponds to 360 computations for each
axis. For the 2D case this evaluates to 360> = 129,600 iterations. In other words, for
each iteration, we guess candidate sources and we compute their MI. For more dimen-
sions and/or higher precisions, the number of iterations grows rapidly—for example,
if we wanted a %O precision in a six-source case we have 720°~1.4 X 10" iterations.
As you can see, we need a more efficient procedure to find the best angles for the
source axes; otherwise, source extraction very rapidly becomes a computational night-
mare. Let us look at the surface of the inverse of the MI. This is the approach we take
in MATLAB script Pr6_6.m, which is almost identical to Pr6_4.m, but now we use
the inverse of the MI instead of the MI itself for visualization reasons; minima in MI
are maxima in 1/MI, and maxima are easier to show in a 3D plot (both scripts are
available on http://www.elsevierdirect.com/companions/9780123849151). Such a plot
generated by Pr6_6.m for our two-mixtures/two-sources scenario is depicted in
Fig. 6.13. The horizontal axes are the angles for axes X; and X5, and the vertical axis
is 1/ML There are clearly eight maxima in the 1/MI landscape (again, corresponding
to minima of MI) present in the plot. These eight maxima are not surprising if we con-
sider the example of the source axes in the mixture scatter plot in Fig. 6.7B. Each
source axis is labeled at each end (1 and 4 for axis X; and 2 and 3 for axis X»), since
each axis can be characterized twice: by its optimal angle ¢ or by the same angle plus

20 {‘ |
| \
15

10

1/(MI1)

360
DA,
ﬁ/?/deg,e 180

) 180 e

p\f\'\\ (ge

0 0

Figure 6.13 The inverse of the MI (1/MI) of two components extracted from two mixtures
as a function of the angles (phil, phi2) of the two source axes. Minima for the MI show up
as maxima in 1/MI surface. The eight maxima correspond to a pair of angles of the axes that
extract sources with minimum MI from the mixtures. To find these two axes, we need to
identify only one of the eight maxima. Therefore, we can use the gradient in the landscape
to locate one of the maxima. This procedure is more efficient than a brute force computation
of the whole 1/MI surface. This graph was obtained with Pr6_6.m (available on http://www.
elsevierdirect.com/companions/9780123849151).

http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151
http://www.elsevierdirect.com/companions/9780123849151

152 Signal Processing for Neuroscientists, A Companion Volume

180° (¢ + 180°). An optimal combination (associated with a maximum 1/MI) is any
combination of the angles for which we can successfully unmix our mixture into its
source components. Using the labels in Fig. 6.9, we find that we have eight of these
combinations: 1,2 1,3 2,1 2,4 3,1 3,4 4,2 4,3. Note that the combinations 1,4 and 2,3
are not valid because they denote the same axis and not a pair of axes. The eight com-
binations correspond to the eight maxima in the 1/MI landscape in Fig. 6.13. Because
each of the eight combinations describes the optimal angles for the two axes, we only
need to find one pair (i.e., one maximum in the landscape in Fig. 6.13) for our unmix-
ing procedure. Since we find that the landscape of 1/MI has a clear-cut structure, we
can use this to our benefit and avoid a lengthy brute force computation. Instead of
computing the values for all angles from 0—360°, we apply the so-called simplex
method, which uses the gradient in the landscape to locate one of the maxima.
Globally, this procedure works as follows:

(1) We randomly pick an initial point in the 1/MI landscape (a pair of angles ¢; and ¢,
associated with our pair of source axes X; and X,) and determine its 1/MI value.

(2) Then we pick two neighboring points in the landscape, and determine 1/MI for these
points as well (now we have defined a triangle in the landscape).

(3) We determine which of the three points has the lowest 1/MI value and move it in the
direction where 1/MI is largest.

(4) We repeat Step 3 above until we cannot find a neighboring point with a low value of
1/MI, at which point we conclude that we have reached a peak in the landscape.

(5) Finally we will make our triangle of points smaller and repeat Steps 3 and 4 to locate
the maximum with optimal precision.

By using this method, we use the slope in the landscape to climb toward a maximum,
a procedure that is much faster than iteration and that scales much better when we
increase the number of sources in each mixture and the number of measurements of
mixtures. See Press et al. (2007) for the details of this and other parameter search
techniques.

6.4.6 An Example of ICA Applied to EEG Signals

The signals of brain electrical activity in Fig. 6.1 are recordings directly from the
cortex (ECoG) and from the scalp (EEG). In the context of this chapter, it is fairly
reasonable to assume that the signals generated at different locations separated by
several millimeters in the brain will be statistically independent. Another way of
saying the same thing is that since brain signals carry a lot of information, record-
ing sites that are relatively remote must have low levels of MI. When recording
directly from the cortex, we can indeed observe this principle. When we use ICA
to decompose an ECoG (Fig. 6.1A), our statistically independent components are
almost identical to the recorded channels, indicating that the different sites on the
cortex generate statistically independent signals. For the EEG (Fig. 6.1B), this rea-
soning does not hold because the skull and scalp have a tendency to smear (mix)
the contributions of the underlying sources, so ICA may be a good tool to find indi-
vidual sources in the signals.

Decomposition of Multichannel Data 153

The procedure that is commonly applied to EEG analysis is to find source signals
that are temporally independent (because the EEG matrix has a temporal and spatial
component, we could also look for components that are spatially independent, but
this is usually not done). The underlying thought here is that source signals contrib-
ute to the signal at each EEG electrode. An example of two sources contributing to

(A)
0.8
«— Source 1
X .
Brain
0.4
0.2
Source 2
03 X,
®),
B _ ac x B inn
2 oV
g Time—> bd § Time—>
annel 1 0.8 0.2 % |Source 1
annel 2 | =(0.4 0.3 Source 2
X X
Recording = Mixing X Sources
matrix
©) DI
Estimated Estimated A ()
unmixing mixing A Electrode 1 /2% Source 1
matrix matrix
Invert b
ICA 12\71 — ac Electrode 2
L’ (D2)
A Electrode 1
Estimated components Electrode 3 Source 2

representing the sources

Figure 6.14 ICA analysis in EEG, a two-source and two-channel example. (A) Electrodes
Y, and Y, record channels 1 and 2, each containing a mixture of sources X; and X,. In each
mixture, the attenuation of the source signal is proportional with distance between source
and electrode (symbolized by the arrows). (B) shows the mathematics underlying the mixing
process that can be represented by matrix multiplication ¥ = AX, with A being the mixing
matrix (similar to the example in Fig. 6.2). The next step, (C), is to estimate the mixing
matrix and source components with the ICA procedure. The estimated source activity can
give an impression of the distribution of activities across the brain and the estimate of the
mixing matrix can be used to determine the effect for each source on the electrodes (D).

154 Signal Processing for Neuroscientists, A Companion Volume

two EEG electrodes/channels is depicted in Fig. 6.14A. The EEG data can therefore
be considered a linear mixture of the sources. Because the electrodes register the
fields of the locally generated activity traveling at the speed of light, the delays for
propagation between source and electrode are negligible. Our finding with the
ECoG (that the ICA components resemble the original time series) shows that if
sources are not too close, they will be independent. The simplified scenario in
Fig. 6.14A shows how two electrodes Y, and Y, each record a different mixture from
sources X; and X,. Similar to the example in Fig. 6.2, we have that Y = AX, with A
being the mixing matrix. The first column in mixing matrix A (@ and b, in the exam-
ple 0.8 and 0.4) indicate the coupling strength (proximity) of source X; to electrodes
Y, and Y, (Fig. 6.14B). The second column in A (¢ and d, in the example 0.2 and
0.3) reflect the same coupling strength (proximity) of source X, to electrodes Y, and
Y, (Fig. 6.14B). In this sense, mixing matrix A contains spatial information because
the values of its elements reflect the positions of sources and electrodes.

~Now we can use ICA to estimate our source signals X and the unmixing matrix
A (Fig. 6.14C). Assuming that A is invertible, we can determine an estimate A
of the mixing matrix. Matrix A contains the estimates for coupling strengths between
each of the sources and the electrodes. These estimates a, b, ¢, and d in Fig. 6.14C
and D can now be used to depict the coupling between sources and electrodes. For
Source 1 we find coupling strengths a and b for Electrode 1 and Electrode
2 (Fig. 6.14D1); for Source 2 we have strengths ¢ and d for Electrode 1 and

(A) Recorded waveforms (B) Independent components (C) Independent component 1

Fpl 1

Fp2 ——————— ————— 2

F ~— 3

F] ~——— 4

| A 0 5 A A AT A
6
7
8

Fz — oo ——
F4 T
F8 /—'\/_/_,_.‘4
(I N I N S
T~) —————————————————
A — 1l A A A A

2~ . _ (D) Independent component 2

C4 "~ —————— 13 =
AT .
8 /\/\/\N 14 e / g
R R e e e PP NP S - v L
/ b

P Y~ 15

P3 ~— 16

Pz —m——— 17 —m————e———————————

Ph AN~ 8 | B . .

g5 o
20 ~m———————— b 4

02 "\ A 21

500 ms 500 ms
EEG channels components

Figure 6.15 Part of the EEG recording shown in Fig. 6.1B is shown in (A); the 21
independent components are shown in (B). Here it can be seen that the epileptic spike
waveforms are only represented in the first two independent components. Topographic maps
of the scalp potential associated with these two components are shown in (C) and (D). These
distributions are indicative for a source that is located right temporally. This figure was
prepared with eeglab software. This MATLAB-based package can be downloaded from the
Web site http://scen.ucsd.edu/~scott/ica.html.

http://www.sccn.ucsd.edu/~scott/ica.html

Decomposition of Multichannel Data 155

Electrode 2 (Fig. 6.14D2). As we will demonstrate in the following example
(because usually the EEG recording includes multiple channels), it is common prac-
tice to show the coupling strength for each component (source) at each electrode in
a color-coded fashion.

A detail of the EEG recording in Fig. 6.1 (the epoch in between the asterisks
in Fig. 6.1B) is shown in Fig. 6.15A. This EEG recording contains a high-amplitude
epileptic spike. The ICA of this 21-channel recording shows two components that
seem associated with this spike signal (Components 1 and 2 in Fig. 6.15B). Since each
electrode corresponds to a location, we can use the multichannel EEG to map our
independent components topographically (as we did in Fig. 6.14D). The topographic
maps of both these independent sources show a right temporal location (Fig. 6.15C
and D). It was confirmed clinically that the epileptic focus was indeed located in the
right temporal lobe in this patient. Although this confirmation is reassuring, it should
be noted here that the brain area where epileptic spikes are generated and the focus
where the epileptic seizures originate are not always the same location.

Appendix 6.1

Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a matrix play a role in multiple applications,
including the determination of principal components described in this chapter.
“Eigen” is a German word that, in this context, may be translated into “characteristic.”
Recall that a matrix can be used to efficiently represent a set of expressions—for
example,

x + 6y

S5x + 2y

can be written as the product of a matrix A and vector v:

Ll

A v

=Av

Vector v is an eigenvector of A if multiplication with matrix A scales it by a con-
stant A without changing the direction of v (Fig. A6.1):

Av =)y (A6.1.1)
The constant A is the so-called eigenvalue of A. We can rewrite this expression as:

Av— v=0-

156 Signal Processing for Neuroscientists, A Companion Volume

Eigenvalue Figure A6.1 Eigenvector v =(1,1) of matrix A. Note that
T AV :7\/ the product Av does not change the direction of v; it only
scales it by the eigenvalue A (7 in this example). This is
essentially the property associated with eigenvectors and
eigenvalues of a matrix A, here v and), respectively.

Eigenvector V

X —>

A-=X)py=0

where [is the identity matrix.

This expression always has the trivial solution v =0, while according to
Cramer’s rule (see, e.g., Jordan and Smith, 1997), non-trivial solutions (solutions
for which v£0) can only exist if:

IA—M|=0 (A6.1.2)

The |...| indicates the determinant of the matrix. If we go back to our numerical
example above, and apply the condition in Equation (A6.1.2), we have:

A 1
1-) 6 3
{5 2—@ =0 (A6.1.3)
—_——
A—MN

This leads to the characteristic equation:
1=XNXQ2=-XN)=-5X6=0-X—-31-28=0->\—7)(A+4)=0

Thus, for our numerical example we find Ay =7 and \, = — 4.
If we generalize the matrix, let us say,

e[

Decomposition of Multichannel Data 157

the characteristic equation becomes:
(@a—MNd—X)—bc=0->X\—(a+d)\+ (ad—bc)=0

The solutions for the eigenvalues are now:

(a+d)=y/(a+d) — 4(ad — bo)
2

12=

Once the eigenvalues are known, we can compute an eigenvector for each eigen-
value. The only thing we need to determine is the direction of the eigenvector,
since the length is unimportant (the scalability, as shown in Fig. A6.1, holds for
any length of vector as long as the direction is correct). So we can set the value of
x in the eigenvector v arbitrarily to 1 and we substitute for the eigenvalue A\, =7 in
Equation (A6.1.1):

B 1 6] [1] _ 1
v L 12l
ﬁf—/v A~

This results in two equations:

1+6y=7
5+2y="Ty

Both have the same solution, y = 1. Therefore,
y 1

is an eigenvector for eigenvalue 7; this is the eigenvector shown in Fig. A6.1. The
same approach can be followed for the other eigenvalue, —4.

7 Causality

7.1 Introduction

In the previous chapters we decomposed multichannel data into its components and
we saw that this can be useful to detect structure in complex data sets. Another
question that is often posed concerns the causal structure between channels or com-
ponents: that is, does one channel generates another? In neuroscience the underly-
ing question is: does an area in the brain activate other ones? A typical example is
when an epileptologist examines multichannel recordings of brain electrical activity
and attempts to find the source (focus) of the epileptic seizures. Often this task is
accomplished by finding the signals that lead or lag; the leading signals are then
considered as causing the lagging ones. Cross-correlation or nonlinear equivalents
can be used to formalize and quantify timing differences between signal pairs in
multichannel data sets (see van Drongelen, 2007, chapter 8 to review cross-
correlation).

We have to start pessimistically by pointing out that translation from lead—lag
to causality is strictly not possible—the example in Fig. 7.1 demonstrates this. If
we record from areas A and B in Fig. 7.1A, our method of interpreting lead—lag as
a causal relationship A— B is correct. However, if we measure signals from A, B,
and C (Fig. 7.1B), we conclude that A—»B, A—C, and B—C. We are only partly
correct: the two former relationships are correctly inferred but the latter is not. It
even would get worse if we had not recorded from A in this example: then we only
find B— C and we would be 100% incorrect. So equating lead—lag with causality/
connectivity can be incorrect. Having said this, in many studies in neuroscience
this is (conveniently) ignored, and timing in signals is frequently used as an argu-
ment for connectivity. Often, authors use terms such as “functional connectivity”
or “synaptic flow” to (implicitly) indicate the caveats above. Because we often
know the typical conduction velocity and delays caused by synaptic transmission,
we can (at least) recognize unrealistic delays. For example, if we know that areas
B and C in Fig. 7.1B are 10 cm apart and that conduction velocities of the fibers
between B and C are ~1 m/s, we can expect delays ~100 ms plus a few millise-
conds for each synapse involved. Now suppose that in this example the delay
between B and C (Ar, — Afy) is ~5 ms: such a value is far below the expected
delay of over 100 ms, which is an indication that direct connectivity does not play
a role in the observed lead—lag between B and C.

Signal Processing for Neuroscientists, A Companion Volume. DOI: 10.1016/B978-0-12-384915-1.00007-3
© 2010 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384915-1.00007-3

160 Signal Processing for Neuroscientists, A Companion Volume

(A) Figure 7.1 Example of areas in the brain A, B, C and their

connections, indicated by the arrows. The delays, due to conduction
—Ar velocity in the connections, between these areas are At, Aty, At,

with Az, > Aty. (A) Due to the delay, activity in area B lags relative
(B) to the activity in A. (B) Both B and C lag relative to A, but since
— o At, > Aty, activity in C also lags relative to B.
1

e

7.2 Granger Causality

In the 1950s, Norbert Wiener proposed that one signal causes another if your pre-
diction of the latter signal improves by including knowledge of the former. About a
decade later, Clive Granger (1969) formalized this concept for linear regression of
stochastic processes. To explain the principle, we consider an example of two sig-
nals x and y, and we suppose that we can characterize them with the following
autoregressive (AR) models:

Xp = AiXp—1 T apxXp—n ot aixy it byt A byt Fexy
(7.1a)

Yn = C1Yn—-1 +02yn—2 + o +Ciyn—i T+ +d1xn—1 T+ +di-xn—i T+ +eyn
(7.1b)

Here a. , b. , c.., and d__ are the coefficients and ex, and ey, are error terms. If
the variance of error ex,, is reduced by including any value of y, y,_; (i.e., b; #0),
then we say that y causes x. Similarly, if the variance of error ey, is reduced by
including any value of x, x,—; (i.e., d;#0), then we say that x causes y. In this
example, if b;#0 and/or d;#0, we may use the term “Granger causality” to
describe the relationship between x and y; we add the qualification “Granger” to
indicate that we may not be dealing with a true causal relationship. Similar to the
examples given above and in Section 1.3 (where we used the Hilbert transform to
detect lead and lag between channels), there may be alternative explanations why x
helps to predict y or vice versa.

7.3 Directed Transfer Function

In the following we will link the Granger causality to the z-domain and frequency
domain approach of the directed transfer function (DTF), first described by
Kaminski and Blinowska (1991). The explanation here will be informal; a formal
proof of the relationship between Granger causality and DTF is presented in
Kaminski et al. (2001).

Causality 161

7.3.1 Autoregression in the Frequency Domain

To link time and frequency domains, we start from a 1D AR model and its fre-
quency domain presentation. Next, we extend the approach to a multidimensional
model and define the DTF. Because we want to follow the derivation by Kaminski
and Blinowska (1991), we start our explanation in the time domain and transform
our findings into the frequency domain via the z-transform.

7.3.1.1 1D Example
A one-channel model of order p can be represented by:

Xp =Xy T Xy o+ - Faxy it Fapx, e, (7.2a)
Here x, are the signal samples, a; are the AR model’s coefficients, and e, is the
error term, which we represent by zero mean GWN.

Equation (7.2a) can be rewritten in the form:
Xp — A1 Xp—1 — A2Xp—2 — 0 T AiXp—j T 0 T ApXp—p = €y (72b)
Because we deal with a discrete time system, we can transform from the
time domain into the z-domain (to review the z-transform, see chapter 9 in

van Drongelen, 2007). We define the following transform pairs:

X, < X(2)
en < E(2)

Applying the z-transform to Equation (7.2b) we get:

X(z) — a1z 'X(2) — axz *X(2) = - — @iz 'X(z) = -+ — apz "X (2) = E(2)

(7.2¢)
SX@U —aiz '~z t = —air = —ar P = E(2)
SX()= : | B =HEEO

-2 _ .

l—alz_l—azz ..—aiz_i—...—apz P

H(z)
(7.2d)

In Equation (7.2d), we defined H(z) as the transfer function of the system with
input noise e,, and output signal x,,.

Recall that the z-transform is the Laplace transform applied to discrete time
series (chapter 9 in van Drongelen, 2007); the complex variable z for a time series
sampled with interval A is defined as z = ¢*®, where s is the complex variable of

162 Signal Processing for Neuroscientists, A Companion Volume

the Laplace transform. To get from the z-domain to the frequency domain, we now
use the imaginary part of exponent s = 0 + jw = ¢ + j27f of variable z—that is:

-1 _ —sA _ e*((r +j27f)A

= I = o—i2nfA

-7
Using this, we can rewrite Equation (7.2d) as a function of frequency f:

X(f) = H()E(f) (7.2¢)

Now we have an expression in the frequency domain, where X(f) is the Fourier
transform of signal x,,, E(f) is the Fourier transform of the noise input e,, and H(f)
is the frequency response characterizing the system with input e, and output x,,.
Since X(f) is the discrete Fourier transform of x,, the unscaled power spectrum S
for x,, (chapter 7 in van Drongelen, 2007) is:

S(f) = X(HX(f)* (7.3a)

The * indicates the complex conjugate. Equation (7.3a) combined with (7.2e)
gives:

S() = [HOEDONHGET*

Since this expression is the product of four complex numbers (for each frequency),
we may remove the brackets and rearrange the terms:

S(F) = H(EEF)*H(f)* (7.3b)

If the input process e, is zero mean GWN, its unscaled power spectrum
E(f)E(f)* = No2, where N is the number of measurements of x,, and ¢” is the vari-
ance of the noise process.

Note: The equality E(f)E(f)* = No? is directly related to Parseval’s theorem
(appendix 7.1 in van Drongelen, 2007), stating that the energy of a signal e in
the time domain equals the energy of its power spectrum: > (EE*/N) = >_ €%
If the signal has zero mean we may use the following (biased) expression for
variance: 0> = (1/N) Y e>. Combining the two latter expressions, we get a
formula for the sum of the bins in the power spectrum: > (EE*/N) = No>.
Now, if signal e is GWN, the power is equally distributed across the N bins of
its spectrum—in other words, the power in each bin (the power for each
frequency f) of the normalized spectrum is No? /N = ¢°. Finally, for the
non-normalized spectrum EE* (instead of the normalized one EE*/N) we find
that the value for each frequency bin is N X o2 : E(f)E(f)* = No>.

Causality 163

If we substitute this result in Equation (7.3b), we get:
S(f) = No*[H(HH(f)*] = No*|H(f)[? (7.3¢)

Thus, in this case the spectrum S(f) is proportional with the power of the frequency
response |H(f)|*> = [H(f)H(f)*]. Thus, in the frequency domain H(f) relates input
with output—that is, the noise with the signal.

7.3.1.2 Multidimensional Example

The next step is to generalize the above from a one-channel pth-order AR process
to a k-channel one. As a first step let us consider a three-channel data set with a
pth-order AR process. For this system, the equivalent for Equation (7.2a) becomes:

x(1) aj; ap ap x(1) aj; ap ap x(1)
x2) | = ax axn ax x(2) + | a2 ax ax x(2)
x(3)/ , as1 ax ay) | \x3)/,_, as1 axn ay), \x3)/,_,
Xn Ay Xn—1 A Xn—2
ail apn a3 x(1)
+o+ | an axn ax x(2) e
ay ax a), \x(3)/ ,_;
Ai)Af;x*i
ap app apg x(1) e(1)
+ | az1 ax ax x(2) + 6(2) (74)
az1 ax az) , \x(3)/ ,_, e(3)/,
N —
Ap Xn—p €n

or
N
- __ — — — —
Xn _Al)Cn—l +A2Xn—2 + o +Aan—i+ +Aan—p te,
Here vector:

x(1)
xn=| x(2)
x3)/ .,

are the samples for the three channels x(1)—x(3), the 3 X 3 matrix:

aj; ap ap
Ai=1| an an ax

asy daszx asz /;

164 Signal Processing for Neuroscientists, A Companion Volume

are AR model’s coefficients, and vector:

e(1)
en=1| e
3/,

are the errors for each channel. Note that we use arrows to indicate that x and e are
vectors instead of scalars now. A useful feature is that the AR coefficients A;
relate the x values across time and more importantly (in this context) across
channels. For instance, for:

ap app a;p
Ay= | axn axn axp
as ax ax/,

we have (a;)> X x(1),_, relating past values of x(1) (i.e., the value of x(1) at sample
n—?2) to the present value of x(1) (i.e., its value at sample n); (a;,), X x(2),,_, relating
past values of x(2) (i.e., the value at sample n—2) to the present value of x(1) (i.e.,
the value at n); (a;3), X x(3),_, relating past values of x(3) (i.e., the value at n—2) to
the present value of x(1) (i.e., the value at n); (a»1), X x(1),,_, relating past values of
x(1) (i.e., the value at n—2) to the present value of x(2) (i.e., the value at n), etc.
Here we can see the relationship between this approach and Granger causality: if
one of the coefficients a;; # 0 (with i#j), there is a causal relationship (following
the definition of Granger causality as discussed in Section 7.2) between the channels
i and j, such that j—i. In the numerical example above, if (a;;), # 0, we find that
x(2)-x(1) (i.e., a causal relationship between channels 2— 1).

Following our approach for Equation (7.2a), Equation (7.4) can be rewritten in
the form:

Xn —Aixn—1—Adxn—2 = —Aixn—i— 0 —Apxn—p=en (7.5a)
We now repeat the same procedure as we employed for the one-dimensional

case, and get to the frequency domain via the z-transform. First we define the fol-
lowing transform pairs:

% o X@)

¢ o E@)

The z-transform of Equation (7.5a) is:

X@) — A1z 'X(@) — Ay X(2) — -+ —Ai ' X(@) — -+ — A PX(2) = E(2)
(7.5b)

Causality 165

SX@U A1z Ay = =A== A P1=E(2)

1
I—Ajz7 ' —Apr 2= Az — - —Apz

H(z)

- X(2)= —| EQ=HRER) (1.5

In the above, I is the identity matrix and H(z) is defined as the transfer function
matrix between the input noise:

. E(1)
E(z)= | EQ)
EG3)

and output signal:

X(1)
X2 = [X
X(3)

Similar to the procedure we followed in the 1D example above, we now use the
imaginary part of exponent s = o + jw = o + j2nf of variable z to get to the fre-
quency domain—that is:

-1 — ,—sA _ e—(a +j27)A

l=e 1= omi2nfA

-7
We then rewrite Equation (7.5c¢) as a function of frequency f

X(f) = HOE() (7.5d)
The unscaled power spectrum S for ¥, is:

S(f) = X(NX(f)* (7.6a)
The * indicates the adjoint, both the complex conjugate and the transpose. Note

that for each frequency f in Equation (7.6a) S is a 3 X 3 matrix. Equation (7.6a)
combined with Equation (7.5d) gives:

S(F) = [HOEONHEEF: = HEEEF)*H(f)* (7.6b)

In the above, we used the identity [H(f)E(f)]* = E(f)*H(f)*. If the input noise pro-
cesses e, are independent white Gaussian with zero mean and variance o°, we get

166 Signal Processing for Neuroscientists, A Companion Volume

E(f)E(f)* = No*I, where N is the number of measurements of ¥, and I is the iden-
tity matrix. This generates:

S(f) = No*[H(HH(f)*] (7.6¢)
Thus, in this case the spectrum S(f) is proportional with the power of the frequency

response [H(f)H(f)*] = |H(f)|>. Thus, in the frequency domain H(f) relates input
with output, and it is by definition inversely proportional to A(f) (see Equation (7.5¢)).

7.3.1.3 The Directed Transfer Function

Unlike in Equation (7.3c), H in the multichannel version in Equation (7.6¢) is not a
single value but a matrix for each frequency f (in this example a 3 X 3 matrix).
Each element H;; in H represents a transfer value between channels j and i.
Again we can see the relationship between this approach and Granger causality: if
the transfer value between j and i is nonzero, there is an input—output (causal) rela-
tionship. Kaminski and Blinowska (1991) use a normalized version of H, which
they call the DTF, to study interrelationships between channels in their data sets.
They normalize each component Hj; by dividing it by the sum of all elements of H
in the same row of the H matrix. Because H;,, represents the effect of channel m on
channel i, you can, in a K-channel recording, normalize by division by the contri-

K
butions from all channels:) H;,. Therefore, the normalized version of transfer
m=1

K

function element H;; becomes Hj;/ Y H;,. Because Hj; is usually a complex num-
m=1

ber, this ratio is further simplified to the squared magnitude, generating the com-

monly used definition of the DTF ~,;:

2
|Hy|
K
2
> 1Hinl
m=1

Thus, the DTF can be determined from transfer matrix H, which can be determined
using the matrix of AR coefficients A (Equation (7.5¢)). A recent study by Wilke
et al. (2009) describes how DTF can be combined with adaptive parameter estima-
tion; this adaptive version of DTF allows time-variant coefficients of the AR model
to deal with nonstationarity of the EEG signal.

Yij =

(1.7)

7.3.2 Implementation

After obtaining the above results, it is appropriate to start thinking about an algo-
rithm to determine +y; from measured data (e.g., a multichannel EEG recording).
One practical approach to find the transfer matrix H in a measured data set is to fit
an AR model to the data and determine matrix A of the AR coefficients
(Section 7.3.1.2). The inverse of A gives H (Equation (7.5¢)). This is a parametric

Causality 167

approach, because the basis is to fit parameters of an AR model to the data and the
DTF is derived from there. Fitting a multichannel AR model to a data set is an art
in itself that is beyond the scope of this chapter. If you want to play with fitting
models, there are several Web sites with MATLAB scripts available; one example
is the ARfit toolbox from http://www.gps.caltech.edu/~tapio/arfit/.

If you want to evaluate this arfit code you can create your AR model and evalu-
ate the performance of the estimator’s output with the known coefficients in your
model. The following script, Pr7_1.m, is an example of this procedure. Note that
this works only if you download and install the arfit toolbox! Recall to include
the arfit directory in the path by using “Set Path ...” in the “File”’ menu.

% Pr7_1.m
% A test for identifying coefficients from a time series

% The program prints the coefficients we use (a and b)
% plus their estimates (vector A) obtained with the arfit function
% from the ARfit toolbox:http://www.gps.caltech.edu/~tapio/arfit/

clear;
close all;

% Set coefficients a and b

a=0.95;

b=-.55;

% Parameters & initial values for the time series
N=1000;

e=randn(1,N+3); % GWN input

x(1)=0;e(1)=0;

x(2)=0;e(2)=0;

% create the time series using autoregression
for i=3:N+3
x(1)=a*x(i-1)+b*x(i-2)+e(i);
end;
% Remove the 1st 2nd zero-valued-points from x
x=x(3:N+3);
% Make e the same length
e=e(3:N+3);
% normalize x & e
X=X-mean(x);
x=x/std(x)"2;
e=e-mean(e);
e=e/std(e)"2;

% arfit toolbox
[w,A,C,SBC,FPE, th]=arfit(x’,0,4); % arfit function
% Show the results

http://www.gps.caltech.edu/~tapio/arfit/
http://www.gps.caltech.edu/~tapio/arfit/

168 Signal Processing for Neuroscientists, A Companion Volume

(‘coefficients’)
(‘in’)

[a b]
(‘estimated’)
A

When you run the above script you will find that the arfit routine finds reasonable
estimates for the coefficients a and b (i.e., your estimates for a and b will be close
to 0.95 and —0.55, respectively).

For the implementation we can also go the nonparametric route by assuming
that the noise sources in our model are zero mean GWN signals. This gives us the
expression in Equation (7.6c), which shows us that the unscaled power spectrum
S(f) is proportional to [H(f)H(f)*] = |H|>. Under this assumption, we may deter-
mine the power spectrum directly from the data without having to estimate para-
meters by using the proportionality between S and |H|? to estimate the DTF.

7.3.2.1 Examples

Let us simulate an example. First we create three signals S1, S2, and S3 with causal
relationships S1 — S2 and S1 — S3.

In MATLAB we accomplish this by creating a delay between S1 and S2 (in our
example 5 samples delay) and S1 and S3 (10 samples delay). The signal-to-noise
ratio (SNR) of our signal in S1 is determined by the variable SNR, and the strength
of the coupling of the signal in S1 to S2 and S3 is determined by K2 and K3, respec-
tively (see top diagram in Fig. 7.2).

function [S1 S2 S3]=Simulated_Signal(SNR, K2, K3);

% Output signals S1, S2, S3

% the signal-to-noise for S1 is determined by SNR

% the coupling from S1 to S2 and S3 are determined by K2 and K3
% Delay between S2 and S1 is dly2 and between S3 and S1 is dly3
% Linear vs. nonlinear coupling is determined by flag NL

% parameters

sample_rate=400; % sr in Hz

freq=30; % f in Hz

tim=40; % time in seconds

dly2=5; % # points delay and coupling strength signal 1 —>2
dly3=10; % # points delay and coupling strength signal 1 —>3

% Nonlinear Flag (coupling can be linear (0) or nonlinear (1))
NL=0;

Causality

169

% derived parms
f_Nyg=sample_rate/2;
dt=1/sample_rate;
N=tim*sample_rate;
t=0:dt:tim;
noise=randn(1,length(t));
null=zeros(1,length(t));

% Source Signal

S2=null; S3=null;
for k=dly2+1:N
if (NL==0);

else;

end;

end;

for k=dly3+1:N
if (NL==0);

else;

end;
end;
% Noise added to S1
S1=S1+noise;
% Normalize all signals
S1=(S1-mean(S1))/std(S1);
S2=(S2-mean(S2))/std(S2);
S3=(S3-mean(S3))/std(S3);

% Nyquist

% time step

% no of points

% time axis

% noise component
% basline of zeros

S1=sin(2*pi*freq*t). *SNR*std(noise);
% Create the derived signals S2 and S3

S2(k)=S1(k-dly2).*K2+randn; % linear coupling

S2(k)=(S1(k-dly2).A2).*K2+randn; % nonlinear coupling

S3(k)=S1(k-dly3).*K3+randn; % linear coupling

S3(k)=(S1(k-dly3).A2).*K3+randn; % nonlinear coupling

In our example we run the above function by typing
[ell el2 el3]=Simulated_Signal(3,0.1,0.001);

and the result is three traces simulating signals from electrodes 1—3 (ell,
el2, and el3) with causal relationships; we then save the result in a file

test.mat:

save test ell el2 el3

Next, we use the file named test to investigate the causal relation between the sig-

nals with the script Pr7_2.m.

170 Signal Processing for Neuroscientists, A Companion Volume

% Pr7_2.m

% Demo DTF based on signals generated with function Simulated_Signal,
% These signals are saved in File test.mat

% !! the function regres must be in the directory to detrend the data !!

% This program steps with 20 s windows (duration) through

% each of three 40 s signals (ell, el2, el3).

% These 20 second windows move ahead with steps of 5 s (increment).
% So there is 15 s overlap between the 20 s analysis windows)

% Within each window of 20 seconds, the average (cross)spectra

% are computed from fft-analysis epochs of 128 points (step).

% NOTE: THIS PROGRAM IS NOT OPTIMIZED.

clear;

load test % load the data with 40 s input traces ell - el3

9% Parameters

cmdO=[‘N=length(el1)’]; % Determine the length of the signal

eval([cmdO ;’])

sample_rate=400; % 400 Hz sample rate

duration=20; % duration of the total analysis window in
% seconds

step=128; % # of points in the FFT analysis window

increment=>5; % steps of the analysis window in seconds

dt=1/sample_rate; % sample interval

fNyqg=sample_rate/2; % Nyquist frequency

df=1/(step*dt); % Frequency step for the FFT

f=0:df:fNyq; % Frequency axis for the FFT

% Plot the three signals ell - el3 in the top panels
figure

subplot(4,3,1);

plot(ell);hold;axis([0 N min(ell) max(ell)]);
t=[‘el1’];title(t);

axis(‘off’);

subplot(4,3,2);

plot(el2);hold;axis([0 N min(el2) max(el2)]);
t=[‘el2’];title(t);

axis(‘off’);

subplot(4,3,3);

plot(el3);hold;axis([0 N min(el3) max(el3)]);
t=[‘el3’];title(t);

axis(‘off’);

Causality 171

% MAIN LOOP: STEPPING THROUGH THE DATA

% AND COMPUTING THE (CROSS)SPECTRA

count=0;

for w=1:increment*sample_rate:N-duration*sample_rate
% Move data window into X, y, z
x=ell(w:w+duration*sample_rate-1);
y=el2(w:w+duration*sample_rate-1);
z=el3(w:w-+duration*sample_rate-1);

% Initialize the Cross-Spectral arrays for averaging
Sxx=zeros(1,step);

Syy=Sxx;

Szz=Sxx;

Sxy=Sxx;

Sxz=Sxx;

Syz=Sxx;

% SECOND LOOP TO COMPUTE AVERAGE (CROSS)SPECTRA
xtemp=0:step-1;
for i=1:step:sample_rate*duration-step;
% pre-processing X
[m,b,r]=regres(xtemp,x(i:i+step-1)); % Use regression to compute trend
trend=m*xtemp-+b;

x(i:i+step-1)=x(i:i+step-1)-trend,; % detrend
x(i:i+step-1)=x(i:i+step-1)-mean(x(i:i+step-1)); % demean
fx=fft(x(i:i+step-1).*hann(step)’); % windowed fft

% pre-processing y
[m,b,r]=regres(xtemp,y(i:i+step-1));
trend=m*xtemp-+b;
y(i:i+step-1)=y(i:i+step-1)-trend;
y(i:i+step-1)=y(i:i+step-1)-mean(y(i:i+step-1));
fy=fft(y(i:i+step-1).*hann(step)’);

% pre-processing z
[m,b,r]=regres(xtemp,z(i:i+step-1));
trend=m*xtemp-+b;
z(i:i+step-1)=z(i:i+step-1)-trend;
z(i:i+step-1)=z(i:i+step-1)-mean(z(i:i+step-1));
fz=fft(z(i:i+step-1).*hann(step)’);

% compute all 9 spectra which are proportinal with |H|*2, Eq (7.6¢c)
Sxx=Sxx-+fx.*conj(fx);

Syy=Syy-+fy.*conj(fy);

Szz=Szz+fz.*conj(fz);

Sxy=Sxy+fx.*conj(fy);

172

Signal Processing for Neuroscientists, A Companion Volume

Sxz=Sxz+fx.*conj(fz);
Syz=Syz+ty.*conj(fz);
Syx=conj(Sxy);
Szx=conj(Sxz);
Szy=conj(Syz);

end;

% Compute the power
S11=abs(Sxx).2;
S12=abs(Sxy)."2;
S13=abs(Sxz)."2;
S21=abs(Syx)."2;
S22=abs(Syy).*2;
S23=abs(Syz)."2;
S31=abs(Szx).A2;
S32=abs(Szy)."2;
S33=abs(Szz)."2;

% Normalize
NS11=S11./max(S11);

NS12=S12./(S11+S12+S13); % Eq (7.7)
NS13=S13./(S11+S12+S13); % Eq (7.7)
NS21=S21./(S21+822+523); % Eq (7.7)

NS22=S22./max(S22);

NS23=523./(S21+522+523); % Eq (7.7)
NS31=S31./(S31+S32+S33); % Eq (7.7)
NS32=S32./(S31+832+S33); % Eq (7.7)

NS33=S33./max(S33);

count=count+1;

% Plot the results in the corresponding panels and
% superimpose the results for different epochs

% Titles for the panels

ttlel=[* * num2str(count) ‘ ’* ‘Spectrum ell’];

ttle2="el2 - > ell’;
ttle3=‘el3 -> ell’;
ttled=°ell - > el2’;
ttle5=‘ Spectrum el2’;
ttle6="€l3 - > el2’;
ttle7="ell - > el3’;
ttle8="el2 - > el3’;
ttle9=* Spectrum el3’;

% on diagonal the normalized power spectrum

% on diagonal the normalized power spectrum

% on diagonal the normalized power spectrum

Causality 173

% Draw a red horizontal line for each 20 s analysis window

Y=[0 0];

X=[w w+duration*sample_rate];

XP=[w+1-increment*sample_rate w];

subplot(4,3,1);plot(X,Y,‘r’);if (count > 1);plot(XP,Y);end;
subplot(4,3,2);plot(X,Y,’r’);if (count > 1);plot(XP,Y);end;
subplot(4,3,3);plot(X,Y,’r’);if (count > 1);plot(XP,Y);end;

% Plot the (cross)spectral information in the lower 3 X 3 panels
subplot(4,3,4);hold on; plot(f(1:step/4),NS11(1:step/4),’k’);axis([0 60 O 1]);
title(ttlel);

subplot(4,3,5);hold on; plot(f(1:step/4),NS12(1:step/4),’k’);axis([0 60 O 1]);
title(ttle2);

subplot(4,3,6);hold on; plot(f(1:step/4),NS13(1:step/4),’k’);axis([0 60 O 1]);
title(ttle3);

subplot(4,3,7);hold on; plot(f(1:step/4),NS21(1:step/4),’k’);axis([0 60 O 1]);
title(ttle4);

subplot(4,3,8);hold on; plot(f(1:step/4),NS22(1:step/4),’k’);axis([0 60 O 1]);
title(ttleS);

subplot(4,3,9);hold on; plot(f(1:step/4),NS23(1:step/4),’k’);axis([0 60 O 1]);
title(ttle6);

subplot(4,3,10);hold on; plot(f(1:step/4),NS31(1:step/4),’k’);axis([0 60 O 1]);
title(ttle7);

subplot(4,3,11);hold on; plot(f(1:step/4),NS32(1:step/4),’k’);axis([0 60 O 1]);
title(ttle8);

subplot(4,3,12);hold on; plot(f(1:step/4),NS33(1:step/4),’k’);axis([0 60 O 1]);
title(ttle9);

% Force the script to draw the plots and pause for 1 second
drawnow;
pause(1);

% END MAIN LOOP
end;

The final result of running the above scripts is a plot as depicted in Fig. 7.2. The top
row of plots in Fig. 7.2 shows the three signals in the time domain and the bottom
part (3 X 3 matrix of panels) shows the spectral plus “causal” information. The diag-
onal panels are the spectra of each of the three channels and the off-diagonal plots
show the DTF. It can be seen that, as expected, the first columns shows a consistent
energy peak around 30 Hz (the frequency of the test signal in ell) in the DTF,
reflecting the causal relationships between ell and the other two electrodes (el2 and
el3). The spectral panels show superimposed traces because spectra and DTFs were
determined a number of times for five subsequent epochs of the signals.

174 Signal Processing for Neuroscientists, A Companion Volume

Delay 5 samples
Coupling 0.1

30 Hz

source
signal \
Delay 10 samples

Coupling 0.001

ell el2 el3
5 Spectrum ell el2 -> ell el3 > ell
1 1 1
0 50 0 50 0 50
ell > el2 Spectrum el2 el3 > el2
1 A 1 1
0 0 0 —
0 50 0 50 0 50
ell > el3 el2 -> el3 Spectrum el3
1 1 1
N ! m |
0 50 0 50 0 50

Figure 7.2 Test of the nonparametric DTF algorithm on simulated data. The top diagram
shows how three signals ell, el2, and el3 relate to each other. The source ell contains a

30 Hz sinusoidal signal that is coupled with delays to the other two electrode signals el2 and
el3. Noise is added to all three channels. The top panels ell, el2, and el3 show the signals
plus their noise components in the time domain and the bottom 3 X 3 panels are the result of
the DTF analysis. These panels show multiple traces, the results from analyzing five
overlapping epochs superimposed. Each epoch is 20 s and the overlap between subsequent
epochs is 15 s (the red horizontal lines in the three upper panels represent the 20 s analysis
windows used for the last of the five epochs). The diagonal panels in the 3 X 3 arrangement
show the power spectra scaled between 0 and 1 of each electrode and the off-diagonal panels
show the DTF according to Equation (7.7). It is clear that the first column contains energy
around 30 Hz, confirming that ell is a source for el2 and el3. The graphs were prepared with
MATLARB scripts Simulated_Signal.m and Pr7_2.m; if you repeat this procedure your
results may slightly differ (due to the effects of the added noise components).

Causality 175

Recording of brain electrical activity from the scalp (EEG) or the cortex
(ECoG) is the clinical basis for the evaluation of patients with epilepsy. These
recordings can capture interictal spikes and the epileptic seizures and they can be
used to determine the temporal and spatial characteristics of these activity patterns.
For surgical candidates, a precise localization of the region where seizures originate
is highly significant because it determines the target for surgical resection.
Therefore, it is clinical practice to monitor surgical candidates for several days. In
such clinical recordings, even if we assume that the electrodes sufficiently cover
the brain areas of interest, the determination of the origin of the ictal activity can
be far from simple. First, the epileptologist must detect all seizures occurring in a
large data set; second, within each seizure the origin of the epileptiform discharges
must be determined. To determine the epileptic focus, the epileptologist will use
multiple data sets reflecting brain structure and function (EEG, MRI, PET, etc.).
The DTF analysis is a natural fit into this set of clinical data because it provides an
indicator where activity may originate.

7.4 Combination of Multichannel Methods

Finally we discuss how several of the multichannel techniques can be employed to
investigate brain activity. Gomez-Herrero et al. (2008) developed and applied a
novel methodology based on multivariate AR modeling and ICA to determine the
temporal activation of the intracerebral EEG sources as well as their approximate
locations. First these authors used PCA to remove noise components (similar to our
example with Lena’s image in Pr6_2.m) and ICA to identify the EEG sources (as
in our example in Fig. 6.15). The direction of synaptic flow between these EEG
sources is then estimated using DTF (as we did in the example of Fig. 7.2). The
reliability of their approach is assessed with simulations and evaluated by analyzing
the EEG-alpha rhythm. Their results suggest that the major generation mechanism
underlying EEG-alpha oscillations consists of a strong bidirectional feedback
between thalamus and posterior neocortex. Altogether, the study suggests that the
combined application of PCA, ICA, and DTF is a promising noninvasive approach
for studying directional coupling between neural populations.

References

Arfken, G.B., Weber, H.J., 2005. Mathematical Methods for Physicists, sixth ed. Academic
Press, Elsevier, Burlington, MA.

Barbero, A., Franz, M., Van Drongelen, W., Dorronsoro, J.R., Scholkopf, B., Grosse-
Wentrup, M., 2009. Implicit Wiener series analysis of epileptic seizure recordings.
Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 5304—5307.

Bell, AJ., Sejnowski, T.J., 1995. An information-maximization approach to blind separation
and blind deconvolution. Neural Comput. 7, 1129—1159.

Boas, M.L., 1966. Mathematical Methods in the Physical Sciences, second ed. John Wiley &
Sons.

Cover, T.M., Thomas, J.A., 1991. Elements of Information Theory, John Wiley & Sons,
New York.

De Schutter, E., Bower, J.M., 1994a. An active membrane model of the cerebellar Purkinje
cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71, 375—400.

De Schutter, E., Bower, J.M., 1994b. An active membrane model of the cerebellar Purkinje
cell. II. Simulation of synaptic responses. J. Neurophysiol. 71, 401—419.

Fitzhugh, R.A., 1961. Impulses and physiological states in theoretical models of nerve mem-
brane. Biophys. J. 1, 445—466.

Franz, M.O., Scholkopf, B., 2006. A unifying view of Wiener and Volterra theory and poly-
nomial kernel regression. Neural Comput. 18, 3097—-3118.

Gomez-Herrero, G., Atienza, M., Egiazarian, K., Cantero, J.L., 2008. Measuring directional
coupling between EEG sources. Neuroimage 43, 497—508.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37 (3), 424—438.

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its
application to conduction and excitation in the nerve. J. Physiol. 117, 500—544.

Izhikevich, E.M., 2007. Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting, MIT Press, Cambridge, MA.

Jordan, D.W., Smith, P., 1997. Mathematical Techniques. Oxford University Press, Oxford.

Kaminski, M., Ding, M., Truccolo, W.A., Bressler, S.L., 2001. Evaluating causal relations in
neural systems: Granger causality, directed transfer function and statistical assessment
of significance. Biol. Cybern. 85, 145.

Kaminski, M.J., Blinowska, K.J., 1991. A new method of the description of the information
flow in the brain structures. Biol. Cybern. 65, 203.

Koch, C., 1999. Biophysics of Computation: Information Processing in Single Neurons,
Oxford University Press, New York.

Krausz, H.I., 1975. Identification of nonlinear systems using random impulse train inputs.
Biol. Cybern. 19, 217—-230.

Lay, D.C., 1997. Linear Algebra and its Applications, Addison-Wesley, New York.

Lee, Y.W., Schetzen, M., 1965. Measurement of the kernels of a nonlinear system by cross-
correlation. Int. J. Contr. 2, 237—254.

178 References

Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys.
Space Sci. 39, 447—-462.

Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H., 1974. Model of Brain
Rhythmic Activity: The Alpha-Rhythm of the Thalamus. Kybernetik 15, 27—37.

Marmarelis, P.Z., Marmarelis, V.Z., 1978. Analysis of Physiological Systems: The White
Noise Approach, Plenum Press, New York.

Marmarelis, V.Z., 2004. Nonlinear Dynamic Modeling of Physiological Systems, IEEE
Press, John Wiley & Sons Inc., Hoboken, NIJ.

Martell, A., Lee, H., Ramirez, J.M., Van Drongelen, W., 2008. Phase and frequency synchro-
nization analysis of NMDA-induced network oscillation. P142, CNS 2008 Annual
Meeting. http://www.biomedcentral.com/content/pdf/1471-2202-9-s1-p142.pdf.

Pikovsky, A., Rosenblum, M., Kurths, J., 2001. Synchronization: A Universal Concept in
Nonlinear Sciences, Cambridge University Press, Cambridge, UK.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes in C,
third ed. Cambridge University Press, Cambridge, MA.

Recio-Spinoso, A., Temchin, A.N., van Dijk, P., Fan, Y-H., Rugero, M.A., 2005. Wiener-
kernel analysis of responses to noise of chinchilla auditory-nerve fibers. J. Neurophysiol.
93,3615—-3634.

Scargle, J.D., 1982. Studies in astronomical time series analysis. II. Statistical aspects of
spectral analysis of unevenly spaced data. Astrophys. J. 263, 835—853.

Schetzen, M., 2006. The Volterra & Wiener Theories of Nonlinear Systems, second reprint ed.
Krieger Publishing Company, Malabar, FL.

Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication, University
of Illinois Press, Urbana, IL.

Stone, J.V., 2004. Independent Component Analysis: A Tutorial Introduction, MIT Press,
Cambridge, MA.

Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A.,
et al., 2005. Single-column thalamocortical network model exhibiting gamma oscilla-
tions, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194—2232.

Van Drongelen, W., 2007. Signal Processing for Neuroscientists: An Introduction to the
Analysis of Physiological Signals, Academic Press, Elsevier, Amsterdam.

Van Drongelen, W., Koch, H., Elsen, F.P., Lee, H.C., Mrejeru, A., Doren, E., et al., 2006.
The role of persistent sodium current in bursting activity of mouse neocortical networks
in vitro. J. Neurophysiol. 96, 2564—2577.

Van Drongelen, W., Williams, A.L., Lasky, R.E., 2009. Spectral analysis of time series of
events: effect of respiration on heart rate in neonates. Physiol. Meas. 30, 43—61.

Westwick, D.T., Kearney, R.E., 2003. Identification of Nonlinear Physiological Systems,
IEEE Press, John Wiley & Sons Inc., Hoboken, NIJ.

Wilke, C., Van Drongelen, W., Kohrman, M., He, B., 2009. Identification of epileptogenic
foci from causal analysis of ECoG interictal spike activity. Clin. Neurophysiol. 120,
1449—1456.

Zinn-Justin, J., 2002. Quantum Field Theory and Critical Phenomena, Oxford University
Press, New York.

http://www.biomedcentral.com/content/pdf/1471-2202-9-s1-p142.pdf

	Front matter
	Copyright
	Preface
	Lomb’s Algorithm and the Hilbert Transform
	Introduction
	Unevenly Sampled Data
	Lomb’s Algorithm
	A MATLAB Example

	The Hilbert Transform
	The Hilbert Transform in the Frequency Domain
	The Hilbert Transform in the Time Domain
	Examples

	Appendix 1.1
	Appendix 1.2
	Appendix 1.3

	Modeling
	Introduction
	Different Types of Models
	Examples of Parametric and Nonparametric Models
	Polynomials
	Describing Discrete Time Data Sets
	Describing Analytic Functions
	Maclaurin Series
	Taylor Series

	Nonlinear Systems with Memory
	Appendix 2.1
	Taylor Series for a 2D Function

	Volterra Series
	Introduction
	Volterra Series
	Combined Input to a Second-Order Volterra System

	A Second-Order Volterra System
	Discrete Time Implementation

	General Second-Order System
	Determining the Second-Order Kernel
	Determining the First-Order Kernel

	System Tests for Internal Structure
	The LN Cascade
	The NL Cascade
	The LNL Cascade

	Sinusoidal Signals

	Wiener Series
	Introduction
	Wiener Kernels
	Derivation of the First-Order Wiener Operator
	Derivation of the Second-Order Wiener Operator
	Orthogonality Between H0 and g2
	Orthogonality Between H1 and g2

	Determination of the Zero-, First- and Second-Order Wiener Kernels
	Determination of the Zero-Order Wiener Kernel
	Determination of the First-Order Wiener Kernel
	Determination of the Second-Order Wiener Kernel

	Implementation of the Cross-Correlation Method
	Relation between Wiener and Volterra Kernels
	Analyzing Spiking Neurons Stimulated with Noise
	Nonwhite Gaussian Input
	Summary
	Appendix 4.1
	Averages of Gaussian Random Variables

	Appendix 4.2
	Delay System as Volterra Operator

	Poisson–Wiener Series
	Introduction
	Systems with Impulse Train Input
	Product Averages for the Poisson Impulse Train
	Orthogonal Terms of the Poisson–Wiener Series
	The Zero-Order Poisson–Wiener Operator
	The First-Order Poisson–Wiener Operator
	The Second-Order Poisson–Wiener Operator

	Determination of the Zero-, First- and Second-Order Poisson–Wiener Kernels
	Determination of the Zero-Order Poisson–Wiener Kernel
	Determination of the First-Order Poisson–Wiener Kernel
	Determination of the Second-Order Poisson–Wiener Kernel

	Implementation of the Cross-Correlation Method
	Spiking Output
	Summary
	Appendix 5.1
	Expectation and Time Averages of Variables Following a Poisson Process

	Appendix 5.2
	Creating Impulse Trains Following a Poisson Process

	Decomposition of Multichannel Data
	Introduction
	Mixing and Unmixing of Signals
	Principal Component Analysis
	Finding Principal Components
	A MATLAB Example
	Singular Value Decomposition
	Using PCA as a Filter

	Independent Component Analysis
	Entropy of Sources and Mixtures
	Using the Scalar Product to Find Independent Components
	A MATLAB Example
	What If Sources Are Not Uniformly Distributed?
	Can We Apply Smarter Approaches Than the Brute Force Technique?
	An Example of ICA Applied to EEG Signals

	Appendix 6.1
	Eigenvalues and Eigenvectors

	Causality
	Introduction
	Granger Causality
	Directed Transfer Function
	Autoregression in the Frequency Domain
	1D Example
	Multidimensional Example
	The Directed Transfer Function

	Implementation
	Examples

	Combination of Multichannel Methods

	References

